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Abstract 
Phthalocyanines (Pcs) are robust macrocyclic tetrapyrrolic molecules having 

distinctive dark blue to green colours. Despite their importance in industry, their 

optical spectroscopy has yet to be fully characterised. Low-temperature solids 

consisting of the rare gases or inert materials like nitrogen offer an ideal 

environment in which to study these molecules. The resulting spectral bands in 

inert cryogenic matrices are narrow and well resolved with relatively small shifts 

from the gas phase values. The aims of the work presented in this thesis are to 

record the vibrational and luminescence spectroscopy for free-base 

phthalocyanine (H2Pc) and zinc phthalocyanine (ZnPc) isolated in various inert 

low-temperature matrices and with the assistance of extensive theoretical 

calculations, assign the spectral features observed. 

 The infrared absorption spectra of matrix-isolated ZnPc and H2Pc have been 

recorded in the region from 400 to 4000 cm-1 in solid N2, Ar, Kr and Xe. The 

isotopomers HDPc and D2Pc were synthesised in an attempt to resolve the 

conflicting assignments that currently exist in the literature for the N-H bending 

modes in H2Pc spectra. Comparison of the spectroscopic results obtained with 

isotopic substitution and with predictions from large basis set ab initio density 

functional theory (DFT) calculations, allow identification of the in-plane (IP) 

bending mode of H2Pc at 1045 cm-1 and the out-of-plane (OP) bending mode at 765 

cm-1.  The antisymmetric N-H stretching mode observed at ~3310 cm-1 in low 

temperature solids is slightly blue shifted from, but is entirely consistent with the 

literature KBr data. The vibrational modes of the experimental spectra of H2Pc and 

its deuterium isotopomers were correlated using DFT and the ratios of the lighter 

H atom frequencies to those of their heavier D atom equivalents (νH/νD) were 

determined. With the exception the N-H stretches, the recorded H/D isotope shifts 

in all the N-H vibrations are complex with the IP bending modes exhibiting small 

νH/νD ratios (the largest value is 1.089) while one of the observed OP modes has a 

νH/νD ratio < 1.  DFT results reveal the small ratios arise in particular from strong 

coupling of the N-H IP bending modes with IP stretching modes of C-N bonds.  The 

unexpected behaviour of νH/νD ratios is analysed through the examination of the 

continuous theoretical evolution of the frequencies with the mass of H. A 

consequence of this frequency increase in the heavier isotopomer is that the 
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direction of the N-D OP bend is reversed from the N-H OP bend. The Raman 

scattering data recorded for ZnPc and H2Pc in KBr discs are also analysed and 

found to be quite similar and moreover, identical to the visible fluorescence of 

matrix-isolated Pcs. 

The visible absorption, emission and excitation spectra of ZnPc and H2Pc trapped 

in Ne, N2, Ar, Kr and Xe matrices have been recorded. The visible absorption peaks 

for the Q band of ZnPc and the Qx and Qy transitions of H2Pc have revealed matrix 

shifts from the gas phase values and distinct sites of isolation. The spectral 

positions of the vibronic bands in emission with pulse dye laser excitation for both 

Pcs have been identified. A comparison of the fluorescence spectra with Raman 

spectra in KBr pellets has revealed very strong similarities. This is entirely 

consistent with the selection rules and points to the occurrence of only 

fundamental vibrational transitions in the emission spectra corresponding to those 

in the ground state. This favourable comparison between Raman and fluorescence 

spectra has allowed the vibronic modes of ZnPc and H2Pc coupling to the electronic 

emission to be assigned using DFT calculated vibrational spectra. A mirror 

symmetry between the vibronic structures of ZnPc has been observed in emission 

and excitation, indicating similar geometries in the ground and excited states. The 

vibrational modes of ZnPc in the excited state have therefore been assigned using 

the same DFT Raman vibrations determined for the ground state. For the 

excitation spectra of H2Pc, the mirror symmetry with emission has been seen to 

breakdown after ~950 cm-1 due the onset of the higher energy Qy state absorption.  

A matrix dependence has been found for the Qx-Qy energy splitting varying from 

916 cm-1 in Xe and 985.3 cm-1 in Ar. In a comparison of the H2Pc excitation and 

emission spectra recorded in this work and those previously reported for D2Pc, a 

tentative assignment of the vibrational mode in the Qx state coupling to the Qy has 

been made using DFT to a weakly Raman active mode of B1g symmetry consisting 

of an in-plane bending motion of the central N-H bonds. 

  The vertical excitation energies and oscillator strengths of H2Pc and ZnPc as 

well as those of free-base and zinc tetraazaporphyrin (TAP), tetrabenzoporphyrin 

(TBP) and porphine (P) have been calculated with linear-response time-dependent 

DFT utilizing the B3LYP hybrid functional and 6-311++G(2d,2p) basis set. The 

theoretical results for the lowest energy transition have been compared to 
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experimental data and have been found to correctly predict many of the trends 

apparent for these molecules. One of the major discrepancies that has been 

observed between the TD-DFT and experimental transition energies was the 

underestimation of the theoretically determined Qx-Qy splitting of H2Pc and the 

relative intensities of these bands. 

 Laser induced fluorescence spectroscopy of H2Pc and ZnPc phthalocyanines 

trapped in rare gas and nitrogen matrices reveals a quite unexpected phenomenon 

with a moderate increase in the laser intensity. For these molecules in all matrices, 

except for ZnPc in Xe, a huge increase in the intensity of a one particular emission 

band has been observed when pumping the S1 ← S0 transition. The band involves a 

vibrational mode of the ground state, located at 1550 and 1525 cm−1 for H2Pc and 

ZnPc, respectively. This vibration has been assigned in both phthalocyanines using 

DFT to the most intense Raman active mode involving an out-of-phase stretching 

of the C-N-C bonds in the tetrapyrrole ring. Many of the characteristics of amplified 

emission (AE) are exhibited by this vibronic transition and the threshold 

conditions have been investigated. In light of the success of the DFT Raman spectra 

to correctly predict both the positions and relative intensities of the vibronic 

emission bands of H2Pc and ZnPc, the optimized geometries, vibrational 

frequencies and Raman scattering intensities have been calculated for a selection 

of other structurally related tetrapyrrolic molecules and their potential for 

exhibiting AE assessed. Excitation scans recorded for the AE band show greatly 

enhanced site selectivity compared to what is obtained in normal fluorescence 

excitation scans. 
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Chapter I: Introduction 

I.1 Phthalocyanine and Porphyrins 

Porphyrins have been often called the ‘colours of life’1 - from the bright green 

chlorophyll responsible for photosynthesis in plants to the crimson red 

haemoglobin in red blood cells used to transport oxygen through the blood vessels 

of animals (Figure I.1). The name porphyrin comes from the Greek πορφύρα 

meaning purple, the colour of some porphyrins like hæmatoporphyrin and 

porphine, the parent molecule of this important group of chemicals2. 

Phthalocyanines are synthetic analogues of porphyrins and are structurally 

related. Like porphyrins, they are strongly coloured ranging from dark blue to 

green. They are robust molecules, with stability to high temperatures and UV light 

and are insoluble in most solvents except in strong acids or when functionalised 

with sulfonate groups. Despite their low solubility, phthalocyanines are one of the 

most important pigments produced for use in paints and dyes accounting 25 % of 

all pigments synthesised world wide3. 

 
Figure I.1: Brightly coloured tetrapyrrole pigments. The top two pictures show examples of 
naturally occuring porphyrins - a green clover leaf containing chlorophyll and red blood cells 
containing hæmoglobin. The bottom pictures show two of the uses for synthetic phthalocyanine - as 
a pigment in printing inks for clothing and as a dye medium on CD-R disks4. 
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I.1.I The Structure of Phthalocyanines and Porphyrins  
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Figure I.2: Comparison of the molecular structures of porphyrins (where M is a metal cation or 2 H 
atoms). The aza porphyrins, (a) phthalocyanine and (b) tetraazaporphyrin differ from each other by 
the addition of 4 benzo annulations. Their equivalent methine porphyrins (c) tetrabenzoporphyrin 
and (d) porphine are derived by exchanging the 4 meso N atoms for CH groups. 

Structurally, phthalocyanines are macrocyclic molecules consisting of four pyrrole 

subunits with benzo annulations (forming an isoindole like ring structure), linked 

by four nitrogen aza bridging groups to form a sixteen member ring. The 

phthalocyanine anion (Pc2-) may act as a tetra-dentate ligand, complexing with 

most metals through the four nitrogen atoms of the pyrrole subunits forming a 

metallo-phthalocyanine (M(n)Pcn-2). The phthalocyanine anion may also bond to 

two protons, again at the nitrogen atoms on the pyrrole subgroups at the centre of 

the cavity, forming free-base phthalocyanine (H2Pc) or to small metal cations for 

example in Li2Pc and Na2Pc5. The simplest porphyrin, porphine, is a similar 

macrocyclic tetrapyrrole whose structure consists of four pyrrole subunits bridged 

by CH methine groups. Like phthalocyanine, either two hydrogen atoms (forming 

H2P) or a metal atom (forming MP) may be bound to the pyrrole nitrogens at 

centre of the ring cavity. The structural similarities can clearly be seen between the 

two classes of molecules by comparing the addition of benzo annulations to 
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porphine to form tetrabenzoporphyrin (TBP) or by replacing the CH bridging 

groups to form tetraazaporphyrin (also called porphyrazine or TAP) shown in 

Figure I.2. Phthalocyanines and porphyrins are aromatic fulfilling Hückel’s rule 

being both planar and having 4n+2 electrons in a conjugated π system6. 

I.1.II Phthalocyanine Synthesis 

 Phthalocyanines were first discovered by accident by four chemists, 

Dandridge, Drescher, Dunworth and Thomas, working for Scottish Dyes Ltd. at 

Grangemouth in 19281,7. At the Scottish plant, phthalamide (a colourless solid 

important in the manufacture of dye molecules like indigo) was being synthesised 

from phthalic anhydride and ammonia in iron pots when a blue coloured 

contaminant was noticed. Earlier in 1927, a similar blue compound had been 

obtained by de Diesbach in Germany by reacting phthalodinitrile with a copper 

salt8. Analysis in Scotland of the blue ‘contaminant’ found that it was an iron 

containing complex that was highly stable and insoluble in most solvents. Further 

research using different metals, including copper, lead to Scottish Dyes Ltd. (until 

2008 known as ICI) patenting copper phthalocyanine as the very successful 

Monastral Blue pigment in 1928. It was not until a few years later that Sir Patrick 

Linstead at Imperial College, London established the reactivity and structures of 

both metallo and free-base phthalocyanine9-14 and recognised that earlier reports 

from 190715 and onwards of similar blue-green insoluble compounds had also 

been phthalocyanines. It was Linstead who coined the name phthalocyanine, a 

combination of phthalo, from the precursors it was synthesised from, and cyanine, 

from the Greek κύανος meaning ‘dark blue’2,9. The unusual spelling of phthalo 

ultimately comes from naphthalic acid, which was mistakenly thought to be 

structurally related to naphthalene until its correct structure was recognised and 

the name shortened to phthalic acid2.  

 Numerous synthetic routes exist for both free-base and metallo 

phthalocyanine7,16-18. Four examples of the reaction schemes for the synthesis of 

metallo-phthalocyanines are give in Figure I.3. Scheme (I) is similar to the 

synthesis proposed by Linstead and patented by ICI, using phthalonitrile, copper 

and CuCl2. In this reaction the Cl- counter ion acts as a nucleophile, initiating the 

reaction. Scheme (II) uses diimidoisoindole as a precursor though this molecule is 

prepared from phthalonitrile and is less common in industry than scheme (I). 
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Scheme (III) uses reagents phthalic anhydride and urea (as a non-volatile source of 

nitrogen) with ammonium molybdate as a catalyst. Due to the low cost of 

materials, this method is preferred for the production of bulk quantities of 

phthalocyanines for use in cheap dyes and pigments. A more expensive but 

synthetically more flexible method often used in laboratories is scheme (IV) which 

uses nitrobenzene and 2-cyanobenzamide as easily functionalised precursors17. In 

some mechanisms, the metal cation can act as a template in the 

cyclotetramerisation of the metallo-phthalocyanines. Free-base phthalocyanines 

may be prepared by treatment of weakly complexed metallo-phthalocyanines with 

strong acids10,16,17 or directly using some of the precursors used in metallo-

phthalocyanine and other reagents like bases and reducing agents16. 

N
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Figure I.3: Examples of synthetic routes to metal phthalocyanines (MPc). The organic precursors 
are in scheme (I), phthalonitrile, in scheme (II), diiminoisoindole, in scheme (III), phthalic 
anhydride and scheme (IV), 2-cyanobenzamide and nitrobenzene. All schemes are conducted in the 
presence of a metal salt, Mn+. Scheme (I) is also conducted in the presence of the free metal M and a 
nucleophile, Nu-, which is often the counter ion to Mn+. The catalyst in scheme (III) is ammonium 
molybdate.  

I.1.III  Visible absorption of phthalocyanine and porphyrins – The 
four-orbital model 

One of the most recognisable qualities of phthalocyanines and porphyrins is their 

colour. Unlike other organo-metallics, the primary origin of absorption bands in 

the visible spectral region appears to come from electronic transitions in the 
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macrocyclic ring and not the metal centre. For example, free-base phthalocyanine 

is a dark blue colour while free-base porphine is a dark red to purple colour. With 

their strong visible colours and similar structures it is surprising to see how 

different the UV-Vis absorption spectra of both molecules look. Porphyrins have a 

strong absorption band in the near-UV (called the Soret or B band) with weakly 

allowed Q (or quasi-allowed) bands in the visible region. Depending on the 

symmetry of the molecule, the Q bands can show splitting. D4h symmetry metallo-

porphyrins having one single Q band (with often intense vibronic absorption 

bands) and D2h free-base porphyrins with two Q bands, a lower energy Qx and a 

higher energy Qy. Phthalocyanines, though with similar spectral absorption 

positions to porphyrins, have the most intense absorption bands in the red 

spectral region corresponding to the Q bands in porphyrins and weaker absorption 

bands in the UV region. The label ‘Q band’ is intended for the porphyrins but is 

actually inappropriate for the phthalocyanines as it is stronger than the Soret 

bands. Though the visible transitions of phthalocyanines are not quasi but fully 

allowed, the Q label is commonly used to show the relationship between these 

transitions and those in other porphyrin derivatives. 

  The first successful theoretical model to describe the absorption properties 

of porphyrins and phthalocyanines is the “Four-Orbital Model” proposed by Martin 

Gourterman19-21 in the 1960’s. He used a combination of extended Hückel theory, 

with a linear combination of atomic orbitals treatment of the molecular orbitals 

(LCAO-MO), to predict the orbital energies and Configuration Interaction (CI) to 

predict the orbital contributions to the electronic transitions in porphyrins. In his 

model, Gouterman considered only transitions between the two lowest unoccupied 

molecular orbitals (LUMOs) and two highest occupied molecular orbitals (HOMOs) 

which were found to be π orbitals. The two LUMO orbitals, c1 and c2, are 

considered degenerate (as in metallo-porphyrins (MP)) and, as an initial 

approximation, the HOMO orbitals, b1 and b2, are considered accidentally 

degenerate (“P2-” Figure I.4). Applying the CI method to the four single electron 

transitions of these orbitals (b1c1, b1c2, b2c1 and b2c2) two pairs of degenerate 

electronic state transitions were determined- 

 
௬ܤ = భ

మ
(ܾଵܿଵ + ܾଶܿଶ), ܤ௫ = భ

మ
(ܾଵܿଶ + ܾଶܿଵ), 

ܳ௬ = భ
మ
(ܾଵܿଵ − ܾଶܿଶ), ܳ௫ = భ

మ
(ܾଵܿଶ − ܾଶܿଵ). 

(I.1)  
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In the first pair (By and Bx in I.1), the orbital contributions are combined positively 

and the transition dipole moments of the contributions are added together to 

produce a strongly allowed transition at higher energies. These have been assigned 

to the Soret band. In the second pair (Qy and Qx in I.1), the orbital combinations 

combine negatively resulting in the transition dipole moments for the individual 

contributions cancelling and the transitions become forbidden. By lifting the 

degeneracy of the HOMOs slightly, the orbital coefficients in Qy and Qx do not 

cancel completely and the transitions become weakly allowed, correctly predicting 

the weaker, lower energy Q bands observed in metallo-porphyrins (see MP in 

Figure I.4). In free-base porphine, the degeneracy of the LUMO c1 and c2 orbitals is 

lifted (H2P in Figure I.4) resulting in different energy By and Bx bands and different 

energy Qy and Qx bands. The non-degeneracy of the LUMO orbitals explains the 

splitting of the Q bands seen in free-base porphyrins. 

“P2-” MPH2P

MPcH2Pc

c1
c2 c1 c2 c1 c2

b1 b2 b1
b2

b1
b2

c1
c2 c1 c2

b1

b2

b1

b2

Free-base Metallo

g.s.g.s.

Q

B

Qx

Bx

Qy

By

En
er

gy

Transition State Energies

 
Figure I.4: Gouterman 4-orbital model for both free-base (H2) and metallo (M) porphine (P) and 
phthalocyanine (Pc). “P2-“ represents the preliminary model where the HOMO b1 and b2 orbitals and 
LUMO c1 and c2 are considered degenerate. Shown inset are the relative energies of the various B 
and Q states. 

  The four-orbital model may also be applied to phthalocyanines. Replacing 

the meso-carbons with nitrogen atoms and attaching benzene rings to the pyrrole 

subunits has a considerable effect on the molecular orbitals. Of the two occupied 

MOs considered, the b1 orbital has significant orbital coefficients at the meso 

positions. The more electronegative nitrogen atom greatly lowers the energy of the 

b1 orbital relative to the b2 orbital. The addition of the nitrogen atom likewise 
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reduces the energy of both LUMOs. The benzene rings also lower the energy of all 

four orbitals but again more so for the b1 orbital (MPc in Figure I.4). This has the 

effect of lowering the energy of the Q transitions and reducing the contributions 

from the b1c1 and b1c2 single orbital transitions in the CI equations. 

Consequentially, the Q transitions become dominated by the b2c1 or b2c2 

transitions with very large transition dipole moments and are strongly allowed. A 

splitting in the Qy and Qx transitions of H2Pc is again due to the loss of degeneracy 

of the c1 and c2 orbitals comparable to the splitting in H2P. Though the Soret B 

bands of phthalocyanine may be predicted using this method, more modern 

theoretical approaches (e.g. TD-DFT22) have shown that the breakdown of the 

four-orbital model is so severe that no equivalent mixing of the orbitals involved in 

the Q transitions is seen for transitions that are predicted in the UV. 

I.2 Matrix-Isolation (MI) 

According to IUPAC, matrix-isolation refers to the isolation of a reactive or 

unstable species by dilution in a solid matrix made of an inert material. The matrix 

is usually co-condensed with the species of interest onto an optical substrate at 

low temperatures to preserve its structure for identification by spectroscopic 

means23. The expression is most commonly used to refer to the technique of 

trapping an atom or molecule, called the guest species, in rare gas (Ne, Ar, Kr, Xe) 

or other inert gas (e.g. N2) solids, known as the host, at cryogenic temperatures. 

Reactive molecular gases (e.g. CO, CH4) may also be used as a host material to 

investigate the low temperature reactivity of the guest species. In addition, the 

matrix-isolation technique (MI) may be applied to the investigation of a stable or 

relatively un-reactive guest species. 

 Matrix-isolation has its ultimate origins in the development of methods to 

liquefy gases, pioneered by Michael Faraday and Humphry Davy in the early 19th 

century24. Experiments in the 1850s by James Joule and William Thompson (later 

Lord Kelvin) found that the adiabatic expansion of gases (i.e. expansion of a gas 

into a vacuum without the addition of heat) resulted in the cooling of the gas, 

leading to an effective experimental pathway to lower cryogenic temperatures. The 

Joule-Thompson effect was used by Cailletet and Pictet in the 1870s to liquefy O2, 

N2 and CO, work which would go on to inspire the chemist James Dewar’s 

subsequent interest in low temperature research. Cryogenic techniques were 
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further developed by Dewar, who succeeded first in liquefying and then solidifying 

hydrogen in 1897 and 1899. Nearly a decade later at the University of Leiden, 

Belgium, Kamerlingh Onnes achieved the landmark goal of liquefying helium, an 

objective also shared by Dewar. An order from Guinness Breweries, Dublin in 1892 

to develop and install a CO2 liquefaction plant25, lead to the construction by Carl 

von Linde in 1895 of the first closed cycle refrigeration unit based on the Joule-

Thompson effect and allowed the large-scale liquefaction and separation and 

distillation of air into its components, including the rare gases. 

 The first experiments that would be recognised today as matrix-isolation 

were performed by Vegard at Leiden in the 1920s who investigated the 

luminescence of condensed gases with electron bombardment and x-ray 

irradiation26-29. Notable discoveries by Vegard included the first observation of the 

A 3Σu+―X 1Σg+ triplet phosphorescence of N2 and what would be later assigned to 

the 557.7 nm 1S―1D forbidden transition of atomic oxygen30. In the 1940s Gilbert 

Lewis and co workers reported the UV-Vis absorption spectra of aromatic 

compounds in low temperature glasses. Though the trapping media used were 

glasses of organic solvents which have many disadvantages, including reactivity 

with the guest species and strong absorption in the infrared spectral region, the 

experiments conducted by Lewis at Berkeley shared many of the qualities and 

objectives of matrix-isolation31,32. In the next decade, the development of matrix-

isolation was furthered by Norman and Porter who reported the optical spectra of 

free radicals and atoms trapped in organic glasses33,34. It was not until Pimentel 

and co-workers in the 1950s that solid rare gases were adapted as a host medium 

which allowed the systematic study of free radicals35-38. He recognised the 

advantages of using inert gases as a trapping medium including chemical inertness, 

a tendency to form clear glasses and transparency over a very broad spectral 

region, from the deep ultra-violet to the infrared. Although the lowest temperature 

initially attainable by Pimentel and co-workers was only 72 K, limiting the gas 

matrices available, it was their group that coined the phrase “matrix isolation”39 

and technological developments over the following decades have allowed the 

technique to be regularly applied to temperatures of 4 K and below. 

 Matrix-isolation (MI) was originally developed as a convenient way of 

trapping a reactive species for spectroscopic analysis in an inert environment for 

long time periods, which may be short lived in conventional solvents and solids or 
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difficult to achieve in high concentrations in the gas phase. The range of 

spectroscopic techniques and molecular and atomic species studied by MI has 

increased to encompass many fields of chemical investigation. In practice, the 

technique of matrix-isolation involves the simultaneous deposition of a small 

amount of guest species in the gas phase along with a copious amount of host gas 

onto a cold spectroscopic substrate. In constructing a MI experimental set-up, 

some practical requirements must be considered40-42. In order to ensure a rigid 

inert gas solid and reduce diffusion, both of the guest and of the host species, 

samples must be deposited onto the substrate cooled to below one third of the 

melting point of the gas being used42.  For the commonly used matrix gases N2, Ar, 

Kr and Xe these temperatures are 19, 25, 35 and 48 K respectively and for Ne and 

H2 even lower temperatures of 7.3 and 4.2 K. To reach and maintain these low 

temperatures, the cryogenic assembly must be placed under a high vacuum 

(typically 10-6 mbar or below), preventing heat transfer through diffusion and 

eliminating contamination of the sample from atmospheric gases. If the guest 

sample is a solid or a low volatile liquid, a suitable, controlled vaporisation method 

must be chosen, for example electron bombardment, laser ablation, resistive 

heated ovens etc., and the heat transfer from the vapour source minimised. 

I.2.I Inert Gas Solids and Sites of Isolation 

The use of low temperatures and rigid inert gas solids ensure simpler vibrational 

and electronic spectra. The low temperatures at which the sample is maintained 

mean that only the lowest electronic and vibrational states are populated and no 

‘hot bands’ (transitions from thermally populated excited states) are seen. The 

rigid host matrix in which the guest molecule resides limits rotation of most 

molecules and removes the rotational progressions observed in gas phase 

vibrational and electronic spectra. Some smaller molecules like SO2 and H2O 

exhibit hindered rotations, sometimes called librations, which are observed as a 

simple splitting pattern of the vibrational absorption bands41. With their chemical 

inertness and wide spectral transparency from the far-infrared to the vacuum 

ultraviolet, solid rare gases make ideal host materials. Nitrogen shares many of 

these properties, with a similar broad spectral transparency range and low 

reactivity to many chemical species (a notable exception being its reactivity to 

some metal atoms and complexes). Despite the inertness of these gases, 
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spectroscopic band splitting and energy shifts relative to the band origins 

observed in the gas phase are seen in MI samples due to host-guest interactions. It 

is therefore important to understand the structure of the inert gas solids and how 

the guest molecules reside within the crystal lattice of the solids. 

  All the rare gases have spherical ground states with full outer electron 

shells. On condensation, they form simple close packing structures with face 

centred cubic (fcc) arrangements of Oh symmetry (Figure I.5). The dominant forces 

between the atoms in a rare gas solid are the van der Waals forces and are 

maximised by each atom achieving the highest coordination possible to its nearest 

neighbours. Two stable forms of solid nitrogen exist, below 35.6 K, an α form, and 

above this temperature, a β form42. At higher temperatures in β-N2, the molecules 

have some rotation and behave as spheres, adopting a hexagonal closed packed 

structure. At lower temperatures this rotation is reduced and the molecules in α-N2 

act more like cylinders adopting a packing structure derived from cubic closed 

packing. As nitrogen solids used in matrix isolation are deposited and maintained 

at temperatures below 35.6 K, only the α form should exist. Within an fcc lattice, 

each atom has 12 nearest neighbours at a distance of R and 6 next nearest 

neighbours at a distance of a. The distance a is the lattice parameter which defines 

the size of the unit cell. The nearest neighbour distance R is related to a by the 

simple geometric ratio, R = a/√2. 

R

a

Face Centred Cubic (fcc) unit cell

 
Figure I.5: Sketch of face cubic packing (fcc) unit cell showing the lattice points occupied by atoms 
or molecules in crystal structures. The lattice parameter, a, and nearest neighbour distance, R, are 
also shown where the distance R = a/√2. 
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 Small guest or dopant species (e.g. atoms, ions or smaller molecules) may be 

trapped in a limited number of positions or occupation sites within the host lattice. 

For very small species isolated in inert gas solids, especially in Kr and Xe with 

relatively large lattice parameters of 5.644 and 6.131 Å, an atom or molecule may 

occupy one of two interstitial sites. The tetrahedral interstitial site is found at the 

centre of a tetrahedral arrangement of atoms (an example of which is found at the 

centre of the four ‘dashed’ atoms in Figure I.5) while the larger octahedral 

interstitial site is found at the centre of the unit cell in Figure I.5. The more 

commonly occurring sites are substitutional sites where the dopant replaces one 

or more host atoms or molecules within the matrix. The simplest examples of these 

are the single substitutional site where one host species is removed and replaced 

with a guest atom or molecule or the tetrahedral substitutional site where 4 atoms 

forming a tetrahedral are removed and replaced with a single dopant species. It 

should be noted that a molecule or atom may occupy multiple thermally stable 

sites and even thermally unstable sites on deposition. The number of thermally 

unstable sites may be reduced by the process of annealing. In annealing, the 

sample is slowly heated to approximately half the melting point of the solid and 

then allowed to slowly cool back down, permitting the guest and host 

atoms/molecules to diffuse into the thermally most stable arrangements. This 

technique also increases the crystallinity and optical clarity of the solid. 

 Thus far only small, spherical sites have been discussed which are capable 

of containing relatively small sized dopant species. Larger molecule occupation 

sites involve the displacement of multiple host atoms/molecules in different 

spatial arrangements in order to allow the guest molecule to fit within the crystal 

lattice structure. Obviously the number of possible combinations of host 

atoms/molecules surrounding the guest molecule has increased greatly compared 

to the situation seen for smaller guest species. Even with careful sample 

preparation and annealing, identifying the precise shape and size of the thermally 

stable sites occupied by a larger molecule can be very difficult and due to the 

imperfections in the host lattice and the possible orientations of the molecule 

within the site cage. 
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I.2.II Matrix effects 

The initial goals of matrix isolation were to create a non-interacting environment, 

without external interactions, in which to spectroscopically observe a guest 

species. However, it was quickly realised that the matrix environment does have 

an effect on the vibrational and electronic spectra, perturbing the bands relative to 

the gas phase. The general terms for these perturbations are matrix effects and can 

be divided into three often related categories: matrix splitting, matrix shifting and 

matrix broadening. In order to account for these effects, it is important to 

understand the interactions between rare gas atoms and inert molecules which 

both allow them to form crystals at low temperatures and interact with guest 

species in a matrix.  

 Rare gas atoms and neutral homogeneous diatomic molecules like N2 have 

closed full outer electron shells and no permanent dipole moments. Electronic 

systems around atoms or molecules are dynamic leading to weak instantaneous 

dipole moments, where at one moment in time the electron density may not be 

uniformly distributed around the nuclei of the species. For an isolated atom or 

molecule the perpetual movement of the electron density will result in an average 

dipole moment equal to zero.  

 However, if for example an atom A at a certain time has an instantaneous 

dipole moment µA, this can generate an electric field, E = αμA/r3. This electric field 

can polarise a neighbouring atom B at a distance r from A, inducing a dipole 

moment µB = αμA/r3, where α is the polarizablity of atom B43. The two dipoles will 

attract each other, lowering the energy between them. The dipole moment µB can 

of course polarise its neighbours, inducing further dipole moments and creating a 

force of attraction. Even when atom A’s electron distribution changes with time, 

the new dipole moment it creates, with a different direction and magnitude, will 

induce a similar change in polarity of it neighbour B, synchronising the change in 

polarity between the atoms throughout the system (e.g. atoms in a solid matrix). 

This synchronisation means that the overall dipole moment of the atoms does not 

average to zero creating a force of attraction between the atoms. This interaction 

of induced-dipoles is called the London (or dispersion) Interaction and is dominant 

at longer distances. At shorter distances electrostatic repulsion forces generated 

from the overlap of the electron clouds of the atoms, violating the Pauli exclusion 

principle and raising the energy. Similar interactions are seen for neutral 



Chapter I: Introduction 

13 

molecules with no permanent dipole moments. Together these forces make up the 

van der Waals interactions which may be expressed using the Lennard-Jones 

potential43, 

 ܷି =
ଵଶܥ
ଵଶݎ

−
ܥ
ݎ

 (I.2)  

where, the C12 terms describe the repulsive energy and the C6 terms describe the 

dispersive energy. These repulsive and attractive forces from the matrix host have 

an effect on the vibrational and electronic spectra of polyatomic molecules trapped 

in inert gas solids44. 

I.2.III Matrix effects and vibrational spectra 

 For a diatomic molecule, the vibrations may be modelled using the simple 

classical harmonic approximation where the potential energy curve of the 

vibration, V, is given as 

 ܸ =
1
2
ݎ)݇ −   ) (I.3)ݎ

where k is the force constant and r is the displacement of the atoms from the 

equilibrium bond length re. (For an description of the quantum mechanic harmonic 

oscillator, see Chapter III). When the molecule is placed within a rigid cage of size 

D made of inert atoms or molecules, it is reasonable to modify the potential energy 

curve in Equation I.3 with terms to account for both the repulsive and attractive 

forces42. Using the repulsive term from Lennard-Jones potential curve, the 

vibrational energy is now given by, 

 ܸ௨௦௩ = ଵ
ଶ
ݎ)݇ − (ݎ + ଵଶܥ ܦ) − ⁄ଵଶ(ݎ . (I.4)  

This increase in the potential energy has the effect of decreasing the bond of the 

molecule in the matrix and increasing the force constant leading to a higher energy 

vibrational frequency relative to the truly isolated gas phase molecule42. Similarly 

the attractive forces may be included in the vibrational potential energy curve 

giving, 

 ܸ௧௧௧௩ = ଵ
ଶ
ݎ)݇ − (ݎ − ܥ ܦ) − ⁄(ݎ . (I.5)  

The lowering of the potential energy of the vibration has the opposite effect to the 

repulsive forces, increasing the equilibrium bond length, lowering the force 

constant and decreasing the vibrational frequency. The differences between the 

vibrational frequencies from the gas phase to those observed in matrices due to 

host/guest interactions are called matrix shifts. 
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 Using the model just described for the effect of van der Waals interactions 

on vibrational frequencies, the matrix shift of a vibrational mode is dependent on 

both the polarizability of the host and the cage size. The variation in the 

polarizability of different host materials can be used to explain the extent of matrix 

shift seen for the same molecule in a variety of inert gas solids. For example xenon 

has a much larger polarizability volume of 4.044 Å3 than argon with a 

polarizability of 1.6411 Å3 and generally exhibits a larger matrix shift45. The cage 

size depends on the site size the molecule occupies in the matrix and how 

constrained the molecule is within the site. Molecules in larger sites will have 

reduced guest/host interactions compared to smaller sites. The existence of 

multiple sites of isolation is one of the explanations for matrix splitting of 

spectroscopic bands and is called in this context ‘site splitting’. The other reasons 

for the splitting of vibrational bands are due to Fermi resonance (a property 

intrinsic to the molecule but may not be resolved in gas phase spectra due to 

rotational broadening) and the reduction of the symmetry of the molecule due to 

slight changes to the geometry of the molecule in a matrix. 

 The matrix shifts seen for polyatomic molecules with multiple vibrational 

modes are more complex but are subjected to similar attractive and repulsive 

interactions seen in diatomics. Some vibrational bands of a molecule may be blue-

shifted indicating repulsive forces from the cage while others of the same molecule 

are red-shifted indicating attractive forces. The extent of the matrix shift is 

dependent on many factors. The position of the atoms involved in a vibration and 

the direction of their displacement during a vibration relative to the cage can 

determine the extent of matrix shift. For example, matrix IR spectra show a large 

difference between parallel vibrations with sharp line-shapes and perpendicular 

vibrations with broad line-shapes (cf. the IR spectrum of dimethyl zinc in argon46). 

The polarizability of a bond can also be a factor with a particularly polarisable 

bond shifting more than a less polarisable one. With the existence of multiple sites 

of isolation, the site size and the orientation of the molecule within a site will 

determine the magnitude of matrix shift and the magnitude of the splitting. The 

dependence of the matrix shift on the position of the individual bonds of a 

molecule and the matrix cage allows identification of some isomers that may not 

be easily distinguishable in other media (e.g. in solution, gas phase or halide salt 

disks). 
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I.2.IV Matrix effects in electronic spectra 

Taking the case of an atom in the gas phase as an example, electronic absorption 

(or excitation) occurs from the ground state E0 to an excited state E1 with an 

excitation energy ΔE (Ex.) = E1 - E0. In the absence of any interactions with other 

atoms or molecules, E1 relaxes via emission to E0, with an emission energy ΔE(Em.) 

= ΔE(Ex.), as depicted in the energy level diagram on the left of Figure I.6. When 

placed into a crystal lattice of an inert gas matrix, matrix shifts and site effects are 

observed in the luminescence spectra. Interactions between the host material with 

ground state orbitals and particularly with the more diffuse (that is to say the more 

spatially extended) excited state orbitals will have the effect of perturbing the 

orbital energies. This in turn will shift the excitation and emission energies of the 

molecule depending on the level of repulsion between the host and excited state. 

However, one of the most important differences between gas and solid phase 

spectra is the interaction between the electronic levels of a dopant species and the 

vibrations (or phonons) of the crystals lattice.  
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Figure I.6: A comparison between the interactions of a luminescent species in the gas and 
condensed phase.  E0 and E1 represent the ground and excited electronic states of the species and ν 
represent the vibronic interactions in the ground and excited states induced by electron-phonon 
coupling.  The right hand panel in this figure depicts the case of a luminescent centre in the solid 
where weak electron-phonon coupling (S  0) exists. 



Chapter I: Introduction 

16 

 This electron-phonon coupling can have the effect of both broadening the 

spectral bands and shifting the excitation and emission frequencies. In the energy 

level diagram in the centre of Figure I.6, excitation occurs from the ground state 

E0(ν0) to the phonon coupled excited state E1(νn). This transition is obviously 

higher in energy than ΔE (Ex.) in the gas phase. From E1(νn), fast non-radiative 

relaxation occurs to E1(ν0) followed by emission to the phonon coupled ground 

state level E0(νn). Finally, non-radiative relaxation occurs from E0(νn) to E0(ν0). By 

comparing the transition energies, ΔE (Ex.) = E1(νn) - E0(ν0) is now greater than ΔE 

(Em.) = E1(ν0) - E0(νn). The difference between ΔE (Ex.) and ΔE (Em.) is equal to the 

sum of the non radiative energies and is called the Stokes shift. Coupling to 

multiple phonons will produce a wide phonon side band in excitation and 

broadening of the emission line shapes. In cases where coupling between the 

phonons and electronic states is weak, (due to weak interactions with the host and 

unfavourable Franck-Condon factors) intense and well resolved zero-phonon lines 

(ZPLs) will be seen in excitation and the Stokes shift will be minimal (energy level 

diagram on right of Figure I.6). Phonon coupling is also observed in IR and Raman 

vibrational spectra but the effect on the lineshapes and positions is usually very 

small. 

 Even in cases where sharp ZPLs with low intensity phonon side bands are 

known to exist, absorption and emission line shapes may still appear broad 

relative to gas phase spectra. This inhomogeneous broadening is due to the 

overlap of the ZPLs of molecules or atoms in different matrix environments. Using 

laser induced fluorescence (LIF), well resolved, site selective spectra may be 

obtained in both excitation and emission. For polyatomic molecules, the matrix 

shifts of the vibrations discussed previously will have a slight effect on the 

electronic spectra, changing the zero-point energies of both ground and excited 

states from those in the gas phase. The positions of the vibronic bands will also 

change from those observed in the gas phase, with comparable shifts to those in 

vibrational spectra obtained using IR absorption and Raman scattering methods. 

 Matrix isolation is not unique in its site selectivity properties. For example, 

Shpol’skii matrices47 consist of low temperature organic glasses doped with a 

molecule for spectroscopic analysis. Site effects like those observed in inert gas 

matrices for example matrix shifts from the gas phase and sharp zero-phonon line 

and phonon side bands apparent. The solvents used for the host are typically 
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simple alkanes or planar aromatic alkenes that have been selected to match the 

size of the guest species. Though Shpol’skii matrices are not suitable for infrared 

studies, due to the strong absorptions of the vibrational modes of the organic host, 

the vibronic bands in emission and excitation are narrow and well resolved.  

 The site effects described in the previous sections are seen in most MI 

experiments but their effect is relatively minor. There is a minimal perturbation of 

the spectral positions of the vibrational and electronic transitions of molecules in 

rare and inert gas low temperature matrices relative to the truly isolated gas phase 

environments. This allows the matrix isolation technique to be a convenient 

method of recording narrow line width IR and Raman spectra and, with the 

assistance of monochromatic laser fluorescence, the recording of site specific 

luminescence spectra with sharp zero-phonon lines. By comparing the host-guest 

bond lengths, lattice parameters and matrix shifts and splitting seen in 

experimental spectra along with theoretical calculations, the site occupancy of a 

molecule or atom in various hosts may be determined. For example, the site 

occupancy of a small sodium atom48, medium sized aromatic naphthalene 

molecule49 or even a large tetrapyrrole like porphine50 may be made by 

comparison of experimental optical spectroscopy results with molecular dynamics 

(MD) pair potential or other theoretical calculations.  

I.3 Spectroscopy of matrix-isolated phthalocyanines 

As a result of the widespread interest in porphyrins and phthalocyanines, a vast 

literature exists (including the now twenty volume The Porphyrin Handbook51,52) 

with the optical properties of these important molecules having been studied in a 

wide range of different environments. Because of their very large extinction 

coefficients and great stability, the phthalocyanines (Pcs) are used as commercial 

dyes53, but in recent times several novel applications such as photoconductors54, as 

nonlinear optical materials55 or as photosensitisers in laser cancer therapy56 are 

now emerging. Phthalocyanines have also been proposed as photo-receptors in 

dye-sensitized solar cells (DSSC) for light energy harvesting, though issues of 

solubility and aggregation are still to be resolved57. Free-base porphyrins and 

phthalocyanines have also been used as models for intramolecular 

tautomerization, where the tautomeric forms involving the migration of the two 

central N bound H atoms may be observed.  
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 The current study concerns the optical spectroscopy of two 

phthalocyanines – free-base phthalocyanine (H2Pc) and zinc phthalocyanine 

(ZnPc). FT-IR spectra of these molecules in various low temperature matrices were 

recorded along with Raman scattering results KBr disks. Theoretical calculations 

using density function theory (DFT) were conducted in order to help assign the 

vibrational bands observed in the experimental results. Visible absorption and 

emission spectra using lamp excitation were recorded for both H2Pc and ZnPc in 

low temperature inert gas solids. Laser-induced fluorescence (LIF)  is very well 

suited for studies of these molecules due to the close match between their strong 

absorptions in the visible spectral region and the output of tuneable dye lasers.  

High resolution excitation and emission spectra were recorded using pulsed laser 

dye laser excitation, resulting in well resolved vibronic bands. Due to similar 

selection rules for the vibronic transitions and Raman active modes of H2Pc and 

ZnPc, the DFT and experimental Raman results were used to help assign these 

vibronic bands. The unusual occurence of amplified emission was found in the 

most intense vibronic band of both H2Pc and ZnPc in different inert gas host 

matrices. Possible reasons for this nonlinear optical phenomenon were 

investigated. 

I.3.I IR and Raman spectroscopy of H2Pc and ZnPc 

The purpose of the vibrational spectroscopy conducted in this work was to provide 

assignments for the ground state vibrational modes of H2Pc (D2h symmetry) and 

ZnPc (D4h symmetry). Indeed a complete vibrational analysis, involving 

comparison with narrow line experimental data, has not yet been made for these 

molecules. Matrix-IR absorption spectroscopy, isotope substitution, Raman 

spectroscopy and high-level DFT calculations were used to conduct a complete 

vibrational analysis of zinc and free-base phthalocyanine. 

 While several infrared studies have been presented for H2Pc58,59 and ZnPc60 

in KBr discs and in Nujol, no previously published reports for the low temperature 

IR spectra of these molecules currently exist. Despite numerous infrared studies of 

H2Pc which have been published, the assignments of several vibrational modes 

remain uncertain, especially in the case of the N-H In-Plane Bending (NH-IPB) 

mode.  This vibrational mode has been assigned to bands at 1006 cm-1 and 1539 

cm-1 in experimental work58,59.  Theoretical calculations of the infrared and Raman 
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active vibrations for H2Pc61 and ZnPc62 have also been published. The most 

detailed vibrational analysis to-date of H2Pc has been done by Zhang et al.61, who 

conducted a DFT calculation utilising the B3LYP functional and a 6-31G* basis set.  

 An important aspect of the visible spectroscopy of H2Pc which has not yet 

been resolved is the location of the origin of the S2 (Qy) state.  In the gas phase the 

vibronic structure present in the excitation spectra is so complex in the onset 

region of the Qy state that the band origin of this state has not yet been identified63-

65.  Extreme spectral congestion arises in the region where the v=0 level of the Qy 

state overlaps the vibrationally excited levels of the Qx (S1) state rendering visual 

identification of the origin impossible. Due to the similar energy splitting between 

the Qx and Qy states in matrix spectra and the assumed transition energy of the N-H 

in-plane bending vibration, this mode is considered to be important in the coupling 

between the two electronic states66. Since the vibrational modes in the ground S0 

state and the first excited Q (S1) state are very similar67 , vibrational assignments in 

the ground state are essential for analysing the complex vibronic structure in the 

electronic excitation spectra. As a precursor to the analysis of the excitation and 

emission spectra, an analysis of the fundamental vibrational modes was required. 

 Investigation of the infrared spectra of H2Pc and its isotopomers using the 

matrix-isolation technique allowed conclusive identification of the NH-IPB mode. 

The IR spectra obtained under these conditions are those of isolated molecules and 

are largely free of bands arising from interactions present in phthalocyanine 

aggregates.  Moreover, because of the low temperatures used, the thermal 

population of the lowest frequency modes of the Pcs which are known to exist, 

were almost completely eliminated. Large basis set DFT calculations were 

performed on ZnPc and the three isotopic forms of H2Pc (H2Pc, D2Pc and HDPc) in 

order to assign the observed vibrational modes. When correlating the vibrational 

modes of the molecules, an inverted isotopic shift was observed between H2 and 

D2Pc. These unusual numerical results were examined with vibrational frequency 

calculations using sub-amu increments (that is atomic mass units below one)  for 

the hydrogen atoms and were found to derive from avoided crossings of the 

vibrational frequencies when going from H2Pc to D2Pc. These calculations were 

essential for assignments of the vibrational modes present in both Raman 

scattering and visible fluorescence spectra recorded with excitation of Q states of 

matrix-isolated Pcs.  



Chapter I: Introduction 

20 

I.3.II Visible spectroscopy of H2Pc and ZnPc 

The electronic spectroscopy of both H2Pc and ZnPc molecules in the gas phase68,69, 

in low-temperature jets63,70,  in He droplets65,71 and in thin films72 have been 

reported. These two molecules have also been studied in cryogenic matrices: 

either in Shpol’skii organic matrices67,73,74 or isolated in the solid rare gases66,75-77.  

Although the first absorption spectra of matrix-isolated porphyrins and their 

synthetic analogues—the phthalocyanines—were reported nearly forty years ago 

by Bajema et al.77 the behaviour of this important class of molecules isolated in the 

solid rare gases is still not fully characterised. A notable exception is the recent 

work by Waluk and co-workers on the spectroscopy78 and isolation79 of 

porphyrins and related molecules in rare gas matrices. In addition, several 

groups80,81 have analysed the vibronic structure on the S1 state of several 

porphyrins and phthalocyanines in Spol’skii matrices.  

 The most recent laser-induced fluorescence (LIF) excitation spectra of zinc 

and free-base phthalocyanine under jet-cooled conditions have been investigated 

by Plows and Jones70.  In spite of numerous gas phase studies of H2Pc, the band 

origin of the Qy (S2) state still has not been determined. This is due to spectral 

congestion arising from overlap in this region by high frequency modes of the Qx 

(S1) state (Figure I. 7). Matrix-isolation spectroscopy affords an ideal opportunity 

to identify the true band origin since spectra recorded under these conditions are 

free of any rotational structure and solvent-shifts induced by the solid rare gases 

are very small due to very weak interactions with these inert hosts. Moreover, the 

results obtained under these inert conditions can then be directly compared with 

predictions obtained from theoretical methods.   For the aforementioned reasons, 

an investigation of the visible spectroscopy of H2Pc and ZnPc isolated in inert gas 

solids was undertaken. 
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Figure I. 7: Schematic of excitation from ground state S0 of H2Pc to the vibronic excited states of 
Qx(S1) and Qy(S2) and emission from the ν = 0 vibrational level of Qx via non-radiative decay. 
Coupling of the Qy state to a vibrational mode of Qx is indicated by the dashed arrow. 

  ZnPc has been extensively studied in Ar matrices76,82-84, revealing sharp 

vibronic bands in both emission and excitation spectra. Like the porphyrins, the 

phthalocyanines have a propensity of forming dimers and aggregates in more 

concentrated matrix samples. As demonstrated in the systematic matrix study of 

Williamson and co-workers76 on ZnPc and by Lucia et al. on CuPc85, these species 

absorb to the red of the sharp 0-0 monomer transitions.  The content of aggregate 

species was kept to a minimum in the samples prepared in the present study by 

careful control of the vaporisation temperature and host gas flow.  Accordingly the 

absorption and emission spectra correspond to samples containing well-isolated 

guest molecules. Visible absorption spectroscopy of matrix-isolated H2Pc has also 

been reported before in the literature, first by Bajema et al. in Ar, Kr and Xe 

matrices77 and in Ar by Lucia et al.85 with later spectral hole-burning experiments 

by Geissinger and co-workers of H2Pc in Ar, Kr and Xe75. Of pertinence to the 

current work, are the results reported in 1979 by Bondybey and English66. They 

recorded high resolution visible laser excitation and emission spectra in Ne and Ar 

matrices of not only H2Pc but also of its isotopomer D2Pc. Well resolved vibronic 

bands were observed in emission up to 1546 cm-1 from the 0-0 band of the Qx 

transition. In excitation an equivalent vibronic structure was observed up to ~950 

cm-1 but due to the overlap with the Qx vibronic bands, the region around the Qy 



Chapter I: Introduction 

22 

transition was found to be highly congested. Some of the vibronic bands were 

found to shift upon deuteration including, significantly the Qy band. From this 

isotopic shift, it may be concluded that the vibronic mode in Qx state, coupling to 

the Qy, involves some N-H motion. 

 No successful attempts to assign the vibrational modes coupling to the 

ground and excited states, observed in emission and excitation spectra, has been 

reported in the literature. As stated by Bondybey and English with regard to the 

vibrational structure of both states66, “Complete vibrational assignment in a 

molecule with ~350 [sic] vibrational degrees of freedom is clearly not feasible.” From 

comparison of the Raman scattering and visible emission spectra, a clear 

correlation is seen between the Raman active modes and vibronic bands in 

emission due to similar group theoretical selection rules. This allowed the Raman 

active modes calculated with DFT to be used to assign the emission vibronic bands 

of both H2Pc and ZnPc. The position of the excitation bands of ZnPc were found to 

mirror those in emission indicating a similar molecular structure in the excited 

state and allowed the vibrational assignments made for ground state to be applied 

to the vibronic transitions found in the excitation spectrum. Similarly, mirroring of 

the emission and excitation vibronic structure was apparent for H2Pc up until the 

Qy transition. The correlation between the calculated Raman and emission modes, 

with comparison to the D2Pc results of Bondybey and English, allowed a tentative 

assignment of the vibrational mode coupling Qx to the Qy excited states. The 

excitation energies of H2Pc and ZnPc were calculated using TD-DFT and were 

compared to those calculated for other aromatic tetrapyrroles in order to assess 

this technique’s potential use in the interpretation and definitive assignment of 

experimental excited states. 

I.3.III Amplified Emission (AE) of H2Pc and ZnPc 

 While undertaking the laser induced fluorescence experiments of matrix-

isolated H2Pc and ZnPc, an unusually intense vibronic band was observed with 

slightly increased laser power. This novel solid state effect is noteworthy in that 

two previous matrix luminescence studies on the phthalocyanines conducted with 

laser excitation, one by Bondybey and English66 on H2Pc and another by 

Williamson and coworkers76 on ZnPc in Ar matrices, did not report such an effect. 

In contrast, stimulated emission has been reported by Sorokin and co-workers86,87 
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for the closely related molecule chloroaluminium phthalocyanine in solution. 

Significantly, this was achieved with pulsed ruby laser excitation and within a 

resonator cavity. The possible reasons for the different results of the previous laser 

matrix studies were investigated by considering the threshold conditions for 

amplified emission (AE).  

The comparison of the ground state vibronic structures in emission and the 

Raman active vibrational modes of H2Pc and ZnPc found not only a close match 

between their spectral positions but also a correlation with their intensities. DFT 

calculations allowed assignment of the vibronic mode exhibiting AE to the Raman 

active vibration determined to have the greatest intensity. The success of DFT to 

predict the vibronic structures of H2Pc and ZnPc, by way of calculating their Raman 

spectra, offered an effective theoretical route to predicting the spectral positions 

and relative intensities of the vibrational modes seen in emission for other 

molecules. With this in mind, the Raman active vibrational frequencies and 

scattering activities of structurally similar tetrapyrrolic molecules were calculated 

using DFT and their potential to exhibit AE assessed. 

I.4 Thesis layout 

The following section gives a brief outline of the chapters in this thesis.  

In Chapter II the experimental methods used will be described including sample 

preparation and spectroscopic methods. Chapter III will present a background to 

the theoretical methods used. A description of how the ground state properties 

(geometries, vibrational frequencies and intensities) were calculated using DFT 

and the electronic transitions using TD-DFT will be given in addition to a 

description of the point group symmetry considerations needed for the 

interpretation of the spectroscopic results. The matrix-isolated FT-IR absorption 

results for ZnPc, H2Pc, HDPc and D2Pc in Ar, Kr, Xe and N2 will be given in Chapter 

IV. These results will be assigned using the DFT vibrational modes calculated at the 

B3LYP/6-311++G(2d,2p) level and correlations made between the modes of the 

different Pcs. The Raman scattering spectra of these molecules in KBr salt disks 

will also be presented and assigned. In Chapter V, the visible luminescence results 

from H2Pc and ZnPc in various low temperature solids will be given. These will 

include absorption recorded using tungsten lamp excitation, emission and 

excitation spectra obtained using laser induced fluorescence and fluorescence 
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lifetime measurements. The vibronic bands observed will be assigned with the aid 

of the vibrational analysis given previously in Chapter IV and the TD-DFT 

excitation energies and oscillator strengths of H2Pc and ZnPc (as well as those 

calculated for H2 and Zn tetraazaporphyrin (TAP), tetrabenzoporphyrin (TBP) and 

porphine (P)) will be given and compared with experiment. In Chapter VI, 

amplified emission of H2Pc and ZnPc will be described and its properties 

discussed. The potential of AE to occur for both free-base and metallo TAP, TBP 

and P will be accessed using DFT calculations. Finally, Chapter VII will give a 

conclusion of the main results presented in the previous chapters. 
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Chapter II: Experimental Methods 

II.1  Introduction 

The experimental portion of this work primarily involved the spectroscopy of 

phthalocyanines isolated in inert gas solids. In this chapter the experimental 

procedures used in the preparation of the matrix isolated samples and deuterated 

free-base phthalocyanine will be described. A description of the apparatus and 

procedures used for recording steady-state and time-resolved spectra will be 

provided. Finally an account of the Fourier transform infrared (FTIR) spectrometer 

used in this work will be given as well as a review of the procedures used to 

convert an interferogram to an IR spectrum. 

II.2  Matrix-Isolation Apparatus 

The matrix-isolation (MI) apparatus used in this work is shown in Figure II.1. In 

order to reduce heat exchange and prevent deposition of atmospheric gases, a high 

vacuum is essential1,2. Different pumping systems were used for the FTIR and 

Ultraviolet/visible (UV-Vis) experiments. The UV-Vis experimental setup achieved 

a high vacuum using an Edwards E02 Speedivac oil diffusion pump backed by an 

Edwards RV3 rotary pump. An Edwards liquid nitrogen (L-N2) cold trap was 

attached to the diffusion pump to reduce contamination of the cryogenic system 

with diffusion pump oil vapour when cold. An Edwards QSBR quarter swing valve 

allowed the isolation of the vacuum manifold from the pump system for venting 

the system up to atmospheric pressures.  

The FTIR experimental setup used an Edwards 100/300M Diffstak oil diffusion 

pump with an Edwards E2M-18 rotary backing pump. The Diffstak design of this 

diffusion pump increases the ability of the pump to condense diffusion oil vapour, 

relative to standard diffusion pump designs, and reduces the need for an L-N2 cold 

trap. Isolation of the vacuum manifold from the pump system was achieved using a 

quarter swing valve integral to the Diffstak pump. 

Both diffusion pumps require vacuum pressures below 5 x 10-3 mbar in order to 

operate. These pressures were achieved by the rotary backing pumps and were 

monitored using a Granville-Phillips Series 275 Convectron gauge3 in the UV-Vis 

experiment and an Edwards Pirani PRE10K gauge head with an Edwards Pirani 
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in the FTIR experiment. Lower vacuum pressures (

measured using an Alcatel CF2P Penning gauge. Comparable vacuum 

pressures were achieved in both setups: 10-7 mbar at room temperature and < 10

cool-down to cryogenic temperatures.  

Diagram of matrix-isolation apparatus showing the pump systems used for both the 
experiments 

shows the APD Cryogenics closed-cycle helium displex system used 

to achieve temperatures of approximately 12 K at the sample window

operates by pumping high-pressure helium at 270 psi from an APD Cryogenics HC

via gas lines into an APD Cryogenics DE-202 two

Heat is removed by the Gifford-McMahon refrigeration cycle

the compressed helium within the two stages. The gas is recycled by returning the 

warm helium to the displex compressor. The initial stage reaches ~77 K while the 
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lower second stage typically reached temperatures of 12 K. A nickel plated copper 

for a ¾” sample window was mounted to the end of the second 

The temperature of the window was controlled and monitored 

by a Scientific Instruments 9600-1 heater and silicon diode6 attached to the copper 

window was placed within the copper holder

thermal contact1. 

APD Cryogenics closed-cycle helium displex system. Sample temperatures of ~12K 
were achieved using the two stage refrigeration system shown. 

x 4 mm external windows were attached via a Viton

the vacuum manifold to allow spectroscopic analysis of the sample on the cold 

with suitable transmission ranges were selected 

windows. For the UV-Vis experiments, calcium fluoride (
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windows with a transmission range from approximately 129 nm to 1176 nm 

(77,519 to 850 cm-1) were used. For the FTIR experiments, potassium bromide 

(KBr) with an approximate transmission range 230 nm to 40 µm (43,500 to 250 

cm-1) was used. CaF2 is only sparingly soluble in water (0.0017 g/100g) and may 

be regarded as insoluble. KBr is a hygroscopic soft salt with a high water solubility 

(53.4 g/100g @ 20 °C) and must be kept under dry conditions and cleaned 

carefully with non-polar solvents1. 

II.3  Gas Handling System (GHS) 

The gases used in both the UV-Vis and FTIR experiments were handled using two 

distinct yet similarly designed gas handling systems (GHS) shown in Figure II.3. A 

vacuum of ~10-8 mbar was maintained in the UV-Vis GHS using a Pfeiffer Balzers 

TPU-180H turbo-molecular pump7 backed by an integral bellows pump8. The 

pumping system was attached to the GHS via an AEI MV38 all-metal angle valve. 

The gas pressures within the GHS were monitored using two Tylan General 

Capacitance Diaphragm Gauges; a model CDLD-11 with a pressure range of 0-10 

torr and a model CDLD-31 with a pressure range of 0-1000 torr9. The pumping 

system for the FTIR experiment consisted of the same pump set-up used in the 

FTIR MI apparatus i.e. an Edwards 100/300M Diffstak oil diffusion pump backed 

with an Edwards E2M-18 rotary pump. The pumps were attached to the GHS with 

an MKS ¾” angle valve (AV-075M) and gas pressures were monitored using two 

MKS Type 626 Baratron® gauges with pressure ranges of 0-10 and 0-1000 torr10. 

 The Baratron type gauges allow gas flows to be monitored during deposition 

and gas mixtures to be produced either directly using the lower pressure gauge or 

by serial dilution. In both experimental set-ups, the matrix gas flows during 

deposition were regulated using a Granville-Phillips type 203 variable leak valve11. 

The Granville-Phillips variable leak valve allowed the isolation of the GHS from the 

vacuum manifold of the MI apparatus and was attached to the Pc vaporisation oven 

via a length of ¼” VRC tubing (see Section II.4.I). 



Figure II.3: Schematic of Gas Handling System used to prepare gases for deposition.

II.4  Sample Preparation

Matrix-isolated samples were prepared by 

simultaneously with

gases (Ar, Kr and Xe) and a molecular gas

prepared using the gas handling system described above. The temperature at 

which the samples were deposited depended

gases (listed in Table II.4

of the host gas2. In order to produce a sufficiently isolated matrix sample, the guest 

species must be fully
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Schematic of Gas Handling System used to prepare gases for deposition.

Sample Preparation 

isolated samples were prepared by co-condensing the guest species 
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prepared using the gas handling system described above. The temperature at 
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able II.4) with maximum deposition temperatures 

. In order to produce a sufficiently isolated matrix sample, the guest 

species must be fully vaporised. 
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Table II.1: Host gas purities, suppliers and melting points. 

Host Gas 
Chemical 

Purity 
Supplier Mp (K)12  

Refractive 

Index13,14  

Rare Gases 
   

 

Argon (Ar) 99.998% BOC UK 83.8 1.29, 1.32 
Krypton (Kr) 99.995% Linde Gas UK 115.79 1.28, 1.428 

Xenon (Xe) 99.999% Linde Gas UK 161.4 1.49 

    
 

Molecular Gas 
   

 

Nitrogen (N2) 99.999% Linde Gas UK 63.15 1.22 

The sample thickness was measured by monitoring the scattering of a 

monochromatic light during deposition. A 657 nm laser diode was directed at the 

sample window and the angle of incidence between the laser and monochromator 

was measured. The monochromator was set at 657 nm and the variation of the 

reflected laser intensity was recorded during deposition. The sample thickness d 

was determined using the equation: 

 ݀ =
ߣ݉

ߠݏܿ 2݊
 (II.1) 

where m is the number of interference fringes recorded during deposition, λ is the 

wavelength of the incident light in metres (6.57 x 10-7 m), n is the refractive index 

of the solid (see Table II.1) and θ is the angle of incidence (15°). For example, an 

argon sample deposited with a gas flow rate of 2 torr/min was monitored for 80 

seconds resulting in 11 interference fringes. The thickness determined using 

equation II.1 was 3.66 x 10-6 m or a rate of 2.74 x 10-3 mm/min. Assuming the same 

deposition rate throughout the experiment, a 220 torr sample would be ~0.3 mm. 

II.4.I Phthalocyanine Vapour Generation 

Zinc phthalocyanine (ZnPc) and free-base phthalocyanine (H2Pc) were 

purchased from Sigma Aldrich and Fluka respectively and were used without further 

purification. Matrix samples were prepared by heating the phthalocyanines to around 

350 °C and using the flowing host gas to entrain the XPc vapour for deposition on a 

cryogenically cooled window.  The oven design used (shown in Figure II.4.II) consisted 

of a crucible made from solid stainless steel cylinder into which a hollow screw, 

containing either ZnPc or H2Pc, was fitted.  The top of this screw was positioned to 
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emerge at right angles to a 2 mm opening passing the length of the cylinder. The 

crucible was connected by a Swagelok compression seal to a ¼” gas inlet line.  Resistive 

heating of the cylinder was used to achieve vaporisation and the temperature was 

monitored using a thermocouple device. The entire crucible assembly was surrounded 

in a stainless steel heat shield. In order to direct the XPc/gas mixture more efficiently to 

the window, a stainless steel nozzle was attached to the outlet of the crucible nearest 

the window. To achieve isolation of the XPc as a monomer, large gas flows (40 

mmol/hr) were required.  

XPc and Host Gas

to Cold Window

Electrical Feedthrough

Thermocouple

Resistive Heating
Wire

Host Gas

from GHS

Stainless Steel
Crucible

Threaded Cavity
Containing Sample

Nozzle

 
Figure II.4: Oven design used in the vaporisation of phthalocyanines. The oven was attached 
directly to the vacuum manifold via an o-ring compression seal near the cryogenic window. 

The samples were deposited onto the sample window at 20-25 K for Ar and N2 

matrices. Slightly higher temperatures of 25-27 K were used for the heavy rare gas 

matrices Kr and Xe, in order to avoid the formation of highly scattering samples. All 

spectra were recorded at 13 K.  Longer deposition times of up to 1 hour were required 

to achieve acceptable IR absorption strengths and were at least twice as long as for the 

samples used in visible spectroscopic studies. Concentrations of XPc in the host matrix 

were controlled by adjusting the oven temperature and gas flow. 

II.4.II Deuterated Free-Base Phthalocyanine Preparation 

Deuterated free-base phthalocyanine (D2Pc) was prepared using a procedure 

similar to that described by Fitch et al.15 where the two inner hydrogen atoms were 

exchanged with a deuterated acid. In the following procedures, one D2Pc sample was 

prepared using deuterated trichloroacetic acid (TCA-d1) and another sample with 

deuterated trifluoroacetic acid (TFA-d1). 

TCA-d1 was prepared by adding 12 ml of D2O (Apollo Scientific, 99.9% D-atom 

purity) to 48.6 g trichloroacetic acid (Sigma Aldrich). The solution was heated to 



Chapter II: Experimental Methods 

36 

approximately 70 °C and the water was removed by vacuum distillation. The process 

was repeated 5 times to maximise deuteration. Deuterated phthalocyanine was then 

prepared by adding 0.5 g of normal free-base phthalocyanine to the deuterated TCA 

prepared above. This mixture was equilibrated under Ar at 80 °C with continuous 

stirring for 3 h. The D2Pc was precipitated by addition of 30 ml of D2O. The precipitate 

was filtered, washed 5 times with hot D2O and dried in an oven at 110 °C. A second 

sample of D2Pc was prepared using 99.5% D trifluoroacetic acid-d1 purchased from 

Sigma Aldrich. Under Ar, 0.5 g of normal free-base phthalocyanine was added to 25 g of 

TFA-d1 and was refluxed for 3 h. As with the preparation using TCA-d1, the D2Pc was 

precipitated with 30 ml D2O, filtered, washed with hot D2O and dried in an oven at 110 

°C. In both syntheses, mixtures of H2Pc, HDPc and D2Pc resulted. Proton NMR analysis 

of the starting and deuterated phthalocyanine samples was attempted to determine the 

ratio of deuterated and non-deuterated products but was unsuccessful. Though easily 

dissolved in acidic solvents, phthalocyanine was found to be insoluble or very sparingly 

soluble in aprotic solvents. 

II.5  Luminescence Measurements 

In the analysis of the matrix isolated XPc samples, two classes of visible 

luminescence spectroscopy were employed: steady-state spectroscopy using 

continuous lamp excitation and time-resolved spectroscopy using pulsed laser 

excitation. The following section will describe the optical set-up, detectors and 

excitation sources used for both classes of visible spectroscopy. 

II.5.I Steady-State Spectroscopy 

The spectrometer set-up used for the recording of steady-state luminescence 

spectra is shown in Figure II.5. Continuous lamp excitation was performed using a 

tungsten (W) lamp (30 W, GE DZA) with a wide spectral range from the visible to 

the near infrared (NIR) or a deuterium (D2) lamp (Hamamatsu L631016 with a 

Cathodeon C713 power supply17) with a spectral range of 180-500 nm. These light 

sources were passed through an Acton Research Corporation (ARC) SpectraPro-

300i monochromator18 with a focal length of 300 mm and were used for recording 

absorption and excitation spectra. This excitation monochromator was installed 

with two diffraction gratings- a high resolution 1200 grooves/mm grating blazed 

at 300 nm and a lower resolution 300 grooves/mm grating also blazed at 300 nm. 

