
ar
X

iv
:0

81
2.

45
31

v3
  [

he
p-

th
]  

10
 J

ul
 2

00
9

Edge excitations of the

Chern Simons matrix theory for the FQHE.

Ivan D. RODRIGUEZ∗

I.N.F.N. and Dipartimento di Fisica

Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze, Italy

Abstract

We study the edge excitations of the Chern Simons matrix theory, describing the

Laughlin fluids for filling fractionν = 1
k , with k an integer. Based on the semiclassical

solutions of the theory, we are able to identify the bulk and edge degrees of freedom.

In this way we can freeze the bulk of the theory, to the semiclassical values, obtaining

an effective theory governing the boundary excitations of the Chern Simons matrix

theory. Finally, we show that this effective theory is equalto the chiral boson theory

on the circle.
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1 Introduction

In this paper we study the edge excitations of the regularized non-commutative Chern

Simons(CS) matrix theory [1][2]. In Ref.[1] Susskind showed that the theory of an in-

compressible fluid of charged particles in an strong magnetic field B corresponds, in the

semiclassical regime, to the smallθ limit of the non-commutative CS theory [3], where

θ is the non-commutative parameter. Moreover, the classicaltheory of the fluid presents

a symmetry of diffeomorphisms that preserve the area and thus it can be mapped to the

non-commutative CS matrix theory, by means of the Goldstone-Hoppe regularization[4].

Another approach that relates the fluid theory with the non-commutative CS theory comes

from the analogies between the physics of electrons in an strong magnetic field and the

properties of D-branes in String Theory [1][5]. Based on theprevious arguments, Susskind

proposed the non-commutative CS theory to describe the Laughlin Hall states [6][7] made

of particles with an effective area†.

The non-commutative CS theory is anU(N) gauge theory in one dimension (i.e. time)

with CS kinetic term; it involves two hermitian matrix coordinatesX1(t) andX2(t), that are

non-commuting,[X1,X2] = iθI , whereI is the identity and the quantityBθ = k is quantized

to an integer, at quantum level, to preserve gauge invariance [1]. As we will show in section

2.1, the eigenvalues of the matrices describe the coordinates of the particles[1][2]. Also the

parameterk is related to the filling fraction of the fluid of electrons asν = 1
k [1].

Although Susskind theory shares a similar behavior with thefractional quantum Hall

effect (FQHE), it contains an infinite number of degrees of freedom (d.o.f.). Due to this,

Polychronakos regularized the theory to allow for a finite number of particles [2]. The

quantum ground state of the Susskind-Polychronakos theorywas found to be the Laughlin

wave function for the FQHE, with filling fractionν = 1
k [8]-[15].

As said before, in this work we will study the edge excitations of the Susskind-Polychronakos

matrix theory. We remark that the boundary excitations of the FQHE in the context of non-

commutative theories, have been studied in the past from other points of view [16][17].

The paper is organized as follows: in section 2 we briefly review the non-commutative CS

theory. We introduce the Susskind theory and the regularization by Polychronakos to allow

for matrices of finite order. In section 2.1, we show that the quantum ground state of the

regularized matrix theory corresponds to the Laughlin wavefunction with filling ν = 1
k [8]-

[15]. In the last part of the section we show that the low lyingexcitations of the ground state

(edge excitations) are in one to one correspondence with theexcitations of the chiral boson

†Note that in a non-commutative space parameterized by coordinatesy1 and y2 we have
[
y1,y2

]
= θ,

whereθ can be thought as a unity of area.
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theory, describing the boundary physics of the Laughlin fluids [18][19][20]. In section 2.2

we present the semiclassical ground state solution obtained by Polychronakos in [2]. In

section 3.1 we take into account the more general excitations of the semiclassical ground

state solution, that produce only a perturbation on the edgeof the droplet, i.e. that leave

the bulk unchanged. This means that these perturbations don’t introduce any interactions

between the bulk and the boundary. In this way we are able to obtain the relevant d.o.f.

on the edge. Based on the previous result, we introduce a meanfield approximation that

freezes the bulk d.o.f. and their interactions with the boundary of the droplet. Therefore

we obtain an effective theory formulated only in terms of thedynamics of the edge d.o.f.

In section 3.2, we show that this effective theory corresponds to the chiral boson theory on

the circle that, as said before, describes the edge excitations of the Laughlin fluids [18][19].

This is the main result of the paper. Finally we make some comments about the application

of our analysis to the Maxwell CS matrix theory [21][22] for the Jain hierarchy [23].

2 Review of the non-commutative Chern Simons theory

In an interesting paper [1] Susskind conjectured that the non-commutative Chern Simons

field theory in two dimensions could describe the Laughlin incompressible fluids in the

QHE. This conjecture was inspired by the fact that the semiclassical limit of this theory

[24] describes incompressible fluids in high magnetic field with Laughlin’s filling fractions

(ν = 1
k , k an integer) and their quasi-hole excitations.

