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Abstract

We define and investigate relative solidity for sequence spaces, and use it to
study spaces of holomorphic functions on the unit disk and related coefficient
multiplier spaces. In particular, we find the multipliers (l(u, v), H(p, q, t)) and
(H(p, q, t), l(u, v)) for many values of the parameters u, v, p, q, t.

0. Introduction

In this paper, we study sequence spaces associated with holomorphic functions
on the unit disk D ⊂ C, identifying any such function f with its Taylor sequence

(f̂(n)). The concept of solidity, which goes back to the 1960’s (see [9], [16]) is useful
in the often difficult task of determining whether or not a given sequence lies in
a given function space (such as a particular Hardy or Bergman space) or space of
multipliers involving such spaces. We introduce the more general notion of relative

solidity, examine it in detail for the function spaces H(p, q, t), and thereby charac-
terize in most cases the multipliers from H(p, q, t) to l(u, v) (and also in the opposite
direction). This one method of characterizing these multiplier spaces replaces a va-
riety of other methods that have been used in the literature to characterize these
multipliers in certain cases, notably by Blasco [3] and Jevtić and Pavlović [11]. In
the latter paper, multipliers from H(p, q, t) to lu = l(u, u) were classified in most
cases, and the answer was conjectured in the missing case. We disprove this con-
jecture in Section 5 and, although we cannot completely classify the multipliers in
this case, we find separate necessary and sufficient conditions which suggest that
any answer must be rather complicated; see Remarks 3 and 4 in Section 5.

Recall that a sequence space X is solid if (bn) ∈ X whenever (an) ∈ X and
|bn| ≤ |an|. More generally, we define S(X) and s(X), the solid hull and solid core

of X, respectively, by the equations

S(X) = {(λn) : ∃ (an) ∈ X such that |λn| ≤ |an|},

s(X) = {(λn) : (λnan) ∈ X whenever (an) ∈ l∞}.

For more on solidity, see [1].
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It is easy to determine S(X) or s(X) for some non-solid spaces X, but not for
others. For example, S(Hp) = s(Hq) = H2 for q ≤ 2 ≤ p, but these spaces are
unknown if p < 2 < q (the positive results follow from the work of Littlewood on
random series [13]; see also [7, Theorem A.5]). We define the more general concepts
SF (X) and sF (X), the hull and core of X relative to F , F being a family of spaces.
We can gain new information about X in cases where S(X) or s(X) are unknown
by making a judicious choice of F ; in particular F should be such that SF (X) and
sF (X) can be determined.

To give a concrete example, we need some notation. For t ∈ R, we write Dt for
the sequence ((n + 1)t), for all n ≥ 0. If λ = (λn) is a sequence and X a sequence
space, we write λX = {(λnxn) : (xn) ∈ X}; thus, for example, (an) ∈ Dtl∞ if and
only if |an| = O(nt). If X, Y are two sequence spaces, we write XY =

⋃
x∈X xY

(XY thus consists of all convolutions of X and Y functions, if X and Y can be
viewed as function spaces).

For 1 < p < 2, Bergman space Ap is known to be a subset of A ≡ D1/pl∞,
B ≡ D3/p−1lp, and C ≡ D1/plp/(p−1) (see [15] for the first two, and [10] for the
third), but how are these containments related? Clearly C is a proper subset of A
and, after a little calculation, we see that neither B nor C is a subset of the other.
Thus a sharper containment is given by Ap ⊂ X ≡ B ∩C. Letting F1 be the family
of spaces of the form Dtlr, t ∈ R, r > 0, it is natural to ask if an even sharper
containment is possible by intersecting X with some other Y ∈ F1. We shall see
that this is not the case, so that X is the intersection of all such containing spaces,
a fact that we denote by X = S1(A

p). Both S(Ap) and S1(A
p) are intersections of

all containing spaces in some family (all solid spaces or F1) and, since F1 spaces
are all solid, S(Ap) ⊂ S1(A

p). We shall in fact determine the hull and core of Ap

relative to F1 for all values of p, but we shall also see that the family F2 of all
mixed-norm spaces Dtl(r, s) gives simpler and more useful relative hulls and cores
than does F1, and it is these that we use to classify multiplier spaces.

After the preliminaries of Section 1, we give some preparatory mixed-norm
results in Section 2, and discuss relative hulls and cores in Section 3. In Section 4,
we completely classify SiH(p, q, t) and siH(p, q, t), i = 1, 2, and in Section 5, we
examine multipliers between l(u, v) and H(p, q, t).

The author wishes to thank M.S. Ramanujan and D. Vukotić for helpful dis-
cussions related to this paper.

1. Notation and terminology

As mentioned already, D = {|z| < 1} is the unit disk in the complex plane,
dA(z) = π−1 dx dy (z = x+iy) is the normalized Lebesgue area measure on D, H(D)
is the algebra of holomorphic functions in D. For f ∈ H(D), 0 < r < 1, 0 < p ≤ ∞,

the integral means Mp(r, f) are defined by Mp(r, f) =
(

1
2π

∫ 2π

0
|f(reiθ)|p dθ

)1/p

,

with the usual modification when p = ∞. The Hardy space Hp, 0 < p ≤ ∞, consists
of all f ∈ H(D) for which ‖f‖Hp = limr→1 Mp(r, f) < ∞, and H(p, q, t), 0 < p ≤ ∞,
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0 < q, t < ∞, consists of all f ∈ H(D) for which

‖f‖H(p,q,t) ≡

(∫ 1

0

Mp(r, f)q(1 − r)tq−1 dr

)1/q

< ∞.

We also define H(p,∞, t) (often denoted Hp
t ) to consist of all f ∈ H(D) for which

‖f‖H(p,∞,t) ≡ sup
0<r<1

(1 − r)t Mp(r, f) < ∞.

When we define fractional differentiation below, we shall extend the definition of
H(p, q, t) to all t ∈ R (and all 0 < p, q ≤ ∞). The Bergman space Ap,0 < p < ∞, is
defined to be H(p, p, 1/p); equivalently, f ∈ Ap if ‖f‖p

Ap =
∫

D
|f(z)|p dA(z) < ∞.