The ARC SpectraPro-300i monochromator when fitted with the 1200 grooves/mm 
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grating resulted in a resolution of 0.1 nm at 435.8 nm. Light exiting the 

monochromator was focused onto the CaF2 sample window through the external 

windows made of the same material using a 1” focusing lens.  

For the recording of absorption spectra, the monochromatic light transmitted 

through the sample was focused onto a Photo-Multiplier Tube (PMT) using a 1” 

collecting lens. Two absorption PMTs were used in this work, either a ‘blue’ 

sensitive Hamamatsu IP28 (185-650 nm) or a ‘red’ sensitive Hamamatsu R928 

(185-900 nm)19. The absorption spectra, A, may be determined by the Beer-

Lambert law, using the equation, 

 A = − logଵ(I I⁄ ) (II.2) 

where I0 is the intensity of the light entering the sample from the monochromator 

and I is the intensity of the light transmitted through the sample. As the 

spectrometer described above is a single beam experiment, an absorption 

spectrum of XPc/Gas sample was calculated using I equal to a transmitted XPc/Gas 

spectrum and I0 equal to a separately recorded transmitted spectrum of a solid 

pure gas sample of the same thickness. 



Figure II.5: Luminescence spectrometer set up used for 

 Emission was monitored 

emitted at 90° to the 

SpectraPro-500i monochromator with a focal length of 500 mm

monochromator was 

grating blazed at 300

grooves/mm grating blazed at 

monochromator, when fitted with the 1200 grooves/mm grating

of 0.05 nm at 435.8 nm. This represents a factor of 2 improvement in resolution 

compared with shorter focal length excitation spectrometer.

was recorded using a Hamamatsu R928

for Research Photocool S600 cooled

range of 185-900 nm with a peak max at 400 nm

SpectraSense software package

data acquisition from the PMTs.
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Luminescence spectrometer set up used for steady-state spectroscopy.

Emission was monitored perpendicular to the excitation axis 

emitted at 90° to the excitation source using a 1” collecting lens

500i monochromator with a focal length of 500 mm

monochromator was installed with 3 diffraction gratings- a 1200

300nm, a 600 grooves/mm grating blazed at 

grooves/mm grating blazed at 300nm. The ARC SpectraPro-500i ‘

when fitted with the 1200 grooves/mm grating

of 0.05 nm at 435.8 nm. This represents a factor of 2 improvement in resolution 

ed with shorter focal length excitation spectrometer. Steady

was recorded using a Hamamatsu R928-P PMT21,22 cooled to -20 °C in a 

for Research Photocool S600 cooled-housing23. This sensitive PMT has a spectral 

900 nm with a peak max at 400 nm. The ARC NCL control unit

ware package were used to control both spectrometers and the 

from the PMTs.  
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Resolved Spectroscopy 

resolved emission and excitation spectra were recorded using the 

up shown in Figure II.6. A Quantel YG 980E-10

operating at 10 Hz was used as a pulsed excitation source24. This laser consists

Neodymium (Nd) doped Yttrium Aluminium Garnet (YAG) crystal as a gain 

excited by flash-lamps within a resonator cavity. The nanosecond pulsed 

of the laser was controlled using a Q-switch with the optimum laser output 

hieved with a flash-lamp/Q-switch delay of 242 µs. The fundamental output of 

1064 nm with 2nd, 3rd and 4th harmonic wavelengths

266 nm generated using suitable optics.  

Schematic showing the experimental set-up used for recording time
using the Andor iStar iCCD with laser excitation. 

o produce tuneable visible laser excitation, a Quantel TDL

pumped by the 2nd harmonic of the Nd:YAG was used. In the TDL

laser excitation of the dye was carried out through three stages, 

amplifier and amplifier stages, with increasing laser intensity with each stage.

Output from each of these stages may be selected depending on the laser power 

required. As the laser dyes used have broad emission bands, the 

tuned using a diffraction grating to select a particular wavelength within the dye 

Chapter II: Experimental Methods 

spectra were recorded using the 

10 Nd:YAG laser 

This laser consists of a 

Neodymium (Nd) doped Yttrium Aluminium Garnet (YAG) crystal as a gain 

within a resonator cavity. The nanosecond pulsed 

switch with the optimum laser output 

The fundamental output of 

harmonic wavelengths of 532, 355 and 

 
up used for recording time-resolved spectra 

Quantel TDL-90 dye 

In the TDL-90 dye 

h three stages, oscillator, pre-

with increasing laser intensity with each stage. 

Output from each of these stages may be selected depending on the laser power 

emission bands, the dye laser may be 

ing to select a particular wavelength within the dye 



Chapter II: Experimental Methods 

40 

laser emission range. Rhodamine 610, DCM  and LDS 698 laser dyes26 were used 

for the visible excitation of the phthalocyanines (see Table II.2). Direct laser output 

from the TDL-90 was used for visible excitation but frequency doubling and mixing 

optics (with a Pellin-Broca prism for wavelength separation) could be used to 

achieve UV excitation. 

Table II.2: Characteristics of the laser dye materials used for XPc excitation. All dyes were 
dissolved in ethanol and excited by the 532 nm 2nd harmonic output of the Nd:YAG laser. 

Dye Material Manufacturer 
Absorption Max. 

(nm) 

Fluorescence 

Max (nm) 

Dye Laser 

Range (nm) 

Rhodamine 610 Exciton 554 592 579-606 

DCM Exciton 472 639 615-660 

LDS 698 Exciton 476 690 665-730 

 The ARC SpectraPro-500i monochromator used for the monitoring of steady-

state emission described above, was also used to monitor time-resolved emission. 

Emission was collected at 90° to the pulsed laser excitation beam with a 1” lens 

and focused into the monochromator (see Figure II.6). Instead of directing 

radiation towards the emission PMT, a swing mirror was removed from the optical 

path, allowing the dispersed light from the diffraction grating to fall onto an Andor 

Technologies iStar iCCD (Intensified Charged Coupled Device) camera27. The iStar 

iCCD (Model DH 720-25F-03) comprises of a two-dimensional array of 256 rows x 

1024 columns (262,144 pixels or 0.25 megapixels) photo-sensors on a silicon 

based semiconductor chip. The effective area of each pixel was 26 µm2 with an 

active area of the CCD of 25 mm x 6.7 mm consisting of 960 x 256 pixels. In order 

to reduce thermal noise, the iCCD was maintained at -15 °C by an integral fan 

cooling system. The operation of the iStar iCCD was controlled via a PC equipped 

with a CCI-101 control card and the Andor Solis software. This software was also 

used to control the ARC SpectraPro-500i monochromator via a RS232 cable. 

 The iCCD is a multichannel detector which was placed in the focal plane of the 

dispersed light from the monochromator without an exit slit. Each column of pixels 

simultaneously detects a different wavelength of the diffracted light, allowing it to 

act as a multiplexing detector. The spectral resolution of the iCCD is determined by 

the resolution of the dispersing element (diffraction grating) and limited by the 

number and size of pixels available to process the radiation. The dispersal range 

and resolution obtained using the Andor iStar iCCD mounted to the SpectraPro-
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500i monochromator with the three different diffraction gratings are shown in 

Table II.3. The iCCD camera was mounted on the SpectraPro-500i and positioned 

so that the dispersed light and focal plane of the camera were aligned. 

Table II.3: Maximum resolution achievable employing the Andor iStar iCCD camera for each of the 
diffraction grating mounted in the ARC SpectraPro-500i monochromator. 

Diffraction Grating - ARC 

SpectraPro-500i 

Dispersal Range 

(nm) 

Resolution  

(nm) 

1200 g/mm; Blz: 300 nm 

600 g/mm; Blz: 600 nm 

150 g/mm; Blz: 300 nm 

40 

80 

320 

0.04 

0.08 

0.32 

  The wavelengths detected by a CCD are dispersed nonlinearly across the 

pixels of the detector array, making spectral calibration more difficult28.  A 

calibration curve must be used to present the array detector data collected on a 

wavelength scale. The Solis software was used to calibrate data collected by the 

iStar iCCD using pre-installed calibration curves for the model of monochromator 

and diffraction grating. Alignment of the iCCD camera was performed in the UV 

spectral region using the Hg 1S0―3P1 emission line at 253.6521 nm, generated 

using a low pressure mercury arc pen lamp29 and in the visible region using the Na 
2S1/2―2P3/2 and 2S1/2―2P1/2 emission lines at 588.995 and 589.5924 nm30 

respectively, generated using a sodium hollow cathode lamp31. Initially the 

monochromator was centred on one of the spectral lines (e.g. 253.6521 nm using 

the Hg pen lamp) and the pixels off-set so that the central wavelength displayed 

coincided with the spectral line. The camera was rotated so that each of the pixels 

along a column of the CCD detected the same wavelength and the lines observed 

were as narrow as the resolution of the grating and monochromator allowed. The 

centre of the monochromator was then changed so that the emission lines were 

still seen in the display window but were now detected at higher or lower pixel 

numbers. The distance of the iCCD camera from the monochromator was then 

adjusted until the pixels detecting the emission lines coincided with the values 

displayed using the calibration curve. CCD data may also be calibrated using 

customised quadratic curves.  
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Figure II.7: Schematic of the Andor iStar iCCD image intensifier. 

 A schematic of the image intensifier used to amplify the signal detected by the 

CCD is shown in Figure II.7. A photon entering the iCCD via a quartz window hits a 

photocathode, producing an electron. This electron is drawn towards a micro-

channel plate (MCP) by an electrical field. The initial electron emitted by the 

photocathode starts a cascade of electrons down the honeycomb channels of the 

MCP, producing secondary electrons. This results in a ~104 amplification of the 

initial electron produced by the incident photon. The shower of electrons from the 

MCP is accelerated by a potential difference and focused towards a phosphor 

coating (P42) on the fibre-optic exit window of the intensifier. This phosphor 

coating emits photons which strike the photo-sensors on the CCD producing a 

change in charge which is proportional to the intensity. The final spectrum is 

generated by a process of “vertical binning” where the charge from each column of 

pixels is added vertically together by a series of horizontal transparent electrodes 

and is removed by efficient charge transport (or charge coupling) process across 

the rows of the CCD32. The signal from these electrodes is transferred to an on-chip 

amplifier and then to an analogue/digital (A/D) converter on the CCI-010 control 

card. 

 Time-resolved and time-gated emission spectra were obtained using the iCCD 

by synchronisation with the laser pulse and control of the temporal gate width of 

the camera. Synchronisation of the iCCD with the laser was accomplished by 
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triggering the camera using the TTL output from the Q-switch pre-pulse of the YG 

980 Nd:YAG laser. Time-gating was achieved using an integrated digital delay 

generator (DDG) on the iStar iCCD.  The timing when the photocathode is to be 

switched on or off was controlled by the DDG and set using the Solis software. By 

varying the delay between the TTL pulse and activation of the photocathode 

and/or varying the time duration (gate width) when the photocathode is switched 

on, time-gated emission spectra may be recorded using the iCCD. Time-resolved 

emission spectra were obtained by recording a series of time-gated spectra, setting 

a suitably short gate width and stepping in time by the same gate width. Emission 

lifetimes were determined by analysis of the time-resolved emission. The temporal 

profile of an emission feature was found by taking a ‘kinetic slice’ through a time-

resolved spectrum, extracting a plot of the emission intensities at a particular 

wavelength against time. The decay times were then obtained by fitting single or 

multiple exponential functions, modelling the rise and decay function of the 

temporal profile.  The fits were convoluted with the temporal profile of the 

excitation source (i.e. the pulsed laser) to extract the excited state decay times. 

II.6  Fourier Transform Infrared (FT-IR) Measurement 

Fourier transform infrared (FTIR) absorption spectra were recorded using a 

Bruker Optics IFS 66/S FTIR spectrometer33. A schematic of the spectrometer is 

shown in Figure II.8. The light source for mid-IR (MIR) absorption spectroscopy 

consisted of a silicon carbide Globar® with an optional tungsten lamp for near-IR 

(NIR) spectroscopy. The amount of light entering the spectrometer was regulated 

with a rotating diaphragm aperture wheel with opening sizes from 0.25 to 12 mm. 

The IR beam was focused into a Michelson interferometer onto a beamsplitter. A 

Ge/KBr beamsplitter with a range of 7,800 – 370 cm-1 was primarily used for MIR 

experiments but could be exchanged for beamsplitters made of other materials34 

e.g. a Si/CaF2 with a spectral range of 15,000 – 1,200 cm-1. After impinging on the 

beamsplitter, the half of the light is transmitted to the moving mirror while half is 

reflected to the stationary mirror. After reflecting off the mirrors and impinging 

again on the beamsplitter, the light leaves the interferometer and is directed 

towards the sample compartment and detectors. 

 The quality of the spectra recorded by a FTIR spectrometer depends on the type 

of bearing on which the moving mirror moves. In the IFS 66/S, the moving mirror 
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moves on a cylindrical air bearing. The use of an air bearing over mechanical 

bearings results in little or no friction between the mirror and mirror path and 

minimal velocity errors during scans. Higher optical throughput may also be 

achieved due to the larger mirrors that can be mounted on an air bearing as 

opposed to a mechanical bearing. The air bearing in the IFS 66/S required a 

constant flow of dry air which was supplied by a Peak Scientific Instruments 

PG28L air drier. This air supply was also used to purge the optical path and sample 

compartment with dry air to reduce the carbon dioxide and water peaks seen in 

the IR spectra recorded and to protect the water sensitive KBr optics.  

Bruker Optics 
IFS 66/S

FTIR Spectrometer

Interferometer

Moving Mirror

KBr/CaF2
Beamsplitter

Sample
Compartment

MCT 
Detector

DTGS
Dectector
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Figure II.8: Schematic of Bruker Optics IFS 66/S FTIR Spectrometer. 

 Movement of the mirror and calibration of the spectrometer were controlled by 

a 632.8 nm Helium-Neon (HeNe) laser beam which was reflected by a small 

beamsplitter into the interferometer, below the axis of the IR beam. Some of the 

HeNe laser was split into three separate beams and was transmitted parallel to the 

IR beam towards the detectors to act as a positioning guide for the sample. The 

matrix-isolation apparatus was placed in the sample compartment and the sample 

window positioned at the focal point of the three laser beams so that the IR beam 

would pass through the cryogenic sample. The bulky MI apparatus made closing 

the sample compartment cover impossible and broke the dry air purge of the 

spectrometer. A purge line made of large rubber tubing was constructed, 

connecting the spectrometer to the MI apparatus, ensuring a dry air purge along 
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the IR beam path and protecting the external KBr optical windows of the MI 

apparatus. 

 Two MIR detectors were installed within the spectrometer35 - a room 

temperature Bruker Optics DLaTGS or DTGS (Deuterated L-alanine doped 

Triglycine Sulphate, L-alanine dropped in DTGS acronym) detector and a liquid 

nitrogen cooled Kolmar Technologies MCT [Mercury Cadmium Tellurium] 

detector. The properties of the detectors available in this work for operation with 

the IFS 66/S are tabulated in Table II.4. Both detectors were used together during 

experiments and were selected using a hinged mirror.  The DLaTGS detector has a 

spectral range down to 250 cm-1 but was limited to 370 cm-1 by the Ge/KBr 

beamsplitter. The MCT detector though with a smaller spectral range than the 

DLaTGS detector, was almost 100 times more sensitive. The MCT was used for 

recording weak absorption bands and for highly scattering samples with low IR 

throughput. The MCT was also supplied with a fast-preamplifier allowing it to be 

used in nanosecond resolution step-scan experiments. Two NIR detectors were 

also available - a room temperature Indium Gallium Arsenide (InGaAs) diode 

detector and a more sensitive liquid nitrogen cooled Indium Antimony (InSb) 

detector which, like the MCT detector, was supplied with a fast-preamplifier. 

Table II.4: MIR and NIR detectors installed in Bruker IFS 66/S FTIR Spectrometer. 

Detector Manufacturer Part/Model No. Range (cm-1) Sensitivity/Noise 

DLaTGS Bruker Optics ID 301/8 12,000-250 D* > 4 x 108 cm Hz½ W-1 

MCT Kolmar 
Technologies 

ID 317x8F 
100-1-B-7/190 10,000-850 D* > 3 x 1010 cm Hz½ W-1 

InGaAs 
Diode Bruker Optics D 424 12,800-5,800 NEP < 2 x 10-14 W Hz-½  

InSb InfraRed 
Associates D413 12,800-1,850 D* > 1.5 x 1011 cm Hz½ W-1 

 

II.6.I  The Michelson Interferometer and Fourier Transforms 

At the heart of a FTIR spectrometer is an interferometer. A simplified diagram of 

an infrared Michelson interferometer is shown Figure II.9. In the diagram, light 

from a broad band IR light source is collimated onto a beamsplitter. 50% of the 

light is transmitted to a moving mirror while 50% is reflected to a stationary 
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mirror. The light is reflected back off the two mirrors towards the beamsplitter 

where the light is either reflected or transmitted. After leaving the beamsplitter, 

the two light beams recombine and are focused onto a detector. In a conventional 

steady-state scan, the moving mirror moves continuously along one axis increasing 

and decreasing the path length which the light has to travel while the IR detector 

records the intensity of the recombined light coming from the interferometer28,36-

38. 

La
se

r

IR Detector

Laser
Detector

IR
Source

d

Moving
Mirror

Stationary
Mirror

Beamsplitter

 
Figure II.9: Schematic of a general Michelson interferometer. 

 During a scan, a signal is recorded at different positions of the moving mirror 

relative to the stationary mirror. The difference in path length between the 

stationary and moving mirrors is known as the Optical Path Difference (OPD) or 

optical retardation, δ37. The plot of the intensity as a function of the moving mirror 

position is know as an interferogram, I(δ). When the beams recombine, the 

wavelengths of the light can either interfere constructively or destructively. For a 

broadband light source, when the difference in pathlengths between the mirrors is 

zero (sometimes called the Zero Path Difference, ZPD) all wavelengths will 

interfere constructively and a large intensity will be recorded. At larger optical 

path differences, wavelengths will interfere both constructively and destructively 

resulting in a lower intensity recorded. A typical interferogram of a broadband 

source is presented in the left-hand panel of Figure II.10 showing the characteristic 



Chapter II: Experimental Methods 

47 

‘centre-burst’ shape with large intensity interference at the centre of the 

interferogram and lower intensity at the wings. 

 In order to measure an accurate moving mirror position when a signal is 

recorded, a monochromatic laser beam is sent along the same optical path as the IR 

beam into the interferometer. Like the IR source, the laser is split by the 

beamsplitter with half the laser beam going to the stationary mirror and half to the 

moving mirror. The laser beams are reflected back to the beamsplitter, 

recombined and sent to a separate laser detector. As the laser is monochromatic, in 

an ideal interferometer, a perfect sine-squared pattern interferogram would be 

generated as shown in the lower plot of Figure II.10. In an actual interferometer, 

the fringes of the laser interferogram are used to calibrate the position of the 

moving mirror and to indicate when the detector should record a signal, as shown 

by the vertical dashed lines in Figure II.10. 
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Figure II.10: Schematic of the FTIR recording process. The left-hand panel shows an IR 
interferogram recorded using a Michelson interferometer. The fringes of the HeNe interferogram 
shown in the lower plot are used to calibrate the position of the moving mirror during a scan. Using 
a CPU, a Fourier Transform is applied to the calibrated IR interferogram resulting in an IR spectrum 
shown in the right-hand panel. 

  All spectral information is contained within an interferogram but cannot be 

seen directly without the use of a Fourier transform. A mathematical transform to 

convert an interferogram, I(δ), into a wavenumber spectrum, I(̅ߥ), may be 

expressed by the integral 

(ߥ̅)ܫ  = න ߜ݀(ߜߥ̅ߨ2) ݏܿ(ߜ)ܫ
ାஶ

ିஶ
 (II.3) 
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where νത is the frequency in wavenumbers and δ is the optical retardation of the 

moving mirror28,36,37. The transform can be understood by considering how two 

sine waves of the same frequency interfere constructively or destructive. The 

intensity of the combined waves is dependent on the difference in phase between 

the waves which in turn is determined by the difference in path lengths the two 

waves travelled (i.e. δ = α1 – α2 where α1 and α2 are the phase angles of the two 

waves). A derivation of this Fourier transform for a broad spectral distribution is 

given in ref. 28. 

 Actual experimental interferograms are not recorded continuously but are 

digitised into a finite number of points. It is therefore not practical to apply 

Equation II.3. To transform a digitised experimental interferogram of N points, a 

discrete Fourier transform (DFT)36 is applied and may be given by 

(ߥ̅∆݇)ܵ  = ݔ݁(ߜ∆݊)ܫ ൬
.݊.݅ߨ2 ݇

ܰ
൰

ேିଵ

ୀ

 (II.4) 

where k and n are the spectral and interferogram points and the spectral 

resolution ∆̅ߥ = 1 ⁄ߜ∆ܰ . To solve this equation, Fast Fourier Transform (FFT) 

algorithms have been developed, the most commonly used being the Cooley-

Tuckey FFT39. A problem with applying the discrete Fourier transform to a 

digitised interferogram is the “picket fence” effect where an interferogram 

contains frequencies that do not correspond to the frequency sample points kΔνത of 

the discrete Fourier transform. The resulting spectrum will be periodically missing 

frequencies and the spectrum will appear to be viewed from behind a picket fence. 

To overcome this effect a technique called zero filling may be used where zeros are 

added to the end of the interferogram, increasing the number of points per 

wavenumber in the final spectrum. This interpolation of the spectrum does not 

introduce errors as the overall instrumental line shape is not changed. Extensive 

zero filling is essential for gas phase and matrix-isolated IR spectra where narrow 

absorption lines may be missing or reduced in intensity. 

 In order to obtain a complete spectrum from an interferogram, the optical 

retardation sampled must range from -∞ to +∞. This range is of course 

experimentally impossible and real interferograms are recorded within a finite 

range (-δ to + δ) and are a truncation of the infinite interferogram. Mathematically, 

a finite interferogram may be considered as a convolution of the infinite 



Chapter II: Experimental Methods 

49 

interferogram by applying a function with values of 1 from -δ to + δ and 0 outside 

these limits. This simple function is called a Boxcar function and the process of 

truncation, apodization (from the Greek αποδ meaning ‘footless’ or ‘feet 

removed’)37,38,40. Applying a Fourier transform to a Boxcar apodized interferogram 

(i.e. a raw experimental interferogram) results in the broadening spectral lines and 

the production of oscillating side-lobes to spectral lines also called ‘leakage’ or 

‘ringing’ (see first panel in Figure II.11). 

 A solution to the problem of leakage is to use an apodization function that 

gradually brings the ends of the interferogram to zero41. Some of these functions 

are shown in the inset plots of Figure II.11. The simple triangular function applies 

linear functions from zero to one between the ends of the interferogram and the 

centre. The trapezoidal or four-point function is a boxcar function between two 

breakpoints equidistant from the centre with linear functions to the ends of the 

interferogram. The Happ-Genzel or Hamming function consists of a cosine wave 

function on a boxcar function where the parameters have been optimised to 

suppress the side-lobe fringes. The three- and four-term Blackmann-Harris 

functions are similar to the Happ-Genzel function with multiple parameters that 

reduce the interferogram smoothly to zero at the ends of the interferogram. As 

shown in Figure II.11, all apodization functions produce spectra with lower side-

lobe intensity relative to the simple Boxcar function. In particular the n-Term 

Blackmann-Harris functions are very effective at reducing ringing, but the 

resulting spectral lines are broadened and reduce the resolution of the spectra40,41.  
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Figure II.11: The effect of various apodization functions on the DFT transformed interferogram of a 
monochromatic light source. Shown inset are the shapes of the apodization functions and their 
effect on a finite interferogram of a monochromatic light source (red-dotted trace).  

 Generally interferograms recorded are not perfectly symmetric and require 

phase correction. The asymmetry of an interferogram about the zero path 

difference originates from phase delays due to the optics, detector or electronics, 

sampling positions not coinciding with the ZPD and longer sampling of one side of 

the interferogram than the other. Phase correction attempts to remove sine 

components, introduced by asymmetry into the interferogram, in order to compute 

the correct spectral intensities. The most commonly used phase correction method 

is the Mertz algorithm42. This method first calculates a low resolution phase 

spectrum by performing a Fourier transform on a small amount of data centred on 

the ZPD. This low resolution phase spectrum is sufficient as the phase varies 

slowly as a function of the frequency. After the Fourier transform has been applied 

to the full interferogram, the low resolution phase spectrum calculated previously 

is used to correct the entire spectrum by interpolation. 

 Another potential source of unwanted artifacts that may be produced when 

applying a discrete FT to a finite interferogram is due to aliasing40. When a discrete 

Fourier transform like equation II.4 is applied to an interferogram of N points 

sampled at optical path differences ∆x, a spectrum of N points is produced with a 

wavenumber resolution of ∆ν. The resulting spectrum not only produces the actual 
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spectrum looked for in first N/2 points but also produces a mirror image of this 

spectrum over the second N/2 points. This ‘folding’ or ‘aliasing’ of the spectrum 

occurs about the Nyqvist wavenumber, νf, given by, 

ߥ  = (ܰ 2⁄ ߥ∆( = 1 ⁄ݔ∆2  (II.5) 

with replication of the spectrum and its mirror image occurring over all integer 

multiples of N. If the range of the spectrum is greater than Nyqvist value (i.e. when 

the maximum wavenumber νmax > νf), alias overlapping can occur with the 

intensities of the signals greater than νf appearing in the opposite, low 

wavenumber end of the spectrum. The sampling positions determined by a HeNe 

laser with a wavelength of λ = 1/15,798.002 cm-1 occur at the zero crossing points 

λ/2 leading to a minimum sampling spacing ∆xmin = 1/31,596.004. Inserting this 

∆xmin value into equation II.5 results in νf = 15,798.002 cm-1 which is the maximum 

bandwidth that can be measured without overlapping occurring. The bandwidths 

observed in mid-IR absorption are much smaller than this value and it is often 

useful to use an m-fold integer multiple of ∆x, reducing the size of the 

interferogram (e.g. 2 x ∆xmin = 15,798.002 cm ― νf = 7899.001 cm-1). In FT emission 

experiments, the higher frequency excitation light may enter the interferometer 

along with the emission radiation and if νf is small, will form folding artifacts in the 

resultant spectrum. To reduce these artifacts, filters may be placed in the emission 

beam path, blocking unwanted frequencies and allowing a smaller interferogram 

to be recorded. 

II.6.II Advantages and Disadvantages of FT Spectrometry 

As an interferogram records all frequencies simultaneously, measurements can be 

made faster than monochromator scans. The ability to record interferograms more 

quickly mean that multiple interferometer scans may be recorded in the same time 

it takes to record one monochromator scan. These interferograms may be co-

added together to improve signal to noise levels. This is called the Fellgett 

Advantage or multiplexing advantage43,44. One disadvantage of multiplexing is that 

if noise appears in one part of the source spectrum it will spread throughout the 

whole spectrum when the Fourier transform is applied. In a monochromator 

recorded spectrum the noise will only appear in the part of the spectrum where 

the noise occurred. 
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 In monochromators, optical throughput is limited by the narrow slits required 

for high resolution scans. In an interferometer, the resolution is not dependent on 

the slit size and a larger amount of light is allowed to pass through the 

spectrometer’s aperture. This improvement in optical throughput is known as the 

Jacquinot Advantage43,45. The resolution of an interferometer is dependent on the 

maximum optical path difference between the moving and stationary mirrors. So, 

the longer the path difference is the higher the resolution of the resultant spectrum 

will be. There is, however, a limitation on the aperture size for higher resolution 

spectra. The light beams within the interferometer need to be collimated along the 

entire path length the light travels. It can be difficult to maintain a wide beam 

parallel along longer path lengths so narrower beams may be needed for higher 

resolution spectra. 

 The use of a laser to control and calibrate the mirror position means that the 

spectrometer should never need to be user calibrated. This internal calibration is 

called the Connes Advantage28,38. The use of a 15,798.002 cm-1 HeNe laser provides  

up to 0.01 cm-1 calibration accuracy46. It should also be noted that FTIR 

spectrometers are mechanically very simple with the mirror being the only 

continuously moving part. Inconsistent moving mirror speeds that may develop 

over time will not adversely effect the interferograms as positioning is calibrated 

by the HeNe laser. Unlike dispersive spectrometers using CCD cameras consisting 

of a 2-d array of photo-sensitive detectors, FTIR spectrometers generally include 

only a single detecting element. These single element detectors are much easier to 

saturate than the detector arrays in CCDs leading to errors across the resulting 

spectrum after a Fourier transform has been applied. Careful control of the IR 

radiation intensity reaching the detector (by varying the aperture size used) must 

therefore be taken to prevent saturation. 
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Chapter III: Theoretical Background 

and Methods 

III.1 Introduction 

 In order to interpret the spectroscopic results of the relatively complicated 

phthalocyanine molecules, a theoretical study using quantum mechanics (QM) was 

carried out. The ground state properties, including geometries, vibrational 

frequencies, infra-red absorption and Raman scattering intensities, were 

calculated using Density Functional Theory (DFT) while the electronic excitations 

and oscillator strengths were calculated using Time-Dependent Density Functional 

Theory (TDDFT). All QM calculations were implemented using the Gaussian 03 

package1 running on a Linux workstation with two AMD “Barcelona” 64-bit quad-

core processors running at 2.0 GHz and with 16GB RAM.  

 The problems and approximations made in solving the electronic Schrödinger 

equation using ab initio methods will be introduced in Part III.2 while Part III.3 will 

outline ground state DFT using the Kohn-Sham method. Part III.4 describes the 

vibrational problem, how the harmonic vibrational energies and intensities are 

calculated and the problems found when anharmonicity is neglected. Part III.5 will 

introduce TDDFT and describe how it was used to predict electronic excitation 

energies and oscillator strengths. Finally, Part III.6 will introduce how point group 

theory and molecular symmetry is used to simplify calculations and interpret 

spectroscopic results and Part III.7 will outline the calculation procedure used to 

determine the molecular properties of a polyatomic molecule. 

III.2 The Electronic Problem 

III.2.I Background 

III.2.I.a The Schrödinger Equation 

 The quantum mechanical behaviour of molecules may be described using the 

Schrödinger equation2, a partial differential wave equation that describes the 

wavefunction of a physical system. The non-relativistic time-independent 

Schrödinger equation is expressed as:  
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 HΨtot(r,R)=EΨtot(r,R) (III.1) 

where H  is the time-independent Hamiltonian and Ψ୲୭୲(r, R) is the time-

independent wavefunction, r and R are the coordinates of the electrons and nuclei 

and E is the energy of the system.  

III.2.I.b The Molecular Hamiltonian 

 The Hamiltonian Ĥ of a system of ܰ nuclei and ݊ electrons is comprised of the 

following terms: 

 Ĥ = ܶே + ܶ + ܸே + ܸேே + ܸ (III.2) 

ܶே is the operator associated with the kinetic energy of the ܰ nuclei and ܶ the 

kinetic energy operator of the electrons. ܸ, ܸேே and ܸே are the Coulombic 

potentials between the electrons (݁݁), nuclei (ܰܰ) and between the electrons and 

nuclei (ܰ݁). If Ĥ is expressed in atomic units the following expression is obtained:  

 Ĥ = − 
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 (III.3) 

where the indices A and B are associated with the nuclei and the indices i and j are 

associated with the electrons. ܼ and ܯ are the charge and mass of a nucleus in 

atomic units. In the atomic units system, the mass of an electron and ℏ are equal to 

unity and ୣమ

ସகబ
= ߘ .1

ଶ and ߘ
ଶ  are Laplacian operators, where ߘଶ (“del-squared”) of 

a particle p is: 

ߘ 
ଶ = ߘ ∙ ߘ =

߲ଶ

ݔ߲
ଶ +

߲ଶ

ݕ߲
ଶ +

߲ଶ

ݖ߲
ଶ (III.4) 

III.2.I.c The Born-Oppenheimer Approximation 

 The Schrödinger equation for a polyatomic molecule (consisting of N nuclei and 

n electrons) cannot be solved exactly. A simplification is possible if one considers 

that the mass of the nuclei are much greater than the electrons and thus the 

movement of the nuclei is much slower compared to the electrons. This is called 

the Born-Oppenheimer approximation3. The movement of the electrons is 

therefore considered to adapt instantaneously to the movement of the nuclei. The 

wave-function describing the particles ߖ௧௧(ݎ, ܴ) can be then expressed in the form 

of a product of wavefunctions characterising the nuclei and the electrons 

separately: 
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,ݎ)௧௧ߖ  ܴ) = ,ݎ)ߖ  ே(ܴ) (III.5)ߖ(ܴ

The coordinates of the nuclei (ܴ) become parameters in the Schrödinger equation 

and are no longer variables. The nuclei are now considered fixed and the solutions 

of  ߖ(ݎ, ܴ) depend on the positions of the nuclei but not on their speed. 

,ݎ)௧௧ߖ௧௧ܪ  ܴ) = ,ݎ)௧௧ߖ௧௧ܧ ܴ) (III.6) 

The electronic energy is found by solving the following equation: 

,Ψୣ୪(rܪ  R) = Eୣ୪(R)Ψୣ୪(r, R) (III.7) 

where the electronic Hamiltonian ܪ is the electronic Hamiltonian associated with 

a fixed nuclear geometry and is given as: 
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The total energy of the system with fixed nuclei is given as: 

ܧ 
௧௧(ܧ) = (ܴ)ܧ +   ܼܼ
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 (III.9) 

To find ߖ௧௧(ݎ, ܴ) it is necessary to solve the following equation: 

 ( ܶே + ܧ
௧௧(ܴ))ߖ(ݎ, (ܴ)ேߖ(ܴ = ,ݎ)ߖ௧௧ܧ   (ܴ)ேߖ(ܴ

with the nuclear kinetic energy ܶே: 

 ܶே = − 
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 (III.10) 

 The Born-Oppenheimer approximation may be inappropriate in cases near 

degenerate electronic levels where conical intersections occur (for example the 

Jahn-Teller and Renner-Teller effects), when there are rapid collisions or in cases 

of strong vibrational excitations. In the absence of these situations, the 

approximation is completely satisfactory. 

III.2.I.d The Independent Particle Approximation and the Slater 

Determinant 

 The electronic problem of polyatomic molecules is a problem of n>2 bodies 

which one cannot solve analytically. One way to circumvent this problem is to 

express the electronic wave function ߖ(ݎ, ܴ) as a product of mono-electronic 

functions ߖ: 
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,ݎ)ߖ  ܴ) = ߰ଵ. ߰ଶ. ߰ଷ. . . ߰ = ,1)ߖ 2, … ) (III.11) 

The principle of indiscerniblity postulates that particles of the same type are 

indistinguishable from each other. In other words, the probability density 

 |Ψ(1, 2, … )|ଶ does not depend on the permutation of 2 particles: 

,1)ߖ|   2, … )|ଶ = ,2)ߖ|  1, … )|ଶ (III.12) 

As a consequence, the function used to describe the exchange between the two 

particles can be either symmetric (e.g.  1)ߖ, 2, … ) = ,2)ߖ 1, … )) or anti-symmetric 

(e.g. 1)ߖ, 2, … ) = ,2)ߖ− 1, … )). 

 There only exist 2 linear combinations which satisfy the principle of 

indiscerniblity: 

ௌߖ  = ,1,2)ߖ 3, … ) + ,2,1,3)ߖ … ) + ,3,2,1)ߖ … ) (III.13) 

ߖ  = ,1,2)ߖ 3, … ) − ,2,1,3)ߖ … ) − ,3,2,1)ߖ … ) + ,2,3,1)ߖ … ) (III.14) 

The expression ߖௌ allows two particles to be in the same quantum state. It states 

that every state of a particle may be populated for an unspecified number of 

particles. These particles have a null or integral spin and are called Bosons, i.e. they 

obey Bose-Einstein statistics. In contrast, the expression Ψ does not permit 2 

particles to have the same quantum state. It results in every state a particle may 

have being populated by only one particle. These particles are called Fermions, i.e. 

they obey Fermi-Dirac statistics, and have half-integer spin quantum numbers. 

 Electrons being Fermions (particles with a half spin) must satisfy the Pauli 

principle, which is to say that the wave function of a poly-electronic system must 

be anti-symmetric  by describing the permutation of the spatial coordinates and 

the spin of two unspecified electrons. 

 The Slater determinant of order N is defined as a determinant of order N formed 

by N distinct spinorbitals (߯  is composed of a spatial function (߰) and of a spin 

function (ߪ) ߙ = +1 2⁄ ) or  ߪ)ߚ = −1 2⁄ )). 

,ݎ)ߖ  ܴ) =
1

√ܰ!
ተ

߯ଵ(1) ߯ଶ(1) ⋯ ߯(1)
߯ଵ(2) ߯ଶ(2) ⋯ ߯(2)

⋮ ⋮ ⋱ ⋮
߯ଵ(݊) ߯ଶ(݊) ⋯ ߯(݊)

ተ =  (III.15) ߖ

where ߯(݅) is the spin-orbital j which contains the electron i. The factor ଵ
√ே!

 is a 

normalisation factor valid if the spin-orbitals are themselves normalised. With the 

permutation of the spatial coordinates and of the spin of two electrons correspond 
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to the permutation of the two corresponding lines of the determinant. The Slater 

determinants satisfy the anti-symmetric principle, in effect a determinant changes 

the sign when it permutates any two lines. This property is also valid for a linear 

combination of determinants. 

III.2.II The Hartree-Fock Method 

III.2.II.a The Hartree-Fock Approximation 

 It has been seen that the simplest antisymmetric wave function which may be 

used to describe the fundamental state of a system of n electrons is the Slater 

determinant: ߖ. The variational principle establishes that for a set of spin orbits, 

the Slater determinant that gives the lowest average energy ܧ is closest to the 

energy of the exact solution of electronic Schrödinger equation: 

ܧ = ൻΨหܪหΨൿ = ൻ߯(݅)หℎห߯(݅)ൿ


ୀଵ

+
1
2

 ൻ߯(݅)หܬመ(݅) − (݅)ห߯(݅)ൿܭ


ୀଵ



ୀଵ

 (III.16) 

where ܬመ is the Coulombic operator and ܭ the exchange operator: 

(݅)መ(݅)߯ܬ  = ൻ߯(݆)หℎห߯(݆)ൿ߯(݅) (III.17) 

(݅)(݅)߯ܭ  = ൻ߯(݆)หℎห߯(݅)ൿ߯(݅) (III.18) 

The Coulombic operator has an analogy in classical mechanics: one may interpret 

it as the Coulombic repulsion undergone by one electron moving in the field of a 

second electron. The exchange operator is a purely quantum term, without an 

analogy in classical mechanics. It describes the spin correlation, resulting from 

taking into account the antisymmetry. 

 While minimising ܧ, the Hartree-Fock equation can be derived: 

〈(݅)|߯ܨ  =  |߯(݅)〉 (III.19)ߝ

where the Fock operator (ܨ) is the monoelectronic operator according to: 

ܨ  = ℎ + ොுிݒ = ℎ + ൣܬመ(݅) − (݅)൧ܭ




 (III.20) 

Equation (III.20) must be solved iteratively, with the operators ܬመ(݅)and ܭ(݅) 

depending on the orbital ߯(݅) that one seeks to obtain. At every stage a new ߯(݅) 

is obtained, which allows a new Fock operator to be obtained for the following 

stage, and thus continues until convergence. This is the Self Consistent Field (SCF) 
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principle. The eigenfunctions obtained, the orbitals ߯(݅), are said to be canonical 

orbitals. Each one of these orbitals is a molecular orbital with an eigenvalue 

associated with the orbital energy ߝ. The electronic energy ܧ is then expressed 

as: 

ܧ  =  ߝ



ୀଵ

−
1
2

 ൫ܬ − ൯ܭ


ୀଵ



ୀଵ

 (III.21) 

III.2.II.b Restricted (R) and Unrestricted (U) Wavefunctions 

 Every spinorbital ߯  is composed of a spatial function (߰)  and of a spin 

function ߪ) ߙ = +1 2⁄ ) or  ߪ)ߚ = −1 2⁄ ). The Fock operators for the electrons ߙ 

and ߚ may be written as: 

ఈܨ  = ℎ + ൫ܬመఈ − ܭ
ఈ൯

ഀ

ୀଵ

+  መܬ
ఉ

ഁ

ୀଵ

 (III.22) 

ఉܨ  = ℎ +  ቀܬመ
ఉ − ܭ

ఉቁ

ഁ

ୀଵ

+  መఈܬ
ഀ

ୀଵ

 (III.23) 

 In practice, the Hartree-Fock equations cannot be solved except for atoms or for 

linear systems, where the radial and angular parts of the orbitals can be separated 

without approximation. In other cases the method most usually used to express 

the molecular orbitals in atomic basis-sets is LCAO-MO (Linear Combination of 

Atomic Orbitals-Molecular Orbitals): 

 ߯ =  ߟ,ܥ


 (III.24) 

In the case where a system is said to be closed-shell (RHF, Restrict Hartree-Fock), 

there are as many electrons with spin ߙ as electrons with spin ߚ (Figure III.1). The 

orbitals occupied with these electrons can be considered to have the same spatial 

wave functions ( ߰
ఈ =  ߰

ఉ) and one can write the RHF Fock operator with 

complete shells as: 

ோுிܨ  = ℎ + ൫2ܬመ − ൯ܭ
/ଶ

ୀଵ

 (III.25) 

In using the LCAO-MO method, the Hartree-Fock equations lead to the Roothaan 

equations: 



 

where ܵ,௩ = ൻߟหߟ௩ൿ

coefficients are themselves also optimised at the same time as the SCF procedure, 

like the Fock operator and the energy.

Figure III.1: Restricted (RHF) and 

 In the case of systems with open

molecules with closed

spin ߚ (Figure III.1). 

ቀ߰
ఈ ≠ ߰

ఉቁ and one may not use the 

equations of Pople and Nesbet may be used:

 

 

These equations are solved 

important to note that these two equations must be solved at the same time 

because ܨ,௩
ఈ  and ܨ,௩

ఉ  
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 ௩,ܥ,௩ܨ = ߝ  ܵ,௩ܥ௩,

/ଶ

௩ୀଵ

/ଶ

௩ୀଵ

 

ห ൿ is the overlap integral between two atomic orbitals. The 

coefficients are themselves also optimised at the same time as the SCF procedure, 

like the Fock operator and the energy. 

Restricted (RHF) and Unrestricted (UHF) wave function occupa

In the case of systems with open-shells (radicals, certain excited states of 

molecules with closed-shells) there are more electrons of spin 

). In this case the spatial wave functions are different

and one may not use the Roothaan formalism. In its place the 

equations of Pople and Nesbet may be used: 

 ,௩ܨ
ఈ ௩,ܥ

ఈ = ߝ
ఈ

ഀ

௩ୀଵ

 ܵ,௩ܥ௩,
ఈ

ഀ

௩ୀଵ

 

 ,௩ܨ
ఉ ௩,ܥ

ఉ = ߝ
ఉ

ഁ

௩ୀଵ

 ܵ,௩ܥ௩,
ఉ

ഀഁ

௩ୀଵ

 

These equations are solved in an iterative manner like that for Roothaan. It is 

important to note that these two equations must be solved at the same time 

 are dependent at the same time on ܥ௩,
ఈ  and

Background and Methods 

(III.26) 

between two atomic orbitals. The 

coefficients are themselves also optimised at the same time as the SCF procedure, 

 

occupancy. 

shells (radicals, certain excited states of 

spin ߙ than electrons of 

are different 

formalism. In its place the 

(III.27) 

(III.28) 

in an iterative manner like that for Roothaan. It is 

important to note that these two equations must be solved at the same time 

and ܥ௩,
ఉ . 
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 This method is also called UHF (Unrestricted Hartree-Fock). It allows a very 

good description of the dissociation of molecules, which is not possible with RHF. 

One major disadvantage is that it does not allow for pure spin states. For example, 

a doublet state may be contaminated by quartet, sextet etc. states. It is very 

important to compare the value of 〈ܵଶ〉 calculated with that obtained for the pure 

state in order to validate the UHF calculation. 

III.2.II.c Basis Sets 

 In order to calculate the wavefunctions of a system, a mathematical formula 

(basis function) or set of formulae (basis set) is needed to best represent the initial 

atomic orbitals. One approach is to use Slater Type Orbitals (STO) which have the 

general form, 

ௌ்ைߟ  = [ݎߞ−]ݔିଵ݁ݎܰ ܻ,(ߠ, ߶) (III.29) 

where ܰ is a normalisation factor, ݎ is the distance from the nucleus, ݊ is the 

principal quantum number and ܻ, represents the angular parts of the function in 

terms of spherical harmonics. ߞ (Zeta) represents the orbital exponent, which 

determines how compact or diffuse the function will be. STOs produce functions 

which make good approximations of exact functions (Figure III.2). Unfortunately, 

because the solutions of their integrals need to be solved numerically rather than 

analytically, STOs can be computationally difficult. 

 An alternative approach is to use Gaussian Type Orbitals (GTO) whose integrals, 

unlike STOs, may be solved analytically and are typically expressed in Cartesian 

coordinates x, y and z as, 

ை்ீߟ  =  (III.30) .[ଶݎߙ−]ݔ݁ݖݕݔܰ

Like STOs, ܰ is a normalisation factor with ߙ the orbital exponent. The exponents ݈, 

݉ and ݊ are used to control the angular momentum or shape of the orbitals using 

the relationship ܮ = ݈ + ݉ + ݊ ,  where ܮ = 0 gives s-functions, ܮ = 1 gives p-

functions, ܮ = 2 gives d-functions, etc. Single, primitive GTOs do not describe the 

exact function of an electron accurately but may be improved by using linear 

combinations of GTOs to produce a Contracted Gaussian Function (CGF)- 

ߟ 
ீி =  ݔ





ߟ
ீ்ை. (III.31) 
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 The term ݔ  is a contraction coefficient used to adjust the contribution of a 

primitive GTO,  ߟ
ீ்ை, to produce a CGF closer to the exact function (Figure III.2). 

 

Figure III.2: One-dimensional plots of the hydrogen 1s orbital using a Slater Type Orbital (STO), a 
single primitive Gaussian Type Orbital (STO-1G) and a three Gaussian Contracted Gaussian 
Function (STO-3G). 

 The basis sets so far described are called minimal basis sets and do not make a 

distinction between core and valence electrons. Split-valence basis sets do make a 

distinction by performing a quick calculation on the core orbitals and a more 

rigorous calculation on the more important valence orbitals. The valence orbital 

calculations are usually performed using multiple zeta values to improve the 

accuracy of the calculation. The basis set can further be improved by adding diffuse 

functions, which allow for electron density further away from the nucleus, and 

polarized functions, which allow for orbitals with higher angular momentum than 

in the ground state. 

 For example, the 6-311+G(d,p) basis set4 is a split-valence basis set where the 

core orbitals are calculated using one contracted Gaussian function with six 

primitive GTOs (6-). The valence orbitals are more rigorously treated with a triple-

zeta calculation (311) made using one set of three GTOs and two sets of single 
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GTOs. Diffuse functions have also been added (+) and there is d polarization of the 

p-orbitals and p polarisation of the s-orbitals ((d,p)). 

III.3 Density Functional Theory 

 The Hartree-Fock method unfortunately does not adequately account for the 

interaction (or correlation) between the motions of electrons in a system.  One 

method that does account for electron correlation is density functional theory 

(DFT). Unlike other post-Hartree-Fock electron correlation methods, which are 

wavefunction based, DFT uses the electronic density: the probability of an electron 

occupying a volume element at point r. The electron density function (ݎ)ߩ is: 

(ݎ)ߩ  = ܰ න|Ψ|ଶ ଵݎ݀ ⋯   (III.32)ݎ݀

Contrary to the wavefunction Ψ, the density (ݎ)ߩ can be observed experimentally, 

for example, by x-ray diffraction5. The molecular properties of a system can be 

shown to be calculated from (ݎ)ߩ (see Part III.3.I). The total electronic density only 

depends on three spatial variables (ݔ, ,ݕ  :(ݖ

(ݎ)ߩ  = ,ݔ)ߩ ,ݕ  (III.33) (ݖ

III.3.I Kohn-Sham DFT 

 Density functional theory (DFT) is based on the Hohenberg-Kohn theorems6. 

The first of these theorems proves that the ground state properties of a poly-

electron system are uniquely determined by the electron density. The second 

theorem proves that the exact minimum energy of the fundamental state is a 

functional of the exact electronic density. 

ܧ  = [ߩ]ܧ =  (III.34) [(ݎ)ߩ]ܧ

This allows us to say that for a value of (ݔ, ,ݕ  there exists one and only one value ,(ݖ

for the energy E. Thus E and the other molecular properties are defined in a unique 

way by the electronic density. Unfortunately, the theorems do not provide what 

form the [ߩ]ܧ functional should have to produce a minimum energy. 

 The equation which allows us to find the electronic density is the Kohn-Sham 

equation7. It states that the energy of the fundamental state of a system of N 

electrons is given by: 

[ߩ]ி்ܧ  = [ߩ]ܶ + ேܸ[ߩ] + [ߩ]ܬ +  (III.35) [ߩ]௫ܧ
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where ܶ[ߩ] is the kinetic energy of the electrons, ேܸ[ߩ] is the nucleus-electron 

attraction and ܬ[ߩ] is the purely Coulombic repulsion between the electrons. 

 is the exchange-correlation (XC) energy functional which takes into account [ߩ]௫ܧ

all the non-classical interactions between the electrons. The difficulty of the DFT 

method is to find the expression for ܧ௫[ߩ]. 

 The Kohn-Sham mono-electronic orbitals ൫߶
ௌ(ݎଵ)൯ are solutions of the Kohn-

Sham equation: 

 ℎ
ௌ߶

ௌ(ݎଵ) = ߝ
ௌ߶

ௌ(ݎଵ) (III.36) 

By inserting the expressions for the energy terms, equation III.36 may be 

expressed as: 

൝−
1
2

∇ଵ
ଶ −  ൬

ܼ

ଵݎ
൰



+ න
ଶݎ݀(ଶݎ)ߩ

ଵଶݎ
+ ௫ܸ[ߩ(ݎଵ)]ൡ ߶

ௌ(ݎଵ) = ߝ
ௌ߶

ௌ(ݎଵ) (III.37) 

 

where the exchange-correlation potential, ௫ܸ[ߩ] = ఋ(ாೣ[ఘ])
ఋఘ

. On condition of 

knowing ܧ௫[ߩ], the Kohn-Sham equations can be solved in a similar manner to 

Hartree-Fock. Since the potential which acts on electron 1 depends on the position 

of all the other electrons, the equation must be solved in an iterative way. 

III.3.II Exchange-Correlation Functionals 

 To perform the DFT calculations, it is necessary to know the exchange-

correlation energy, ܧ௫[ߩ]. This energy may be divided into a sum of the exchange 

energy and the correlation energy functionals: 

[ߩ]௫ܧ  = [ߩ]௫ܧ +  (III.38) [ߩ]ܧ

Many different functionals have been developed to determine the exchange and 

correlation energies. Most of these can be placed into the following categories- 

 LDA (Local Density Approximation): functionals depending on (ݎ)ߩ only 

where ߝ௫ is the exchange-correlation energy of a uniform electron gas 

௫ܧ 
[ߩ] = න  (III.39) ݎ൯݀ଷ(ݎ)ߩ௫൫ߝ(ݎ)ߩ

 GGA (Generalized Gradient Approximation): functionals depending on (ݎ)ߩ 

and on its gradient ∇(ݎ)ߩ 
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௫ܧ 
ீீ[(ݎ)ߩ] = න ,(ݎ)ߩ)݂  (III.40) ݎଷ݀((ݎ)ߩ∇

 Meta-GGA: functionals depending on (ݎ)ߩ∇ ,(ݎ)ߩ and the Laplacian of the 

density ∇ଶ(ݎ)ߩ 

௫ܧ 
ିீீ[(ݎ)ߩ] = න ݂൫(ݎ)ߩ, ,(ݎ)ߩ∇ ∇ଶ(ݎ)ߩ൯݀ଷݎ (III.41) 

 Hybrid DFT: functionals containing the exact Hartree-Fock (HF) exchange in 

the exchange functional 

௫ܧ 
௬ௗ = ௫ܧ

ுி + ܧ
ி் (III.42) 

 Even though, “purely” ab initio functionals do exist (e.g. LDA), most functionals 

contain empirical parameters. These experimentally derived empirical parameters 

usually appear in the integrand f in GGA methods and in the ratio of HF to DFT 

energies in hybrid functionals. For this reason DFT is sometimes not considered an 

ab initio method. 

 The big advantage of the DFT method in comparison with ab initio methods is 

that it demands much less calculation time. DFT gives more accurate results than 

Hartree-Fock, due to electron correlation being included, but the computational 

costs are very similar. In general, DFT results are only less accurate than those 

determined higher order Moller-Plesset (e.g. MP4) and coupled clusters methods. 

Due to the electron density being dependent on only 3 dimensions, DFT 

computational time scale as ܰଷ, where N is the number of basis functions, but post-

Hartree-Fock scales as ܰସ or higher. The smaller calculation time necessary for 

DFT calculations allows  it to be used for very large sized systems, like biological 

systems, where a treatment of systems with tens or hundreds of atoms with 

correlated ab initio methods would be impossible. As the search to find more 

accurate exchange-correlation energy functionals whose results approach those of 

experiment is still an ongoing topic of research, the number of functionals available 

continues to increase. 

III.3.III The B3LYP Functional 

 B3LYP is a hybrid functional and is one of the most commonly used DFT 

functionals by chemists. B3LYP has its origins in an older functional developed by 

Becke8. The B3PW91 exchange-correlation energy functional he proposed may be 

written as, 
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௫ܧ 
ଷௐଽଵ = (1 − ܽ)ܧ௫

 + ܽܧ௫
ுி + ܽ௫Δܧ௫

଼଼ + ܧ
 + ܽΔܧ

ௐଽଵ. (III.43) 

This functional is a hybrid of the exact Hartree-Fock exchange energy, ܧ௫
ுி , and 

local-density approximation exchange and correlation energies, ܧ௫
 and ܧ

. 

Also included in the functional are Becke’s gradient corrected exchange 

functional9, Δܧ௫
଼଼, and the Perdew-Wang gradient corrected correlation 

functional10, Δܧ
ௐଽଵ. The values of the semi-empirical coefficients, ܽ = 0.2, 

ܽ௫ = 0.72 and ܽ = 0.81, were determined from experimental data. 

 The B3LYP functional itself, was first fully described by Stephens et al11,12. The 

exchange-correlation energy functional they gave was:  

௫ܧ
ଷ = (1 − ܽ)ܧ௫

 + ܽܧ௫
ுி + ܽ௫Δܧ௫

଼଼ + ܽܧ
 + (1 − ܽ)ܧ

ௐே. (III.44) 

In this functional, the PW91 correlation functional used in B3PW91 has been 

replaced with a gradient corrected correlation functional, ܧ
, by Lee, Yang and 

Parr (LYP) 13. Since ܧ
 is not easily separable, a local correlation energy 

functional, ܧ
ௐே, by Vosko, Wilk and Nusair (VWN)14 has been used to determine 

the ratio of local and gradient corrected correlation functionals using the ܽ 

coefficient. The same values as used in the B3PW91 functional for the ܽ, ܽ௫ and ܽ 

coefficients were used in the B3LYP functional. 

III.4 The Vibrational Problem 

 Once the electronic Schrödinger equation is solved, as solution must be found  

for the vibrational problem, that is to say the movement of the nuclei. In the Born-

Oppenheimer approximation, the total molecular wavefunction was separated into 

the electronic wavefunction and the nuclear wavefunction. The Schrodinger 

equation for the movement of the nuclei may then be written as: 

(ܴ)ேΨேܪ  =  ேΨே(ܴ) (III.45)ܧ

where the nuclear Hamiltonian (ܪே) is written as the sum of the kinetic energy of 

the nuclei, ܶே, and of the electronic potential, ܸ: 

 උ ܶே+ ܸඏ(ܴ) =  ேΨே(ܴ) (III.46)ܧ

For N atoms, this equation has 3N degrees of freedom. 

III.4.I Separation of Movement 

 If the system studied is defined in the mobile reference frame having for the 

origin the centre of mass (G) of the molecule, 3 of the 3N coordinates describe the 
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translation of the molecule. Since these 3 coordinates are not coupled with the 3N-

3 coordinates, they can be separated out without any approximations. 

ேܪ  = ௧௦ܪ +  ௩ (III.47)ܪ

 Ψே(ܴ) = Ψே = Ψ௧௦Ψ௩ (III.48) 

If the molecule is considered to be a rigid rotor, then the approximation can be 

made that there is no coupling between the rotations and vibrations. The 

rotational and vibrational coupled terms in equations III.42 and III.43, can be 

written: 

௩ܪ  = ௧ܪ +  ௩ (III.49)ܪ

 Ψ௩ = Ψ௧(ߠ, ߮, ߯)Ψ௩(ݔ, ݕ ,  ) (III.50)ݖ

where (ߠ, ߮, ߯) are the Euler angles which describe the rotation of the molecule 

within the mobile reference and (ݔ, ,ݕ   ) are the Cartesian coordinates of theݖ

atoms defined in relation to G. The separation of the rotation and the vibration 

reduces the number of degrees of freedom for vibration to 3N-6 (except for a linear 

molecule where the number of degrees of freedom is equal to 3N-5). 

 The rotational energy for a given vibrational level may be calculated by solving 

the rotational eigenvalue equation: 

௧Ψ௧ܪ  =  ௧Ψ௧ (III.51)ܧ

with 

௧ܪ  =
መଶܬ

ܫ2
+

መଶܬ

ܫ2
+

መଶܬ

ܫ2
 (III.52) 

where a, b and c are the axes of inertia of the molecule,  ܬመ௫ (ݔ = ܽ, ܾ, ܿ) are the 

projections of the total angular moment on the principal axes and ܫ௫ is the 

principal moment of inertia associated with these axes and defined by: 

௫ܫ  =  ݉(݀
௫)ଶ

ே



 (III.53) 

where ݉ is the mass of atom i and ݀
௫ is its distance in relation to the axis of 

inertia x. 

III.4.II Normal Coordinates 

 To solve the vibrational equation according to: 

௩Ψ௩ܪ  = උ ܶ + ܸ ඏΨ௩ = ௩Ψ௩ܧ , (III.54) 
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it is important to make a good choice of coordinates. 

Using the Cartesian coordinates (ݔ , ݕ ,  ) and the equilibrium coordinatesݖ

ݔ)
 , ݕ

, ݖ
) of every atom, the mass weighted displacement Cartesian 

coordinates (ݍ) may be written, for example:  

ଵݍ = √݉ଵ൫ݔଵ − ଵݔ
൯, ଶݍ = √݉ଵ൫ݕଵ − ଵݕ

൯, ଶݍ = √݉ଵ൫ݖଵ − ଵݖ
൯, ସݍ =

√݉ଶ൫ݔଶ − ଶݔ
൯,   .ܿݐ݁

The normal coordinates, ܳ, can then be written as linear combinations of the 

balanced weighted Cartesian coordinates: 

 ܳ =  ܿݍ

ଷே

ୀଵ

 (III.55) 

In this system of normal coordinates, the vibrations are independent from each 

other and ܳ is orthogonal. The kinetic energy is written now as: 

 ܶ =
1
2

 ܳ
ଶ

ଷே

ୀଵ

 (III.56) 

and the vibrational Hamiltonian in the system of normal coordinates as: 

 −
ℏଶ

ߤ2


߲ଶ

߲ܳ
ଶ Ψ௩

ଷே

ୀଵ

+ ܸΨ௩ =  ௩Ψ௩ (III.57)ܧ

III.4.III Harmonic Vibrational Approach 

 The potential energy arises from the electronic calculation and depends on ܳ. If 

the movement of the nuclei is taken to be a weak oscillation around the 

equilibrium position, the potential ܸ  can be developed into a Taylor series: 

ܸ = ܸ +  ൬
߲ܸ
߲ܳ

൰


ܳ


+
1
2

 ቆ
߲ଶܸ

߲߲ܳܳ
ቇ


ܳܳ

,

+
1
6

 ቆ
߲ଷܸ

߲߲߲ܳܳܳ
ቇ


ܳܳܳ

,,

+ ⋯ 

(III.58) 

 

 ܸ = ܸ +  ݂ܳ


+
1
2

 ݂ܳܳ
,

+
1
6

 ݂ܳܳܳ
,,

+ ⋯ (III.59) 

A null potential at the equilibrium, ܸ = 0, can be taken as a reference. The 

equilibrium state is a minimum, therefore the first order derivatives of the 

potential with respect to the coordinates ܳ are null: 
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 ൬
߲ܸ
߲ܳ

൰


= ݂ = 0 (III.60) 

 The first non null term of the Taylor development is then the second order term. 

If the amplitude of the vibration is weak, the higher order terms can be neglected 

(that is to say: ݂ = 0, etc.). The nuclear vibrations are treated as harmonic 

vibrations and since the coordinates ܳ are orthogonal to each other, the harmonic 

vibrational Hamiltonian can be written as: 

 −
ℏଶ

ߤ2


߲ଶ

߲ܳ
ଶ Ψ௩


ଷே

ୀଵ

+
1
2

 ݂ܳ
ଶΨ௩


ଷே



= E௩
Ψ௩

 (III.61) 

This is then the equation of a one dimensional harmonic quantum oscillator, the 

solutions of which are well known. It is written as a function of a quantum number 

߱ and of a characteristic harmonic frequency ߥ = ଵ
ଶగ ට

ఓ
, and where the 

wavefunction depends on Hermite polynomials ܪఔ(ݖ): 

 Ψ௩
 (ݖ) ∝ ଵି݁(ݖ)ఔܪ

ଶ௭మ
∝ (−1)ఔ݁௭మ ߲ఔ

ఔݖ߲ ݁ି௭మ൨ ݁ିଵ
ଶ௭మ

 (III.62) 

with 

ݖ  = ൬
ߤ݇
ℏଶ൰

ଵ
ସ

൫ݎ −  ൯ (III.63)ݎ

The vibrational energy of a normal mode ݅ (non-degenerate) is written then as: 

௩ܧ 
 = ൬ߥ +

1
2

൰ ℏ߱ (III.64) 

The quantum number ߥ can take the values 0, 1, 2 etc. with a selection rule of 

Δߥ = ±1 between vibrational levels. 

 It is important to note that the solution of equation Error! Reference source 

not found. gives 3N wave functions and 3N harmonic frequencies ߱, whereas it is 

known that there exists only 3N-6 vibrations of a non-linear system (3N-5 for a 

linear system). The 6 supplementary vibrations (or 5 for a linear system) 

correspond to the 3 translational movements and to the 3 rotational movements 

(or 2 rotational movements in linear systems). If the potential has been calculated 

correctly and if the system is at a stationary point of the potential energy surface, 

the frequencies for these 6/5 degrees of freedom should be equal to zero. 

 The vibrational wavefunction is written thus as a product of the eigenfunctions 

of the harmonic oscillators and the vibrational energy as the sum of the associated 
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energies of each one of the normal vibration modes, with each function depending 

on a quantum number ߥ and of a characteristic vibration frequency ߱: 

௩ܧ 
 = ௩ܧ

ଵ + ௩ܧ
ଶ + ⋯ + ௩ܧ

ଷேି =  ൬ߥ +
1
2

൰
ଷேି

ୀଵ

ℏ߱ (III.65) 

 

 Ψ௩
 = Ψ௩

ଵ (ܳଵ)Ψ௩
ଶ (ܳଶ) ⋯ Ψ௩

ଷேି(ܳଷேି) (III.66) 

III.4.IV Anharmonicity and Scaling Factors 

III.4.IV.a The Anharmonic Oscillator 

 Vibrational frequencies calculated using the harmonic oscillator model are 

consistently found to be higher than experimentally recorded values. The reasons 

for these errors are partly due to the approximations made in the level of 

calculation (including electron correlation and incomplete basis sets). Even for 

methods that use an extensive basis set and treat electron correlation (e.g. DFT, 

Configuration Interaction, Møller–Plesset perturbation theory etc.), errors 

between experimental and calculated vibrational frequencies still exist due to the 

neglect of anharmonicity in the calculation. 

 
Figure III.3: Plots illustrating the effect of anharmonicity on the energy of a vibrational mode. The 
harmonic oscillator potential energy has been modelled using Hooke’s law (࢘ࢇࢎࢂ = 


 ) and the

anharmonic oscillator using the Morse potential (࢘ࢇࢎࢇࢂ = )ࢋࡰ −  ). The energy levels have(ࢼିࢋ

been described using ࢘ࢇࢎࡱ = ഥ࣓ ቀ࢜ + 
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 The harmonic oscillator method approximates the movement of nuclei during a 

vibration as a simple oscillation around an equilibrium distance with equal 

restoring forces upon compression and stretching but in reality their vibrations 

have an anharmonic motion where the restoring forces are different for 

compression and stretching and whose potential is better described using the 

Morse potential (see Figure III.3). The quantum mechanical energy levels of an 

anharmonic oscillator, similar to the harmonic energy levels given in equation 

III.64, may be written as: 

ܧ  = ഥ߱ ൬ݒ +
1
2

൰ − ഥ߱ݔ ൬ݒ +
1
2

൰
ଶ

+ ഥ߱ݕ ൬ݒ +
1
2

൰
ଷ

+ ⋯ (III.67) 

where ഥ߱ is the fundamental frequency equal to the harmonic frequency and ഥ߱ݔ, 

ഥ߱ݕ,… etc. are the anharmonic constants. As ഥ߱ݔ ≫ ഥ߱ݕ, usually only the first 

anharmonic term is considered and the higher order terms are ignored. Selection 

rules between vibrational states are also different from the harmonic 

approximation with Δݒ = ±1, ±2, ±3, …  Calculations of anharmonic .ܿݐ݁

frequencies, though accurate, are computationally expensive due to the need to 

calculate extensive potential energy surfaces. 

III.4.IV.b Overtone and Combination Bands 

 The selection rules for an harmonic oscillator allow for transitions with 

Δݒ = ±1. An anharmonic oscillator has looser selection rules with Δݒ =

±1, ±2, ±3, …, allowing transitions between multiple energy levels and coupling 

between modes with excitation by one photon. Overtones occur when transitions 

between states have Δݒ ≥ 2 and for a fundamental mode ߥ are designated 2ߥ, 3ߥ , 

ߥ4  etc. They are much weaker than the fundamental mode and decrease in 

intensity with each successive overtone. Overtones are at a lower frequency than 

the simple multiple of the harmonic frequency due to the decrease in spacing 

between anharmonic energy levels. Combination and difference bands can arise 

from the coupling between different fundamental modes and their overtones- 

ߥ݊ ± ߥ݉ . Like overtones, most combination and difference bands are much 

weaker than the fundamental modes and are at a lower frequency than the sum or 

difference of the harmonic frequencies. Whether or not a combination or overtone 

is spectroscopically allowed is dependent on the combined symmetry of the 

modes15,16 and may permit the frequency of an otherwise symmetry forbidden 

mode to be determined from its symmetry allowed combinations. 
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 Although most combinations and overtones are very weak, some transitions 

may gain intensity via Fermi resonance. When a weak combination or overtone is 

degenerate (or nearly degenerate) with an intense fundamental mode of the same 

symmetry, the weaker band can “borrow” intensity from the stronger band. The 

frequencies of the bands will also separate, with one band shifting to a slightly 

higher frequency and the other to a slightly lower frequency. One of the reasons 

proposed for Fermi resonance occuring is due to the fact that higher degeneracy 

than allowed for the symmetry of a system is forbidden and must be avoided by 

separating and mixing the two states15. When Fermi resonance occurs it may be 

difficult assign the individual modes due to the shift in frequency and change in 

intensity. 

III.4.IV.c Anharmonic Scaling Corrections 

 In order to compare calculated harmonic to experimental vibrational 

frequencies scaling factors may be applied. These scaling factors have usually been 

determined by comparing a large set of theoretical frequencies, ߱
௧, to 

experimental frequencies, ߥ
௫. Using the least-squares technique, the scaling 

factor ߣ is determined from- 

ߣ  =  ߱
௧ߥ

௫



൫߱
௧൯

ଶ



൘  (III.68) 

and the root-mean square error for ݊ vibrational frequencies from- 

ݏ݉ݎ  = ඨ ൫߱
௧ − ߥ

௫൯ଶ ݊ൗ


ଵ
 (III.69) 

 A number of scaling factors have been presented in the literature for different 

sets of molecules, theoretical levels and applications. The simplest way to scale 

harmonic frequencies is to apply one single scaling factor to the whole set of 

vibrational modes17-19. Unfortunately this technique does not reproduce 

experimental results accurately as the amount of anharmonicity exhibited by 

modes is not uniform. For example, high frequency stretches are generally more 

anharmonic than low frequency bends. Recognising these differences, different 

scaling factors have been developed for frequency ranges20 e.g. low frequency 

regions (e.g. < 1800cm-1) and high frequency regions (e.g. > 1800cm-1). A more 

accurate procedure is to apply suitable scaling factors to the individual normal 

coordinates that make up a normal mode.  For example, a mode involving a C-C 
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stretch coupled to a C-H bend would have distinct scaling factors applied to the 

force constants for the C-C stretch and C-H bend normal coordinates. Examples of 

this technique include Pulay’s Scaled Quantum Mechanical force fields technique 

(SQM)21-23 and the newer Effective Scaling Frequency Factor technique (ESFF)24,25. 

 Unfortunately, no tabulated scaling factors for the B3LYP/6-311++G(2d,2p) 

calculation level used in this study could be found in the literature. Scaling factors 

for this level of calculation were found by comparing FTIR and Raman 

experimental results with the DFT harmonic frequencies. For all frequencies below 

2000cm-1, a simple scaling factor of 0.98 was used. For the more anharmonic C-H 

and N-H stretches, scaling factors of 0.96 and 0.93 were used respectively. These 

factors are similar to some of those reported in the literature. Spanget-Larsen26 

used a uniform scaling factor of 0.98 to compare B3LYP/6-311++G(d,p)  

frequencies to matrix-isolated FTIR results. In a study of the polycyclic aromatic 

compounds naphthalene, azulene, phenanthrene and anthracene, Martin et al27 

found scaling factors of 0.96 for C-H stretches, 0.983 for in-plane bends and 0.97 

for lower frequency vibrations when comparing B3LYP/cc-pVDZ28 calculated 

frequencies and 0.965 for C-H stretches and 0.975 for all lower frequency 

vibrations when comparing B3LYP/cc-pVTZ28. 

III.4.V Infrared Absorption Intensity 

 The infrared intensity of an infrared mode ݅ is determined from the integrated 

absorption coefficient29 and using the harmonic oscillator approximation, may be 

given by30 

ܫ 
ூோ =

݀ߨܰ

3ܿଶ ฬ
ߤ݀
݀ܳ

ฬ
ଶ

 (III.70) 

where ܰ is the total number of molecules per unit volume expressed as Avogadro’s 

number (݉ି݈ଵ) , ݀ is the degeneracy of normal mode ݅ and ܿ is the speed of light. 

The absolute infrared intensity, |݀ߤ ݀ܳ⁄ |ଶ, is the square of the derivative of the 

electric dipole moment ߤ with respect to the mass weighted normal coordinates ܳ. 

The absolute infrared intensity is the only molecular parameter used in 

determining the IR intensity and may be given in the non-SI units of ൫D Å⁄ ൯
ଶ

amuିଵ. 

However, it is usually converted to the SI derived units for absorption intensity of 

km molିଵ (where 1 ൫D Å⁄ ൯
ଶ

amuିଵ = 42.2561 km molିଵ), which are commonly 

used when comparing experimental results31,32. 
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III.4.VI Raman Scattering Intensity 

 The Raman scattering activity ܵ and depolarization ratio ߩ  of Stokes Raman 

modes31,33-35,  collected at right angles to the incident plane polarized light, can be 

computed using the expressions: 

 ܵ
ୄ = ݃[45(ߙ

ᇱ)ଶ − ߚ)7
ᇱ)ଶ] (III.71) 

and 

ߩ  =
ߚ)3

ᇱ)ଶ

45൫ߙ
ᇱ൯ଶ + 4൫ߚ

ᇱ൯ଶ (III.72) 

where ݃ is the degeneracy of the normal mode. (ߙ
ᇱ)ଶ and (ߚ

ᇱ)ଶ are the squares of 

the derivatives of the trace and of the anisotropy of the polarizability tensor- 

ߙ) 
ᇱ)ଶ =

1
9

൭
ߙ߲

߲ܳ

൱
ଶ

, ݊ = ,ݔ ,ݕ  (III.73) ݖ

 

ߚ)
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1
2 ൝ ൬

ߙ߲
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൰

ଶ
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 ൬
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߲ܳ
൰
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ൡ   ݊, ݉ = ,ݔ ,ݕ ݊  ݖ ≠ ݉ (III.74) 

The ߲ߙ ߲ܳ⁄  terms are the derivatives of the polarizability tensor with respect to 

normal-mode coordinate ܳ. 

 An alternative expression is used for determining Raman scattering intensities 

recorded at 0° or 180° to the incident light where the 7 is replaced with a 4, 

 ܵ
∥ = ݃[45(ߙ

ᇱ)ଶ − ߚ)4
ᇱ)ଶ] (III.75) 

The absolute differential Raman scattering cross section33,35, which corresponds to 

the absolute Raman intensity of a normal mode ݅, is given by, 

 
ߪ߲

߲Ω
=

ସ(ߨ2)

45
ߥ) − )ସߥ ℎ

ܤߥଶܿߨ8
ܵ (III.76) 

where ߥ and ߥ are the frequencies of the incident light and normal mode ݅ and 

ℎ, ݇ and ܿ are Planck and Boltzmann constants and the speed of light. ܤ is the 

Boltzmann distribution of the normal modes and is dependent on temperature ܶ: 

ܤ  = 1 − ݔ݁ ൬−
ℎߥܿ
݇ܶ

൰ (III.77) 

  may be ignored for experiments at low temperatures or for modes with higherܤ

frequencies as this factor approaches 1. 
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 To simulate an experimental Raman spectrum, the intensities of the different 

modes may be calculated using the formula given by Michalski and Wysokinski35, 

ܫ 
ோ =

ߥ)ܥ − )ସߥ ∙ ܵ

ܤߥ
 (III.78) 

where the C term is a constant made up of a geometry factor and the physical 

constants h, k and c. 

III.4.VII Zero-Point Energy (ZPE) 

 The particular case where all ߥ values are null, the energy that remains is the 

energy of the fundamental vibrational state, more usually called the zero-point 

energy (ZPE), which corresponds to the sum of the ZPEs of all the vibration modes: 

ܧܼܲ  = 
1
2

ℏ߱

ଷேି

ୀଵ

 (III.79) 

The total energy of the studied system in its fundamental state is written then as 

the sum of the electronic energy and the ZPE: 

௧௧ܧ  = ܧܼܲ + ܧ  (III.80) 

III.5 Time-Dependent Density Functional Theory 

 Time-Dependent Density Functional Theory (TDDFT) has foundations in the 

Runge-Gross theorem36, which is a time-dependent extension of the Hohenberg-

Kohn theorems (see Part III.3). In this theorem it is proven that there exists a 

unique one-to-one correspondence between the time-dependent external potential 

and the time-dependent electron density for a fixed initial state. In order to 

simplify the calculations, a scheme is chosen which uses a system that is non-

interacting to form the density of the interacting system. The time-dependent 

Kohn-Sham (TDKS) equations37, analogous to those in static DFT, may be 

described by the Schrödinger equation: 

 ቆ−
1
2

∇ଶ + ,ݎ)[ߩ]ௌߥ ቇ(ݐ ߶(ݎ, (ݐ = ݅
߲
ݐ߲

߶(ݎ,  (III.81) (ݐ

When ߶(ݎ,  orbitals satisfy the TDKS equations, the time-dependent density is (ݐ

determined by 

,ݎ)ߩ  (ݐ = |߶(ݎ, ଶ|(ݐ
ே



 (III.82) 

Again, analogous to time-independent DFT, the potential ߥௌ[ߩ](ݎ,  ,is given by (ݐ
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,ݎ)[ߩ]ௌߥ  (ݐ = ,ݎ)௫௧ߥ (ݐ + න  ᇱݎ ݀
,ᇱݎ)ߩ (ݐ
ݎ| − |ᇱݎ + ,ݎ)ߥ  (III.83) (ݐ

which includes the time-dependent external potential, ߥ௫௧(ݎ,  the Coulombic ,(ݐ

electron repulsive potential and the time-dependent exchange-correlation 

potential, ߥ(ݎ,  This exchange-correlation potential is the functional derivative  .(ݐ

of the exchange-correlation action, ܣ  over both space and time, 

,ݎ)[ߩ]ߥ  (ݐ =
[ߩ]ܣߜ
,ݎ)ߩߜ (ݐ ≈

[௧ߩ]ܧߜ
(ݎ)௧ߩߜ =  (III.84) (ݎ)[௧ߩ]ߥ

However, the adiabatic approximation37,38 may be used to approximate ܣ  by the 

time-independent exchange-correlation functional, ܧ , which is a function of the 

density at a fixed time ݐ. 

 If the external perturbation is assumed to be weak, that is the external field does 

not destroy the ground state electronic structure completely, linear response 

theory39 may be used to calculate the spectral values of the excitations38,40-42. The 

advantage of applying this theory is that the changes in the system will only 

depend on the ground state of the system. The dynamic polarizability, ߙത(߱), 

describes the response of a dipole moment  to an electric field and may expressed 

by the sum-over-states (SOS) relationship42, 

(߱)തߙ  =  ூ݂

߱ூ
ଶ − ߱ଶ

ூ

 (III.85) 

The poles of this expression determine the excitation energies, ߱ூ , while the 

oscillator strengths are determined by the residues, ூ݂ . Following this, the values of 

the transition energies, Ω, are obtained from solving the eigenvalue problem, 

 ߱ఙ
ଶ ఙఛߜߜߜ + 2ට ݂ఙ߱ఙKఙ,ఛඥ ݂ఛ߱ఛ൨ ܨ = Ω

ଶ   (III.86)ܨ

where the coupling matrix, Kఙ,ఛ, is given by, 

Kఙ,ఛ = ඵ ߶ఙ
∗ (ݎ)ఙ߶(ݎ) ቆ

1
ݎ| − |ᇱݎ +

ఙߥ߲
(ݎ)

(ᇱݎ)ఛߩ߲ ቇ × ߶ఛ(ݎᇱ)߶ఛ
∗  ᇱ (III.87)ݎ݀ݎ݀(ᇱݎ)

The indices ݅, ݆, ߪ and ݇, ݈, ߬ in the above expressions correspond to the occupied 

states, unoccupied states and the spin of the initial and perturbed states. ߶(ݎ) are 

the Kohn-Sham orbitals, ݂ఙ  are the differences in occupation between the states 

and ߥఙ
(ݎ) is the exchange-correlation functional. The oscillator strengths are 

obtained from the eigenvectors, ܨ. 
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III.6 Molecular Symmetry and Point Group Theory 

 Knowing the symmetry of a molecule can help simplify quantum mechanical 

problems and offer insights into the physical properties of a molecule. Molecules 

may have several symmetry operations, e.g. rotations, reflections, improper 

rotations or inversion operations, performed about geometric, symmetry 

elements, e.g. a rotation axis, an improper rotation axis, a reflection plane or a 

point of inversion, that leave the molecule indistinguishable before and after the 

operation. Molecules also have an identity operation which does not move any of 

the atoms and can be thought of as a rotation of the molecule by 360°. Group 

theory offers a general, mathematical treatment of molecular symmetry. A point 

group is a set of symmetry operations which form the group elements of a 

mathematical group. A point group, G, must satisfy 4 requirements:  

 A group must have closure:  ܤܣ = ,ܣ ݁ݎℎ݁ݓ ܺ ,ܤ ܺ ∈  ܩ

 A group must contain the identity element E:  ܺܧ = ܧܺ = ,ܧ ݁ݎℎ݁ݓ ܺ ܺ ∈  ܩ

 Associative law of combination must apply for all combinations of elements:  

(ܥܤ)ܣ = ܥ(ܤܣ) = ,ܣ ݁ݎℎ݁ݓ ܺ ,ܤ ,ܥ ܺ ∈  ܩ

 Every element of G has a reciprocal:  ିܣܣଵ = ,ܣ ݁ݎℎ݁ݓ ܧ ,ଵିܣ ܧ ∈  ܩ

A character table for a group may be produced which show the irreducible 

representations consisting of the simplest set of characters that satisfy the 

requirements of the group. A molecule can be assigned to a particular point group 

by identifying all the symmetry operations of a molecule. 

 Relationships between irreducible representations are defined by the Great 

Orthogonality Theorem43 or GOT: 

  Γ(ܴ)Γ(ܴ)ᇲᇲ

ோ

=
ℎ
݀

 ᇲ (III.88)ߜᇲߜߜ

where Γ(ܴ) is the matrix element of the operation ܴ in the ݅௧ representation, 

݀ is the dimension of ݅ and ℎ is the order of the group. ߜ, ߜᇲ  and ߜᇲ  are 

Kronecker delta functions defined such that ߜఈఉ = 0 if ߙ ≠ ఈఉߜ and ߚ = 1 if ߙ =  .ߚ

Some of the relationships derived from the GOT include: 

 The number of irreducible representations of a group is equal to the 

number of symmetry classes. 

 The character for the identity operation E in the ݅௧ irreducible 

representation is equal to the dimension of the representation, ߯(ܴ) = ݀ . 
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 The sum of the squares of the characters of the characters in any irreducible 

representation equals the order of the group, ℎ,  ∑ [߯(ܴ)]ଶ
ோ = ℎ, or where 

݃ is the order of the class ܿ: ∑ ݃[߯(ܴ)]ଶ
ோ = ℎ. 

 Any two different irreducible representations, ߯  and ߯ , are orthogonal to 

each other:  ∑ ݃[߯(ܴ)]ൣ߯(ܴ)൧ோ = 0. 

 

 One of the most important derivations from the GOT is an equation which 

allows one to reduce a representation into its constituent irreducible 

representations: 

 ݊ =
1
ℎ

 ݃߯(ܴ)߯(ܴ)


 (III.89) 

In this equation, ݊  is the number of times the irreducible representation ߯  occurs 

in the reducible representation ߯ . Therefore, a reducible representation may be 

reduced into a sum of irreducible representations: ߯ = ∑ ݊߯  . 

 

 The following sections will describe how molecular symmetry and group theory 

may be applied in quantum mechanics and in the determination of the physical 

properties of molecules. In particular, in determining the molecular orbitals, 

vibrational normal modes and IR, Raman and electronic transition selection rules 

of the highly symmetric molecules H2Pc and ZnPc. 



III.6.I Point Groups of ZnPc and H

Figure III.4: ZnPc and H
molecules have been orientated on the xy plane, perpendicular to the z axis. The C
ZnPc are also shown. 

 Figure III.4 shows the molecular structures of the large planar zinc 

phthalocyanine (ZnPc) and free

highest order rotational axis of ZnPc is identified as the

central Zn atom at right angles to the plane of the molecule and following 

convention, is assigned as the principal

with the rest of the atoms on the 

two C4 operations are identified,

axis. Four other C2 rotations are identified

and two ܥଶ
ᇱᇱ rotations about axes at 45

exists though the origin as well as t

C4 and ܥସ
ଷ rotations around the principal

xy plane. There are three classes of reflection operations: one horizontal 

reflection through the 

planes and two dihedral 

axes. Including the identity operation

symmetry operation is identified as the D

shown in Table III.1.
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t Groups of ZnPc and H2Pc 

ZnPc and H2Pc molecular structures depicting the x and y Cartesian axes. The 
molecules have been orientated on the xy plane, perpendicular to the z axis. The C

shows the molecular structures of the large planar zinc 

phthalocyanine (ZnPc) and free-base phthalocyanine (H2Pc) molecules. The 

highest order rotational axis of ZnPc is identified as the C4 axis

central Zn atom at right angles to the plane of the molecule and following 

on, is assigned as the principal axis and placed along the

with the rest of the atoms on the xy plane as shown in Figure III.

operations are identified, C4 and Cସ
ଷ, and one C2 rotation collinear to the

rotations are identified: two ܥଶ
ᇱ  rotations about the 

rotations about axes at 45° to the x and y axes. An inversion operation 

exists though the origin as well as two improper S4 rotation operations involving

rotations around the principal axis followed by a reflection through the

plane. There are three classes of reflection operations: one horizontal 

reflection through the xy plane, two vertical ߪ௩ reflections through the 

planes and two dihedral ߪௗ reflections though the planes containing the 

axes. Including the identity operation E, the point group which contains these 10 

symmetry operation is identified as the D4h point group, whose character table is 

. 
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Pc molecular structures depicting the x and y Cartesian axes. The 
molecules have been orientated on the xy plane, perpendicular to the z axis. The C2’’ rotation axes of 

shows the molecular structures of the large planar zinc 

Pc) molecules. The 

axis passing through the 

central Zn atom at right angles to the plane of the molecule and following 

the z Cartesian axis 

Figure III.4. About this axis 

rotation collinear to the C4 

rotations about the x and y axes 

. An inversion operation ݅ 

rotation operations involving 

axis followed by a reflection through the 

plane. There are three classes of reflection operations: one horizontal ߪ 

reflections through the xz and yz 

reflections though the planes containing the z and ܥଶ
ᇱᇱ 

, the point group which contains these 10 

group, whose character table is 
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Table III.1: Character table of D4h point group. 

D4h E 2C4 C2 2C’2 2C”2 i 2S4 ߪ 2ߪ௩ 2ߪௗ Linear Quadratic 

A1g 1 1 1 1 1 1 1 1 1 1  x2+y2, z2 

A2g 1 1 1 -1 -1 1 1 1 -1 -1 Rz  

B1g 1 -1 1 1 -1 1 -1 1 1 -1  x2-y2 

B2g 1 -1 1 -1 1 1 -1 1 -1 1  xy 

Eg 2 0 -2 0 0 2 0 -2 0 0 (Rx, Ry) (xz, yz) 

A1u 1 1 1 1 1 -1 -1 -1 -1 -1   

A2u 1 1 1 -1 -1 -1 -1 -1 1 1 z  

B1u 1 -1 1 1 -1 -1 1 -1 -1 1   

B2u 1 -1 1 -1 1 -1 1 -1 1 -1   

Eu 2 0 -2 0 0 -2 0 2 0 0 (x,y)  

 Looking at H2Pc, three ܥଶ rotation operations can identified, two about axes in 

the plane of the molecule and one perpendicular to them. Usually when two or 

more highest order rotational axes exist, the axis passing through the most number 

of geometric points (atoms) is chosen to be the principal z axis. In H2Pc this would 

be the axis containing the central N-H bonds with the y axis at right angles in the 

plane of the molecule and the ݔ axis coming out of the plane. However, in order to 

ease the comparison with ZnPc, the ݖ and ݔ axes of H2Pc have been switched as 

shown in Figure III.4. Three reflection operations exist, one through the ݕݔ  plane, 

one through the ݖݔ plane and one through the yz plane. Like ZnPc, an inversion 

operation is found through the origin. Again including the identity operation, the 

D2h point group is identified as the group containing the previously described 8 

symmetry operation classes whose character table is shown in Table III.2 

Table III.2: Character table of D2h point group. 

D2h E C2(z) C2(y) C2(x) i ߪ(xy) ߪ(xz) ߪ(yz) Linear Quadratic 

Ag 1 1 1 1 1 1 1 1  x2, y2, z2 

B1g 1 1 -1 -1 1 1 -1 -1 Rz xy 

B2g 1 -1 1 -1 1 -1 1 -1 Ry xz 

B3g 1 -1 -1 1 1 -1 -1 1 Rx yz 

Au 1 1 1 1 -1 -1 -1 -1   

B1u 1 1 -1 -1 -1 -1 1 1 z  

B2u 1 -1 1 -1 -1 1 -1 1 y  

B3u 1 -1 -1 1 -1 1 1 -1 x  
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 Restricting a molecule to a particular symmetry can reduce CPU time and 

memory requirements during a geometry optimisation calculation. Restrictions on 

the symmetry of the molecule means that displacements of atoms and groups 

made during an optimisation are limited to those that do not break the symmetry 

of the molecule and must be applied across the symmetry elements. The more 

symmetry elements a molecule has, the more restrictions are placed on these 

displacements. The symmetry of a molecule may have to be changed to a lower 

symmetry if the geometry of a molecule does not converge to a local energy 

minimum or if the minimum found is not the global minimum of a ground state, 

optimised geometry (e.g. saddle points, transition states). 

III.6.II Molecular Orbitals and Symmetry Adapted Linear 

Combinations 

 Group theory can be useful in simplifying ab initio calculations and saving on 

computational time. One of the most important uses of symmetry and group theory 

is in the constructing of molecular orbitals and calculating their energy. All 

molecular orbitals must form the basis for some irreducible representation of the 

point group of the molecule43. Consequently, as MOs are usually constructed of 

linear combinations of atomic orbitals, the linear combinations used must also 

form the basis of an irreducible representation.  

 For an integral to be non zero (∫ (ݔ)݂ ݔ݀ ≠ 0), the integrand must transform as 

the totally symmetric representation A (Γ(݂(ݔ)) =  For example, if the overlap .(ܣ

integral, ܵ, between two orbitals, ߶ and ߶ is to be non-zero (indicating an 

bonding or anti-bonding interaction between the orbitals), the direct product of 

the representations of the orbitals must be equal to the totally symmetric 

representation: 

 න ߶
∗߶ ݀߬ ≠ 0 ⟺  Γ(߶) × Γ(߶) =  (III.90) ܣ

 න ߶
∗߶ ݀߬ = 0 ⟺  Γ(߶) × Γ(߶) ≠  (III.91) ܣ

When the product of the irreducible representations of two functions results in the 

totally symmetric representation (or for the case of degenerate representations, 

results in a sum containing the totally symmetric representation), then the 

functions must have the same irreducible representation.  
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 Other integrals like the Fock integrals, where the Fock operator is totally 

symmetric, may be treated in the same way to determine if the integral is zero or 

non-zero. Using LCAOs of suitable symmetry and analyzing how their 

representations multiply can lead to savings in calculation time. Many integrals 

need not be fully calculated due to their symmetry and some matrices (e.g. the 

Fock matrix) are automatically block diagonalized due to only those elements of 

the matrix having the same symmetry being non-zero. 

 In order for LCAOs to conform to the symmetry requirements of the point group 

of a molecule, symmetry adapted linear combinations or SALCs must be formed 

from the basis functions that define the atomic orbitals. For simple systems, SALCs 

may be deduced by inspecting the atomic orbitals of the molecules but for larger 

systems a more systematic and rigorously defined method is required. Use of a 

projection operator is one such method. 

 A projection operator used in finding the symmetry adapted linear 

combinations may be written as: 

 ܵ ∝ ܲ߶ =
݀

ℎ
 ߯

ோ
ܴ߶

ோ

 (III.92) 

The operator ܲ  for a particular irreducible representation ݅ is applied to a basis 

function ߶ which projects out a linear combination of basis functions ܵ. The 

operator works by applying each of the symmetry operations ܴ  to ߶ and 

multiplying by the corresponding character ߯
ோ of the irreducible representation ݅. 

The factor  ௗ


 , made of the dimension of ݅, ݀, and the order of the group ℎ, is often 

ignored as the resulting MOs need to be normalised and this factor would be 

included then. Problems with this form of the projection operator may arise when 

applied to degenerate irreducible representations. An initial SALC ܵ
ଵ will be 

formed from ߶ଵ but to find the other partners to ܵ
ଵ ( ܵ

ଵ, ܵ
ଶ,… ܵ

ௗ) either ܲ  should 

be applied to a different basis function, e.g. ߶ଶ, or a suitable symmetry operation 

may be applied to ܵ
ଵ to find new SALCs, ܵ

. This new SALC may not necessarily be 

the partner of ܵ
ଵ but may a positive or negative of ܵ

ଵ or linear combination of ܵ
ଵ 

and one or more partners we are looking for. If ܵ
 is a linear combination of ܵ

ଵ 

and/or the SALCs of the degenerate representation ݅ we are looking for, it will not 

be orthogonal to ܵ
ଵ or any previously determined SALC. The linear combinations 
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can then be found by finding small integer values or a, b, c, … to solve the simple 

relationship ܵ
 = ܽ ܵ

ଵ + ܾ ܵ
ଶ + ܿ ܵ

ଷ + ⋯. 

III.6.III Normal Modes 

 A molecule containing N atoms has a finite number of fundamental vibrational 

motions called normal modes. If each atom is considered to have three degrees of 

freedom, then the number of normal modes a nonlinear molecule of N atoms may 

have is 3N, where 3 of these modes are translational, 3 are rational and the 

remainder 3N-6 modes are vibrational. Linear molecules have only 2 rotational 

modes and hence have 3N-5 vibrational modes. Each normal mode is described by 

a normal coordinate and by applying the symmetry operations for the point group 

of the molecule, will form the basis for an irreducible representation16,43.  

 In order to find the number of vibrational modes of each symmetry a molecule 

has, the representation of the total modes, Γଷே , must be determined. A simple way 

of doing this is to apply each of the symmetry operations of the group to the 

molecule and count the number of atoms unmoved during each operation to find 

the representation of unmoved atoms, Γ௨௩ௗ , and multiply by the 

representation of degrees of freedom i.e. the sum of the x, y and z irreducible 

representations, Γ௫௬௭ . To find the representation for the vibrational modes (Γ), 

the representations for the 3 translational (Γ்௦ ) and 3 rotational (Γோ௧ ) may be 

subtracted from Γଷே . ZnPc and H2Pc with 57 and 58 atoms, have a total of 171 and 

174 normal modes respectively. The results for the calculation of the different 

representations for ZnPc and H2Pc are shown in Table III.3 and Table III.4. 

Table III.3: Calculation of the representations of the vibrational modes of ZnPc. 

 ZnPc 

D4h E 2C4 C2 2C’2 2C”2 i 2S4 ߪ 2ߪ௩ 2ߪௗ 

Γ௨௩ௗ  57 1 1 3 3 1 1 57 3 3 

⨂Γ௫௬௭  3 1 -1 -1 -1 -3 -1 1 1 1 

Γଷே  171 1 -1 -3 -3 -3 -1 57 3 3 

−Γ்௦  3 1 -1 -1 -1 -3 -1 1 1 1 

−Γோ௧  3 1 -1 -1 -1 3 1 -1 -1 -1 

Γ 165 -1 1 -1 -1 -3 -1 57 3 3 
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Table III.4: Calculation of the representations of the vibrational modes of H2Pc. 

 H2Pc 

D2h E C2(z) C2(y) C2(x) i ߪ(xy) ߪ(xz) ߪ(yz) 

Γ௨௩ௗ  58 0 2 4 0 58 4 2 

⨂Γ௫௬௭  3 -1 -1 -1 -3 1 1 1 

Γଷே  174 0 -2 -4 0 58 4 2 

−Γ்௦  3 -1 -1 -1 -3 1 1 1 

−Γோ௧  3 -1 -1 -1 3 -1 -1 -1 

Γ 168 2 0 -2 0 58 4 2 

 Once Γ has been determined, the number of modes of each symmetry may be 

found by decomposing Γ into its irreducible representations. By applying the 

reduction formula to Γ, ZnPc is found to have 14 A1g, 13 A2g, 14 B1g, 13 Eg, 6 A1u, 8 

A2u, 7  B1u, 7 B2u and 28 Eu vibrational modes while H2Pc has 29 Ag, 28 B1g, 14 B2g, 

13 B3g, 13 Au, 15 B1u, 28 B2u and 28 B3u vibrational modes. 

 A normal coordinate Q , as expressed in section III.4.II, may be described as a 

linear combination of mass weighted Cartesian coordinates q. For smaller 

molecules, the symmetry of the normal modes may be seen by inspection but for 

larger, more complicated molecules this would be very difficult. To find a set of 

normal coordinates that form the basis for an irreducible representation, 

sometimes called symmetry coordinates29, a projection operator similar to that 

used to form Symmetry Adapted Linear Combinations of atomic orbitals may be 

used: 

 Q ∝ ܲݍ =
݀

ℎ
 ߯

ோ
ܴݍ

ோ

 (III.93) 

This projection operator works in a similar way to the projection operator for 

SALC-AOs. The operator ܲ  for a particular irreducible representation ݅ is applied 

to a weighted Cartesian coordinated ݍ which projects out a linear combination of 

coordinates forming a symmetry adapted normal coordinate, Q . 

III.6.IV Infra-red Selection Rules 

 As seen in section III.4.IV, the infrared intensity is dependent on the change in 

electric dipole moment ߤ with respect to the normal coordinate ܳ. In order for a 

transition to be allowed, the transition moment integral, ࣆொ , that connects the 
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ground state vibrational wave function ߰ொ
ᇱᇱ  to the excited state vibrational wave 

function ߰ொ
ᇱ  via the electric dipole operator ̂ߤ must be non-zero: 

ொࣆ  = න ߰ொ
ᇱ ߤ̂ ߰ொ

ᇱᇱ ݀߬ ≠ 0 (III.94) 

As ̂ߤ consists of x, y and z components, equation III.90 may be rewritten as:  

ொࣆ  = න ߰ொ
ᇱ ௫ߤ̂ ߰ொ

ᇱᇱ ݀߬ + න ߰ொ
ᇱ ௬ߤ̂ ߰ொ

ᇱᇱ ݀߬ + න ߰ொ
ᇱ ௬ߤ̂ ߰ொ

ᇱᇱ ݀߬ ≠ 0 (III.95) 

Therefore, for a transition to be allowed, one or more of the three components of 

-ொ must be non-zero. Considering symmetry arguments, for an integral to be nonࣆ

zero the direct product of the representations of the wave functions and dipole 

operators must contain the totally symmetric representation, for D4h and D2h, A1g 

and Ag respectively: 

 Γ(߰ொ
ᇱ ) × Γ(̂ߤ௫) × Γ(߰ொ

ᇱᇱ ) ⊇  ଵ/ (III.96)ܣ

 and/or  

 Γ(߰ொ
ᇱ ) × Γ(̂ߤ௬) × Γ(߰ொ

ᇱᇱ ) ⊇  ଵ/  (III.97)ܣ

 and/or  

 Γ(߰ொ
ᇱ ) × Γ(̂ߤ௭) × Γ(߰ொ

ᇱᇱ ) ⊇  ଵ/ (III.98)ܣ

The Boolean operator ⊇ meaning contains or is equal to is used to account for 

degenerate vibrational states, like those found in the D4h molecule ZnPc. These 

equations may be simplified by considering transitions from the ground 

vibrational level only which has an irreducible representation equal to ܣଵ/. As 

the product of ܣଵ/ and any other representation leaves that representation 

unchanged, only the symmetries of ̂ߤ௫ and ߰ொ
ᇱ need to be considered.  

 Γ(߰ொ
ᇱ ) × Γ(̂ߤ௫) ⊇  ଵ/ (III.99)ܣ

 and/or  

 Γ(߰ொ
ᇱ ) × Γ(̂ߤ௬) ⊇  ଵ/ (III.100)ܣ

 and/or  

 Γ(߰ொ
ᇱ ) × Γ(̂ߤ௭) ⊇  ଵ/ (III.101)ܣ

The dipole operator ̂ߤ is a vector quantity in some direction respective to the 

molecule. Generally, each of its components has an irreducible representation 

equal to the corresponding x, y and z irreducible representations: Γ(̂ߤ௫) = Γ(ݔ), 

Γ൫̂ߤ௬൯ = Γ(ݕ) and Γ(̂ߤ௭) = Γ(ݖ).  
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 When the product of two irreducible representations results in the totally 

symmetric representation, the two irreducible representations must have been 

identical. If the product of two degenerate representations, results in a sum 

containing the totally symmetric representation, these irreducible representations 

again must have been identical. This leads to the conclusion that for a normal mode 

ܳ to be IR active, its irreducible representation Γ(߰ொ
ᇱ ) must be equal to one or 

more of the x, y and z irreducible representations: 

 Γ൫߰ொ
ᇱ ൯ =  Γ(ݔ) (III.102) 

 and/or  

 Γ൫߰ொ
ᇱ ൯ =  Γ(ݕ) (III.103) 

 and/or  

 Γ൫߰ொ
ᇱ ൯ =  Γ(ݖ) (III.104) 

By applying these selection rules to ZnPc and H2Pc, ZnPc has a total of 36 IR active 

modes (8 A2u and 28 Eu) and H2Pc has a total of 71 IR active modes (15 B1u, 28 B2u 

and 28 B3u).  

III.6.V Raman Selection Rules 

 From section III.4.VI, the Raman scattering intensity is dependent on the change 

in polarizability ߙ with respect to the normal coordinate ܳ. The magnitude of the 

scattering intensity is dependent on the strength of the external electric field, ܧ. 

Similar to infra-red transitions, a transition moment integral ொܲ  describing a 

Raman transition between ߰ொ
ᇱᇱ  and  ߰ொ

ᇱ  may be written; and, as the external 

electric field is independent of the molecule, ܧ may be removed from the integral. 

Again, for a Raman transition to be allowed the integral must be non-zero:  

 ொܲ = න ߰ொ
ᇱ ܧߙ ߰ொ

ᇱᇱ ݀߬ ∝ න ߰ொ
ᇱ ߙ ߰ொ

ᇱᇱ ݀߬ ≠ 0 (III.105) 

The polarizability ߙ is a tensor comprising of a 3 x 3 matrix: 

ߙ  = 
௫௫ߙ ௫௬ߙ ௫௭ߙ
௫௬ߙ ௬௬ߙ ௬௭ߙ
௫௭ߙ ௬௭ߙ ௭௭ߙ

൩ (III.106) 

Equation III.105 may now be rewritten as a sum of the integrals containing the 9 

components of  ߙ: 

 ொܲ ∝ ∑ ∫ ߰ொ
ᇱ ߙ ߰ொ

ᇱᇱ ݀߬, ≠ 0 , (III.107) 



Chapter III: Theoretical Background and Methods 

88 

where ݉, ݊ = ,ݔ If any of the integrals of the nine integrals of ொܲ .ݖ ݎ ݕ  is non-

zero, then the normal mode ܳ will be Raman active.  

 The symmetry considerations with regard to Raman activity run similar to 

those for IR active modes. For ொܲ  to be non-zero, the direct product of the 

representations of the wave functions and polarizability tensor components must 

contain the totally symmetric representation: 

 Γ(߰ொ
ᇱ ) × Γ(ߙ) × Γ(߰ொ

ᇱᇱ ) ⊇  ଵ/, (III.108)ܣ

where ݉, ݊ = ,ݔ  Simplifications may be made when evaluating the Raman .ݖ ݎ ݕ

activity of a mode by considering transitions from the ground state only, where 

Γ൫߰ொ
ᇱᇱ ൯ =  :ଵ/ܣ

 Γ(߰ொ
ᇱ ) × Γ(ߙ) ⊇  ଵ/ (III.109)ܣ

A further simplification may be made as the tensor ߙ is symmetric, only the 6 

unique components of ߙ (ߙ௫௫, ߙ௬௬, ߙ௭௭, ߙ௫௬, ߙ௫௭ and ߙ௬௭) need to be taken into 

account. As stated previously, the sum of two identical irreducible representations 

results in the totally symmetric representation. This means that if the 

representation of a normal mode ܳ equals the representation of a polarizability 

tensor component, then ܳ is Raman active: 

 Γ൫߰ொ
ᇱ ൯ =  Γ(ߙ) (III.110) 

The symmetries of ߙ are equal to the symmetries of the binary products of x, y 

and z usually shown by the quadratic terms in the last column of the character 

tables. 

 If these Raman selection rules are applied, ZnPc is found to have 14 A1g, 14 B1g, 

14 B2g and 13 Eg Raman active modes and H2Pc to have 29 Ag, 28 B1g, 14 B2g and 13 

B3g Raman active modes. Any remaining modes that are neither IR nor Raman 

active are considered to be inactive or optically silent. ZnPc has 13 A2g, 6 A1u, 7 B1u 

and 7 B2u inactive modes while H2Pc has 13 Au inactive modes. 

III.6.VI Vibronic Selection Rules 

 Electronic states of polyatomic molecules are dependent not just on the 

electronic wavefunctions ߰ but also on the vibrational wavefunctions ߰௩ of the 

vibrational states within the electronic states. The coupling between electronic and 

vibrational states is called vibronic coupling. The probability of a transition 
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between two vibronic states induced by an oscillating electric field is proportional 

to the square of the transition moment integral: 

 µୣ,୬ = න ߰
ᇱ ߰௩

ᇱ ߰௦
ᇱ ߤ̂) + )߰ߤ̂

ᇱᇱ߰௩
ᇱᇱ߰௦

ᇱᇱ݀߬ (III.111) 

߰
ᇱᇱ, ߰௩

ᇱᇱ and ߰௦
ᇱᇱare the wavefunctions of initial ground electronic, vibrational and 

spin states and ߰
ᇱ , ߰௩

ᇱ  and ߰௦
ᇱ  are the wavefunctions of the  final excited electronic, 

vibrational and spin states. ̂ߤ and ̂ߤ are the electric and nuclear dipole moment 

operators connecting the states.  

 Ignoring the weak nuclear dipole moment contributions44 and dividing the 

electronic transition moment integral into its different components, µୣ may be 

written as: 

 µୣ = න ߰௩
ᇱ ߰௩

ᇱᇱ ݀߬ න ߰
ᇱ ߰ߤ̂

ᇱᇱ݀߬ න ߰௦
ᇱ߰௦

ᇱᇱ ݀߬ (III.112) 

These three integrals describe the three selection rules for electronic transitions 

and for a transition to be fully allowed all three integrals must be non-zero. The 

first integral is the Franck-Condon factor which describes the overlap between the 

vibrational states in the ground and excited electronic states. It is the quantum 

mechanical description of the Franck-Condon principle. The second integral 

describes the Orbital Selection rules and is sometimes called LaPorte’s rule. For 

molecule with a centre of symmetry, a transition is fully allowed if there is a 

change in inversion symmetry i.e. ݑ → ݃ and ݃ → ݑ are allowed while  ݑ ↛  and ݑ

݃ ↛ ݃ are not allowed. The third integral is the Spin Selection rule. For a transition 

to be spin allowed there must be no change in spin during transition i.e. only 

singlet to singlet, triplet to triplet etc. transitions are fully allowed. 

 Considering only spin allowed transitions, equation III.107 may be written as: 

 µୣ୪ = න ߰
ᇱ ߰௩

ᇱ ߰ߤ̂
ᇱᇱ߰௩

ᇱᇱ݀߬ (III.113) 

Applying symmetry arguments to this integral, to be non-zero the direct product of 

the symmetry representations must equal or contain the totally symmetric 

irreducible representation ܣଵ/: 

 Γ(߰
ᇱ ) × Γ(߰௩

ᇱ ) × Γ(̂ߤ) × Γ(߰
ᇱᇱ) × Γ(߰௩

ᇱᇱ) ⊇  ଵ/ (III.114)ܣ

Closed shell molecules with filled orbitals fulfilling the Pauli exclusion principle 

have ground electronic wavefunctions transforming as the totally symmetric 
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irreducible representation of the corresponding group. Similar to infra-red 

transitions, the direct product may be simplified by considering transitions from 

the ground vibrational level only which has an irreducible representation equal to 

 .ଵ/ܣ

 Γ(߰
ᇱ ) × Γ(߰௩

ᇱ ) × Γ(̂ߤ) ⊇  ଵ/ (III.115)ܣ

Again similarly to IR transitions, the electric dipole operator ̂ߤ consists of x, y and 

z components which transform as the x, y and z irreducible representations. If the 

symmetry and geometry of the excited electronic state is known, the vibronic 

structure of the UV-Vis absorption or excitation spectra may be predicted. 

 Group theory may be applied to luminescent processes, relaxation from an 

excited state to the ground state resulting in the emission of a photon. A direct 

product describing the selection rules for fluorescence (luminescent transitions 

involving no change in spin) similar to the one for absorption may be written, with 

the initial and final states reversed: 

 Γ(߰
ᇱᇱ) × Γ(߰௩

ᇱᇱ) × Γ(̂ߤ) × Γ(߰
ᇱ ) × Γ(߰௩

ᇱ ) ⊇  ଵ/ (III.116)ܣ

If transitions from the lowest vibrational state in the excited state, Γ(߰௩
ᇱ ) =   ,ଵ/ܣ

to the ground electronic state, Γ(߰
ᇱᇱ), again assuming a closed shell electronic 

ground state with an ܣଵ/ representation, equation III.112 may be simplified to: 

 Γ(߰௩
ᇱᇱ) × Γ(̂ߤ) × Γ(߰

ᇱ ) ⊇  ଵ/ (III.117)ܣ

The same selection rules may be used for phosphorescence where there is a 

change in spin during the transition. 

 The visible fluorescence for ZnPc involves a transition from the lowest 

vibrational state of a degenerate excited electronic state with ܧ௨ symmetry to the 

ground vibronic states. Inserting Γ(߰
ᇱ ) =  ௨ and the irreducible representationsܧ

for the x, y and z dipole operators, the following results are found: 

 Γ(߰௩
ᇱᇱ) × ଶ௨ܣ × ௨ܧ = Γ(߰௩

ᇱᇱ) × ܧ ⊇  ଵ (III.118)ܣ

 Γ(߰௩
ᇱᇱ) × ௨ܧ × ௨ܧ = Γ(߰௩

ᇱᇱ) × ൫ܣଵ + ଶܣ + ଵܤ + ଶ൯ܤ ⊇  ଵ (III.119)ܣ

The fluorescence of ZnPc is predicted to relax to vibrational states with A1g, A2g, 

B1g, B2g and Eg symmetry. These states include the Raman active modes, A1g, B1g, B2g 

and Eg, and the inactive A2g modes. 
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 Visible absorption in H2Pc occurs between the ground state to two non-

degenerate states with B1u and B2u symmetry, or B3u and B2u states when the axes 

have been re-orientated to match those of ZnPc. In solids and liquids, fluorescence 

is only seen from the lower energy B3u state. Considering emission from this state 

only and the x, y and z irreducible representations, the following direct products 

are found: 

 Γ(߰௩
ᇱᇱ) × ଵ௨ܤ × ଷ௨ܤ = Γ(߰௩

ᇱᇱ) × ଶܤ ⊇   (III.120)ܣ

 Γ(߰௩
ᇱᇱ) × ଶ௨ܤ × ଷ௨ܤ = Γ(߰௩

ᇱᇱ) × ଵܤ ⊇   (III.121)ܣ

 Γ(߰௩
ᇱᇱ) × ଷ௨ܤ × ଷ௨ܤ = Γ(߰௩

ᇱᇱ) × ܣ ⊇   (III.122)ܣ

The fluorescence from the B3u electronic state of H2Pc is predicted to relax to 

vibronic states with Ag, B1g and B2g symmetry. Like ZnPc, these modes are similar 

to the Raman active modes Ag, B1g, B2g and B3g except B3g modes are predicted to be 

vibronically forbidden. By applying symmetric arguments to transitions from the 

B2u excited electronic state, relaxation to the Ag, B1g and B3g vibronic states are 

predicted to be allowed for gas phase H2Pc. 

III.7  Calculation Procedure 

The following section will describe the procedure used to determine the various 

molecular properties calculated in this work. An outline of how the quantum 

mechanical software package Gaussian 03 implements the theoretical principles 

described in this chapter will be given. The order in which the calculations were 

conducted was as follows: 

 The geometries of the molecules were optimised 

 The force constant matrix and vibrational frequencies were determined 

  The infrared absorption and Raman scattering intensities were calculated 

 The vibrational frequencies, IR and Raman intensities of the isotopic 

analogues of the molecules were determined 

 The energy and oscillator strengths of the electronic transitions were 

determined using TD-DFT 

III.7.I Geometry Optimisation 

As molecules vibrate about their equilibrium structure, the first step in calculating 

the properties of a real molecule is to find equilibrium structure of the molecule we 

are interested in. Geometry optimisation attempts to find an equilibrium structure 
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by locating a minimum on the potential energy surface (PES) of the molecules 

atomic coordinates. A minimum is found by calculating the first derivative of the 

energy with respect to the atomic coordinates, also known as the gradient. When 

the gradient is equal to zero a stationary point is found where the forces are also 

equal to zero. A stationary point may not necessarily be the minimum we are 

looking for but may be a saddle point on the PES. During an optimisation 

procedure, the energy and gradient are calculated at each point and are used to 

determine how far and in what direction to move the atoms in order to find a 

minimum. An approximate value of the second derivatives of the energy is also 

computed creating a force constant or Hessian matrix. This Hessian matrix 

determines the curvature of the PES at a point and is used to help determine the 

next step to be taken. 

1st Order Saddle Point
(Transition Structure)

1st Order Saddle Point
(Transition Structure)

Inflection Point

2nd Order Saddle Point
(Local Maximum)

2nd Order Saddle Point
(Local Maximum)

Local Minimum
(Structure B)

Local Minimum
(Structure A)

Local Minimum
(Structure C)

 
Figure III.5: Potential Energy Surface (PES) showing stationary points and reaction coordinates 
between three molecular structures. Image © H. Bernhard Schlegel, Wayne State University. 

 When an energy minimised structure is found the optimisation is said to have 

converged. The optimisation algorithm and convergence procedure used by 

Gaussian 03 is the Berny algorithm and is based on an algorithm developed by H. 

Bernhard ‘Berny’ Schlegel45. The four convergence criteria used in the Berny 

algorithm are that the maximum force and root-mean-square of the forces must be 

close to zero and that the maximum displacement and root-mean-square of the 

displacements for the next step must be small. The cut off threshold points for 

these criteria are set by the user for each optimisation. Tight convergence criteria 
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were used throughout this work with the max and RMS energy thresholds of 1.5 x 

10-5 and 1.0 x 10-5 au respectively while the max and RMS displacement thresholds 

were of 6.0 x 10-5 and 4.0 x 10-5 au respectively. More relaxed convergence criteria 

(i.e. larger energy and displacement criteria) may be needed for molecules with 

shallow minimum potential energy wells. 

III.7.II Vibrational Frequencies 

 Once a converged geometry is found, the vibrational frequencies may be 

determined using the GF method of E. B. Wilson29 and implemented in Gaussian 03 

using the method described by Ochterski in a white paper released by Gaussian 

Inc.46. The first calculation made in determining the vibrational frequencies is to 

calculate the full Hessian matrix of the second derivatives, Hcart, with respect to the 

atomic Cartesian coordinates, x. As this is second order term of the Taylor series 

described in Section III.4.III, the energy and first order terms (determined in 

during geometry optimisation) must both be equal to zero. It is for this reason that 

frequency calculations are only meaningful if they are calculated using a geometry 

optimised to a stationary point and that they are calculated at the same level of 

theory used in the geometry optimisation procedure. Once the second derivatives 

with respect to Cartesian coordinates are found, this Hessian is mass weighted, 

transforming it into a matrix, HMWC, of the second derivatives with respect to mass 

weighted coordinates or normal modes, q. 

 Hୡୟ୰୲ = ቆ
∂ଶV

∂x୧ ∂x୨
ቇ


 ⇒ Hେ =

Hୡୟ୰୲

ඥm୧m୨
= ቆ

∂ଶV
∂q୧ ∂q୨

ቇ


 (III.123) 

  In order to remove the lower energy translational and rotational frequencies, 

the principal axis of inertia is found and a 3 x 3 moment of inertia tensor is 

determined. This tensor is used to generate a transformation matrix, D, which 

transforms the mass weighted Hessian into internal coordinates, Hint, removing the 

translational and rotational modes. This Hessian is diagonalised yielding the 

eigenvalues corresponding to the frequencies and the eigenvectors corresponding 

to the normal modes. Transforming Hint using the eigenvector matrix L yields the 

diagonal matrix Λ of the eigenvalues. The individual eigenvalues λ are equal to 

4π2ν2 and each of the vibrational frequencies i are calculated in cm-1 using the 

equation: 

 ν୧ = ඨ λ୧

 ଶܿଶ (III.124)ߨ4
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The reduced mass, force constants and normalised Cartesian displacements of 

each normal mode are also calculated. As the calculation of Hcart matrix is the most 

time consuming procedure in the calculation of the molecular vibration 

frequencies, the values of this matrix are stored in a ‘checkpoint’ file. With the Hcart 

stored, frequencies of other isotope analogues may be quickly and easily calculated 

without having to calculate the force constant matrix again. 

 Some of the eigenvalues calculated may be negative and after determining their 

frequency in cm-1 using the absolute value of λ, Gaussian flags these as negative 

frequencies. These negative or imaginary frequencies show that the starting 

geometry was not optimised to a local minimum but was instead optimised to a 

saddle point on the PES. One imaginary frequency indicates a first order saddle 

point was found and that the geometry was optimised to a transition state (which 

may have been the goal of the calculation). More than one imaginary frequency 

indicates higher order saddle points and the geometry may have to be re-

optimised along the direction of the Cartesian displacement of the imaginary 

normal mode with the highest absolute frequency. 

III.7.III IR and Raman Intensities 

 In order to calculate the IR and Raman intensities described in sections III.4.V 

and III.4.VI, the dipole moment and polarizability derivatives must be calculated. 

To determine these derivatives, the potential energy gradients, g, in the presence 

of an electric field, F, are calculated47. The first derivatives of g are equivalent to 

the derivatives of the dipole moment, µ, with respect to the molecular Cartesian 

coordinates, x, while the second derivatives are equivalent to the derivatives of the 

polarizability, α. 

 
∂µ
∂x୧

= −
∂

∂x୧

∂E
∂F

= −
∂

∂F
∂E
∂x

= −
∂g୧

∂F
   (III.125) 

 
∂α
∂x୧

= −
∂

∂x୧

∂µ
∂F

= −
∂

∂F
∂µ
∂x୧

= −
∂ଶg୧

∂Fଶ  (III.126) 

 As the polarizability derivatives involve the calculation of the second derivatives 

of the gradients, Raman intensities are computationally more demanding than IR 

intensities which involve first derivatives. To transform the dipole moment and 

polarizability derivatives with respect to Cartesian coordinate into derivatives 

with respect to the normal modes, the following expressions are used48, 
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dµ

dQ୩
= 

∂x୧

∂Q୩

∂µ
∂x୧୧

≡  M୧୩L୧୩
∂α
∂x୧୧

 (III.127) 

 
dα

dQ୩
= 

∂x୧

∂Q୩

∂α
∂x୧୧

≡  M୧୩L୧୩
∂α
∂x୧୧

 (III.128) 

where ∂xi/∂Qk are the mass weighted Cartesian displacements determined during 

the frequency calculations and are equivalent to the eigenvector matrix L. 

III.7.IV Electronic Excitation Energies 

 Using the expressions developed from linear response time-dependent DFT, the 

excitation energies and oscillator strengths of molecules can in principle be 

calculated exactly. In practice, the accuracy of these calculations depends on the 

quality of the exchange-correlation functional and the basis sets used to describe 

the KS orbitals. Linear response TDDFT is unsuitable for the treatment of certain 

excitations including those involving strong external potentials (large perturbation 

of the ground state electronic structure), charge transfer transitions (system 

cannot be assumed to be non-interacting) and Rydberg states (ground state 

exchange-correlation functionals do not predict the properties of asymptotes 

correctly). 

 TD-DFT is implemented in Gaussian 03 using the Casida formalism49. In 

practice, the DFT functional and basis set are selected as well as the number of 

excited states and whether singlet and/or triplet states are desired. The ground 

state geometry of the molecular system of interest, usually one that has been 

optimised previously using DFT or another ab initio method, is also inputted or 

read from a checkpoint file. Previous TD-DFT calculations using the same basis set 

may be used as a starting point for further calculations (e.g. more excited states, 

different exchange-correlation functionals, etc.). Once the excited state has 

converged, Gaussian outputs, among other results, the excitation energies, 

oscillator strengths (f), transition dipole moments and symmetry assignments of 

the excited states. The coefficients of singly excited orbital configurations 

contributing to the excited state wavefunctions are also given, analogous to those 

found using ab initio CI methods. Due to the change in spin during a triplet 

transition, the orbital coefficients are normalised to 1 while the singlet orbital 

coefficients are usually normalised to 0.5. As the state symmetries are not 

calculated directly, the direct product of the symmetry of the singly excited orbital 

configurations is used to assign the states.  
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Chapter IV: Infra-red and Raman 

Spectroscopy of Free-Base and Zinc 

Phthalocyanines 

IV.1 Introduction 

 This chapter will present the results from a study of the vibrational 

spectroscopy of free-base and zinc phthalocyanine. The matrix infra-red 

absorption spectra of H2Pc and its isotopomers D2Pc and HDPc isolated in inert gas 

solids were recorded along with the spectra of the metallo-phthalcyanine, ZnPc, for 

comparison. The Raman spectra of H2Pc, D2Pc and ZnPc in KBr disks were also 

recorded. DFT calculations using the B3LYP/6-311++G(2d,2p) method were 

performed in order to assign the vibrational modes observed in both the matrix-

isolated infra-red absorption and KBr Raman spectra. 
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Figure IV.1: The structures of free-base and zinc phthalocyanine determined by large basis 
[311++G(2d,2p)] set DFT geometry optimisation using the B3LYP functional.  Both structures were 
found to be planar yielding molecular structures with D2h and D4h symmetries for H2Pc and ZnPc 
respectively.  The atom labelling used in these calculations is indicated and the values determined 
are provided in Table IV.5. 

 The experimental results for matrix IR and KBr Raman spectra recorded for 

ZnPc, H2Pc and of the effects of deuteration are presented in Parts IV.2.I, IV.2.II and 

IV.2.III. Part IV.3 gives an overview of the DFT data including the optimised 

geometries and the vibrational modes calculated for ZnPc and H2Pc. A discussion of 
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both the experimental and computational data obtained for ZnPc, H2Pc and its 

isotopomers D2Pc and HDPc is given in Part IV.4. This discussion is divided into 

three parts dealing with (IV.4.I) IR spectra, (IV.4.II) Raman spectra and (IV.4.III) 

isotopic shifts. The final part summarises the main conclusions made. 

IV.2 Experimental Results  

IV.2.I ZnPc 

 
Figure IV.2:  Infrared spectra of ZnPc and H2Pc molecules isolated in a N2 matrix at 13 K in the two 
spectral regions with the strongest absorptions. The asterisks (*) denote small amounts of the 
matrix-isolated impurities carbon dioxide and water. 

 An infrared absorption spectrum recorded for ZnPc isolated in a N2 matrix is 

shown in the upper panel of Figure IV.2.  The most intense infrared active bands of 

this molecule are situated between 400 and 1650 cm-1. Other less intense bands, 

arising from C-H stretching modes are located, as shown in the panel on the right, 

around 3100 cm-1.  Weak bands observed between 1650 and 3000 cm-1, are 

expected to be combination modes and were not investigated. The most intense 

vibrational bands of ZnPc in the mid-IR are situated at 1095.9, 1117.8 and 1332.2 

cm-1 in N2 matrices.  Weaker bands in the C-H stretching mode region are, as 

shown in the right hand panel, situated at 3038.3, 3072.3 and 3093.5 cm-1.  The 

spectra of ZnPc in other matrices (Ar, Kr and Xe) are similar to the spectrum 
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shown for N2 in Figure IV.2, but the bands shift slightly to lower energies as 

exemplified by the absorption spectra in Figure IV.3.  

 
Figure IV.3: FT-IR absorption spectra of ZnPc in N2, Ar, Kr and Xe solids in the 700 – 925 cm-1 
spectral region. The vertical dash lines indicate the absorption bands in N2 and help illustrate the 
shift to lower energies in the other matrices. 

 The observed vibrational bands are in good agreement with the KBr disc IR 

spectrum published by Tackley et al.1 although the bands in cryogenic matrices are 

better resolved and shifted to the blue. The frequencies of the observed 

fundamental modes in all matrices studied are given in Table IV.1 along with KBr 

data recorded in the present work. Very small shifts of vibrational frequencies are 

noticeable from one host gas to another. In cryogenic matrices, all the bands are 

quite narrow, except in the CH stretch region. The structure in this region could be 

due to site effects, since the C-H bonds of the aryl group are located on the outer 

part of the molecule.  As a result, these stretching modes are most sensitive to the 

trapping environment as revealed by a pronounced KBr – matrix shift in Table IV.1. 
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Table IV.1: Infra-red frequencies (in cm-1) observed for ZnPc trapped in different solids. The 
symmetries provided were obtained from DFT calculations. The corresponding theoretical 
frequencies have been scaled by a factor of 0.98 below 2000 cm-1, while a value of 0.96 has been 
used for the C-H modes in the vicinity of 3000 cm-1.  The symmetry labels given for the molecular 
vibrations of ZnPc utilise the D4h group.  The experimental values shown in bold are the most 
intense bands.  The values indicated by an asterisk are possible combination bands, while those 
indicated “sh” are unresolved shoulders on more intense bands. 

KBr Ar Kr Xe N2 DFT 
(scaled) 

DFT 
(unscaled) 

Sym 

435 - - 430.0  - 437.3 446.2 A2u 
499 502.2 - 501.2 502.0 501.4 511.4 Eu 
571 573.4 573.8 572.0 573.4 574.1 585.8 Eu 
635 637.3 - 640.4 640.7 639.8 652.8 Eu 
727 732.7 731.5 730.8 733.9 734.0 749.0 A2u 
752 754.4 754.4 754.0 754.7 752.6 768.0 Eu 
782 778.8 778.2 777.7 780.8 781.1 797.0 A2u 
887 890.1 889.6 889.4 890.2 887.9 906.0 Eu 
1004 1004.7 1004.5 1003.7 1005.5 1009.4 1030.0 Eu 

1060 
1063.1 
1069.3 

1062.4 
1068.4 

1061.4 
1068.6 

1063.6 
1070.2 

1062.8 1084.5 Eu 

1088 1094.8 1094.5 1093.6 1095.9 1089.0 1111.1 Eu 
1116 1117.4 1116.8 1114.5 1117.8 1115.5 1138.2 Eu 
1164 1167.7 1167.3 1165.7 1168.2 1166.2 1190.0 Eu 

1285 1287.1 
1296.0 

1287.1 
1295.0 

1285.8 
1292.1 

1288.1 
1297.8 1294.0 1320.4 Eu 

- 1310.7 1307.8 1306.6 1313.5 1316.9 1343.8 Eu 

1331 
1331.8 
1338.0 

1331.5 
1337.6 

1331.8 
1336.8 

1332.2 
1339.4 

1332.4 1359.6 Eu 

1409 1412.2 1411.7 1410.5 1413.5 1407.9 1436.6 Eu 
1454 1459.3 1458.1 1458.4 1459.7 1461.2 1491.0 Eu 
1482 1491.0 1490.4 1488.9 1491.0 1481.4 1511.6 Eu 
1607 - - 1613.9 1615.1 1608.5 1641.3 Eu 
3020* 3035.1* 3034.8* 3031.1* 3038.3* - -  
- 3061.5sh 3059.1sh 3054.0sh 3064.0sh 3061.3 3174.0 Eu 
3045 3069.2 3067.6 3061.1 3072.3 3074.4 3187.6 Eu 
- 3093.0 3092.1 3086.7 3093.5 3091.0 3204.8 Eu 
 

 

 

 

 

 

 

 

 

 



Chapter IV: Infra-red and Raman Spectroscopy of Free-Base and Zinc Phthalocyanines 

103 

Raman spectra of ZnPc were recorded only in KBr pellets at room 

temperature. The 100 -1700 cm-1 range is shown in the upper panel of Figure IV.4. 

The most intense bands are situated at 676.5, 1338.3 and 1506.8 cm-1. As expected, 

the results we obtained with 532 nm excitation, compare well with the spectrum 

recorded by Tackley2 who employed an excitation wavelength of 514 nm. Beyond 

1700 cm-1, the Raman spectrum exhibits several bands, consisting mostly of 

overtones or combinations bands, so that the C-H stretching modes are difficult to 

identify clearly. On the other hand, our results reveal only four very low frequency 

(below 400 cm-1) modes. The frequencies of the recorded Raman bands are 

collected in Table IV.2. 

 

Figure IV.4 Raman spectra of ZnPc and H2Pc in KBr pellets recorded at room temperature with 532 
nm excitation.  Conspicuous in the high frequency spectral region is the absence of a strong 
symmetric N-H stretch which is quite pronounced in the corresponding IR spectrum of H2Pc. Its 
possible location, obtained with DFT prediction, is indicated by the arrow. 
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Table IV.2: Vibrational frequencies (in cm-1) measured in KBr pellets for the Raman active modes 
of D2Pc, H2Pc and ZnPc. The DFT results are shown scaled by a factor of 0.98 and unscaled. The 
strongest observed bands are shown in bold.  

D2Pc  H2Pc    ZnPc   

Obs. Obs. Calc.scaled Calc. 
unscaled Sym Obs. Calc. Scaled Calc. 

unscaled Sym. 

128.7 (w) 129.9 (w) 130.2 (.002) 132.9 Ag 157.4 (m) 154.5 (.001) 157.6 B1g 
183.7 (m) 182.9 (m) 177.6 (.002) 181.2 B1g 228.3 (m) 227.2 (.002) 231.8 B2g 
206.0 (w) 204.7 (w) 207.7 (.000) 211.9 B1g     
228.3 (w) 228.3 (w) 225.4 (.004) 229.7 Ag 257.2 (w) 253.2 (.003) 258.4 A1g 

- -    286.0 (w) 282.6 (.000) 288.4 Eg 
479.4 (w) 479.9 (w) 477.9 (.007) 487.6 B1g 479.9 (w) 479.9 (.006) 489.7 B2g 

     494.0 (w) 498.5 (.000) 508.7 Eg 
540.4 (w) 541.3 (w) 540.3 (.002) 551.3 Ag     
565.6 (m) 565.7 (m) 566.0 (.002) 577.5 Ag 588.3 (s) 588.1 (.006) 600.1 A1g 

     642.0 (w) 645.9 (.000) 659.1 Eg 
680.0 (s) 679.9 (s) 676.6 (.020) 690.4 Ag 676.5 (vs) 676.1 (.016) 689.9 A1g 

     717.2.(w) 724.3 (.000) 739.1 Eg 
720.2(m) 722.8 (m) 728.6 (.060) 743.5 Ag 746.8 (w) 749.5 (.050) 764.8 B1g 

764.7 (vw) 764.7 (vw) 763.7 (.001) 779.3 Ag 772.3 (vw) 772.3 (.020) 788.7 B1g 
     782.0 (vw) 792.8 (.000) 809 Eg 

794.5 (s) 796.1 (s) 794.5 (.009) 810.7 Ag 830.0 (m) 834.5 (.008) 851.6 A1g 
     845.0 (w)    
     873.0 (w) 879.8 (.000) 897.8 Eg 

888.1 (w) 888.9 (w) 889.3 (.000) 907.4 B1g     
1006.9 (w) 1007.3 (w) 1008.4 (.012) 1029.0 Ag 1008.9(w) 1009.8 (.026) 1030.4 A1g 
986.1(w) 

1026.3 (w) 1026.3 (w) 1028.7 (.012) 1049.7 B1g 1032.0 (m) 1035.5 (.006) 1056.6 B2g 

         
1044.1(m) 
1082.7 (m) 1081.4 (m) 1084.8 (.002) 1107.0 B1g 945.8(m) 944.3 (.002) 963.6 B2g 

         
1097.6 (m) 1099.1 (m) 1099 (.000) 1121.7 B1g     
1105.0 (m) 1104.4 (m) 1109.9 (.020) 1132.5 B1g 1107.6 (w) 1109.3 (.019) 1131.9 B2g 
1116 9(vw) 1117.4 (w) 1116.0 (.050) 1138.3 Ag     
1139.2 (s) 1140.3 (s) 1140.7 (.130) 1164.0 Ag 1141.9(m) 1141.0 (.144) 1164.3 B1g 
1155.6 (w) 1154.9(vw) 1161.3 (.180) 1185.2 Ag     

1183.8 
(vw) 1180.9 (w) 1179.9 (.060) 1211.4 Ag 1182.5 (w) 1178.1 (.066) 1202.1 B1g 

     1197.1(w)    
1217.9 (w) 1227.8 (w) 1233.5 (.140) 1258.7 B1g 1210.0 (w) 1207.4 (.037) 1232.0 B2g 

     1218.1(w)    
1313.1(w) 1312.8 (w) 1312.5 (.009) 1339.3 B1g 1304.9 (w) 1304.8 (.023) 1331.4 B2g 
1335.4(vs) 
1344.3(vs) 

1336.7 
(vs) 

1333.7 (.134) 
1345.8 (.146) 

1360.9 
1373.3 

Ag 
Ag 

1338.3 
(vs) 

1336.5 (.107) 
1341.5 (.088) 

1363.8 
1368.9 

A1g 
B1g 

1402.2 (m) 1406.5 (w) 1393.9 (.025) 1422.4 Ag 1404.9 (m) 1393.0 (.030) 1421.4 A1g 

1427.5 (s) 1426.9 (m) 1430.8 (.053) 
1431.6 (.148) 

1459.0 
1460.9 B1g 1431.7 (m) 1427.9 (.024) 1457.0 B2g 

1449.8 (m) 1450.5 (m) 1452.0 (.094) 1481.6 Ag 1447.4 (m) 1449.1 (.101) 1478.7 B1g 
- - - - - 1474.0 (w) 1479.4 (.011) 1509.6 B2g 

1518.1 (s) 1511.5 (s) 1510.3 (.088) 1541.1 Ag  - - - 

1540.4(vs) 
1539.5 

(vs) 1551.2 (1.00) 1582.9 Ag 1506.8 
(vs) 1526.0 (1.000) 1557.2 B1g 

1583.5 (w) 1584.4 (w) 1579.1 (.006) 1611.4 Ag 1584.4 (w) 1582.4 (.004) 1614.7 B1g 
1616.2 (w) 1616.8 (w) 1613.9 (.004) 1646.8 B1g 1607.6 (w) 1609.6 (.002) 1642.5 B2g 
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IV.2.II H2Pc 

 The IR spectrum of H2Pc in N2 is shown in the lower panel of Figure IV.2.  

The main difference with the spectrum of ZnPc is the appearance of two new 

intense bands - a triplet centred around 1000 cm-1 and a sharp singlet band at 

3311.5 cm-1. These bands have been attributed in the infra-red spectra of KBr 

discs3 to the N-H deformation and N-H stretching modes respectively.  The latter 

assignment is entirely appropriate, the former will be examined in detail later in 

this chapter. Spectra recorded in other matrices (Ar, Kr and Xe) are similar to the 

one shown in Figure IV.2 for N2 but are also shifted to lower energies (Figure IV.5). 

As in ZnPc, all the bands are narrow, except those corresponding to CH stretching 

modes between 3000 and 3100 cm-1. The frequencies of the observed modes of 

H2Pc in all matrices studied are collected in Table IV.3. Spectral shifts from one 

matrix host to another are very small, but as previously found with ZnPc, the shifts 

are larger between KBr and the inert gas hosts. The IR signatures of ZnPc and H2Pc 

can be compared in Figure IV.2, illustrating the differences between the entries in 

Table IV.1 and Table IV.3 for these molecules. 

 
Figure IV.5: FT-IR absorption spectra of H2Pc in N2, Ar, Kr and Xe solids in the 700 – 900 cm-1 
spectral region. The vertical dash lines indicate the absorption bands in N2. The presence of broad 
absorption bands due to aggregates can be clearly seen in Kr and Xe matrices underneath the 
narrower, more intense isolated bands. 
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Table IV.3: Infra-red frequencies (in cm-1) observed for H2Pc trapped in different solids.  The DFT 
results shown have been scaled with the same factors as used in Table IV.1.  The symmetry labels 
given for the vibrations utilise the D2h point group, with the z-axis perpendicular to the molecular 
plane. Some of the weakest unassigned bands may arise from site splitting or Pc aggregates. 

KBr Ar Kr Xe N2 DFT 
(Scaled) 

DFT 
(Unscaled) Sym 

493 494.3 494.6 493.4 494.4 492.5 502.6 B3u 
556 556.6 555.8 556.0 556.2 556.0 567.4 B3u 
618 618.2 617.9 617.5 618.4 619.6 632.3 B3u 

 722.7 722.0 721.2 724.7 725.7 740.5 B1u 
730 731.0 730.6 730.5 730.9 731.5 746.5 B3u 
735 736.6 736.3 735.9 736.4 735.8 750.8 B2u 
765 764.8 764.6 762.6 766.9 762.8 778.4 B1u 

- 785.6 784.7 783.6 787.4 783.1 799.1 B3u 
874 875.4 874.8 875.3 875.7 874.0 891.8 B3u 

- 980.9 980.4 976.0 980.8 - -  
1007 991.5 995.7 994.6 995.0 1016.5 1037.2 B3u 

- 997.6 1001 1001.0 1003.0 - -  
 1011.3 1011.1 1010.4 1012.7 - -  

1045 1044.6 1045.4 1045.7 1047.1 1047.0 1068.4 B2u 
 1065.4 1064.8 1064.5 1065.9 1064.3 1086.9 B3u 
 1075.7 1072.9 1070.2 1074.9 - -  

1094 1096.1 1095.0 1094.2 1096.0 1086.9 1109.0 B2u 
1110 1110.7 1110.5 1101.3 1112.4 1109.3 1131.9 B3u 
1118 1120.0 1119.2 1118.6 1120.6 1116.8 1139.6 B2u 

 - 1154.8 1152.5 1155.3 1157.8 1181.4 B2u 
1160 1158.9 1158.1 1157.6 1159.7 1162.4 1186.1 B3u 
1189 1191.1 1190.5 1188.7 1192.2 1190.3 1214.6 B2u 

- 1201.8 1200.0 1197.9 1202.5 - -  
 1251.6 1252.0 1251.5 1252.7 1260.7 1286.4 B2u 

1277 1276.2 1277.9 1277.3 1277.3 1286.3 1312.6 B3u 
 1279.0 - - 1280.2    

1303 1302.2 1301.2 1300.0 1305.3 1307.4 1334.1 B2u 
 1309.0 1307.5 1307.4 -    

1321 1322.2 1322.2 1321.5 1323.2 1313.1 1339.9 B2u 
1335 1336.6 1336.1 1336.5 1336.4 1331.6 1358.8 B3u 

1343sh 1346.5 1345.9 1345.5 1346.7 1343.1 1370.6 B2u 
1438 1440.8 1439.9 1438.9 1441.1 1444.0 1473.5 B2u 
1459 1459.5 1459.5 1460.0 1459.4 - -  

- 1466.5 1464.9 1461.9 1466.8 1460.8 1490.7 B3u 
- 1496.3 - - 1494.9    
- 1498.8 1498.4 1497.6 1498.4 1499.4 1530.0 B2u 
 1501.2 - - 1501.6 - -  

1503 1506.1 1505.2 1504.3 1507.3 1500.9 1531.5 B3u 
- 1513.1 1512.0 - 1513.1    
 - 1538.7 1537.9 1540.8 1536.5 1567.9 B2u 

1609 1607.8 1610.3 1608.8 1610.7 1606.3 1639.1 B3u 
 1623.5 1620.1 1618.7 1621.1 1613.8 1646.8 B2u 

3049* 3039.6* 3035.2* 3034.6* 3041.0* - -  

- 3063.4sh 3057.9sh - - 3058.6 
3063.8 

3172.8 
3176.6 

B3u 
B2u 

3075 3072.8 3070.4 3066.0 3075.6 3073.4 
3076.8 

3186.5 
3190.1 

B2u 
B3u 

- 3086.1 3082.3 3079.5 3087.2 3089.9 
3093.0 

3203.6 
3207.8 

B2u 
B3u 

3289 3310.0 3308.1 3309.2 3311.5 3307.3 3556.3 B3u 
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The infrared absorption spectrum of H2Pc in KBr discs has been published 

previously by Shurvell and Pinzuti4. As found in ZnPc, the H2Pc bands in KBr are 

red-shifted and broadened compared to the matrix bands because of the 

interaction between dopant molecules in KBr. This effect is clearly evident in 

Figure IV.6 which presents a comparison of the spectra recorded in solid Ar and in 

KBr. However, in contrast to the ZnPc system, several significant differences exist 

between the KBr and matrix spectra of H2Pc. The most significant differences are 

evident in the 740 and 1000 cm-1 regions, which have been the subject of much 

debate and confusion.   Several bands present in KBr (685, 712.1 and 716.5 cm-1) 

are absent in the matrix spectra. The fact that they are absent or observed with a 

drastic reduction in intensity (compared to the bands around 730 and 736 cm-1) in 

the matrix spectra indicates that these bands are due to H2Pc aggregates. The 

strongest band in KBr at 1006.5 cm-1 is much narrower and located at a lower 

frequency (995 cm-1) in the N2 matrix. All other modes in inert host matrices are 

observed at higher energy than in KBr.  As a result of the comparison shown in 

Figure IV.6, it can be concluded that the most intense band in the KBr IR spectrum 

arises predominantly from phthalocyanine aggregates. 

 
Figure IV.6: A comparison of the IR spectra recorded for H2Pc trapped in an Ar matrix at 14 K and 
in a KBr pellet at room temperature. Major differences in the spectra are evident in the 740 and 
1000 cm-1 regions, both of which have, been attributed to the N-H bending modes in the literature. 
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The Raman spectrum of H2Pc in KBr discs, recorded under the same 

conditions as ZnPc in KBr is shown in the lower panel of Figure IV.4 while the 

corresponding vibrational frequencies are reported in Table IV.2. The similarities 

between H2Pc and ZnPc Raman spectra are striking, and much more extensive than 

between the corresponding IR spectra shown in Figure IV.2. This behaviour would 

immediately suggest that the N-H modes of free-base phthalocyanine are only 

weakly Raman active. 

IV.2.III Deuteration effects  

 Two syntheses of D2Pc were used in matrix-IR experiments yielding mixtures of 

H2Pc, HDPc and D2Pc with, as shown by the lower traces in Figure IV.7, slightly 

different compositions for two spectra recorded in Ar. The plot on the right shows 

the N-H stretching region. The less intense band at 3310.0 cm-1 is the 

antisymmetric stretching of H2Pc, which was already observed in pure H2Pc 

samples and is shown for comparison by the black trace in Figure IV.7 (bottom). 

The more intense band is the N-H stretching of HDPc at 3337.1 cm-1. The left panel 

in Figure IV.7 shows the region of the N-D stretching. The highest energy feature at 

2538.6 cm-1 is a combination band already present in the spectrum of pure H2Pc 

shown by the black trace. The absorption at 2480.5 cm-1 is more intense in mixture 

1 and since this sample contains most D2Pc, this band is assigned to the N-D 

antisymmetric stretching mode of the fully deuterated molecule. 
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Figure IV.7: Raw spectra of the two mixtures of H2Pc, HDPc and D2Pc in solid Ar obtained by 
synthesis 1 and 2. Spectrum of 2 has been divided by a factor of 1.45 in order to make the 
intensities of the bands of H2Pc and D2Pc coincide.  The absorption of a sample containing only H2Pc 
is shown to allow identification of a combination mode at 2538 cm-1.  The upper section shows the 
difference spectra in the region of the N-D and N-H stretching modes of H2Pc, HDPc and D2Pc in an 
Ar matrix.  The broad underlying curvature present in the two difference spectra is a result of 
working with two samples having slightly different thicknesses.  DFT predictions are shown by the 
stick spectra scaled by the indicated factors. 

This assignment is fully supported by data extracted from the difference 

spectra. Difference spectra containing only HDPc or D2Pc were obtained with the 

following procedure. First: the spectrum of pure H2Pc is multiplied by a coefficient 

and subtracted from those of mixtures 1 and 2, so in the difference spectra the 

intensity of the pure N-H stretching mode in H2Pc (in argon the band at 3310 cm-1) 

is equal to 0. Two spectra, containing only HDPc and D2Pc: mixture 1’ and 2’, are 

thereby obtained. Second: the spectrum of 1’ is multiplied by a coefficient and 

subtracted from spectrum 2’ so the intensity of the N-D stretching mode band of 

D2Pc (at 2480.5 cm-1 in Ar) is equal to 0. This difference spectrum is now that of 

pure HDPc. Third: the spectrum of 2’ is multiplied by a coefficient and subtracted 

from spectrum 1’, so the intensity of the band of HDPc at 3337.1 cm-1 in Ar (N-H 

stretching mode) is equal to 0. This difference spectrum shows only D2Pc bands.  

The difference spectra generated for HDPc and D2Pc isolated in an Ar matrix 

are presented in the upper panels of Figure IV.7 in the N-D (left panel) and N-H 
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stretching regions. Two unaccounted bands are located at 2499.0 and 2523.3 cm-1 

in the raw spectra of the both mixtures but with the help of difference spectra, the 

former can be assigned to the N-D stretching in HDPc. In conclusion, the N-H and 

N-D stretching modes of HDPc are at 3337.1 and 2499.0 cm-1 respectively. 

The overlap between the bands of the three isotopomers in the 400 to 1600 

cm-1 region does not allow us to use the raw mixture spectra to identify the lower 

frequency modes for each species. This problem can be resolved if “difference” 

spectra are used instead. The signal-to-noise ratio in the difference spectra is 

lower than in the original mixture spectra and as a result, this method can only be 

used to analyse the most intense IR bands. 
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Figure IV.8: Infra-red spectra in the region of 700-800 cm-1 of H2Pc, HDPc and D2Pc trapped in 
different solids (Ar, N2 and Kr). The results of the DFT calculations on these three isotopomers are 
shown by the stick spectra. For comparison purposes the DFT results have been scaled by 0.98.  The 
labels OP and IP indicate out-of-plane and in-plane bending modes respectively.  Particularly 
noteworthy is the mode labelled OP2 whose frequency increases from the light (H2Pc) to the heavy 
(D2Pc) isotopomer. 

Figure IV.8 and Figure IV.9 show the difference spectra extracted for HDPc and 

D2Pc in the 700-800, the 900-1150 and the 1150-1300 cm-1 regions together with 

the pure H2Pc spectrum. Other than the N-H(D) stretching regions, these are the 

spectral ranges where the largest shifts were observed between the spectra of the 

three isotopomers. All the other bands are only slightly shifted (<2 cm-1) upon H/D 

substitution.  As shown in the left panel of Figure IV.8, the band of H2Pc at 764.8 

cm-1 in Ar appears to shift to 742.5 cm-1 in HDPc. No new bands are observed for 
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D2Pc in the lower energy part of the spectrum shown. On the other hand, the 

strong 728 cm-1 band of D2Pc exhibits a structure, the resolution of which depends 

strongly on the matrix host, as shown in Figure IV.8. The spectra recorded in N2 

matrices (centre panel) are the best resolved and reveal the presence of two bands 

for D2Pc at 728.0 and 731.4 cm-1 instead of the one broad, but intense band in Ar 

and Kr.  Assuming a pair of lines is also present in the Ar and Kr data - a reasonable 

assumption given their widths and indications of unresolved structure on both - 

then in N2 the three bands of H2Pc at 724.7, 730.9 and 736.4 cm-1, are located at 

722.1, 728.0 and 731.4 cm-1 in D2Pc.  This proposal will be examined further in 

conjunction with the discussion of the DFT predictions of isotopic shifts. 
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Figure IV.9: Difference spectra of H2Pc, HDPc and D2Pc in an Ar matrix in the 900-1150 and 1150-
1300 cm-1 regions.  The asterisks (*) indicate the absorptions of fully isolated monomer molecules. 
As in the previous figure, scaled (x0.98) DFT results are shown by the stick spectra for comparison 
purposes.  The modes exhibiting a significant dependence on isotopic substitution are numbered 
and discussed in detail in the text. 

  The left panel of Figure IV.9 shows the spectral range from 900 to 1150 cm-1 in 

solid Ar in which it is immediately evident that this region is dominated by the 

strong 1000 cm-1 band.  However, a pronounced shift is not exhibited upon 

isotopic substitution by the most intense band located at 991.5 cm-1.  

Concentration studies reveal that the 1000 cm-1 band changes extensively on the 
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high energy side indicating that the blue region is where aggregates of the Pcs 

absorb. Thus in the D2Pc spectrum presented on the top in Figure IV.9, the most 

intense feature is shifted towards the blue but this effect is arising as a result of an 

increased amount of aggregates and is not an isotope effect.  As indicated by the 

asterisks in Figure IV.9, the location of the monomer band is only very slightly 

isotope dependent.  The observed positions for the monomer bands of H2Pc, HDPc 

and D2Pc in solid Ar are 991.5, 990.4 and 989.3 cm-1 respectively. 

 In contrast to the dominant band, several of the weaker bands in this region do 

show pronounced H/D isotope dependence.  Thus in D2Pc a strong band is 

observed at 964.1 cm-1 (indicated by the green arrow on the extreme left in Figure 

IV.9) which is not present in the two lighter isotopomers. HDPc does exhibit a new 

band at 977.8 cm-1 (red downward arrow) but due to its proximity to the dominant 

band at 990 cm-1, the significance of this band cannot be estimated from 

experimental data alone.  Another difficulty in the present attributions is the large 

intensity variations amongst the lines of the different isotopomers. The right panel 

in Figure IV.9 presents the isotope dependence observed in the 1150-1300 cm-1 

region.  The most pronounced effect exhibited here is the removal of the 

moderately intense band of H2Pc at 1252 cm-1.  No new, well-defined feature is 

evident in D2Pc; the occurrence of new bands is obscured by residual in the 

difference spectra of the strong band of H2Pc at the same location. 

 The frequencies of the vibrational modes most shifted upon deuteration in solid 

Ar are reported in Table IV.4. No significant differences in the frequency shifts are 

detected in other matrices. In order to further investigate the observed isotope 

shifts and thereby obtain mode assignments of the IR absorption bands, theoretical 

predictions are required. More detailed comments on these experimental results 

will be presented in the discussion.
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Table IV.4: Comparison of the experimental IR frequencies (cm-1) recorded for free base phthalocyanine in an Ar matrix and DFT computed frequencies for the 
modes exhibiting the largest shifts upon H/D isotopic substitution. A scaling factor of 0.98 has been used for all modes less than 2000 cm-1.  Larger scaling factors, 
as indicated have been used for the higher frequency N-H stretching modes reflecting the larger anharmonicities of these modes.  Experimental values shown in 
parenthesis are either very weak or only partially resolved. 

Exp.  Ar   DFT 6-311 ++G(2d,2p)   Mode assignment 
           

H2Pc HDPc D2Pc Shift Shifta H2Pc HDPc D2Pc Shift Shifta  
           
 719.3 729.9 -10.6 -7.1  718.2 (14) 731.8 (249) -13.6 -6.1 C-H N-D OPB (doming) 

722.8 ?  ?  725.7 (127) 711.8 (2)  13.9  C-H N-H OPB (doming) 
           
 ? 555 ? 209.8  516.3 (4) 555.0 (18) -38.7 207.8 N-D C-H OPB 

764.8 742.5  22.3  762.8 (184) 739.3 (275)  23.5  N-H C-H OPB 
           
 727.6 722.1 5.5 14.5  727.4 (71) 721.2 (85) 6.2 14.6 N-D IPB, isoindole deformation 

736.5 ?  ?  735.8 (68) 756.6 (4)  -20.8  N-H IPB, isoindole deformation 
           
 977.8 964.1 13.7 82.1  976.6 (45) 961.5 (89) 15.1 85.5 N-D IPB, pyrrole rocking 

1046.2 1033.6  12.6  1047.0 (29) 1033.0 (15)  14  N-H IPB, pyrrole rocking 
           
 (1065.6) 1080.2 -14.6 15.9  1065.0 (8) 1074.6 (112) -9.6 12.2 N-D C-H IPB isoindole stretching,  

1096.1 1090.9  5.2  1086.8 (217) 1086.2 (143)  0.6  N-H C-H IPB isoindole stretching 
           
 (1176.1) (1188.9) 18.5 62.7  1176.2 (14) 1192.0 (60) -15.8 68.7 C-H N-D IPB, C-C stretching pyrrole 

1251.4 (1240.4)  11.2  1260.7 (19)  1247.2 (3)  13.5  C-H N-H IPB, C-C stretching pyrrole 
           
 2501.4 2480.5 20.9 829.5  2496.7 (59) 2480.3 (113) 16.4 830.5 N-D stretching (x 0.949) 

3310.0 3337.1  -27.1  3310.8 (134) 3337.3 (64)  -26.5  N-H stretching (x 0.931) 
 a Shift H2Pc - D2Pc  
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Figure IV.10: A comparison of the Raman spectra recorded for H2Pc and D2Pc.  The experimental 
data were recorded at room temperature in a KBr pellet with 532 nm excitation.  The DFT 
predicted spectra (shown by the black traces) were obtained by convoluting the calculated lines 
with a 3 cm-1 Lorentzian lineshape function.   The bands exhibiting the largest isotopic shifts are 
discussed in the text.  

 Raman data for the deuterated species have been recorded in KBr pellets, with a 

D2Pc sample slightly contaminated by a small amount of hydrogenated 

isotopomers. The corresponding spectrum is presented in Figure IV.10 and 

compared with that of H2Pc in KBr recorded under identical experimental 

conditions. The observed bands are reported in Table IV.2. The D2Pc and H2Pc 

Raman spectra are very similar, behaviour in agreement with the previous 

observation concerning the similarities between H2Pc and ZnPc Raman spectra 

due to the weak Raman active modes involving NH motion. The main differences 

involve the appearance of new weak bands at 986.1 cm-1, 1044.1 cm-1 and 1064.9 

cm-1, slight shifts of the 1227.8 cm-1 and 1408.2 cm-1 bands of H2Pc to 1219.5 cm-1 

and 1402.7 cm-1 for D2Pc respectively, and a structure in the strongest band 

around 1340 cm-1. The band around 1400 cm-1 seems to shift with the sample 

preparation and is assigned to clusters or complexes. As in the case of IR data, the 
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isotope shifts in the Raman data will be discussed in the light of theoretical 

predictions obtained using DFT calculations. 

IV.3 DFT calculations data 

 Density Functional Theory was used to generate force fields from the optimised 

molecular geometries of ZnPc and H2Pc.  Computed vibrational frequencies of ZnPc 

and the isotopomers H2Pc, HDPc and D2Pc were then analysed and compared with 

the recorded IR and Raman spectra to examine in particular, the N-H vibrational 

modes.  

IV.3.I Optimised Geometries 

The geometries of ZnPc and H2Pc were optimised in D4h and D2h symmetries 

respectively and the fact that no negative frequencies were observed, indicates 

that planar structures are predicted for the phthalocyanines with the B3LYP 

functional and 6-311++G(2d,2p) basis set used. This result is in contrast to 

previous DFT calculations1 for ZnPc, in which a “domed” C4v structure was found 

employing a smaller 6-31G(d,p) basis set.  Full geometric details of the optimised 

structures of ZnPc and H2Pc resulting from use of the B3LYP functional are 

presented as Table IV.5. The atom labelling systems used for ZnPc and H2Pc are 

those provided in Figure IV.1.   It is noteworthy that at this level of theory, the 

bond lengths in particular match the crystal data5 better and are shorter than the 

previous highest level [6-311+G(d)] DFT calculation of ZnPc by Nguyen and 

Pachter6.  A smaller improvement has been obtained for H2Pc compared with the 

results of the recent higher level calculation by Strenalyuk et al.7 utilising the same 

hybrid functional (B3LYP) and the 6-311++G(d,p) basis set. The total energies 

calculated for ZnPc and H2Pc were, with ZPE correction, -3446.5966 and -

1668.3496 hartrees respectively. 
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Table IV.5: Bond lengths and angles determined for H2Pc and ZnPc from DFT calculations.  The 
atom labelling system used is provided in Figure IV.1 

  H2Pc   ZnPc 
Lengths (Å) Exp8 B3LYP  Exp5 B3LYP 
N-H(Zn) 0.923 1.009  1.980 1.998 
N-Cα 1.377 1.375  1.369 1.369 
Cα-Nm 1.326 1.313  1.331 1.327 
Cα- Cβ 1.453 1.450  1.455 1.459 
Cβ- Cβ 1.398 1.409  1.400 1.407 
Cβ- Cγ 1.388 1.394  1.393 1.391 
Cγ- Cδ 1.380 1.386  1.391 1.390 
Cδ- Cδ 1.398 1.406  1.396 1.403 
Cγ- H1 0.950 1.080  NA 1.080 
Cδ- H2 0.950 1.081  NA 1.081 
N'-Cα’ 1.369 1.362    
Cα’- Nm 1.327 1.332    
Cα’- Cβ’ 1.460 1.465    
Cβ’- Cβ’ 1.395 1.400    
Cβ’- Cγ’ 1.391 1.389    
Cγ’- Cδ’ 1.387 1.392    
Cδ’- Cδ’ 1.393 1.401    
Cγ’- H1’ 0.950 1.081    
Cδ’- H2’ 0.951 1.081    
Angles (deg)      
H(Zn)-N-Cα 128.5 123.736  125.4 125.057 
N-Cα- Nm 129.1 128.100  127.8 127.456 
Cα-N-Cα 109.8 112.527  109.1 109.887 
N-Cα-Cβ 108.1 106.135  108.8 108.452 
Cα-Cβ-Cβ 107.4 107.601  106.6 106.605 
Cβ-Cβ-Cγ 120.7 120.960  121.3 121.021 
Cβ-Cγ-Cδ 117.7 117.829  117.3 117.836 
Cγ-Cδ-Cδ 121.6 121.211  121.5 121.144 
Cβ-Cγ-H1 121.2 120.586  NA 120.709 
Cγ-Cδ-H2 119.2 119.622  NA 119.638 
N'-Cα’- Nm 128.4 121.688    
Cα’-N'-Cα’ 108.0 107.226    
N'-Cα’-Cβ’ 109.5 110.697    
Cα’-Cβ’-Cβ’ 106.8 105.690    
Cβ’-Cβ’-Cγ’ 121.8 121.223    
Cβ’-Cγ’-Cδ’ 117.0 117.670    
Cγ’-Cδ’-Cδ’ 121.3 121.107    
Cβ’-Cγ’-H1’ 121.5 120.925    
Cγ’-Cδ’-H2’ 119.3 119.636    
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IV.3.II Vibrational modes 

 ZnPc with 57 atoms has 165 fundamental vibrational modes, which can be 

categorised as A1u(6), A2u(8), B1u(7), B2u(7) Eu(28), A1g(14), A2g(13), B1g(14), 

B2g(14) and Eg(13) in D4h symmetry. H2Pc, with one additional atom, has 168 

fundamental vibrational modes and with its reduced D2h symmetry, yields Au(13), 

B1u(15), B2u(28) B3u(28), Ag(29), B1g(28), B2g(14) and B3g(13) modes. Due to their 

very close geometries, strong similarities9 exist between the vibrational modes of 

ZnPc and H2Pc. From group theory correlations, the A1u,g [A2u,g] and B1u,g [B2u,g] 

modes of D4h symmetry are merged in the Au,g [B1u,g] modes of D2h symmetry 

respectively, and the degenerate Eu,g modes of D4h symmetry are split in B2u,g and 

B3u,g modes in D2h symmetry. In this perspective, the additional modes of H2Pc 

compared to ZnPc, are three gerade modes with Ag, B1g and B2g symmetries. In 

ZnPc, only 36 u modes are infrared-active [A2u and Eu modes] while 55 g modes 

[A1g, B1g, B2g and Eg modes] are Raman-active. The corresponding numbers in the 

free-base are thus 71 infrared active u modes [B1u(15), B2u(28) and B3u(28)], and 

84 Raman active g modes [Ag(29), B1g(28), B2g(14) and B3g(13)].  

Harmonic frequencies have been calculated for the normal modes of ZnPc, 

H2Pc and its isotopomers HDPc and D2Pc. All the vibrational modes obtained for 

ZnPc, H2Pc and D2Pc are reported in Table IV.A.1 (infrared-active modes) and 

Table IV.A.2 (Raman-active modes) in the Appendices. The 13 non-reported modes 

(with no optical activity) are found to be identical in H2Pc and D2Pc with only very 

small shifts in frequencies between the free-base isotopologues and zinc 

phthalocyanine. An effort was made in these tables to arrange the corresponding 

modes of the three species along the same lines. This mode association has been 

achieved with the assistance of the animated pictures generated by Gaussian 03 for 

the normal modes. All u modes have g counterparts in the same range of 

frequencies; they correspond to the same bond motions but with different 

symmetries. For instance DFT results indicate the intense IR modes in the 1100 to 

1200 cm-1 range arise from the IP bending modes of the aryl ring-C-H bonds.  This 

finding is supported by the pronounced isotope shifts observed by Gladkov et al.10 

in the Raman spectra of ZnPc-d16 in KBr pellets.  

 The correspondence between the vibrational modes of zinc and free-base 

phthalocyanine is very clear in most cases, especially for the B3u, Ag, B2g and B3g 

symmetry modes of the free-base. The three additional gerade modes are found 
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logically to be strongly influenced by NH(D) motions. With the assistance of 

animated pictures it is obvious that fifty-fifty mixtures of ZnPc A1g and B1g C-H 

stretching modes are correlated to H2Pc Ag C-H stretching modes. Correlations are 

much less evident in the case of In-Plane Bending modes (ZnPc Eu, A2g and B2g 

modes) between 1000 and 1500 cm-1 when the N-H(D) In-Plane bending motion of 

the free-base perturbs the rings motions (see Part IV.4.III of the Discussion).  The 

frequency ratios (νH/νD) calculated for the vibrational modes of H2Pc and D2Pc 

highlight the influence of N-H motion on the modes. Table IV.6 presents a summary 

of the computed frequency modes involving a νH/νD ratio significantly different 

from unity. 

N-H stretch
3556 cm-1

N-H IPB 
1060 cm-1

N-H IPB 
1109 cm-1

N-H OPB 
778 cm-1

 

Figure IV.11: Vector displacement representations of the N-H vibrations of H2Pc calculated with 
the DFT method for the most intense IR absorptions.  The diagrams depict the extent of the 
coupling between the N-H in-plane bends (IPB) and out-of-plane bends (OPB) with the bending of 
the C-H bonds on the aryl groups.  In contrast, the N-H stretch can be considered a pure, isolated 
motion.  The numbers listed are the unscaled DFT calculated values. 
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Table IV.6: The vibrational modes of H2Pc exhibiting the largest isotopic shifts upon H-D substitution according to DFT calculations.  For comparison, the vibrational 
frequencies of ZnPc are also provided as are the predicted intensities in parenthesis. The values given in italics are ambiguous correlations between H2Pc and ZnPc. The 
frequencies (ν) are given in cm-1 while the intensities (int) are given in units of km mol-1. 

IR modes       Raman modes     

ZnPc  H2Pc  D2Pc    ZnPc  H2Pc  D2Pc   
ν (int)  ν (int)  ν (int)  νH/νD   ν (int)  ν (int)  ν (int)  νH/νD 
Out-of-plane bending             
A2u   B1u     Eg   B2g    
250 (0)  217 (7)  214 (8)  1.0143  235 (2)  220 (3)  214 (3)  1.0276 
749 (247)  740 (127)  747  0.9916  509 (0)  506 (0)  511 (0)  0.9891 
123 (11)  778 (184)  566 (18)  1.3744    680 (0)  495 (0)  1.3738 
797 (31)  804 (5)  796 (24)  1.0105         
In-plane bending             
Eu   B2u     A2g+ B2g  B1g    
511 (8)  499 (2)  489 (1)  1.0197  589 (0)  580 (2)  563 (2)  1.0305 
        629 (0)  612 (1)  600 (0)  1.0212 
768 (61)  751 (68)  736 (85)  1.0202  864 (0)  841 (1)  880 (0)  0.9563 
906 (56)  855 (0)  779 (2)  1.0969    907 (1)  763 (5)  1.1900 
1111 (174) 1068 (29) 981 (89)  1.0889  1057 (116) 1050 (228) 1007 (134) 1.0422 
1084 (154) 1109 (217) 1096 (112) 1.0114  964 (42)  1107 (43) 1068 (65) 1.0360 
1190 (30)  1181 (2)  1170  1.0096  1157 (0) 1224 (520) 1191 (59) 1.0270 
250 (5)  1286 (19) 1216 (60) 1.0576  1232 (741)  1259 (73) 1237 (536) 1.0173 
1360 (234)  1568 (8)  1546 (2)  1.0142  1485 (0)  1566 (3)  1550 (14) 1.0105 
In-plane stretching             
Eu   B3u     A1g+ B1g  Ag    
250 (5)  3556 (134) 2614 (113) 1.3606  --  3612 (13) 2649 (36) 1.3634 
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The assignment of N-H(D) stretching modes is straightforward in both B3u 

and Ag symmetry groups, with only one mode yielding a large νH/νD ratio of 1.36, 

close to √2. Theoretical values are 3556 [2613] and 3612 [2649] cm-1 for N-H[D] u 

and g stretching modes respectively. The former values (scaled by 0.96) are in 

excellent agreement with the previously described IR experimental values. The 

symmetric Out-of Plane Bending (OPB) NH(D) modes (B1u and B2g) also show a 

similarly high isotopic ratio (1.37) providing a clear assignment 778 [566] and 680 

[495] cm-1 for the N-H[D] u and g OPB modes respectively. Conversely, only ratios 

close to one are obtained in the case of the In-Plane Bending (IPB) NH[D] modes 

(B2u and B1g symmetry). Thus it would appear there is no normal mode 

corresponding to a pure IPB motion of the NH groups alone.  As mentioned in the 

previous work of Zhang et al.11, this motion is strongly coupled with the ring 

breathing modes. Figure IV.11 illustrates the extent of the coupling between IP 

bending of the aryl C-H bonds and the N-H bending motions. At least eight IPB 

modes of each symmetry are affected by deuteration. This is especially true with 

the gerade modes for which correlations between H2Pc and D2Pc (and ZnPc) 

modes are difficult to establish. From animated pictures, the IPB modes involving 

the largest NH bending motion (H2Pc) are computed at 1286 cm-1 (B2u) and 

1107/907 cm-1 (B1g), and those involving largest ND bending (D2Pc) at 981 cm-1 

(B2u) and 763 cm-1 (B1g). These frequencies are located in a dense part of the 

vibrational manifold of free-base phthalocyanine. 

IV.4 Discussion    

IV.4.I IR absorption  

The computed IR absorption spectrum of ZnPc is compared with frequencies 

scaled by a factor of 0.98 in the upper panel of Figure IV.12 with that recorded in a 

N2 matrix where the close agreement that exists, both in terms of the band 

positions and the band intensities, is quite evident.  Very significant improvement 

was obtained by increasing the basis set from 6-31G(d,p) to 6-311++G(2d,2p) – an 

indication of the importance of having diffuse and polarisation functions present.  

This basis set yields much better agreement in the region up to 1000 cm-1 than that 

which Tackley et al.1 achieved with the 6-31G(d,p) basis comparing with data 

recorded for ZnPc in KBr discs.  Calculated (scaled) frequencies are compared to 

experimental results in Table IV.1. In the 400-1650 cm-1  spectral range, all the 
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lines with a calculated intensity larger than 3 km/mol are observed and assigned. 

The symmetries of the modes listed in the last column were assigned through DFT 

calculations.  Only two of the bands (reported for KBr pellets at 727.9 and 781.3 

cm-1) correspond to out-of-plane modes. 
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Figure IV.12: A comparison of the observed and calculated infrared absorption spectra for ZnPc 
(upper panel) and H2Pc  (lower panel).  The experimental data were recorded at 14 K in a nitrogen 
matrix while the predicted values were obtained with a DFT calculation using the B3LYP functional 
and a 6-311++G(2d,2p) basis set. 

Two of the three C-H stretching modes have much larger computed 

intensities than the other. According to this remark, the clearly observed doublet 

located at 3072.3 and 3093.5 cm-1 in N2 should be assigned to these two modes.  

The additional structures in the spectra shown in the upper panel of Figure IV.2, 

are probably due to site effects in the matrix. A third weaker but clearly 

identifiable band at 3038.3 cm-1 is attributed to a strong combination band.  The 

third (weakest) C-H stretching mode which has not been resolved in the matrix 

spectra, is probably a shoulder on the red wing of the 3072.3 cm-1 band . 

In the lower panel of Figure IV.12 the matrix and computed IR spectra of H2Pc 

are compared.  As found for ZnPc, excellent agreement exists below 1000 cm-1 but 

is not quite as good in the region above this.  From a combination of the increased 

number of optically active modes in H2Pc and the removal of the degeneracy of the 
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E modes of ZnPc, free-base phthalocyanine is expected to exhibit a significantly 

richer vibrational spectroscopy than its metal-counterparts, and indeed, the IR 

H2Pc spectrum presents many more resolved lines than ZnPc. However, due to 

their similar geometries, a close correspondence exists between the modes of both 

molecules as illustrated in Figure IV.12, except around 1000 cm-1.  

While the ZnPc spectrum is dominated by three nearly equivalent strong 

bands between 1000 and 1200 cm-1 (1063.6, 1096.0 and 1117.8 cm-1 in N2)  there 

is one intense feature slightly below 1000 cm-1 in the free-base spectrum. The 

strongest band in the calculated free-base spectrum is located at 1016 cm-1 

(scaled) and from its dominant intensity, this mode must correspond to the most 

intense band observed at 995.0 (991.5) cm-1 in N2 (Ar) spectra. The additional 

structure on the blue side of the recorded band is attributed to the presence of 

small amounts of aggregates.  

Correlations deduced from DFT calculations (Table IV.A.1 of the appendix to 

this chapter) indicate that the 1117.8 cm-1 band of ZnPc in N2 (Eu symmetry) splits 

into the 1112.4 and 1120.6 cm-1 bands of H2Pc in N2 (B3u and B2u symmetry, 

respectively) with moderate intensities (vector diagrams for the modes calculated 

at 1138.3, 1131.9 and 1139.3 cm-1  are shown in Figure IV.13). In contrast, the 

1063.6 cm-1 band of ZnPc in N2 (calculated at 1084.5 cm-1) corresponds only to one 

band located at 1096.0 cm-1 in N2 (B2u symmetry) while in the case of the free base, 

the corresponding B3u mode shows almost no IR intensity. Conversely, the most 

intense free-base B3u mode located at 995.0 cm-1 in N2, is correlated with the third 

component in the ZnPc/N2 spectrum at 1096 cm-1. The B2u counterpart mode of the 

free base, located at 1047.1 cm-1 in N2, is a weak line disappearing upon 

deuteration.  Of the IPB modes, this motion involves the most pronounced N-H 

bending – it occurs in combination with in-plane stretching of the Cα-N-Cα bonds in 

the two pyrrole rings that contain N-H bonds (calculated at 1068 cm-1 in Table 

IV.6).  

DFT results reveal that the corresponding B3u component to this mode (995 

cm-1 in N2, calculated at 1037.2 cm-1) does not involve N-H motion, but is an in-

plane stretch of the Cα-N-Cα bonds in the two pyrrole rings (see Figure IV.13) that 

do not contain N-H bonds. This mode of the monomer is, as shown by the asterisks 

in Figure IV.9, only marginally shifted in HDPc and D2Pc, entirely consistent with 

DFT findings.  A similar finding was made by Zhang et al.11, based on a comparison 
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between predicted MgPc and H2Pc spectra. The large shift of this strong mode 

involving no N-H motion from H2Pc to ZnPc explains the long-standing conflicting 

behaviour that an apparently new mode of H2Pc (which is not present in ZnPc with 

a similar frequency or intensity) shows no dependence on isotope substitution. 

The present DFT calculations, including the results obtained for the metallo-

phthalocyanine ZnPc, strongly confirm the mode assignments and fully explain the 

unexpected isotope behaviour.  
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Figure IV.13: Displacement vector diagrams calculated by DFT of H2Pc and ZnPc. The H2Pc modes 
shown are of B3u and B2u symmetry and have been compared to their ZnPc equivalents of Eu 
symmetry. The numbers in bold are the un-scaled, calculated vibrational frequencies (in cm-1) and 
the values in parenthesis are the calculated intensities (in km/mol). The H2Pc B3u modes have been 
rotated by 90° to emphasise the correlation with the B2u modes of H2Pc and Eu modes of ZnPc. 
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In the C-H stretching region, the recorded IR spectra of the free-base and ZnPc 

are very similar.  DFT calculations for H2Pc predict a splitting of the three bands 

occurring for ZnPc.  However, this splitting, arising from the reduced symmetry in 

the free-base, is not evident in the recorded matrix spectra.  Details of NH 

deuteration effects on the IR spectra will be discussed in Part IV.4.III. 

IV.4.II Raman Scattering  

 The computed Raman spectra of ZnPc and H2Pc are compared with those 

recorded at room temperature in KBr discs in Figure IV.14, while all the computed 

peak positions are collected in Table IV.2.  It is evident from these comparisons 

that very good positional agreement exists in the case of both molecules. A 

noteworthy distinction between absorption and scattering spectroscopies of the 

phthalocyanines is that both in-plane and out-of-plane motions are IR-active while 

only the in-plane vibrations are observed in Raman spectra.  The out-of-plane Eg 

modes of ZnPc, while allowed by group theory, are predicted to be much too weak 

to be experimentally observed. In the computed Raman spectrum, the in-plane A1g 

and B1g modes carry most of the intensity with the B2g modes much weaker.  

Similarly, for H2Pc only two in-plane [Ag, B1g,] mode symmetries are found to 

exhibit significant Raman activities. As a result of this intensity behaviour, it is 

found that only a limited number of modes dominate the recorded Raman spectra 

of both molecules.  The Raman modes fall mainly into two categories, those 

involving motion of the central ring and those of the aryl and pyrrole parts of the 

isoindole groups.
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Figure IV.14: A comparison of the observed and calculated Raman spectra for ZnPc (upper panel) 
and H2Pc (lower panel).  The experimental data were recorded at room temperature in a KBr pellet 
with 532 nm excitation.  The predicted spectra were obtained by transforming the computed 
Raman activities to Raman intensities with the method outlined in the text.  

DFT predictions for the Raman intensity seem to be much less accurate than 

frequency predictions. For example, assignment of the ZnPc (H2Pc) strong Raman 

band at 1338.3 (1336.7) cm-1 is not straightforward. From DFT calculations, the 

most intense band in this range is predicted at 1296.5 (1300.5) cm-1, whereas, 

from frequency positions, the experimental band could be assigned to either 

1336.7 (1333.8) or 1341.6 (1345.5) cm-1 predicted bands, or the sum of both. 

From the structure observed in the case of D2Pc in KBr, the last assignment is 

preferred as it is consistent with the observation, depicted in Figure IV.10, that the 

predicted spectral shift between these two modes is larger for D2Pc than for H2Pc.  

A possible reason for the intensity discrepancies between predicted and observed 

Raman spectra probably arises from small contributions from resonance effects.  

This was examined in the earlier work by Tackley et al.2 who chose a range of laser 

excitation wavelengths from 457 to 1064 nm to record Raman spectra of ZnPc.  
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Figure IV.15: Comparison of the experimental Raman spectra in KBr (solid traces) and DFT 
predicted spectra (dashed traces) of H2Pc, ZnPc, ClAlPc and MgPc. The DFT results have been fitted 
using a Lorentzian fitting function with a width of 8 cm-1 to simulate the broadening and merging of 
Raman bands seen in KBr samples. 

The main discrepancy between the experimental frequencies and their DFT 

predicted values concerns the positions of the two most intense Raman bands 

located at 1539.5 cm-1 (H2Pc) and 1506.8 cm-1 (ZnPc).  For ZnPc the strongest band 

is predicted 19 cm-1 higher than the observed band while in H2Pc it is 12 cm-1 

higher.  The attribution in Table IV.2 of the strongest predicted Raman line in ZnPc 

and H2Pc spectra is unavoidable due to the dominance of this band in both theory 

and experiment. Previous calculations by Liu et al.12 for ZnPc and Strenalyuk et al.7 

for H2Pc found even larger discrepancies for these modes. As shown in Figure 

IV.15, this small lack of agreement between theory and experiment on the most 

intense Raman mode has been found in the high level calculations of all the Pcs 

(H2Pc, ZnPc, MgPc and ClAlPc) for which we have Raman data (see Appendix IV.B 

for DFT results for magnesium phthalocyanine and chloro-aluminium 

phthalocyanine).  We have nevertheless observed that increasing the size of the 

basis set leads to improved agreement for these B1g/Ag modes for both ZnPc and 

H2Pc. On the other hand, the existence of well-resolved bands at 3080 and 3012 

cm-1 in the Raman spectra of H2Pc and ZnPc respectively can be readily attributed 
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to first overtones of the strongest fundamental modes at 1539.5 and 1506.8 cm-1 

(see Figure IV.17).  As the difference between the observed overtones and the 

values predicted by simply doubling the fundamental frequencies are so small (c. 1 

cm-1) it can be concluded that the anharmonicities of these modes are small.  This 

is an important result as it indicates the frequencies of the true (unperturbed) 

fundamentals have been identified in the experimental spectra.  

ZnPc H2Pc

1557.23 cm-1

19,777.07 Å4/amu
1582.92 cm-1

18,943.34 Å4/amu  
Figure IV.16: Vector displacement representations of the most intense Raman active vibrational 
modes of ZnPc and H2Pc calculated using the B3LYP/6-311++G(2d,2p) method. 

The most intense 1506.8 and 1539.5 cm-1 Raman modes of ZnPc and H2Pc 

respectively are of considerable significance since their frequencies shift with the 

metal centre and as a result, they have been proposed2 as spectroscopic markers of 

the ring size in the Pcs.  They are also of particular interest, because these are the 

modes which exhibit amplified emission with pulsed laser excitation13.  DFT 

calculations reveal that this mode involves the same motion in both ZnPc and H2Pc 

corresponding to the antisymmetric stretch of the four bridging Cα-Nm-Cα bonds 

and symmetric stretching of the Cα-N-Cα bonds in the four pyrrole groups (see 

Figure IV.16).  From these descriptions, it is clear that this normal mode involves 

stretching of all 16 C-N bonds in the central ring of the tetrapyrrole.  The 

experimental results of H2Pc and ZnPc in different low-temperature solids 

exhibiting amplified emission and a discussion of the properties associated with 

this unusual phenomenon will be given in Chapter VI. 
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Figure IV.17: Raman spectra of the high frequency stretching regions for ZnPc (upper panel) and 
H2Pc (lower panel). To identify any overtones in this region, the frequencies of the intense 
fundamentals at lower frequencies have been doubled and their intensities reduced. The calculated 
Raman spectra have been overlapped with suitable scaling for the C-H and N-H stretching modes 
(0.96 and 0.931 respectively). The frequencies assigned to the C-H stretching modes of ZnPc and N-
H asymmetric stretching modes of H2Pc have been marked with labels and blue arrows. 

The first overtones of the strong fundamentals in the 1300 to 1550 cm-1 range 

make it difficult to locate the positions of the weak symmetric fundamental C-H 

stretching modes of both ZnPc and H2Pc in the experimental spectra (see Figure 

IV.17).  Symmetric and antisymmetric C-H stretching modes are predicted with 

very similar frequencies. By eliminating easily identifiable overtone and 

combination bands and with the help of DFT calculations, the strongest Raman 

active C-H mode of ZnPc can be identified at 3086.9 cm-1.  The corresponding band 

of H2Pc has not been identified as it is overlapped by a stronger (factor of 20) 

overtone band at 3080 cm-1 as shown in the lower panel of Figure IV.17. 
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IV.4.III Isotope Shifts 

Table IV.6 summarizes the vibrational modes influenced by N-H deuteration as 

predicted by DFT calculations. One can notice that theoretically none of these 

modes exhibit strong Raman activity. In particular, no N-H out-of-plane modes are 

predicted to be observable in the Raman spectrum. Fortuitously, the new IR 

experimental data give much more information on these modes. In the D2h point 

group, only the B1u, B2u and B3u symmetry modes are infrared active.  These are the 

symmetries of the out-of plane N-H bend (NH-OPB), the in-plane N-H bend (NH-

IPB) and the antisymmetric N-H stretch modes respectively. DFT values reported 

in Table IV.6 indicate that these three kinds of modes (in u and g symmetries) 

should appear in three distinct spectral ranges 500-800 cm-1, 800-1300 cm-1 and 

around 2500 (D)/3500 (H) cm-1 respectively. Table IV.4 summarizes the IR 

experimental isotopic shifts compared with DFT calculations, allowing a more 

complete description of these modes.  

IV.4.III.a N-H Stretching Modes 

The antisymmetric N-H stretching mode has been identified at 3290 cm-1 in 

KBr pellets3 and at 3273 cm-1 in Nujol3. This assignment has been supported by the 

observation of the N-D antisymmetric stretching at 2458 cm-1.  Our matrix results 

also confirm this assignment with the N-H stretching mode of H2Pc observed in Ar 

(see Figure IV.2) at 3310 cm-1 while the N-D stretching mode of D2Pc is at 2480.5 

cm-1.  For a molecule such as HDPc with C2v symmetry, the N-H and N-D bonds are 

inequivalent and both stretches are expected. Accordingly, the N-H stretch mode of 

HDPc is observed at 3337.1 cm-1 while the N-D stretch is at 2499.0 cm-1.  It is clear 

in Table IV.4 that the experimental and calculated shifts for the N-H stretching 

modes in H2Pc and HDPc are in very good agreement. The same can be said for the 

shift of the N-D stretching modes in HDPc and D2Pc.  

As previously mentioned, the symmetric N-H stretching vibration of H2Pc (the 

highest frequency fundamental mode) is predicted to be only very weakly Raman 

active but the present KBr spectra do show a weak band at 3343 cm-1 which could 

be identified as this stretching mode.  A slightly more pronounced band is 

observed in the Raman spectrum of D2Pc at 2504.7 cm-1 which can be assigned to 

the symmetric N-D stretching mode.  This is in agreement with DFT results but the 
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location of this N-D mode is in a spectral region where stronger combination and 

overtone bands render its identification difficult.   

IV.4.III.b In-Plane Bending (NH-IPB) modes 

 Because of its absence in KBr IR spectra of metal-phthalocyanines, Shurvel 

et al.4 assigned the most intense band of H2Pc at 1006 cm-1 to an N-H deformation. 

However, assignment of the experimentally observed band at 1006 cm-1 to the N-H 

bending mode appears now to be incorrect for the reasons presented previously in 

Part IV.4.I.  Consistent with experiments, DFT calculations show the corresponding 

unscaled band (with B3u symmetry) at 1037.22 cm-1 in H2Pc and at 1037.12 cm-1 

(unscaled) in D2Pc.  

As mentioned in Part IV.4.I, DFT calculations reveal that the corresponding 

B2u mode occurs at a higher frequency but with greatly reduced intensity. In H2Pc 

it is predicted at 1068.4 cm-1 (unscaled) and weaker by a factor of more than 20 

relative to the most intense mode in the IR spectrum.  The corresponding mode in 

D2Pc is located at 981.15 cm-1 (unscaled) but stronger by a factor of 4 than its H2Pc 

counterpart. The locations of these modes in Ar are indicated in Figure IV.9 by the 

arrows while the stick spectra present the scaled (x0.98) DFT-predictions.  This 

band was found to exhibit the largest shift upon deuteration among the observed 

IPB modes. The agreement, evident in Figure IV.9 between experiment and theory 

for the isotope dependence of this mode is excellent. The N-D IPB mode of HDPc is 

located at 977.8 cm-1, consistent with scaled DFT predictions but the N-H IPB mode 

of HDPc (predicted at 1033 cm-1 with a very low intensity) is masked by an artefact 

of the difference method used in generating the spectrum shown, its position is 

indicated by the upward red arrow in Figure IV.9.  

In a molecule as large as phthalocyanine, it is important to remember that the 

vibrational modes are strongly coupled and only the N-H (and N-D) stretching 

vibrations can be considered to be a pure motion.  This coupling is the primary 

reason why so many different assignments of NH-OPB and NH-IPB modes have 

been made because attributing them to the experimentally observed modes is not 

direct.  It is especially severe in the case in N-H IPB modes. An indication of the 

strongly coupled nature of the N-H-bending modes is depicted in the vector 

diagrams presented in Figure IV.11.  As a result, none of the mode correlations 

yield a νH /νD ratio larger than about 1.1.  This is borne out by the small shifts 

observed in the 1000-1300 cm-1 matrix IR spectra of D2Pc (Figure IV.9). The 
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highest frequency N-H IP bending mode that has been found in DFT calculations of 

H2Pc is at 1567.89 cm-1 which shifts only to 1545.9 cm-1 in D2Pc. The vibrational 

frequencies calculated by Zhang et al.11 with the smaller 6-31G* basis set are lower 

— at 1533 cm-1 for H2Pc, shifted to 1514 cm-1 in D2Pc — but consistent with our 

findings. The reason for the small νH /νD ratio of 1.014 for this mode becomes 

evident from the vector displacement diagram where it is clear that this mode is 

primarily stretching of the bridging Cα-Nm-Cα bonds – a motion which secondarily 

induces NH-IP bending.  Dispersion of the NH-IP bending mode amongst this and 

other stretching vibrations reduces the νH /νD ratio and makes this mode very 

difficult to identify in isotope substitution work. Moreover, the mode at 855 [779] 

cm-1 which corresponds to the most pronounced deuteration effect in the ungerade 

NH IPB modes, is also predicted to have a vanishingly small IR activity. 

Five of the N-H IPB modes reported in Table IV.6 are observed in IR matrix 

spectra of H2Pc, but only the four located at 1251.6, 1096.1, 1044.6 and 736.6 cm-1 

in Ar are, with the help of DFT calculations (see Table IV.4), intense enough to be 

followed upon deuteration. The first of these is numbered (1) and marked by an 

arrow in the right panel of Figure IV.9.  The assignments for the bands in the HDPc 

spectrum are only tentative as the predicted IR intensities are very weak for this 

mode. The second mode, involving a small isotopic shift from 1096.1 for H2Pc to 

1080.2 cm-1 for D2Pc in Ar, is the most intense and is clearly observed as indicated 

by number 2 in the left panel of Figure IV.9.  In the HDPc case only the NH 

component at 1090.9 cm-1 in Ar is intense. The third one was discussed above and 

is marked by arrows in Figure IV.9. The last one present at 736.6 cm-1 is included 

in the spectral range corresponding to NH OPB modes and is shown as IP1 in 

Figure IV.8.  Following DFT predictions, this mode appears at 722.1 cm-1 for D2Pc 

and at 727.6 cm-1 for HDPc in Ar.  

Four of the symmetric N-H IPB modes are observed with weak intensities in 

Raman spectra. Their frequencies are given in Table IV.2 at 1025.5, 1081.4, 1190, 

1227.8 cm-1 while their unscaled DFT values are listed in Table IV.6 as 1050, 1107, 

1223 and 1259 cm-1.   According to DFT calculations, two of the new bands 

observed for D2Pc at 986 and 1044 cm-1 are the deuterated counterparts of the two 

first bands. The third band at 1190 cm-1 does not appear in the D2Pc spectrum, and 

the fourth band is slightly shifted to 1219.5 cm-1 in the deuterated sample, in very 

good agreement with theoretical predictions. These observations reinforce the 
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assignment of these bands to gerade NH IPB modes.  As most of the modes 

involving Raman activity are present in fluorescence spectra, these results can also 

be related to the emission work of Shkirman et al.14. They show that deuteration of 

H2Pc had only a weak effect on the fluorescence, consistent with the findings of the 

present Raman spectra and DFT computations. Shkirman et al. noted the 

disappearance of a mode at 1357 cm-1 together with the appearance of a mode at 

990 cm-1 upon H/D substitution.  The assignment of the first mode to H2Pc is 

doubtful, because it is absent in our experiments and calculations, but the mode at 

990 cm-1 is in a perfect agreement with the Raman active ND IPB modes  measured 

at 986.1 cm-1 (1007 cm-1 in Table IV.6). 

IV.4.III.c Out-of-Plane Bending (NH-OPB) modes   

 The antisymmetric NH-OPB mode has previously been assigned to several 

bands in the 710-760 cm-1 range.  According to Shurvell et al.4 it is the band at 716 

cm-1, while Sammes3 identified it as the band at 735 cm-1, which shifts to 549 cm-1 

in D2Pc.  However, as shown in Figure IV.6 this spectral region is extremely 

complex in KBr spectra due to the presence of multiple bands, most of which are 

cluster related. In our matrix spectra, only a single H2Pc band clearly disappears 

upon deuteration in this region.  As shown in Figure IV.8 this is the 764.8 cm-1 

band of H2Pc in Ar labelled OP1. In contrast to the IP bending modes, DFT 

calculations predict a clear correlation for the OP bending modes between the high 

frequency modes in H2Pc and the low frequency modes in D2Pc.  Thus for one 

specific IR mode of H2Pc at 778.36 cm-1 a shift to 566.3 cm-1 (unscaled values) is 

expected as indicated in Table IV.6. For this reason we assign the band around 765 

cm-1 as the main NH-OPB mode of H2Pc. The band shifts to 742.5 cm-1 in HDPc in 

agreement with the DFT calculations showing an unscaled frequency of 754.4 cm-1 

for the only HDPc OP mode with a large IR intensity in this region. The calculated 

frequency for the ND-OPB mode in D2Pc (566.3 cm-1) is in good agreement with 

earlier predictions of Zhang et al.11. Unfortunately, this D2Pc mode is so weak that 

it is not easily detected.  However, a very weak band has been observed in an Ar 

matrix at 555 cm-1.  On the other hand, a weak new band at 777.8 cm-1 appears in 

D2Pc spectrum, it corresponds to the unobserved band calculated at 804 cm-1 (788 

cm-1 scaled) for H2Pc.   
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Figure IV.8 shows a triplet centred at 730 cm-1 in the H2Pc spectrum, becoming 

very complex in HDPc and congested in D2Pc spectra. The most intense component 

at 731 cm-1 in Ar (labelled IP2 in Figure IV.8) is assigned to a B3u mode and is 

nearly unshifted upon deuteration. It constitutes one part of the broader 

structured feature in HDPc and D2Pc. The component of highest energy is the NH 

IPB mode discussed in the previous part (IP1), shifted from 736.5 to 727.6 to 722.1 

cm-1 from H2Pc to HDPc to D2Pc in Ar, and constitutes the lowest IP bending mode 

of the D2Pc spectrum. The last component (OP2 at 722.8 cm-1 in Figure IV.8) at the 

lowest frequency in H2Pc spectrum is another NH OPB mode.  As reported in Table 

IV.6 it is affected by deuteration but in an unexpected way. It is predicted at 732 

cm-1 (scaled) in D2Pc, i.e. at the same frequency as the B3u mode, explaining the 

experimental broadening (or structure in N2) of this band. A comparison of scaled 

(x0.98) DFT frequencies is presented in Figure IV.8 with the recorded spectra 

showing very close agreement.   

A surprising finding of the present and Zhang’s earlier11 DFT calculations is 

that this last N-D OP bending mode of D2Pc is predicted at a higher frequency than 

the corresponding mode of H2Pc.  Such behaviour is predicted for a few other 

modes, as revealed in Table IV.6. An analysis of this unexpected behaviour follows 

directly.  

IV.4.III.d Inverse isotope substitution effects 

 In order to correlate the complex frequency shifts of H2Pc and D2Pc, the DFT 

computed frequencies were generated by increasing the masses of the two central 

hydrogens from 1 to 2 amu in increments of 0.05 amu.  The results of this 

calculation are shown in Figure IV.18 for B1u symmetry between 550 and 850 cm-1.  

The correlations were made by visually inspecting the vector displacement 

diagrams, four of which are presented in the figure. 
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Figure IV.18: DFT predictions of the isotope dependence of the IR-active OPB B1u modes in H2Pc 
and D2Pc calculated at 0.05 amu increments.  The vector displacements, two of which are shown on 
either side of the plot, were used in establishing the correlations. 

From the vector diagrams shown in Figure IV.18, it is evident  that the purest 

N-H OPB modes in H2Pc is located at 778.36 cm-1 (unscaled) which shifts down to 

566.31 cm-1 in D2Pc.  This correlation results in the expected (within the accuracy 

of the DFT calculation) νH/νD ratio of 1.374 for H/D isotope substitution in a “pure” 

N-H mode.  The large frequency shift of the pure NH-OPB mode results in it 

crossing several other out-of-plane bending modes. These crossings are more or 

less avoided depending on the coupling between modes. In Figure IV.18, it is clear 

that there is almost no avoided crossing with the mode at 704 cm-1 which as 

shown, involves no NH bending. In contrast, there is a strong avoided crossing with 

the mode at 740 (747) cm-1 in H2Pc (D2Pc). These values when scaled by 0.98 

(725.6 and 731.8 cm-1) correspond to the resolved bands at 724.7 and 730.9 cm-1 

in N2, shown in the middle panel of Figure IV.8. A consequence of this avoided 

crossing is that the 740 cm-1  H2Pc mode exhibits the unusual behaviour of having 

an increased frequency (747 cm-1) in the heavier isotopomer.   

Even though this is only a small upward shift (νH/νD = 0.992) it greatly 

complicates the recorded spectra as it occurs in the region where two strong in-
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plane modes of H2Pc (D2Pc) are located at 730.9 (728.0) and 736.4 (722.1) cm-1 in 

N2. Contrary to expectation, the mode-crossing results in the lowest frequency 

mode (OP2 at 724.5 cm-1) of the 730 cm-1 H2Pc triplet, shifting up to the highest 

frequency mode of the D2Pc triplet (at 731.4 cm-1).  These calculations show clearly 

that the band at 729.9 cm-1 in D2Pc is an NH-OPB mode but distinct from the two 

strong bands in HDPc and H2Pc at 742.5 and 767.9 cm-1 (values in Ar) respectively.  

The last important avoided crossing evident in Figure IV.18 is located near 

the mass 1 (H2Pc). In fact, while the 566 cm-1 mode of D2Pc involves almost pure 

ND motion, the 778 cm-1 mode of H2Pc also exhibits CH bending motions. Similar 

curvature is present for the weak IR active mode of H2Pc at 804 cm-1.  The vector 

diagram of Figure IV.11 highlights the similarities between the motions in these 

two modes in H2Pc, however the curvature of the higher energy mode in Figure 

IV.18 occurs only in the vicinity of mass 1. 
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Figure IV.19: DFT predictions of the isotope dependence of the lower frequency IR-active IPB B2u 
modes in H2Pc and D2Pc calculated at 0.05 amu increments. One avoided crossing is seen in this plot 
while another at higher frequencies is shown in Figure IV.20. The vector displacement diagrams for 
the modes involved are also shown. 

 Such correlation curves have been calculated for all the symmetry groups. 

Two strong avoided crossing events were apparent for the IR active B2u modes 

involving In-Plane Bends (IPB). The lower frequncy modes are shown in Figure 

IV.19. The H2Pc mode at 854.68 cm-1, predominately involving a N-H bending 
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motion with a small amount of coupling to the benzene and central rings, was 

correlated to a similar mode at 779.19 cm-1 in D2Pc while the mode at 804.11 cm-1 

in H2Pc was correlated with the 804.12 cm-1 in D2Pc. The modes at ~804.1 cm-1 

involve an asymmetric ‘breathing’ motion of the isoindole rings not containing the 

N-H bonds with distortion of the other two isoindole rings. Though the increase in 

energy of 0.01 cm-1 in the 804.1 cm-1 modes is small and may be ascribed to 

calculation error, close inspection of the region were the curves appear to cross 

reveals an avoided crossing. The energy values calculated at NH hydrogen masses 

of 1.6, 1.65 and 1.7 amu for the mode originating at 854.68 cm-1 (represented in 

Figure IV.19 square symbols) were 808.44, 804.75 and 804.19 cm-1, while those 

values for the mode originating at 804.11 cm-1 (represented by triangle symbols) 

were 804.04, 803.63 and 800.18 cm-1 indicating no crossing of the two curves.  
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Figure IV.20: DFT predictions of the isotope dependence of the higher frequency IR-active IPB B2u 
modes in H2Pc and D2Pc calculated at 0.05 amu increments. One avoided crossing event is seen in 
this plot while another at lower frequencies is shown in Figure IV.19. The vector displacement 
diagrams for the modes involved are also shown. 

 The other avoided crossing seen for B2u symmetry modes in a higher 

frequency region shown in Figure IV.20 involve an N-H bending mode coupled to a 

rocking motion of the attached pyrrole ring distorting the benzene ring, seen in 

H2Pc at 1068.39 cm-1 and correlated to the D2Pc mode at 981.15 cm-1. The curve 
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connecting these modes appear to cross the curve connecting the asymmetric 

benzene ‘breathing’ modes seen in H2Pc at 1029.32 cm-1 and at 1029.37 cm-1 in 

D2Pc. Again inspecting the apparent crossing region, the energy values for the H 

masses 1.35, 1.40 and 1.45 amu for the curve originating at 1029.32 cm-1 (green 

circle symbols) were found to be 1029.00, 1027.00 and 1022.22 cm-1 and those for 

the curve originating at 1068.39 cm-1 (purple diamond symbols), 1033.31, 1029.94 

and 1029.54 cm-1. The origin of the mode at 1029.37 cm-1 from the mode at 

1068.39 cm-1 can be confirmed by observing that the relative direction of the 

benzene ‘breathing’ motions to the weakly coupled N-H motions in D2Pc is the 

same as the relative direction the weakly coupled benzene ