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Abstract

We study the edge excitations of the Chern Simons matrixrshelescribing the
Laughlin fluids for filling fractionv = % with k an integer. Based on the semiclassical
solutions of the theory, we are able to identify the bulk addgeedegrees of freedom.
In this way we can freeze the bulk of the theory, to the serséital values, obtaining
an effective theory governing the boundary excitationshef €hern Simons matrix
theory. Finally, we show that this effective theory is eqiaathe chiral boson theory
on the circle.
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1 Introduction

In this paper we study the edge excitations of the reguldrizen-commutative Chern
Simons(CS) matrix theory [1][2]. In Ref.[1] Susskind shambat the theory of an in-
compressible fluid of charged particles in an strong magriigtid B corresponds, in the
semiclassical regime, to the smallimit of the non-commutative CS theory [3], where
0 is the non-commutative parameter. Moreover, the clastheary of the fluid presents
a symmetry of diffeomorphisms that preserve the area anslithean be mapped to the
non-commutative CS matrix theory, by means of the Goldstdogepe regularization[4].
Another approach that relates the fluid theory with the nommutative CS theory comes
from the analogies between the physics of electrons in amgtmagnetic field and the
properties of D-branes in String Theory [1][5]. Based onghevious arguments, Susskind
proposed the non-commutative CS theory to describe thehlewigall states [6][7] made
of particles with an effective arda

The non-commutative CS theory is Br{N) gauge theory in one dimension (i.e. time)
with CS kinetic term; it involves two hermitian matrix codmdtesX; (t) andXx(t), that are
non-commuting| Xz, Xo] = i6l, wherel is the identity and the quanti§® = k is quantized
to an integer, at quantum level, to preserve gauge invagigrjcAs we will show in section
2.1, the eigenvalues of the matrices describe the coortimdithe particles[1][2]. Also the
parametek is related to the filling fraction of the fluid of electrons\as- %[1].

Although Susskind theory shares a similar behavior withfthetional quantum Hall
effect (FQHE), it contains an infinite number of degrees eéffom (d.o.f.). Due to this,
Polychronakos regularized the theory to allow for a finitenber of particles [2]. The
guantum ground state of the Susskind-Polychronakos theasyfound to be the Laughlin
wave function for the FQHE, with filling fraction = % [8]-[15].

As said before, in this work we will study the edge excitatiofthe Susskind-Polychronakos
matrix theory. We remark that the boundary excitations efRQHE in the context of non-
commutative theories, have been studied in the past fromr @bints of view [16][17].

The paper is organized as follows: in section 2 we brieflyaevihe non-commutative CS
theory. We introduce the Susskind theory and the regulasizéy Polychronakos to allow
for matrices of finite order. In section 2.1, we show that tbarqum ground state of the
regularized matrix theory corresponds to the Laughlin wawnetion with fillingv = % [8]-

[15]. In the last part of the section we show that the low lyéxgitations of the ground state
(edge excitations) are in one to one correspondence witextigations of the chiral boson

"Note that in a non-commutative space parameterized by twesy’ andy? we have[y!,y?| = 6,
wheref can be thought as a unity of area.



theory, describing the boundary physics of the Laughlird84iL8][19][20]. In section 2.2

we present the semiclassical ground state solution olatddgePolychronakos in [2]. In

section 3.1 we take into account the more general excimtbthe semiclassical ground
state solution, that produce only a perturbation on the eddlee droplet, i.e. that leave
the bulk unchanged. This means that these perturbatiorisidtvoduce any interactions
between the bulk and the boundary. In this way we are able ta@irokhe relevant d.o.f.

on the edge. Based on the previous result, we introduce a freddrapproximation that

freezes the bulk d.o.f. and their interactions with the lelzug of the droplet. Therefore
we obtain an effective theory formulated only in terms of dlygamics of the edge d.o.f.
In section 3.2, we show that this effective theory corresisdo the chiral boson theory on
the circle that, as said before, describes the edge excitabf the Laughlin fluids [18][19].

This is the main result of the paper. Finally we make some centsabout the application
of our analysis to the Maxwell CS matrix theory [21][22] ftvetJain hierarchy [23].