A sequence space means a vector subspace of CN. Whenever λ is used to denote
a sequence, λn denotes its nth term. A sequence λ is a multiplier from one sequence
space X to another one Y , denoted λ ∈ (X, Y ), if (λnan) ∈ Y whenever a ∈ X.

The sequence Ds = ((n + 1)s) already defined is a particularly important
multiplier between many pairs of function spaces; the associated operator, also
denoted Ds will be referred to as fractional differentiation of order s. It follows
from the work of Flett [8] that DsH(p, q, t) = H(p, q, s+ t), for all s, t > 0. One can
thus consistently extend the definition of H(p, q, t) to the case t ≤ 0 by defining
H(p, q, t) = D−sH(p, q, s + t) for any s > −t; in particular, H(∞,∞, 0) is the
well-known space B of Bloch functions. If X has a norm, then we define a norm
on DsX by pullback (the same goes for quasinorms, or other weaker versions of
norms). Let us agree to define ‖f‖H(p,q,t) = ‖D1−tf‖H(p,q,1) for all t ≤ 0. Our
definition of H(p,∞, t) for t > 0 might lead one to expect that H(p,∞, 0) = Hp,
but this is not the case. For example, f(z) = 1/(1− z) belongs to H(1,∞, 0) (since
f ′ ∈ H(1,∞, 1)), but f /∈ H1.

We adopt the conventions 1/0 = ∞, 0 ·∞ = 0, y/∞ = 0, and x0 = 1, whenever
x, y ≥ 0. For any exponent 1 < p < ∞, p′ always denotes the dual exponent
p/(p−1); also 1′ = ∞ and ∞′ = 1. In proofs, we shall use C to denote any harmless
constant that does not affect the argument; it can change from one instance to the
next. If A and B are positive quantities, A <∼ B means that A ≤ CB for some such
C, and A ≈ B means that A <∼ B and B <∼ A.

2. “Mixed-norm” spaces

Let us pause to gather some results on mixed norms which will later be use-
ful. It is sometimes convenient to write sequences (an)∞n=0 as formal power series∑∞

n=0 anxn. These series will always involve powers of x to distinguish them from
analytic functions which are written as power series in z; in such cases, we care only
about the sequence involved, and not about the function values or convergence. We
define Ik to be the kth dyadic block of integers, i.e. Ik = {2k−1, . . . , 2k − 1} for
k > 0, and I0 = {0}. On any sequence space, we define the operator Sk, k ≥ 0,
which selects out the kth dyadic block of terms and shifts it to an initial position.

More precisely, S0(
∑∞

n=0 anxn) = a0x
0 and Sk(

∑∞
n=0 anxn) =

∑
n∈Ik

anxn−2k−1

.

We also define the multiplier ∆k =
∑

n∈Ik
xn; note that Sk is simply a shift operator

composed with ∆k.
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Suppose A, B are (quasi-)normed sequence spaces. Essentially as in [6], the
(quasi-)normed space A[B] is defined as the set of all sequences λ such that

‖λ ‖A[B] = ‖ (‖Skλ‖B)∞k=0 ‖A < ∞.

We can iterate this construction to define ‖λ ‖A[B[C]] = ‖ (‖Skλ‖B[C])
∞
k=0 ‖A, and

so on. This bracketing operation is non-associative, so it is important to note that
all our iterated constructions are constructed “from the inside outwards” as here.
Dt is always “applied last”, so that DtA[B] refers to the space of sequences Dtc,
where c ∈ A[B], and never to the mixed norm space C[B], C = DtA.

Taking A and B to be spaces of the form lr, 0 < r ≤ ∞ (with the usual
quasinorm attached), we get the spaces lq[lp]. We often use the more common
notation l(p, q) ≡ lq[lp] and ‖ · ‖p,q ≡ ‖ · ‖lq [lp]; similarly, l(p, q, r) ≡ lr[lq[lp]], and
so on. Observe that lp = l(p, p) = l(p, p, p), etc. We mainly use the mixed-norm
construction in the form X ≡ X1[. . . [Xn] . . . ], where Xi ∈ F ≡ {lp : 0 < p ≤ ∞},
1 ≤ i < n, and Xn ∈ F ∪ {Hp : 1 < p < ∞}.

Let g : [0,∞) → R be an infinitely differentiable non-increasing function which
equals 1 on [0, 1], and 0 on [2,∞). Let φ(t) = g(t/2) − g(t), and define wk,n =
φ(n21−k), for n ≥ 0, k > 0, w0,0 = w0,1 = 1, and w0,n = 0 if n > 1. We now

define the sequence ∆̃k = (wk,n)∞n=0; this is a “smoothened” version of ∆k. Note
that 0 ≤ wk,n ≤ 1,

∑∞
k=0 wk,n = 1, and wn,k is zero if n lies outside Ik ∪ Ik+1.

Lemma 2.1. Let t ∈ R. Then

‖f‖H(p,q,t) ≈ ‖ (2−kt‖∆kf‖Hp) ‖lq , 1 < p < ∞, 0 < q ≤ ∞. (2.1)

‖f‖H(∞,q,t)
<∼ ‖ (2−kt‖∆kf‖H∞) ‖lq , 0 < q ≤ ∞. (2.1′)

H(p, q, t) = Dtlq[Hp], 1 < p < ∞, 0 < q ≤ ∞. (2.2)

H(∞, q, t) ⊃ Dtlq[H∞], 0 < q ≤ ∞. (2.2′)

‖f‖H(p,q,t) ≈ ‖ (2−kt‖∆̃kf‖Hp) ‖lq , 0 < p ≤ 1, 0 < q < ∞. (2.3)

Proof. (2.1) and (2.1′) are due to Mateljević and Pavlović [14], (2.2) was proved
in [4], and (2.3) is due to Blasco [3], so it remains to prove (2.2′).

We assume, as we may, that t > 0. Let fk = ∆kf . By (2.1′), we see that it
suffices to show that 2−kt‖fk‖H∞ and ‖D−tfk‖H∞ are comparable for k > 0 (with
constants of comparability depending only on t > 0). To see this, we first claim that
2−ks‖fk‖H∞ ≈ ‖fk‖H(∞,q,s). Since fk has zero coefficients beyond position 2k, we

have r2k

‖fk‖H∞ ≤ M∞(r, f) (see [14, Lemma 3.1]). Taking 1−r ∈ [2−k, 2−k−1], we

see that r2k

≈ 1. Routine estimation now gives 2−ks‖fk‖H∞ <∼ ‖fk‖H(∞,q,s). The
opposite direction of our claim follows from (2.1′).

Using our claim twice, and the fact that H(∞, q, t + 1) = DtH(∞, q, 1), we get

2−kt‖fk‖H∞ ≈ 2k‖fk‖H(∞,q,t+1) ≈ 2k‖D−tfk‖H(∞,q,1) ≈ ‖D−tfk‖Hp . �

By a lacunary sequence, we mean any sequence which has at most one non-zero
term in every dyadic block (we shall only have need for sequences whose non-zero
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terms occur only at positions which are a power of 2). Lemma 2.1 has as corollaries
the following pair of lemmas characterizing the lacunary and monotonic sequences
that lie in H(p, q, s). The first lemma is a trivial corollary, while the second one
follows from Corollary 1.3 of [4].

Lemma 2.2. For any t ∈ R, 0 < p < ∞, 0 < q ≤ ∞, a lacunary sequence lies in

H(p, q, t) if and only if it lies in Dtlq.

Lemma 2.3. Suppose that an ≥ 0 for all n ≥ 0, and that t ∈ R, 1 < p < ∞,

0 < C1 < ∞, 0 < q ≤ ∞. If (an) is monotonic then (an) ∈ H(p, q, t) if and only

if (an) ∈ Dt+1/p+1/q−1 lq. Furthermore, the norms of (an) in these two spaces are

comparable, with constants of comparability depending only on p, q, t.

We now state a theorem in [4] which we shall need in Section 5; parts of it can
also be found in [12] and [17].

Lemma 2.4. The following containments hold, and all are proper if p 6= 2.

l(p′, 2, . . . , 2) ⊃ l2[l2[· · · l2[Hp] · · · ]] ⊃ Hp ⊃ lp[lp[· · · lp[Hp] · · · ]], 1 < p ≤ 2,

l(p′, 2, . . . , 2) ⊂ l2[l2[· · · l2[Hp] · · · ]] ⊂ Hp ⊂ lp[lp[· · · lp[Hp] · · · ]], 2 ≤ p < ∞.

We next characterize S(H(p, q, t)) and s(H(p, q, t)) when this is easy, and give
partial results in other cases; this lemma gives the easy half of Theorem 4.2 in all
cases, and suggests why the spaces Dtl(u, v) are naturally associated with H(p, q, t).

Lemma 2.5. Let 0 < q ≤ ∞, and t ∈ R. Then

S(H(p, q, t)) = H(2, q, t) = Dtl(2, q), 2 ≤ p ≤ ∞, (2.4)

s(H(p, q, t)) = H(2, q, t) = Dtl(2, q), 0 < p ≤ 2, (2.5)

H(p, q, t) ⊂

{
Dtl(p′, q), 1 < p ≤ 2,

Dt+1/p−1l(∞, q), 0 < p ≤ 1,
(2.6)

H(p, q, t) ⊃ Dtl(p′, q), 2 ≤ p ≤ ∞. (2.7)

Proof. (2.4) is proved in [2, Theorem 1.8] and [14, Theorem 2.5]. For (2.5), we refer
the reader to [4, Lemma 1.2]. Corollaries 3.1 and 3.2 of [3] imply the case q < ∞
of (2.6), and the case p < ∞, 1 < q < ∞ of (2.7). We prove both containments in
all cases.

Combining (2.2) and the Hausdorff-Young Theorem gives (2.6) for 1 < p ≤ 2,
and (2.7) for p < ∞; similarly, the case p = ∞ of (2.7) follows by using (2.2′) in
place of (2.2). To get (2.6) for p ≤ 1, we instead combine (2.3) and the containment

Hp ⊂ D1/p−1l∞ (for which, see [7, Theorem 6.4]); it is now easy to replace ∆̃k in
the resulting expression by ∆k to get the desired containment. �
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Lemma 2.6. Let t ∈ R, 0 < p, q ≤ ∞, and let s0 = max{t, t + 1/p − 1}. Then

Dsl∞ contains H(p, q, t) for all s ≥ s0, but not for any s < s0.

Proof. We may assume t > 0 without loss of generality. Containment for s =
s0 follows from Lemma 2.5. To see that containment is false for s < t, we use
Lemma 2.2 to get that

∑∞
n=1 ns+εz2n

lies in H(p, q, t)\Dsl∞ whenever 0 < ε < t−s.

As the reader may verify, ft(z) ≡ (1 − z)−s lies in H(p, q, t) for all s < t + 1/p
(and for no other s, except s = t + 1/p, if q = ∞); as a hint, the first step is to

verify the estimate
∫ 2π

0
|1 − reiθ|−1−εdθ = O((1 − r)−ε), ε > 0. Moreover, the nth

coefficient of ft is asymptotic to Γ(s)−1ns−1. Consequently, Dsl∞ does not contain
H(p, q, t) if s < t + 1/p − 1. �

Our next lemma characterizes when fractional differentiation takes one l(p, q)
space to another; we sketch the proof for completeness. We shall not need a similar
lemma for spaces l(p1, . . . , pk) for k > 2, but let us point out two easily verified
facts. First, l(p1, . . . , pk) ⊂ l(q1, . . . , qk) if pi ≤ qi, i = 1, . . . , k, and secondly the
spaces l(p1, . . . , pm) and l(q1, . . . , qk), k < m, are equal if and only if p1 = pj for all
j < m − k + 1 and pm−i = qk−i, i = 0, . . . , k − 1.

Lemma 2.7. Given 0 < a, b, c, d ≤ ∞, we have l(a, b) ⊂ Dtl(c, d) if and only if:

(i) t ≥ 0, if a ≤ c and b ≤ d;
(ii) t > 0, if a ≤ c and b > d;
(iii) t ≥ 1/c − 1/a, if a > c and b ≤ d;
(iv) t > 1/c − 1/a, if a > c and b > d.

Sketch of Proof. Using the fact that p 7→ ‖ · ‖lp is decreasing and/or Hölder’s
inequality, containment follows readily in each case. It remains to prove sharpness
of the lower bound on t. For (i), note that the sequence

∑∞
n=2 n−1/a(log n)−2/bx2n

belongs to l(a, b)\Dtl∞, for all t < 0. For (ii), the lacunary sequence
∑∞

n=1 n−1/dx2n

lies in l(a, b) \ l(∞, d). For (iii), it suffices to note that (n−1/a−ε/2)∞1 ∈ l(a, b) \
Dtl(c,∞) whenever t = 1/c−1/a−ε, ε > 0. For (iv), we have (n−1/a(log n)−1/d)∞2 ∈
l(a, b) \ D1/c−1/al(c, d). �

For all 0 < p, q ≤ ∞, we define the binary operations p 	 q = r and p ⊕ q = s,
where 1/r = max{1/p − 1/q, 0}, 1/s = 1/q + 1/p. The next lemma is essentially
due to Kellogg [12].

Lemma 2.8. If 0 < a, b, c, d ≤ ∞, then (l(a, b), l(c, d)) = l(c 	 a, d 	 b).

If Y, W are quasi-normed spaces, we associate with (Y, W ) and Y W the quasi-
norms

‖λ‖(Y,W ) = sup {‖(λnyn)‖W : ‖y‖Y ≤ 1},

‖x‖Y W = inf {‖y‖Y ‖w‖W : (xn) = (ynwn), y ∈ Y, w ∈ W},

We can thus define the spaces (X, Z)[(Y, W )] and XZ[Y W ], whenever X, Y, Z, W
are quasinormed. The following lemma is a special case of [4, Theorem 2.10].
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Lemma 2.9. Let l∗ = {lp : 0 < p ≤ ∞} and H∗ = {Hp : 1 < p < ∞}. Suppose

that Xi, Yi ∈ l∗ for all 1 ≤ i < n, and that Xn, Yn ∈ H∗ ∪ l∗. Then, writing

Zi = (Xi, Yi), Wi = XiYi, we have:

( X1[. . . [Xn] . . . ], X1[. . . [Xn] . . . ] ) = Z1[. . . [Zn] . . . ],

X1[. . . [Xn] . . . ] · X1[. . . [Xn] . . . ] = W1[. . . [Wn] . . . ],

We shall use this lemma with Xn = Hp in Section 5 but let us record here
a couple of other easy consequences that we shall need later: if 0 < pi, qi ≤ ∞,
1 ≤ i ≤ n, then

( l(p1, . . . , pn), l(q1, . . . , qn) ) = l(q1 	 p1, . . . , qn 	 pn), (2.8)

l(p1, . . . , pn) · l(q1, . . . , qn) = l(q1 ⊕ p1, . . . , qn ⊕ pn). (2.9)

Note that (2.8), which generalizes Lemma 2.8, follows by using Lemma 2.8 to de-
termine the spaces Zi, while for (2.9) we use the equation lplq = lq⊕p, an easy
application of Hölder’s inequality.

3. Relative hulls and cores

Suppose X is a sequence space. For a family F of sequence spaces, the F -hull

SF (X) of X is the intersection of all spaces in F that contain X, and the F -core

sF (X) is the vector space sum of all spaces in F contained in X. Note that if F is
any family of solid spaces, then

sF (X) ⊂ s(X) ⊂ X ⊂ S(X) ⊂ SF (X).

and SF (X) = S(X), sF (X) = s(X), if F is the class of all solid spaces.

SF (X) and sF (X) might not even be solid unless F is a family of solid spaces.
But, since we want to use simple auxiliary spaces to gain information about our
original space, we shall consider only families of solid spaces. In fact, we shall mainly
be interested in the families F1 and F2 (and especially F2), where

Fk = {Dtl(p1, . . . , pk) : t ∈ R, 0 < p1, . . . , pk ≤ ∞}, k ∈ N.

For brevity, we shall write sk(X) = sFk
(X), Sk(X) = SFk

(X), for k ∈ N.

As a warning to the reader, we note that unlike the ordinary notion of solidity,
it is possible for X to equal one of SF (X), sF (X) without equalling the other. For
instance, let X = D1l1∩ l∞, Y = D1l1 + l∞, it is clear that SF1

X = X and sF1
Y =

Y , but it follows from Lemma 2.7 that sF1
X =

⋃
p<∞ lp and SF1

Y =
⋂

p>1 D1lp,

so that (log−2(n + 2)) lies in X \ (sF1
X), while (log(n + 2)) lies in (SF1

Y ) \ Y .

We begin with a lemma classifying s1(X) and S1(X) when X ∈ F2; note that
s1(X), S1(X) ∈ F1 only when p = q. With the help of Lemma 2.7, the proof is a
straightforward case study which we leave to the reader.
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Lemma 3.1. Suppose that X ≡ Dtl(p, q) ∈ F2, and let r = 1/q − 1/p. Then

s1(X) =

{
Dt [lp + Drlq] , p ≤ q,

Dt
[
lq +

⋃
ε>0 D−εlp

]
, p > q,

S1(X) =

{
Dt

[
lq ∩ (

⋂
ε>0 Dεlp)

]
, p < q,

Dt [lp ∩ Drlq] , p ≥ q,

Multiplier spaces have the following elementary properties.

(M1) If X ⊂ (Y, Z) then Y ⊂ (X, Z).
(M2) (DtX, Y ) = D−t(X, Y ) and (X, DtY ) = Dt(X, Y ).
(M3) If X ⊂ Y then (Z, X) ⊂ (Z, Y ) and (Y, Z) ⊂ (X, Z).

We end this section with a lemma which we apply with for F = Fk, U ∈ Fk (in
which case the closure hypotheses in the lemma hold, by (2.8), (2.9), and (M2)).
Containment in parts (iii), (iv) of this lemma cannot be changed to equality; see
the final paragraph in Section 5.

Lemma 3.2. Suppose that U, X are sequence spaces and that F is a family of

sequence spaces. Suppose also that (A, U), (U, A), AU ∈ F for all A ∈ F . Then

(i) sF (X, U) = sF (SF (X), U);
(ii) sF (U, X) = sF (U, sF (X));
(iii) SF (X, U) ⊂ SF (sF (X), U);
(iv) SF (U, X) ⊂ SF (U, SF (X)).

Moreover, if SF (X), sF (X) ∈ F , then

(i′) sF (X, U) = (SF (X), U);
(ii′) sF (U, X) = (U, sF (X));
(iii′) SF (X, U) ⊂ (sF (X), U);
(iv′) SF (U, X) ⊂ (U, SF (X)).

Proof. We first prove (i). Let A ∈ F , A ⊂ (X, U). Then X ⊂ (A, U) ∈ F
and so SF (X) ⊂ (A, U). Thus A ⊂ (SF (X), U) and so A ⊂ sF (SF (X), U). Since
A ⊂ (X, U) is arbitrary, sF (X, U) ⊂ sF (SF (X), U). The opposite containment is
immediate by (M3).

The proof of (ii) is similar. If A ∈ F , A ⊂ (U, X), then X ⊃ AU ∈ F and so
AU ⊂ sF (X). Thus A ⊂ (U, sF (X)) and so A ⊂ sF (U, sF (X)). Since A ⊂ (U, X)
is arbitrary, sF (U, X) ⊂ sF (U, sF (X)). The opposite containment again follows by
(M3).

Finally, (iii) and (iv) follow from (M3), and (i′)-(iv′) from the closure properties
(A, U), (U, A) ∈ F . �

4. S2H(p, q, t) and s2H(p, q, t)

We shall need the following “Marcinkiewicz multiplier”-type theorem, which
replaces Lemma 2.3 when p ≤ 1.
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Lemma 4.1. Suppose that 0 < p ≤ 1, 0 < q ≤ ∞, t ∈ R, u ∈ lq, and 1/p <
m ∈ N. Suppose also that g : [1,∞) → R is a Cm function satisfying |g(i)(x)| ≤
xt+1/p−1−iuk, for all 2k−1 ≤ x < 2k, k ∈ N, and 0 ≤ i ≤ m. Then f(z) ≡∑∞

n=1 g(n) zn ∈ H(p, q, t), and ‖f‖H(p,q,t) ≤ C‖u‖lq , for some C = C(p, q, t).

Proof. We use Lemma 2.1 and the notation therein. We may assume that m
is the least integer greater than 1/p. Since the point-evaluation functionals are
bounded in H(p, q, t), we may also assume without loss of generality that uk = 0
for k < 2 + log2 m. We assume k ≥ 2 + log2 m from now on. We first write

2π‖∆̃kf‖p
Hp = Mp(1, ∆̃kf)p

=

∫

|θ|≤2−k

|∆̃kf(eiθ)|p dθ +

∫

2−k<|θ|≤π

|∆̃kf(eiθ)|p dθ ≡ I + II.

It suffices to show that I, II <∼ 2kptvp
k, where vk =

∑k+2
j=k−1 uk, since (2.3) then gives

‖f‖H(p,q,t) ≈ ‖ (2−kt‖∆̃kf‖Hp) ‖lq <∼ ‖(vk)‖lq <∼ ‖(uk)‖lq , q < ∞.

The polynomial ∆̃kf has at most 2k+1 terms, and so the bound on g(0) alone gives

|∆̃kf(eiθ)|p <∼ 2(k+1)p · 2k(tp+1−p)(uk + uk+1)
p, for all θ ∈ R. Thus I <∼ 2kptvp

k.

A repeated summation by parts argument will allow us to control II. Let us
write Dj for the j-fold composition of the difference operator D[(an)] = (an−an−1),
where we define an = 0 for all n ≤ 0. Let (bm,n) = Dm[(wk,ng(n))], and let

Ĩk =
⋃k+2

j=k−1 Ij , nk = 2k+2 (one more than the largest element of Ĩk). Since wk,n =

wk(n), where wk(x) = φ(x21−k), and φ(x) is a C∞ function which is constant

outside [1, 4], it is easy to see that w
(i)
k ≤ Cx−i for all 0 ≤ i ≤ m, where C depends

on m, but not on k. It follows that for i ≤ m, the ith derivative of g(x)wk(x) is
uniformly (in k) bounded by Cxt+1/p−1−ivk, and so |bi,n| <∼ 2(t+1/p−1−i)kvk when

n ∈ Ĩk. On the other hand, bi,n = 0 when n /∈ Ĩk, since wk,n = 0 when n /∈ Ik∪Ik+1,
and 2k−2 ≥ m.

By partial summation we see that

∆̃kf(z) =

∞∑

n=2

wk,ng(n) zn =
∑

n∈eIk

b1,n

∑

n≤m∈eIk

zm

=
∑

n∈eIk

b1,n
zn − znk

1 − z
=

∑

n∈eIk

b1,n
zn

1 − z
,

where the last line follows from the fact that
∑

n∈eIk
b1,n = 0. Since

∑
n∈eIk

bi,n = 0
for all 1 ≤ i ≤ m, we can repeat this partial summation argument to get

∆̃kf(z) =
∞∑

n=2

wk,ng(n) zn =
∑

n∈eIk

bm,n
zn

(1 − z)m
.

Estimating as before, we get that for |θ| ∈ [2−j , 2−j+1], −1 ≤ j ≤ k,

|∆̃kf(eiθ)|p ≤ 2(k+2)p · 2k(pt+1−p−mp)vp
k · 2jmp <∼ 2mp(j−k)+k · 2kptvp

k.
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Since m > 1/p, we can integrate these estimates to get

II <∼ 2kptvp
k ·

k∑

j=−1

2(mp−1)(j−k) <∼ 2kptvp
k. �

We can now characterize S2(X) and s2(X) when X is any H(p, q, t) space.

Theorem 4.2. If s ∈ R, 0 < p, q ≤ ∞, then

s2(H(p, q, t)) =

{
Dtl(2, q), 0 < p ≤ 2,

Dtl(p′, q), 2 ≤ p ≤ ∞,

S2(H(p, q, t)) =





Dt+1/p−1l(∞, q), 0 < p ≤ 1,

Dtl(p′, q), 1 ≤ p ≤ 2,

Dtl(2, q), 2 ≤ p ≤ ∞.

At least one direction of each containment in this theorem follows from
Lemma 2.5. The proofs for the opposite directions involves detailed case anal-
yses, but the underlying idea is rather simple: all necessary counterexamples are
lacunary or monotonic. If p 6= ∞, membership of each counterexample in H(p, q, s)
is determined by one of Lemmas 2.2, 2.3, 4.1 (depending on whether the sequence
is lacunary, eventually monotonic with p > 11, or eventually monotonic with
p ≤ 1), while membership in any F2 space is determined by direct calculation.
The main task for each finite p case is thus to write down a counterexample which
works—we shall do this and, with the above hints, we leave the detailed verification
of membership and non-membership to the reader in each case, with the occasional
exception of the case p = ∞ which requires some special arguments. It is convenient
for our proof to define the “lacunarizing” operator Lac on the space of all sequences
by Lac [

∑∞
n=1 anxn] =

∑∞
n=1 anx2n

.

Proof of Theorem 4.2. In view of the action of fractional differentiation on
H(p, q, t), we may as well assume that t = 1. We first consider s2(H(p, q, 1)). The
fact that this space contains D1l(min{p′, 2}, q), and equals it if p ≤ 2, follows imme-
diately from Lemma 2.5. By combining this with Lemma 2.7, other containments
of the form Dsl(u, v) ⊂ H(p, q, 1) follow; we call these the trivial containments. We
need to show that, for each choice of u, v, no larger values of s are possible. We
assume, as we may, that p > 2.

Suppose first that u ≤ p′. For v ≤ q, we get the trivial containment D1l(u, v) ⊂
H(p, q, 1). This is sharp since (an) ≡ Lac[(n2n)] ∈ Dsl(u, v)\H(p, q, 1), for all s > 1
(if p = ∞, we can still use Lemma 2.2 to get that (an) does not lie in H(2, q, 1), and
hence not in the smaller space H(∞, q, 1). For v > q, we get the trivial containments

1Because the point-evaluation functionals are bounded on H(p, q, t) spaces, the “if and only

if” conclusion in Lemma 2.3 is valid for sequences that are merely eventually monotonic.
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Dsl(u, v) ⊂ H(p, q, 1) for all s < 1. This is sharp since Lac[(n−1/q2n)] ∈ D1l(u, v) \
H(p, q, 1); the case p = ∞ is handled as before.

Suppose instead that u > p′. If v ≤ q, we get the trivial containment Dsl(u, v) ⊂
H(p, q, 1), for s = 1/u + 1/p. This is sharp for p < ∞ since D1/p+ε/2 ∈ Dsl(u, v) \
H(p, q, 1), whenever s = 1/u + 1/p + ε, ε > 0. For p = ∞, we instead note that
Dε/2 ∈ D1/u+εl(u, v)\H(4/ε, q, 1), for every 0 < ε < 1. On the other hand, if v > q,
we get the trivial containment Dsl(u, v) ⊂ H(p, q, 1), for all s < s0 ≡ 1/u + 1/p.

This is sharp for p < ∞ since D1/p(log−1/q(n + 2)) ∈ Ds0 l(u, v) \ H(p, q, 1).

Sharpness for p = ∞ (and u > p′, v > q) is similar in spirit, but we cannot use

Lemma 2.3. We first write fk(z) ≡ (z2k+1

− z2k

)/(z − 1) for each k ∈ N. Note that
fk(r) ≥ 0 for all 0 < r < 1, and that there exists a constant c independent of k
such that fk(r) ≥ 2kc for all r ∈ [1 − 2−k, 1 − 2−k−1]. Defining f =

∑∞
k=1 k−1/qfk,

it is easy to deduce that f /∈ H(∞, q, 1). The Taylor coefficients of f in the dyadic
block Ik are all k−1/q, and so f ∈ D1/ul(u, v).

We must still consider S2(H(p, q, 1)). The fact that this space is contained in
the indicated F2 space, and equals it if p ≥ 2, follows immediately from Lemma 2.5.
By combining this with Lemma 2.7, we readily deduce other containments of the
form H(p, q, 1) ⊂ Dsl(u, v), which we again call the trivial containments. We need
to show that no containments with smaller values of s are possible. We assume, as
we may, that p < 2.

Case 1: 1 < p < 2

Suppose that q ≤ v. If p′ ≤ u, we get the trivial containment H(p, q, 1) ⊂
Dsl(u, v) for s = 1, while if p′ > u, we get this containment with s = 1/u+1/p. We
see that s is minimal for p′ ≤ u by Lemma 2.6, and for p′ > u because D1/p−ε/2 ∈
H(p, q, 1) \ Ds−εl(u, v), for all ε > 0. We may therefore assume that q > v.

If p′ ≤ u, we trivially get H(p, q, 1) ⊂ Dsl(u, v) for all s > s0 = 1, while if
p′ > u, we trivially get H(p, q, 1) ⊂ Dsl(u, v) for all s > s0 = 1/u+1/p. We cannot
take s = s0 when p′ ≤ u, because Lac[(n−1/v2n)] ∈ H(p, q, 1) \D1l(u, v), nor when

p′ > u, since D1/p(log−1/v(n + 2)) ∈ H(p, q, 1) \ Ds0 l(u, v).

Case 2: p ≤ 1

Here we only need to consider two cases for a containing space Dsl(u, v). If
q ≤ v, containment is trivially true for s = 1/u + 1/p. If s = 1/u + 1/p − ε, ε > 0,
then D1/p−ε/2 ∈ H(p, q, 1)\Dsl(u, v) (or we may avoid using Lemma 4.1 by instead
using the function f(z) = (1− z)−1−1/p+ε/2 as in Lemma 2.6). On the other hand,
if q > v, containment is trivially true for all s > 1/u + 1/p. To prove minimality,

note that D1/p(log−1/v(n + 2)) lies in H(p, q, 1) \ D1/u+1/pl(u, v). �

Note that if F ⊂ F ′ are families of sequence spaces, and X is a sequence space,
then sF (X) = sF (sF ′(X)) and SF (X) = SF (SF ′(X)). Using these identities in
the case F1 ⊂ F2, together with Theorem 4.2 with Lemma 3.1, we get an explicit
description of s1(H(p, q, t)) and S1(H(p, q, t)). Since in most cases there is another
bifurcation between large and small q, we record the answer only for q = p. Even
with this restriction, it becomes clear that F2 is more natural than F1 for helping
to describe H(p, q, t).
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Corollary 4.3. For all t ∈ R,

s1(H(p, p, t)) =

{
Dt

[
lp +

⋃
ε>0 D−εl2

]
, 0 < p < 2,

Dt
[
lp

′

+ D2/p−1lp
]
, 2 ≤ p ≤ ∞,

S1(H(p, p, t)) =





Dt
[
D1/p−1l∞ ∩ D2/p−1lp

]
, 0 < p ≤ 1,

Dt
[
lp

′

∩ D2/p−1lp
]
, 1 ≤ p ≤ 2,

Dt
[
lp ∩ (

⋂
ε>0 Dεl2)

]
, 2 < p ≤ ∞.

5. Applications to multipliers

We shall calculate s2, and often also S2, for the multiplier spaces X ≡
(H(p, q, t), l(u, v)) and Y ≡ (l(u, v), H(p, q, t)). Our results allow us to deter-
mine exactly when these spaces have the form Dsl(a, b), and we also determine the
values of s, a, b whenever X or Y have this form. Some results of this type are to be
found in the literature, notably the papers of Blasco [3] and of Jevtić and Pavlović
[11]. Assuming that u = v, Blasco characterizes X when p ≥ 2, when p, q ≤ 1 ≤ u,
and when p ≤ 1 ≤ q ≤ u (Theorems 4.1, 4.2, 4.32 of [3]). Jevtić and Pavlović
characterize X in all u = v cases except for 1 < p < 2, u < p′. The answer in all
of these cases is of the form Dsl(a, b), and we recover these results below. Jevtić
and Pavlović conjecture that the answer for the missing u = v case is a specific
space of the form Dsl(a, b). We do not find X in the missing case, but we prove
that this conjecture is always false. Our results cover all cases (including infinite
exponents) and follow rather easily (certainly, in the case of the s2-type results).
We do of course use Theorem 4.2, whose proof required some effort, but at least
the methods used in its proof were consistent in all cases. Thus Theorem 4.2 has a
unifying role, replacing a variety of arguments used to prove various special cases
in the literature.

Our first theorem examines (l(u, v), H(p, q, t)), and the second (H(p, q, t), l(u, v)).
The cases p ≤ 2 in the first, and p ≥ 2 in the second are included for completeness,
but are very easy; for instance, since l(u, v) is solid, Lemmas 2.5 and 2.8 imply that
for p ≤ 2,

(l(u, v), H(p, q, t)) = (l(u, v), s(H(p, q, t)) = (l(u, v), Dtl(2, q)) = Dtl(2 	 u, q 	 v).

Theorem 5.1. For arbitrary t ∈ R, 0 < p, q, u, v ≤ ∞, s2(l(u, v), H(p, q, t)) and

S2(l(u, v), H(p, q, t)) are given by the following table.

2As stated, this theorem is inconsistent with our results; the parameter r should be simply s.

The error in the proof arises where 1/t is defined to be 1− q/s, rather than the correct 1/q − 1/s.
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s2(l(u, v), H(p, q, t)) S2(l(u, v), H(p, q, t))

0 < p ≤ 2 Dtl(2 	 u, q 	 v) Dtl(2 	 u, q 	 v)

2 < p < ∞ Dtl(p′ 	 u, q 	 v) U

p = ∞ Dtl(1 	 u, q 	 v) Dtl(1 	 u, q 	 v)

The missing entry U satisfies Dtl(p′ 	 u, 2 	 u, q 	 v) ⊂ U ⊂ Dtl(2 	 u, q 	 v).

Proof. By Lemma 3.2, s2(l(u, v), H(p, q, t)) = (l(u, v), s2(H(p, q, t))). Thus cal-
culating s2(l(u, v), H(p, q, t)) can be done in all cases by means of Theorem 4.2
and Lemma 2.8. Similarly, S2(l(u, v), H(p, q, t)) is contained in Dtl(2 	 u, q 	 v) if
2 < p < ∞. Since the case p ≤ 2 is easy, it is left to prove that

S2(l(u, v), H(p, q, t)) ⊃ Dtl(p′ 	 u, 2 	 u, q 	 v), 2 < p < ∞, (5.1)

S2(l(u, v), H(p, q, t)) ⊂ Dtl(1 	 u, q 	 v), p = ∞. (5.2)

By Lemma 2.4, l(p′, 2) ⊂ Hp, and so l(p′ 	 u, 2 	 u) ⊂ (lu, Hp). Using (2.2) and
Lemma 2.9, (5.1) follows immediately.

Containment (5.2) is equivalent to (l(u, v), H(∞, q, t)) ⊂ Dtl(1 	 u, q 	 v), so
we prove the latter. We may assume without loss of generality that t = 1. Suppose
for the purposes of contradiction that the required result is false. Since l(u, v) is
solid, (l(u, v), H(∞, q, t)) is also solid, and so we can find a non-negative sequence
λ ∈ (l(u, v), H(∞, q, 1))\D1l(1	u, q	v). Since D1l(1	u, q	v) = (l(u, v), D1l(1, q)),
we can find a non-negative sequence a ∈ l(u, v) such that λa /∈ D1l(1, q). By
hypothesis, f(z) ≡

∑∞
n=1 λnanzn ∈ H(∞, q, 1). However, for each k ≥ 1,

M∞(r, f) ≥ f(r) ≥ (∆kf)(r) >∼ ‖Sk(λa)‖l1 , r ∈ [1 − 2−k, 1 − 2−k−1].

Since (2−k‖Sk(λa)‖l1) /∈ lq, it follows by routine estimation that f /∈ H(∞, q, 1),
giving the required contradiction. �

Theorem 5.2. For arbitrary t ∈ R, 0 < p, q, u, v ≤ ∞, s2(H(p, q, t), l(u, v)) and

S2(H(p, q, t), l(u, v)) are given by the following table.

s2(H(p, q, t), l(u, v)) S2(H(p, q, t), l(u, v))

0 < p ≤ 1 D−t−1/p+1l(u, v 	 q) D−t−1/p+1l(u, v 	 q)

1 < p < 2 D−tl(u 	 p′, v 	 q) V

2 ≤ p ≤ ∞ D−tl(u 	 2, v 	 q) D−tl(u 	 2, v 	 q)

The missing entry V satisfies D−tl(u 	 p′, u 	 2, v 	 q) ⊂ V ⊂ D−tl(u 	 2, v 	 q).

Proof. Most of the proof is easy, and similar to that of Theorem 5.1. The one
part that is genuinely different is the fact that S2(H(p, q, t), l(u, v)) is a subset
of D−t−1/p+1l(u, v 	 q), when 0 < p ≤ 1. Here, we may assume that t = 1, in
which case this containment is equivalent to (H(p, q, 1), l(u, v)) ⊂ D−1/pl(u, v	 q).
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For the purposes of contradiction, we assume that this is false. By solidity, we
can find a non-negative sequence λ ∈ (H(p, q, 1), l(u, v)) \ D−1/pl(u, v 	 q). Since
D−1/pl(u, v 	 q) = (D1/pl(∞, q), l(u, v)), there exists a ∈ D1/pl(∞, q) such that
λa /∈ l(u, v). We may assume that an ≥ 0 and that an has a constant value bk in
each block Ik (if necessary, replace an by ‖Ska‖l∞ for each n ∈ Ik). Choosing a
non-negative bump function φ which equals 1 on [1, 2], and is supported on [3/4, 3],
we define f(z) =

∑∞
n=1 g(n) zn, where g(x) =

∑∞
k=1 bkφ(21−kx). It is routine to

check that g : [1,∞) → R is a C∞ function satisfying g(i)(x) ≤ Cmx1/p−iuk,
for all 2k−1 ≤ x < 2k, 0 ≤ i ≤ m, where uk = 2−k/p(bk−1 + bk + bk+1) and

(uk) ∈ lq. It follows from Lemma 4.1 that f ∈ H(p, q, 1) and so (λnf̂(n)) ∈ l(u, v).

By construction, f̂(n) ≥ an, leading to a contradiction since λa /∈ l(u, v). �

Remarks.

(1) These theorems characterize multipliers between all l(u, v) spaces and the Bloch
space B = H(∞,∞, 0):

(l(u, v),B) = l(1 	 u,∞),

(B, l(u, v)) = l(u 	 2, v).

(2) Note that for any family F and spaces A, B, (A, B) = sF (A, B) if sF (A, B) =
SF (A, B), whereas (A, B) cannot be a member of F if sF (A, B) 6= SF (A, B).
Thus, Theorem 5.1 gives (l(u, v), H(p, q, t)) in all cases except 2 < p < ∞,
u > p′ (the spaces containing, and contained in, U are equal if u ≤ p′ ≤ 2).
In the missing case, X ≡ (l(u, v), H(p, q, t)) cannot have the form Dsl(b, c)
since p′ 	 u < 2 	 u, and so s2(X) = Dtl(p′ 	 u, q 	 v) is a proper subset of
Dtl(p′ 	 u, 2 	 u, q 	 v) ⊂ S2(X).

(3) Arguing as in (2), (H(p, q, t), l(u, v)) is given by Theorem 5.2 in all cases except
1 < p < 2, u < p′, and in this missing case it cannot have the form Dsl(b, c).
This disproves a conjecture in [11] that it equals D−tl(u 	 p′, u 	 q) if u = v.

(4) The proofs in this section can be modified to derive other containments not
mentioned above. For instance, using Lemma 2.4, we see that for 1 < p <
2, (Hp, lu) contains l(u 	 p′, u 	 2, . . . , u 	 2), where the parameter “u 	 2”
may be repeated any finite number of times. Consequently, the missing space
V ≡ D−tlv	q(Hp, lu) contains D−tl(u 	 p′, u 	 2, . . . , u 	 2, v 	 q). However,
according to Theorem 5.2, it does not contain D−tl(u 	 2, v 	 q) if u < p′.
This suggests that V may be difficult to describe in the missing case; a similar
analysis applies to the missing case of Theorem 5.1.

Note also that (l∞, H(p, q, t)) = s(H(p, q, t)), a space which appears to be
unknown when 2 < p < ∞, and so it is not surprising that (l(u, v), H(p, q, t))
appears to be difficult to determine for large u. An easy duality argument
implies that (H(p, q, t), l(u, v)) = (l(u′, v′), H(p′, q′,−t)) as long as p, q, u, v ∈
[1,∞), so it is similarly not surprising that (H(p, q, t), l(u, v)) is difficult to
determine when 1 < p < 2 and u is small.

(5) It is perhaps appropriate to repeat our warning in Section 1 that H(p,∞, 0), as
we have defined it, is not the same as Hp. Thus, for instance, Theorem 5.2 says
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that (H(1,∞, 0), l1) = l1, but it is certainly not true that (H1, l1) = l1, since
lacunary H1 functions coincide with lacunary l2, and so (H1, l1) must contain
at least the lacunary elements of l2 by Hölder’s inequality. A characterization
of (H1, l1), due to C. Fefferman, is to be found at the end of [1].

(6) One cannot change containment to equality in parts (iii) and (iv) of Lemma 3.2:
for (iii), consider the case p ≤ 1 of Theorem 5.2, and for (iv), consider the case
p = ∞, u > 1 of Theorem 5.1.

References

[1] J.M. Anderson and A.L. Shields, Coefficient multipliers on Bloch functions, Transactions of
the American Mathematical Society 224 (1976), 255–65.

[2] G. Bennett, D.A. Stegenga, and R. Timoney, Coefficients of Bloch and Lipschitz functions,
Illinois Journal of Mathematics 25 (1981), 520–31.

[3] O. Blasco, Multipliers on spaces of analytic functions, Canadian Journal of Mathematics 47

(1995), 44–64.

[4] S. Buckley, Mixed norms and analytic function spaces, Proceedings of the Royal Irish Acad-

emy 100A (2000), 1–9.
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