The non-commutative CS theory can be represented as a matrixtheory given by [1]:

SSusskind=
Z

dt
B
2

Tr
[

εi j Xi(t) Dt Xj(t)+ 2θ A0(t)
]
, (2.1)

whereX1(t) , X2(t) andA0(t) areN×N hermitian matrices, withN = ∞, and the covariant

derivative is defined asDtXj = Ẋj − i
[
A0,Xj

]
. The parameterθ is related to the density of

the fluid of electronsρ0 as:

ρ0 =
1

2πθ
. (2.2)

In this theory the Gauss law (∂L
∂A0

= 0) implies:

[X1,X2] = iθI , (2.3)

whereI is the identity matrix. Taking the trace in both members of (2.3) it is evident that

it is satisfied only forN = ∞. Therefore Susskind’s theory applies to an infinite system.
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Instead the FQHE is a system with a boundary and a finite numberof particles. For this

reason Polychronakos [2] proposed the following action generalizing the Susskind theory:

S=

Z

dt
B
2

Tr
{

εab(Ẋa+ i[A0,Xa])Xb+2θA0−ωX2
a

}
+

Z

dtψ†(iψ̇−A0ψ).

(2.4)

He adds two new terms to Susskind’s action (2.1). The first term is an harmonic oscillator

potential for the matrices that confines the eigenvalues, i.e. that keeps the particles localized

in the plane. The second term is proportional to a complex N-vectorψ.

The Gauss law is now given by:

G≡ −i B[X1,X2]+ψψ†−BθI = 0. (2.5)

Observe that the trace of (2.5) implies,

ψ†ψ = NBθ, (2.6)

that can be realized with finite dimensional matrices. In this way it is possible to localize,

by means of the potential, a finite number of d.o.f. in the plane and therefore to introduce a

boundary in the theory.

The Chern Simons theory (2.4) has theU(N) symmetry:

Xa →UXaU
† , ψ →Uψ,

A0 →UA0U
†− iU

dU†

dt
. (2.7)

Under a gauge transformation (2.7), the action (2.4) changes by the winding number of the

group element U,

S→ S− iBθ
Z

dtTr
[
U†U̇

]
, (2.8)

and gauge invariance is satisfied, at quantum level, ifBθ = k is an integer [25].

Note that the equation of motion forψ in the A0 = 0 gauge impliesψ̇ = 0: it is an

auxiliary field with trivial dynamics.

2.1 Covariant quantization

In the following we will work in holomorphic coordinatesX = X1+ iX2 andX̄ = X1− iX2,

with the bar denoting the Hermitian conjugate of classical matrices.
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Before quantizing the Chern Simons matrix theory, we express (2.4) in terms of holo-

morphic matrices, in theA0 = 0 gauge:

S =
Z

dt

(
B
2i

N

∑
n,m=0

ẊnmX̄mn+ i
N

∑
n=0

ψ̇nψ†
n−

Bω
2

N

∑
n,m=0

X̄nmXmn

)
,

G = −B
2
[X̄,X]+ψψ†−Bθ = 0. (2.9)

The form of the action (2.9) is that of((N + 1)2 + N + 1) particles in the lowest Landau

level with coordinatesXnm andψn.

The canonical commutation relations are given by [8]:

[[
X̄i j ,Xkl

]]
=

2
B

δ jkδil ,
[[

ψ̄i ,ψ j
]]

= δi j . (2.10)

The double brackets are used to denote the quantum mechanical commutators between

matrix elements. We use the standard polarization in quantum mechanics, i.e. the canonical

conjugate momentum becomes:

X̄nm→ 2
B

∂
∂Xmn

, ψ̄n →
∂

∂ψn
, (2.11)

and using (2.11), it can be shown that the Gauss law implies that the physical states must be

singlet ofU(N) made of matricesX and having a number of vectorψ’s equal to(N+1)k

[8][11].

The general solution of the Gauss law constraint has been found in Ref. [11]. A complete

basis is given by:

Φ(X,φ) = Φ{n1
1,...,n

1
N}...Φ{nk

1,...,n
k
N} with

Φ{n j
1,...,n

j
N}

= εi1...iN(Xn j
1ψ)i1...(X

n j
Nψ)iN, 0≤ n j

1 < n j
2 < ... < n j

N . (2.12)

To find the ground state of the theory observe that the Hamiltonian in (2.9),Bω
2 Tr(X̄X),

basically counts the number ofX matrices (due to the harmonic oscillator commutators

(2.10)) appearing in the wave functions (2.12). Therefore the ground state corresponds to

the state with the lowest number ofX matrices. It is given by [8]:

Φk−gs =
[
εi1...iNψi1(Xψ)i2...(X

N−1ψ)iN(XNψ)iN+1

]k
. (2.13)

Note that any other state with lower number ofX matrices will be zero, due to the antisym-

metry of theε tensor.

4



In Ref.[11] is presented an equivalent basis, in which the states are factorized into

the ground state (2.13) and the ”bosonic” powers ofX, Tr(Xmi), with positive integers

{m1, . . . ,mk} unrestricted, i.e.

Φ(X,ψ) = ∑
{mk}

Tr(Xm1) · · ·Tr(Xmk) Φk−gs . (2.14)

Let us now perform the change of variables given by [8]:

X = V−1ΛV, Λ = diag(λ0, ....,λN),

ψ = V−1φ , (2.15)

on the ground state (2.13):

Φk−gs(Λ,V,ψ) =
[
εi0...iN(V−1φ)i0(V

−1Λφ)i1...(V
−1ΛNφ)iN+1

]k

=
[
(detV)−1det(λi−1

j φ j)
]k

= (detV)−k ∏
0≤n≤m≤N

(λn−λm)k

(

∏
i

φi

)k

. (2.16)

We obtain the Laughlin wave function as ground state of the Chern Simons theory, with

the coordinates of the electrons identified with the eigenvalues of theX matrix‡. It can be

shown that the dependence onφ andV in (2.16) is the same for all the physical states and

so we can drop their contribution [8]. Equation (2.16) is themost important result of the

Susskind-Polychronakos theory.

The excitations of (2.13) correspond to quasi-hole solutions in the matrix theory [1][2][8][11],

i.e. gapful localized density deformations (see eq. (2.23)in the next section). Multiplying

the wave function by polynomials of Tr(Xr) as in (2.14), we find states with energy given

by the boundary potential,∆E = ωr. These are the basis of holomorphic excitations over

the Laughlin state. Forr = O(1) (ω ∼ B
N ) we obtain the low energy excitations of the CS

matrix theory with energy∆E = O(r B/N). They correspond to quasi-holes in the origin

of the fluid and are in one to one correspondence with the excitations of the chiral boson

theory [8][12][18][19].

On the other hand, the quasi-particle excitation cannot be realized in the Chern Simons

matrix theory [2][21][22].

‡In Laughlin theory, the exponentk in (2.16) is related to the filling fraction asν = 1
k . Nevertheless in

the matrix theory, due to (2.15), appears a Vandermonde in the measure of integration that corrects the filling

fraction in 1, i.e.ν = 1
k+1 [8].
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2.2 Semiclassical solutions

In this section we study the classical solutions of the CS matrix theory (2.9) forN >> 1,

i.e. the semiclassical regime [2][14][22]. These solutions were found by Polychronakos in

Ref.[2].

The Hamiltonian of the theory is given by:

H =
ωB
2

TrXX̄ +Tr Λ(−B
2
[X̄,X]+ψψ†−Bθ) , (2.17)

where we introduced the Gauss law constraint by means of the Lagrange multiplierΛ.

The equations of motion are given by:

Ẋba =
∂H

∂Πba
= ωXba+

2
B

[Λ,X]ba,

Π̇ba = − ∂H
∂Xab

=
Bω
2

X̄ba+[X̄,Λ]ba , (2.18)

with the canonical conjugate momentumΠab = B
2 X̄ba. The minimum of energy must satis-

fies the Gauss law and the equations of motion,

G≡ −B
2
[X̄,X]+ψψ†−Bθ = 0,

[Λ, X̄]ba =
ωB
2

X̄ba. (2.19)

These are the commutation relations for a (truncated) quantum harmonic oscillator, withΛ
playing the role of the Hamiltonian. The solutions of (2.19)(settingB = 2) in the gauge in

whichψ =
√

2θ(N+1) | N > are [2]:

X̄ =
√

2θ
N

∑
n=0

√
n | n >< n−1 | , Λ = ω

N

∑
n=0

n | n >< n | . (2.20)

In the largeN limit, solution (2.20) corresponds to a circular quantum Hall droplet of radius√
2Nθ [2]. The radius-squared matrix coordinateR2 is diagonal, and given by:

R2 =
1
2

(X̄X+XX̄) = diag(θ,3θ,5θ,7θ, . . . ,(2N−1)θ,Nθ) . (2.21)

From the distribution of the eigenvalues in (2.21) it is clear that in theN >> 1 limit, this

solution implies a droplet of constant density. Also in thislimit, the filling fraction is the

Laughlin value; according to the identification of theθ parameter (2.2),

ν =
2πρ0

eB
=

1
k

, ρ0 =
1

2πθ
. (2.22)
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As said before, Polychronakos theory does not contain quasi-particle excitations, only

quasi-holes are present [2]. For example, a quasi-hole of charge−q in the origin of the

droplet is given by (settingB = 2),

X̄ =
√

2θ

(
√

q | 0〉〈N | +
N

∑
n=1

√
n+q | n〉〈n−1 |

)
, q > 0. (2.23)

It is easy to check that theR2 matrix corresponding to solution (2.23) is diagonal with

eigenvalues:

R2(q) = diag((1+2q)θ,(3+2q)θ,(5+2q)θ,(7+2q)θ, . . .,(2N−1+2q)θ,(N+2q)θ) ,

(2.24)

where(q) indicates the charge of the quasi-hole.

3 Effective theory on the boundary

3.1 Mean field approximation

In this section we identify the relevant d.o.f. on the edge ofthe droplet (2.21) and we

perform a mean field approximation that freezes the bulk d.o.f. in the CS theory (2.9),

obtaining an effective theory for the boundary.

The starting point is the CS matrix theory (2.9) with Lagrangian:

LCS=
B
2i

N

∑
n,m=0

ẊnmX̄mn+ i
N

∑
n=0

ψ̇nψ†
n−

B
2

ω

(
N

∑
n,m=0

X̄nmXmn

)2

, (3.1)

and Gauss law constraint:

G = −B
2

[X̄,X]+ψψ†−Bθ = 0 . (3.2)

Note that in (3.1) we are considering the square of the potential (2.4, 2.9), introduced by

Polychronakos. We consider this potential because, as willbe clear later, it gives dynamics

to the edge excitations. It is easy to prove that the quantum and semiclassical results of the

previous sections remain unchanged by this modification. Tosee this, from the quantum

point of view, observe that the Polychronakos Hamiltonian,H = Bω
2 Tr (X̄X), is basically a

number operator (due to the harmonic oscillator commutators (Eq.2.10)) counting the num-

ber ofX matricesNX appearing in the wave functions (2.12). Therefore the Hamiltonian

(3.1):

Bω
2

(Tr (XX̄))
2

, (3.3)
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corresponding to the square of the Polychronakos potential, admits the same eigenfunc-

tions of Polychronakos theory (given by the complete basis (2.12, 2.14)), but with energy

proportional toN2
X. At last, to prove that the semiclassical solutions of the CSmatrix theory

(section 2.2) remain unchanged with the potential (3.3), wemust to compare the equations

of motion of our theory:

Ẋba = ωTr (X̄X)Xba +
2
B

[Λ,X]ba ; c.c. , (3.4)

with those of Polychronakos (2.18). Observe that the only difference is given by the con-

served quantityTr (X̄X) appearing in the second member of (3.4). If we now define a new

frequency,ω′ = ωTr(X̄X), we recover the equations of motion of the CS matrix theory

(2.18).

From the Lagrangian (3.1) it is clear that the fieldψ is a non-dynamical variable (see sec-

tion 2), i.e.ψ̇ = 0. Therefore in the following by means of a time-independentgauge trans-

formation we will fixψ to the semiclassical value (see section 2.2):ψ =(0, ..,
√

2(N+1)θ).

Clearly this gauge fixing has a trivial Fadeev-Popoov term. Thus, the only change in the

path integral is in the Gauss law constraint that becomes:

Gαβ = 0⇒ [X, X̄]αβ = 2θδαβ −2(N+1)θδαNδβN , α,β = 0, ...,N . (3.5)

In (3.5) and in the rest of the paper we will setB = 2.

Now we will start with the study of the edge excitation of the theory (3.1, 3.2). First of

all we need to identify the relevant d.o.f. on the boundary ofthe droplet. To do this we

can consider a perturbation of the semiclassical ground state solution (2.20) that leaves all

eigenvalues ofR2 invariant, except the last one. The only possibility is:

R2
αβ =

1
2

(
〈X̄X〉αβ + 〈XX̄〉αβ

)(
1−δαNδβN

)
+

1
2

(
(X̄X)αβ +(XX̄)αβ

)
δαNδβN, (3.6)

or more clearly:

R2 = Diag

(
θ,3θ,5θ, ...,(2N−1)θ,

1
2
{X̄,X}NN

)
. (3.7)

In (3.6) the brackets〈O〉 indicate the quantityO valued in the semiclassical ground state

solution (2.20). Note that any perturbation on the off-diagonal elements ofR2 that affects

the last eigenvalue, also produces a change in the bulk eigenvalues. Such a perturbation

can be considered as a kind of interaction between the bulk and the boundary, but we are

not interested in them.

Therefore (3.6, 3.7) gives us the relevant d.o.f. on the boundary and so we will consider

it as our mean field approximation, i.e. we will freeze the bulk d.o.f. to the semiclassical
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value:

(X̄X)αβ = 〈X̄X〉αβ , (XX̄)αβ = 〈XX̄〉αβ ; ∀ α,β / α 6= N∧β 6= N . (3.8)

Now, introducing (3.8) in the Gauss law constraint (3.5), weobtain:

Gαβ =
(
〈XX̄〉αβ −〈X̄X〉αβ−2θδαβ

)(
1−δαNδβN

)
+

(
[X, X̄]αβ +2Nθδαβ

)
δαNδβN = 0 ; α,β = 0, ...,N . (3.9)

Note that the first term in (3.9) is equal to zero because the matrices〈X̄X〉 and〈XX̄〉 are

valued in the semiclassical ground state solution (2.20) that verifies (3.5). Finally we obtain

the following constraint for the boundary d.o.f.:

GNN =
N

∑
α=0

(
XNαXαN −XNαXαN

)
+2θN . (3.10)

At last, if we introduce the mean field (3.8) into the CS Lagrangian (3.1) we obtain the

following effective Lagrangian on the boundary:

LCS = −i ∑
α

(
X̄Ẋ
)

αα −
ω
2

J0((X̄X)NN +(XX̄)NN)−

ω
4

((X̄X)NN +(XX̄)NN)
2− ω

4
J2

0 , (3.11)

with J0 = ∑N−1
i=0 (〈X̄X〉ii + 〈XX̄〉ii ). From (3.11) it is clear that the only variables that prop-

agate are those corresponding to the matrix elementsX̄αN, X̄Nα, XαN andXNα and thus

we can integrate out all the other coordinates in the path integral. Finally we obtain the

following effective theory,Zb, on the edge:

Zb =

Z

DXNαDXαNDXNαDXαNe−Sbδ(GNN) , (3.12)

with

Sb =
Z

dtLb =
Z

dt

(
1
i

N−1

∑
α=0

(
ẊNαXαN + ẊαNXNα

)
− ω

2
J0

N−1

∑
α=0

(
XNαXαN +XαNXNα

)
−

ω
4

(
N−1

∑
α=0

(
XNαXαN +XαNXNα

)
)2

 , (3.13)

whereGNN in (3.12) is given by (3.10). Note that in (3.13) we have not considered the

contribution of the elementsXNN andX̄NN. They are not present in the constraint (3.10)

and correspond to an ambiguity in the definition of the discrete fieldsXαN, XNα and their

corresponding hermitian conjugate.
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3.2 Effective edge theory equal to chiral boson theory

In this section we show that the effective theory (3.12) describing the boundary physics of

the CS matrix theory corresponds to the chiral boson theory on the circle.

In the following we will work in real coordinates, considering the change of variables:

XNα =
√

2θP1/2
α eiRα ,XαN =

√
2θP1/2

α e−iRα ,XαN =
√

2θQ1/2
α eiTα ,XNα =

√
2θQ1/2

α e−iTα .

(3.14)

Later it will be clear why we introduce the factor
√

2θ in (3.14). In terms of these new

coordinates the Lagrangian (3.13) and the constraint (3.10) are given by:

Lb = 2θ
N−1

∑
α=0

(PαṘα +QαṪα)−J0ωθ
N−1

∑
α=0

(Pα +Qα)−θ2ω

(
N−1

∑
α=0

(Pα +Qα)

)2

(3.15)

and

GNN =
N−1

∑
α=0

(Pα −Qα)+N = 0 . (3.16)

We can interpret the coordinatesPα,Qα,Rα andTα as the d.o.f. of fieldsP,Q,R andT

defined on a latticeα = 0,1, ..,N−1. Because these fields describe the physics on the edge

of the droplet, i.e. on a circle of radiusR≃
√

2Nθ (see section 2.2), it is natural to assume

a periodic lattice with the points 0 andN−1 identified. Below we shall see that with this

assumption we get a natural description of the theory in terms of a chiral boson defined on

a circle and with the expected relation between charge and winding number.

In the previous section, to freeze the bulk d.o.f. in the CS theory, we have implemented

the mean field approximation (3.8) in the particular case in which non quasi-holes are

present in the bulk and therefore our study is limited only toneutral boundary excitations

of the droplet. However the FQHE presents also charged edge excitations. They can be

obtained creating quasi-holes in the origin of the fluid which correspond to the low en-

ergy excitations of the CS matrix theory [2][22]. Therefore, to consider charged boundary

excitations in our effective theory (3.15, 3.16) we must to evaluate the mean field approxi-

mation (3.8) not in the ground state solution (2.20) but in the semiclassical solution (2.23)

of a quasi-hole in the origin of the fluid. On the edge d.o.f. wewill consider that the effect

of a quasi-hole in the bulk will be a nontrivial winding number on the fieldsP,Q,RandT,

i.e.:

PN−1 = P0+α1 , QN−1 = Q0+α2 , RN−1 = R0+β1 , TN−1 = T0 +β2 , (3.17)
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whereα1, α2, β1 andβ2 are constants. In conclusion, in the presence of bulk quasi-holes

in the CS matrix theory (2.9) the only change in our effectivetheory (3.15, 3.16) will be in

the constantJ0, in (3.15), that now will be valued in the quasi-hole solution (2.23) and in

that the fieldsP, Q, R andT will satisfy the boundary conditions (3.17).

At this point it is interesting to see how are related the winding numbers (3.17), in the

boundary theory, with a quasi-hole in the bulk theory. Firstof all note that in presence of a

quasi-hole of chargeq in the origin of the droplet (2.23), the eigenvalues of theR2 matrix

(2.24) satisfyR2(q)
α = R2(0)

α + 2θq (the quantity in the parentheses indicates the charge of

the quasi-hole) and in particular:

R2(q)
N = R2(0)

N +2θq . (3.18)

Observe also that using the constraint (3.16) we can writeR2
N in terms ofP andQ as:

R2
N = θ

N−1

∑
α=0

(Pα +Qα) = θ

(
N−1

∑
α=0

2Pα +N

)
= θ

(
N−1

∑
α=0

2Qα −N

)
. (3.19)

Finally if we make a quasi-hole of chargeq in the origin of the droplet, due to the boundary

conditions (3.17), we obtain(∑N−1
α=0 Pα)(q) =(∑N−1

α=0 Pα)(0)+α1 , (∑N−1
α=0 Qα)(q) =(∑N−1

α=0 Qα)(0)+

α2 and from (3.18) and (3.19) we arrive to:

α1 = α2 = q . (3.20)

It is clear now why we introduce the factor 2θ in the change of variables (3.14). Without

this factor relation (3.20) should beα1 = α2 = 2θq. But we prefer to express the winding

number in unity of charge to connect with the physics of the chiral boson, as will be clear

later.

Now we come back to the Lagrangian (3.15). In appendix A.1, weshow that solving the

constraint (3.16) and integrating out theQ andT fields in (3.15), the following Lagrangian

is obtained:

Lb = 2θ
N−1

∑
α=0

PαṘα +2θ
N−1

∑
α=0

∑
µ6=α

PµU̇α −θ2ω

(
N−1

∑
α=0

Pα

)2

. (3.21)

In (3.21) an auxiliary fieldU , satisfyingUN−1 = U0 + β3, has been introduced as shown

in appendix A.1. We have introduced this trivial term because in this way the Lagrangian

(3.21) has anU(1) gauge invariance given by:

Rα(t)→ Rα(t)+λα(t) , Uα(t)→Uα(t)+λα(t) , α = 0, ..,N−1 , (3.22)
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whereλα is an arbitrary function of time. It is easy to see that the transformations (3.22)

produce the following change in the Lagrangian:

Lλ
b = Lb+

N−1

∑
α=0

λ̇α
N−1

∑
β=0

Pβ , (3.23)

and because∑N−1
β=0 Pβ commutes with the Hamiltonian, the last term in (3.23) is a total time

derivative and therefore the Lagrangian (3.21) is gauge invariant.

Finally the path integral can be written as:

Z =
N−1

∏
α=0

Z

DPαDUαDRα e−
R

dtLb δ(PN−1−P0+α1)δ(UN−1−U0+β3)

δ(RN−1−R0+β1), (3.24)

with Lb given by (3.21) and satisfying the gauge invariance (3.22).

Later we will fix the gauge but first it is better to perform another change of variables. As

said in the last of section (2.1) the low energy excitations of the CS matrix theory, described

on the boundary of the droplet by the effective theory (3.24), are in one to one correspon-

dence with the excitations of the chiral boson theory. Therefore we want to connect the

boundary theory (3.24) with the physics of the chiral boson.To do this it is better follows

the approach of Floreanini and Jackiw in Ref.[27] and write the chiral boson Lagrangian in

terms of the boson fieldχ(x) as:

L =
1
4

Z

dxdyχ(x)ε(x−y)χ̇(y)− 1
2

Z

dxχ(x)2, (3.25)

whereε(x) is the unit step function. If we define the non-local fieldΦ(x) =
R

dyε(x−y)χ(y)

we can write (3.25) as the typical chiral boson Lagrangian:

L =
1
2

Z

dxΦ̇(x)Φ′(x)− 1
2

Z

dxΦ′2(x) . (3.26)

Based on the previous argument we perform another change of variables in the path integral

(3.24) given by:

Pα → P̃α =
N−1

∑
µ6=α

Pµ = P>
α +P<

α , α = 0, ..,N−1 , (3.27)

where

P>
α =

N−1

∑
µ>α

Pµ and P<
α =

µ<α

∑
µ=0

Pµ , α = 0, ...,N−1 . (3.28)

12



Observe that in the continuum limit, that will be taken later, the variables (3.28) become

analogous to the fieldΦ(x) in (3.26), i.e. P>
α → P>(x) =

R

dyε(y− x)P(y) and P<
α →

P<(x) =
R

dyε(x−y)P(y).

Now from (3.27) and (3.28) we obtain the following constraints:

Pi = P<
i+1−P<

i = P>
i−1−P>

i , i = 1, ..,N−2 , P0 = P<
1 , PN−1 = P>

N−2

P>
0 = P<

N−1+α1 , (3.29)

where the last equality is satisfied due to the boundary condition on theP field, PN−1 =

P0+α1. Relations (3.29) allow us to express the effective theory (3.24) in the variablesP>

andP<. In terms of the new coordinates the Lagrangian (3.21) is given by:

Lb = 2θ
N−2

∑
α=1

(P<
α+1−P<

α )Ṙα +2θ
N−2

∑
α=1

(P>
α +P<

α )U̇α −θ2ω
N−2

∑
α=1

(P<
α+1−P<

α )2

− θ2ω
N−2

∑
α=1

(P<
α+1−P<

α )(P<
α +P>

α ) . (3.30)

Note that in (3.30) we have excluded the pointsα = 0 andα = N−1. We do this because

we want to express the Lagrangian,Lb, in terms of the discrete derivative ofP<. In the last

of the section we will take the largeN limit in which the pointα = 1 goes toα = 0 and the

pointα = N−2 goes toα = N−1 and therefore we will recover the sum over all points of

the lattice.

At this point it is convenient to fix the gauge and eliminate the coordinatesRα in the

Lagrangian (3.30), as follows:

Rλ
α = Rα +λα = −P<

α ⇒ λα = −P<
α −Rα

Uλ
α = Uα +λα = Uα −P<

α −Rα , α = 1, ..,N−2 . (3.31)

If we now integrate out the coordinatesUλ’s, we obtain a new constraint onP> andP<

given by:

d(P>
α +P<

α )

dt
= 0 , α = 0, ...,N−2. (3.32)

Finally to obtain the integration measure in terms ofP>
α andP<

α (α = 0, ..,N−1) note that

these variables, for each value ofα, are independent by construction (3.28) and because the

integration is in allP̃α = P>
α +P<

α we obtain:

DPα = C DP̃α = C DP>
α DP<

α ; α = 0, ..,N−1 , (3.33)

whereC is a constant.
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In conclusion, in the gauge fixing (3.31) the effective boundary theory expressed in terms

of P> andP< is given by:

Z =
N−1

∏
α=0

Z

DP>
α DP<

α e−
R

dtLb
N−2

∏
β=1

δ

(
d(P>

β +P<
β )

dt

)
N−2

∏
γ=1

δ
(

P<
γ+1−P<

γ −P>
γ−1+P>

γ

)

δ(P<
0 −P<

N−1−α1) , (3.34)

with

Lb = −2θ
N−2

∑
α=1

(P<
α+1−P<

α )Ṗ<
α −θ2ω

N−2

∑
α=1

(P<
α+1−P<

α )2−θ2ω
N−2

∑
α=1

(P<
α+1−P<

α )(P>
α +P<

α ) ,

(3.35)

where the delta functions in (3.34) correspond to the constraints (3.29) and (3.32) and we

have defined the zero component of the fieldP< asP<
0 = P>

0 .

Finally we consider theN → ∞ limit of (3.34) scaling theα index asα → aα = x, with

a≃ 1
N the typical spacing of the lattice. Therefore, in thea→ 0 limit, aα = x becomes a

continuous variable taking values along the interval[0,1]. In appendix A.2. we show that

in this limit the fieldP> can be integrated out and the theory (3.34) becomes the chiral

boson theory on the unitary circle given by the Lagrangian:

Lb = −k
Z

dx
∂P<(x, t)

∂x
Ṗ<(x, t)−ω′

Z

dx

(
∂P<(x, t)

∂x

)2

, (3.36)

and the boundary condition on theP<(x, t) field:

P<(0, t) = P<(1, t)+α1 , (3.37)

whereα1 (3.20) is equal to the charge of the quasi-hole andk = Bθ is the inverse of the

filling fraction of the Laughlin fluid as shown in section (2.1).

In conclusion, starting from the CS theory describing the Laughlin fluids, we were able

to identify the bulk and boundary d.o.f. and therefore we could froze the bulk dynamics by

means of the mean field (3.8) obtaining an effective theory for the edge d.o.f. In this section

we have obtained that this effective theory is the chiral boson theory on the circle (3.36).

Moreover we have shown that the zero modeα1 (3.20, 3.37), in the boundary theory, is

equal to the charge of a quasi-hole (2.23) in the bulk of the fluid and also that the constant

k = Bθ in (3.36) is the inverse of the filling fraction of the ground state (Laughlin wave

function) of the CS theory (see section 2).

To conclude the section we want to remark that it will be interesting to connect our

analysis with that of Ref.[16] in which the authors analyze the chiral boson theory with

14



an additional self-interacting term. In our approach it is possible to introduce interacting

terms in the Lagrangian (3.36) considering more general potentials of that introduced in

(3.1). This will be study in a future paper.

4 Conclusions

In this paper we have studied the boundary physics of the regularized non-commutative

CS theory. As we have shown, in section 2.1, the quantum ground state of this theory

corresponds to the Laughlin wave function for the FQHE [8]-[15] with filling fractionν = 1
k

with k an integer. We also show, in the last of section 2.1, that the low energy excitations

(edge excitations) of the CS theory are in one to one correspondence with those of the

chiral boson theory that are a very good description of the boundary physics of the FQHE

[18][19]. In section 3.1, we have considered a perturbationof the semiclassical droplet

solution that made possible to identify the relevant d.o.f.on the edge. Based on this analysis

we introduced a physical mean field approximation that frozethe bulk d.o.f. and their

interactions with the boundary, to the semiclassical values, obtaining an effective theory

for the edge of the fluid. This effective theory, as shown in section 3.2, is the chiral boson

theory on the circle (3.36). We have also obtained that, in the edge theory (3.36), the zero

modeα1 (3.20, 3.37) corresponds to the charge of a quasi-hole in thebulk theory (2.9)

and the constantk is the inverse of the filling fraction of the ground state of the CS matrix

theory given, as said before, by the Laughlin wave function (see section 2.1).

In a future paper we plan to do a similar analysis in the Maxwell CS matrix theory.

As shown in [21][22] it is a good framework to study the Hierarchical Jain states. For

this reason we expect a connection between the boundary excitations of the Maxwell CS

matrix theory and theW∞ conformal field theories for the FQHE [19][26]. Also it should

be interesting to consider in our analysis a mean field approximation that takes into account

interactions between the bulk and the boundary.
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A Appendix

A.1

In this appendix after to solve the constraint (3.16):

GNN =
N−1

∑
α=0

(Pα −Qα)+N = 0 , (A.1)

we are able to integrate out theQ andT fields in the Lagrangian (3.15) given by:

Lb = 2θ
N−1

∑
α=0

(PαṘα +QαṪα)−J0ωθ
N−1

∑
α=0

(Pα +Qα)−θ2ω

(
N−1

∑
α=0

(Pα +Qα)

)2

. (A.2)

First we eliminate the termJ0ωθ∑N−1
α=0(Pα +Qα) in (A.2), by means of a rigid translation

of theP (or Q) field, i.e. Pα → Pα +a, α = 0, ..,N−1 with a a constant. At this point we

solve the constraint (A.1) in term of one of the coordinates,for instanceQ0, obtaining:

Q0 =
N−1

∑
β=0

Pβ − ∑
µ>0

Qµ+N . (A.3)

After integration of this variable in the path integral we arrive to the following Lagrangian:

Lb = 2θ
N−1

∑
α=0

PαṘα +2θ

(
N−1

∑
β=0

Pβ − ∑
µ>0

Qµ+N

)
Ṫ0+ ∑

µ>0
QµṪµ−θ2ω

(
N−1

∑
α=0

Pα +N

)2

.

(A.4)

As we did before we can do a rigid translation of theP field and write the Hamiltonian as:

H = θ2ω

(
N−1

∑
α=0

Pα

)2

. (A.5)
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Finally if we integrate out theQ andT fields we obtain the following Lagrangian:

Lb = 2θ
N−1

∑
α=0

PαṘα −θ2ω

(
N−1

∑
α=0

Pα

)2

. (A.6)

Now we will rewrite the Lagrangian (A.6) in another way. Using the fact that∑N−1
α=0 Pα is

a constant of motion we can add a zero term 2θ∑N−1
α=0 U̇α ∑N−1

β=0 Pβ to (A.6), by means of

an auxiliary fieldUα, α = 0, ...,N−1 verifying an arbitrary boundary conditionUN−1 =

U0+β3, with β3 a constant. Therefore (A.6) becomes:

Lb = 2θ
N−1

∑
α=0

PαṘα +2θ
N−1

∑
α=0

∑
µ6=α

PµU̇α −θ2ω

(
N−1

∑
α=0

Pα

)2

, (A.7)

where in (A.7) we have absorbed the fieldU in a redefinition of the fieldR, i.e. Rα →
Rα +Uα, α = 0, ...,N−1.

A.2

In this appendix we consider the limitN → ∞ of the theory (3.34) given by:

Z =
N−1

∏
α=0

Z

DP>
α DP<

α e−
R

dtLb
N−2

∏
β=1

δ

(
d(P>

β +P<
β )

dt

)
N−2

∏
γ=1

δ
(

P<
γ+1−P<

γ −P>
γ−1+P>

γ

)

δ(P<
0 −P<

N−1−α1) , (A.8)

with

Lb = −2θ
N−2

∑
α=1

(P<
α+1−P<

α )Ṗ<
α −θ2ω

N−2

∑
α=1

(P<
α+1−P<

α )2−θ2ω
N−2

∑
α=1

(P<
α+1−P<

α )(P>
α +P<

α ) .

(A.9)

In this limit theα index scale asα → aα, with a≃ 1
N the typical spacing of the lattice. So,

in thea→ 0 limit, aα = x becomes a continuous variable taking values along the interval

(0,1), and we obtain that:

P<
α → P<(x, t) , P>

α → P>(x, t) ,
N−2

∑
α=1

→ lim
a→0

1
a

Z 1

0
dx ,

P<
α+1−P<

α → a
∂P<(x, t)

∂x
, P>

α −P>
α−1 → a

∂P>(x, t)
∂x

. (A.10)

Therefore using (A.10) the Lagrangian (A.9) becomes:

Lb = −2θ
Z 1

0
dx

∂P<(x, t)
∂x

Ṗ<(x, t)−aθ2ω
Z 1

0
dx

(
∂P<(x, t)

∂x

)2

− θ2ω
Z 1

0
dx

∂P<(x, t)
∂x

(
P>(x, t)+P<(x, t)

)
, (A.11)
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and the constraints in the path integral (A.8) are:

∂P<(x, t)
∂x

= −∂P>(x, t)
∂x

,
d(P>(x, t)+P<(x, t))

dt
= 0⇒ P<(x, t)+P>(x, t) = c ;

P<(0, t) = P<(1, t)+α1 , (A.12)

wherec is a constant. Thus in the continuum limit the fieldsP> andP< are related by a

constant.

Now using (A.12) into (A.11) and restoring theB dependence we obtain the chiral boson

Lagrangian on the unitary circle [18][19]:

Lb = −k
Z

dx
∂P<(x, t)

∂x
Ṗ<(x, t)−ω′

Z

dx

(
∂P<(x, t)

∂x

)2

, (A.13)

with ω′ = B
2aθ2ω and the fieldP>(x, t) satisfying the boundary condition (A.12):

P<(0, t) = P<(1, t)+α1 . (A.14)
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