2 Review of the non-commutative Chern Simons theory

In an interesting paper [1] Susskind conjectured that thecoonmutative Chern Simons
field theory in two dimensions could describe the Laughlicompressible fluids in the
QHE. This conjecture was inspired by the fact that the sexsgital limit of this theory
[24] describes incompressible fluids in high magnetic fieithwaughlin’s filling fractions
(v= % k an integer) and their quasi-hole excitations.

The non-commutative CS theory can be represented as a rireddry given by [1]:
B
Ssusskind— / dt STr [ &) X (6) Dy X5 (t) + 28 Ao(t)] 2.1)

whereXj(t) , Xo(t) andAp(t) areN x N hermitian matrices, witiN = «, and the covariant
derivative is defined aB;Xj = Xj — i [Ao, Xj]. The parameted is related to the density of
the fluid of electrongg as:

1
Po= o (2.2)

In this theory the Gauss Iavgi& — 0) implies:
X4, Xo] = 6 , 2.3)

wherel is the identity matrix. Taking the trace in both members o8] is evident that
it is satisfied only folN = . Therefore Susskind’s theory applies to an infinite system.



Instead the FQHE is a system with a boundary and a finite nuofearticles. For this
reason Polychronakos [2] proposed the following actioregalizing the Susskind theory:

sz/déTq%M&+W%xmmﬁzwm—wﬁ}+/HwWw—Aw»
(2.4)

He adds two new terms to Susskind’s action (2.1). The firgt isran harmonic oscillator
potential for the matrices that confines the eigenvaluesthat keeps the particles localized
in the plane. The second term is proportional to a complexbtary.

The Gauss law is now given by:
G= —iB[Xy, X2+’ —B6I = 0. (2.5)
Observe that the trace of (2.5) implies,
W'y = NB, (2.6)

that can be realized with finite dimensional matrices. I8 thay it is possible to localize,
by means of the potential, a finite number of d.o.f. in the pland therefore to introduce a
boundary in the theory.

The Chern Simons theory (2.4) has théN) symmetry:

Xa—UXUT,  w—Uy,

;
A0—>UA0UT—iUdst. (2.7)

Under a gauge transformation (2.7), the action (2.4) chebgehe winding number of the
group element U,

S— s—iBe/dtTr[uTU} , (2.8)

and gauge invariance is satisfied, at quantum levBB i k is an integer [25].

Note that the equation of motion fap in the Ag = 0 gauge impliesp = 0: it is an
auxiliary field with trivial dynamics.
2.1 Covariant quantization

In the following we will work in holomorphic coordinates = X; + iXo andX = X —iXy,
with the bar denoting the Hermitian conjugate of classicalrioes.



Before quantizing the Chern Simons matrix theory, we ex@(8%) in terms of holo-
morphic matrices, in th&g = 0 gauge:

s - /m( 5 xnmxmn+|%¢nwﬁ = S xnmxm>

nm— n,m=0

G = _E[X X]+yy"'—BO=0. (2.9)

The form of the action (2.9) is that ¢fN + 1)2+N + 1) particles in the lowest Landau
level with coordinateX,m andy,.

The canonical commutation relations are given by [8]:

[[%ij, %a]] = %511(5”,
(0] = 8. (2.10)

The double brackets are used to denote the quantum mecheoimautators between
matrix elements. We use the standard polarization in quantechanics, i.e. the canonical
conjugate momentum becomes:

— 2 0 _

o B X " a4

and using (2.11), it can be shown that the Gauss law implaghie physical states must be
singlet ofU (N) made of matriceX and having a number of vectdrs equal to(N + 1)k
[8][11].

(2.11)

The general solution of the Gauss law constraint has beemfouRef. [11]. A complete
basis is given by:

PO = Pt Py WIth
¢ g, = € 'N(antp) (X)L o<nl<nl<..<nl. (212

{ng,...ny}

To find the ground state of the theory observe that the Hamétoin (2.9),57“)Tr(>?X),
basically counts the number &f matrices (due to the harmonic oscillator commutators
(2.10)) appearing in the wave functions (2.12). Therefbeedground state corresponds to
the state with the lowest number X¥fmatrices. It is given by [8]:

(DkfgS: [eil...iNwil(xw)iz.”(folw) (XNqJ> N+Jk‘ (213)

Note that any other state with lower numbepomatrices will be zero, due to the antisym-
metry of thee tensor.



In Ref.[11] is presented an equivalent basis, in which tlaestare factorized into
the ground state (2.13) and the "bosonic” powersXofTr(X™), with positive integers
{m,...,m} unrestricted, i.e.

X)) = 5 Tr(X™)-Tr(X™) Ogs. (2.14)
{md}

Let us now perform the change of variables given by [8]:

X = VAV,  A=diag(\g,....,AN),
g = Vig, (2.15)

on the ground state (2.13):

q)k—gs(/\,v,w) = [siomiN(Vil(p)io(vill\(p)ir"(Vil/\N(p)iNH]k
_ [(detw—ldet(xij—lcpj)]k

k
= (detV)™ ] (An—Am)" (ﬂ (g) . (2.16)
0<n<m<N i
We obtain the Laughlin wave function as ground state of ther@ISimons theory, with
the coordinates of the electrons identified with the eigkerasof theX matrix*. It can be
shown that the dependence @andV in (2.16) is the same for all the physical states and
so we can drop their contribution [8]. Equation (2.16) is thest important result of the
Susskind-Polychronakos theory.

The excitations of (2.13) correspond to quasi-hole sohgtia the matrix theory [1][2][8][11],
i.e. gapful localized density deformations (see eq. (2i28)e next section). Multiplying
the wave function by polynomials of TX") as in (2.14), we find states with energy given
by the boundary potentiadE = wr. These are the basis of holomorphic excitations over
the Laughlin state. Far=0(1) (w ~ %) we obtain the low energy excitations of the CS
matrix theory with energAE = O(r B/N). They correspond to quasi-holes in the origin
of the fluid and are in one to one correspondence with theatiaits of the chiral boson
theory [8][12][18][19].

On the other hand, the quasi-particle excitation cannoebkzed in the Chern Simons
matrix theory [2][21][22].

*In Laughlin theory, the exponehtin (2.16) is related to the filling fraction as= % Nevertheless in
the matrix theory, due to (2.15), appears a Vandermondeimtmasure of integration that corrects the filling
fractionin 1,i.ev = 17 [8].



2.2 Semiclassical solutions

In this section we study the classical solutions of the CSim#teory (2.9) forN >> 1,
i.e. the semiclassical regime [2][14][22]. These solusiarere found by Polychronakos in
Ref.[2].

The Hamiltonian of the theory is given by:
B — B.-
H :%TrXX+TrA(—§[X,X]+IJJIJJT—BG), (2.17)

where we introduced the Gauss law constraint by means ofajeabhge multiplie.

The equations of motion are given by:

. oH 2
Xpa = Mo WXpa + E[/\, X]bas
: oH Bw vi
Mpa = —m = 7Xba+ [X,Alpa (2.18)

with the canonical conjugate momentuitg, = %)?ba. The minimum of energy must satis-
fies the Gauss law and the equations of motion,

B —
G= —5[X.X] +yyp'—BO=0,
— wB —
[/\7 x]ba = 7Xba- (2.19)
These are the commutation relations for a (truncated) guah&rmonic oscillator, withh
playing the role of the Hamiltonian. The solutions of (2.{89ttingB = 2) in the gauge in

whichp = /20(N+1) |N > are [2]:

N

_ N
X=x/2@%ﬁ|n><n—1|, A=w %n|n><n| : (2.20)
n= n=

In the largeN limit, solution (2.20) corresponds to a circular quantunfl Heoplet of radius
v/2NB [2]. The radius-squared matrix coordind®&is diagonal, and given by:

R = %()?x+x>?) — diag(6,36,56,76,...,(2N —1)0,N6) . (2.21)

From the distribution of the eigenvalues in (2.21) it is cldwat in theN >> 1 limit, this
solution implies a droplet of constant density. Also in timsit, the filling fraction is the
Laughlin value; according to the identification of th@arameter (2.2),
2 1 1
v— TPo



As said before, Polychronakos theory does not contain epaasicle excitations, only
guasi-holes are present [2]. For example, a quasi-hole arigel-q in the origin of the
droplet is given by (setting = 2),

_ N
X:@<\/a|0><N\+Z\/n+q\n)<n—1\>, q>0. (2.23)
n=1
It is easy to check that thB? matrix corresponding to solution (2.23) is diagonal with

eigenvalues:

R = diag((1+29)8, (3+20)8, (5+29)6, (7+20)8,..., (2N — 1+ 29)6, (N+20)6) ,
(2.24)

where(q) indicates the charge of the quasi-hole.

3 Effective theory on the boundary

3.1 Mean field approximation

In this section we identify the relevant d.o.f. on the edgehef droplet (2.21) and we
perform a mean field approximation that freezes the bulkf.dio.the CS theory (2.9),
obtaining an effective theory for the boundary.

The starting point is the CS matrix theory (2.9) with Lagriamng

2
B N B
Les= — XomXmn -+ | quJn——co XomXmn | (3.1)
com 5 3 Jowiow1 5 5o 3 o)
and Gauss law constraint:
G:—g[i,xprwqﬂ—se:o. (3.2)

Note that in (3.1) we are considering the square of the pialgf2.4, 2.9), introduced by
Polychronakos. We consider this potential because, ad®itlear later, it gives dynamics
to the edge excitations. It is easy to prove that the quantdrsamiclassical results of the
previous sections remain unchanged by this modificationsémthis, from the quantum
point of view, observe that the Polychronakos Hamiltonkan; B7“’Tr ()?X), is basically a
number operator (due to the harmonic oscillator commutdteq.2.10)) counting the num-
ber of X matricesNy appearing in the wave functions (2.12). Therefore the Hamhn
(3.1):

E%"‘)(Tr(x%))2 : (3.3)
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corresponding to the square of the Polychronakos poteiiigthits the same eigenfunc-
tions of Polychronakos theory (given by the complete bk, 2.14)), but with energy
proportional td\|>2(. At last, to prove that the semiclassical solutions of then@2&ix theory
(section 2.2) remain unchanged with the potential (3.3)pwest to compare the equations
of motion of our theory:

Xpa = @TT (XX) Xoa + g A X]pa  CcC., (3.4)

with those of Polychronakos (2.18). Observe that the orffemdince is given by the con-
served quantity'r ()?X) appearing in the second member of (3.4). If we now define a new
frequency,w’ = wTr ()?X), we recover the equations of motion of the CS matrix theory
(2.18).

From the Lagrangian (3.1) it is clear that the figids a non-dynamical variable (see sec-
tion 2), i.e.y = 0. Therefore in the following by means of a time-independgnige trans-
formation we will fix s to the semiclassical value (see section 202 (0, .., /2(N+1)8).
Clearly this gauge fixing has a trivial Fadeev-Popoov tertusl the only change in the
path integral is in the Gauss law constraint that becomes:

Gap = 0= [X, X]og = 28855 — 2(N + 1)88anpn , a,B=0,...,N.. (3.5)

In (3.5) and in the rest of the paper we will &t 2.

Now we will start with the study of the edge excitation of theadry (3.1, 3.2). First of
all we need to identify the relevant d.o.f. on the boundaryhefdroplet. To do this we
can consider a perturbation of the semiclassical grourtd stdution (2.20) that leaves all
eigenvalues oR? invariant, except the last one. The only possibility is:

1, — _

R = 5 ((XX)qp + (XX)qp) (1—Bandpy) + % (OZ)OO(B + (Xi>ag) Sandpn:  (3.6)

or more clearly:
. 1 -
R? = Diag (9,39,59,...,(2N—1)9,§{X,X}NN). (3.7)

In (3.6) the bracketgO) indicate the quantityD valued in the semiclassical ground state
solution (2.20). Note that any perturbation on the off-diagl elements oR? that affects
the last eigenvalue, also produces a change in the bulkwalyss. Such a perturbation
can be considered as a kind of interaction between the bulklenboundary, but we are
not interested in them.

Therefore (3.6, 3.7) gives us the relevant d.o.f. on the dagnand so we will consider
it as our mean field approximation, i.e. we will freeze thekkdib.f. to the semiclassical

8



value:

(XX)ap = (XX)ag . (XX)qp = (XX)ap: VaB/a £NABAN.  (38)

Now, introducing (3.8) in the Gauss law constraint (3.5),0l¢ain:

Gap = ((XX)ap— (XX)qp —208qp) (1—Bandpn) +
([x,ﬂaﬁ+2NeéaB) Bandan = 0; a,B=0,...,N. (3.9)

Note that the first term in (3.9) is equal to zero because theizea (X X) and (XX) are
valued in the semiclassical ground state solution (2.2@)\uérifies (3.5). Finally we obtain
the following constraint for the boundary d.o.f.:

N

GnN = Z (XNQYGN _YNQXGN) + 26N . (3.10)
a=0

At last, if we introduce the mean field (3.8) into the CS Lagjian (3.1) we obtain the
following effective Lagrangian on the boundary:

Los = i3 (XK g~ 530((X)uy + (XK)p) ~
3 (0 + (X0ny)* = 238 (3.11)

with Jo = TN (XX)ii 4 (XX)ii). From (3.11) it is clear that the only variables that prop-
agate are those corresponding to the matrix eleméms Xna, Xan and Xnq and thus
we can integrate out all the other coordinates in the pattgml. Finally we obtain the
following effective theoryZ,, on the edge:

Z = | DXaDXanDXnaDXane $3(Gun) | (3.12)
with
N1 o w N1 B
S = /d“—b:/dt T > (XnaXan +XanXNa) —EJO > (XNaXan +XanXNa) —
o=0 a=0
w /N1 B 2
2 > (XNaXan +XanXNa) : (3.13)
a=0

whereGyy in (3.12) is given by (3.10). Note that in (3.13) we have natsidered the
contribution of the element&yn and Xun. They are not present in the constraint (3.10)
and correspond to an ambiguity in the definition of the discfieldsXyn, Xno and their
corresponding hermitian conjugate.



3.2 Effective edge theory equal to chiral boson theory

In this section we show that the effective theory (3.12) dbst the boundary physics of
the CS matrix theory corresponds to the chiral boson theoe circle.

In the following we will work in real coordinates, considagithe change of variables:

Xna = V2P %8R X = V20Ps %o Xan = v/20Q5 %™ X = v/20Qq %e ™
(3.14)

Later it will be clear why we introduce the factef20 in (3.14). In terms of these new
coordinates the Lagrangian (3.13) and the constraint J&Egiven by:

a=0

N-1 | . N-1 N-1 2
Lp =26 Z (PaRa + Qo Ta) — JowB Z (Pa+Qq) —qu)( Z (Pa +Qa)> (3.15)
a=0 =0

and

N—1

Gnn = Z (Pu—Qq)+N=0. (3.16)

a=0
We can interpret the coordinat€s, Qy, Ry and Ty as the d.o.f. of field®,Q,RandT
defined on a latticee =0, 1,..,N— 1. Because these fields describe the physics on the edge
of the droplet, i.e. on a circle of radilis~ \/2N8 (see section 2.2), it is natural to assume
a periodic lattice with the points 0 amdi— 1 identified. Below we shall see that with this
assumption we get a natural description of the theory ingesfia chiral boson defined on
a circle and with the expected relation between charge andimg number.

In the previous section, to freeze the bulk d.o.f. in the Gt we have implemented
the mean field approximation (3.8) in the particular case mctv non quasi-holes are
present in the bulk and therefore our study is limited onlpeatral boundary excitations
of the droplet. However the FQHE presents also charged edgigons. They can be
obtained creating quasi-holes in the origin of the fluid whiorrespond to the low en-
ergy excitations of the CS matrix theory [2][22]. Therefa@consider charged boundary
excitations in our effective theory (3.15, 3.16) we mustualeate the mean field approxi-
mation (3.8) not in the ground state solution (2.20) but engbmiclassical solution (2.23)
of a quasi-hole in the origin of the fluid. On the edge d.o.f.wi#consider that the effect
of a quasi-hole in the bulk will be a nontrivial winding nunmtza the fields?, Q,RandT,
ie.

PNo1=Po+01, Qno1=Qo+02, Ru-1=Ro+B1, Tnoa=To+B2,  (3.17)
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wherea, a2, 31 andB, are constants. In conclusion, in the presence of bulk dualsis
in the CS matrix theory (2.9) the only change in our effectiveory (3.15, 3.16) will be in
the constandy, in (3.15), that now will be valued in the quasi-hole solat{@.23) and in
that the field$, Q, RandT will satisfy the boundary conditions (3.17).

At this point it is interesting to see how are related the wigchumbers (3.17), in the
boundary theory, with a quasi-hole in the bulk theory. Fifstll note that in presence of a
guasi-hole of chargq in the origin of the droplet (2.23), the eigenvalues of Rfematrix
(2.24) satlsfyRﬁ Rﬁ + 20q (the quantity in the parentheses indicates the charge of
the quasi-hole) and in particular:

RAY = R 4 20q. (3.18)

Observe also that using the constraint (3.16) we can \Rﬁtm terms ofP andQ as:

R; =6 z (Py+Qq) = <N212PG+N> _e<Nzle(x ) . (3.19)

Finally if we make a quasi-hole of chargen the origin of the droplet, due to the boundary

conditions (3.17), we obtaify 5 g Pa) @ = (545 Pa) ¥ +011, (575 Qa)'¥ = (559 Qu)®
o, and from (3.18) and (3.19) we arrive to:

ap=02=(Q. (3.20)

It is clear now why we introduce the factob th the change of variables (3.14). Without
this factor relation (3.20) should wg = a, = 26q. But we prefer to express the winding
number in unity of charge to connect with the physics of thieatfboson, as will be clear
later.

Now we come back to the Lagrangian (3.15). In appendix A.1skn@v that solving the
constraint (3.16) and integrating out tQeandT fields in (3.15), the following Lagrangian
iS obtained:

N-1 N-1 ‘ N-1 \?
Ly = 20 Z PaRq + 20 >y Puua—92w< > PG> . (3.21)
a=0

o=0p£a

In (3.21) an auxiliary fieldJ, satisfyingUn_1 = Ug + B3, has been introduced as shown
in appendix A.1. We have introduced this trivial term be@aimsthis way the Lagrangian
(3.21) has atJ (1) gauge invariance given by:

Ra(t) — Ru(t) +Aa(t) , Ug(t) — Uq(t) +Ag(t), a=0,..,N—1, (3.22)

11



wherelq is an arbitrary function of time. It is easy to see that thegfarmations (3.22)
produce the following change in the Lagrangian:

N-1, N-1

and becausgB -1 Ps commutes with the Hamiltonian, the last term in (3.23) istalttme
derivative and therefore the Lagrangian (3.21) is gaugariant.

Finally the path integral can be written as:

ﬁ / DPyDU4DRy & /9t §(Py_1 — P+ a1)3(Un_1— Ug + B3)
=0
3(Ry_1— Ro+B1), (3.24)

with L, given by (3.21) and satisfying the gauge invariance (3.22).

Later we will fix the gauge but first it is better to perform amatchange of variables. As
said in the last of section (2.1) the low energy excitatidrtte CS matrix theory, described
on the boundary of the droplet by the effective theory (3.24@ in one to one correspon-
dence with the excitations of the chiral boson theory. Tloeeewe want to connect the
boundary theory (3.24) with the physics of the chiral bostmdo this it is better follows
the approach of Floreanini and Jackiw in Ref.[27] and whied¢hiral boson Lagrangian in
terms of the boson fielg(x) as

=3 / dxdyx (x / dxx (X (3.25)

whereg(x) is the unit step function. If we define the non-local figitk) = [ dye(x—y)x(y)
we can write (3.25) as the typical chiral boson Lagrangian:

/ dxD () (X / dxD2(x) (3.26)

Based on the previous argument we perform another changeiables in the path integral
(3.24) given by:

N—1
Pa—>Pa:;PUZP§+P§,0(:O,..,N—1, (3.27)
where
N-1 p<a
= Z P, and Py = %Pu, a=0,...N—1. (3.28)
> =

12



Observe that in the continuum limit, that will be taken latée variables (3.28) become
analogous to the fiel@®(x) in (3.26), i.e. Py — P~ (x) = [dye(y— Xx)P(y) and Py —
P=(x) = [dye(x—y)P(y).

Now from (3.27) and (3.28) we obtain the following consttain

P = PP =P, -P,i=1.,N-2, R=P;, P 1=R,
Py = Pii+a1, (3:29)

where the last equality is satisfied due to the boundary tiomdon theP field, Py_1 =
Po+01. Relations (3.29) allow us to express the effective the8rg4) in the variableB~
andP=. In terms of the new coordinates the Lagrangian (3.21) isrghy:

N—-2
L = 23 (P PR +20 3 (B R~ 3 (R -

- Z o1~ P )(Px +Py) - (3.30)

Note that in (3.30) we have excluded the poimts: 0 anda = N — 1. We do this because
we want to express the Lagrangiang, in terms of the discrete derivative Bf-. In the last

of the section we will take the lardgé limit in which the pointa = 1 goes tax = 0 and the
pointa = N — 2 goes tax = N — 1 and therefore we will recover the sum over all points of
the lattice.

At this point it is convenient to fix the gauge and eliminate tloordinatedR; in the
Lagrangian (3.30), as follows:

U}l = Ug+Ag=Ug—Py—Ry,a=1.,N-2. (3.31)

If we now integrate out the coordinateg’s, we obtain a new constraint % and P<
given by:
d(Py +Py)
dt
Finally to obtain the integration measure in term$gfandP; (a =0,..,N — 1) note that

these variables, for each valuemfare independent by construction (3.28) and because the
integration is in alP, = Py + P5 we obtain:

=0,0=0,..,N—2. (3.32)

DP,=CDP, =CDP;DP;;a=0,.N—-1, (3.33)
whereC is a constant.
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In conclusion, in the gauge fixing (3.31) the effective boanydheory expressed in terms
of P~ andP= is given by:

N-1 N-2 (d(P; +P5)
_  [dtL
Z = GDO/DP§DP§e bBD16< ) |'L6( ~R71 Ry

3(Py —Py_1—01), (3.34)
with
Ly, = —20 Z 1 — PPy — ezw Z <= ezw Z )Py +Py),
(3.35)

where the delta functions in (3.34) correspond to the camgt (3.29) and (3.32) and we
have defined the zero component of the fiefdasP; = Py .

Finally we consider thé&l — o limit of (3.34) scaling thex index asa — aa = x, with
a~ % the typical spacing of the lattice. Therefore, in the> 0 limit, ao0 = x becomes a
continuous variable taking values along the intef@al]. In appendix A.2. we show that
in this limit the field P~ can be integrated out and the theory (3.34) becomes thd chira

boson theory on the unitary circle given by the Lagrangian:
< <
:—k/d MP< w’/d (ap (XX t>) , (3.36)
and the boundary condition on tRe& (x,t) field:

P<(0,t) = P=(L,t) +ay, (3.37)

wherea; (3.20) is equal to the charge of the quasi-hole krdB6 is the inverse of the
filling fraction of the Laughlin fluid as shown in section (2.1

In conclusion, starting from the CS theory describing thadldin fluids, we were able
to identify the bulk and boundary d.o.f. and therefore wel@¢dwze the bulk dynamics by
means of the mean field (3.8) obtaining an effective thearyhfie edge d.o.f. In this section
we have obtained that this effective theory is the chirabinakeory on the circle (3.36).
Moreover we have shown that the zero made(3.20, 3.37), in the boundary theory, is
equal to the charge of a quasi-hole (2.23) in the bulk of thd #ind also that the constant
k = B0 in (3.36) is the inverse of the filling fraction of the grounwte (Laughlin wave
function) of the CS theory (see section 2).

To conclude the section we want to remark that it will be ies#ing to connect our
analysis with that of Ref.[16] in which the authors analylze thiral boson theory with
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an additional self-interacting term. In our approach itésgible to introduce interacting
terms in the Lagrangian (3.36) considering more generamiatls of that introduced in
(3.1). This will be study in a future paper.

4 Conclusions

In this paper we have studied the boundary physics of thelagged non-commutative
CS theory. As we have shown, in section 2.1, the quantum gratate of this theory
corresponds to the Laughlin wave function for the FQHE [B3}[with filling fractionv = %
with k an integer. We also show, in the last of section 2.1, thatdiveenergy excitations
(edge excitations) of the CS theory are in one to one corregme with those of the
chiral boson theory that are a very good description of thendary physics of the FQHE
[18][19]. In section 3.1, we have considered a perturbatibthe semiclassical droplet
solution that made possible to identify the relevant danfthe edge. Based on this analysis
we introduced a physical mean field approximation that fribeebulk d.o.f. and their
interactions with the boundary, to the semiclassical \glabtaining an effective theory
for the edge of the fluid. This effective theory, as shown ictisa 3.2, is the chiral boson
theory on the circle (3.36). We have also obtained that, énettige theory (3.36), the zero
modea; (3.20, 3.37) corresponds to the charge of a quasi-hole imahetheory (2.9)
and the constark s the inverse of the filling fraction of the ground state & tBS matrix
theory given, as said before, by the Laughlin wave functsse(section 2.1).

In a future paper we plan to do a similar analysis in the Mak@& matrix theory.
As shown in [21][22] it is a good framework to study the Hietaical Jain states. For
this reason we expect a connection between the boundarngsws of the Maxwell CS
matrix theory and th&\, conformal field theories for the FQHE [19][26]. Also it shdul
be interesting to consider in our analysis a mean field apm@&tion that takes into account
interactions between the bulk and the boundary.
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A Appendix

Al

In this appendix after to solve the constraint (3.16):
N—1
GNN = Z (Pa—Qa)‘i‘N:Oa (A-l)

a=0
we are able to integrate out tieandT fields in the Lagrangian (3.15) given by:
N-1 _ N-1 N-1 2
Lp =20 Z (PuRa +QaTar) — Jowd Z (Pa+Qq) — 6% ( Z (Pa +Qa)> . (A2)
a=0 a=0 a=0

First we eliminate the terrdywo ZQ;&(PG + Qq) in (A.2), by means of a rigid translation
of theP (or Q) field, i.e. Py — Py +a, a =0,..,N — 1 with a a constant. At this point we
solve the constraint (A.1) in term of one of the coordinatesinstanceQo, obtaining:

N—-1
Q=) RFs- %QWN. (A.3)
=0 >

After integration of this variable in the path integral wehe to the following Lagrangian:

2
N-1 ] N-1 ] . N-1
Lb =20 5 PuRa+20 < > Ps— Z}QHJFN) To+ Z)QHTH_GZQ)< > Pa+N> :
a=0 B=0 > > a=0
(A.4)

As we did before we can do a rigid translation of th&éeld and write the Hamiltonian as:

» N-1 \ 2
H= Py . A.5
“’((,Zo ) »5)
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Finally if we integrate out th€ andT fields we obtain the following Lagrangian:
N-1 N-1 \?2
L, = 20 z PyRy — 8% z Py | . (A.6)

Now we will rewrite the Lagrangian (A.6) in another Way Uglﬂne fact thatza 1PG is
a constant of motion we can add a zero ter‘ﬁ{? 1UG Z PB to (A.6), by means of
an auxiliary fieldUy, a = 0,...,N — 1 verifying an arbltrary boundary conditiddy_1 =
Uo + B3, with B3 a constant. Therefore (A.6) becomes:

N-1 N-1 ‘ N-1 \?2
L, = 20 z PyRy + 26 Y S Rla — 0w S P (A.7)
a=0

o=0p£a
where in (A.7) we have absorbed the fiéldin a redefinition of the fieldR, i.e. Ry —
Ry +Ug,a=0,....N—1.

A.2

In this appendix we consider the linilt — o of the theory (3.34) given by:

- 1 fomoms e o o (SR (i m -y )

&Py —Pi_1—01), (A-8)
with
N-2
Ly = —20 Z 1 — Py )Py — 02w Z 1= g% Z )Py +Py).
(A.9)

In this limit thea index scale ast — aa, with a~ = the typical spacing of the lattice. So,
in thea — 0 limit, aa = x becomes a continuous variable taking values along thevadter
(0,1), and we obtain that:

P — P<(xt), P7 —P”(xt), :i gLnO; dx.
P — P — W , Py —Py 1 — aW' (A.10)
Therefore using (A.10) the Lagrangian (A.9) becomes:
Ly = 29/ dx 0P<<X P (XY pex aezco/ (6P< ) )
920)/0 dxw (P7(x,t) +P=(xt)), (A.11)
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and the constraints in the path integral (A.8) are:

oP=(xt) _  9P7(xt) d(P7(xt)+P=(xt)) < > 1) o -
I = T at =0=P (x,t)+P7(x,t)=c;
P<(0,t) = P<(Lt)+aq, (A.12)

wherec is a constant. Thus in the continuum limit the fielfs andP< are related by a
constant.

Now using (A.12) into (A.11) and restoring tBedependence we obtain the chiral boson
Lagrangian on the unitary circle [18][19]:

< < 2
Ly = —k/dxap ag(x’t) B<(x ) —w’/dx(ap aix’t)) , (A.13)

with o = %aezco and the field®~ (x,t) satisfying the boundary condition (A.12):

P<(0,t) = P<(L,t) + 0y . (A.14)
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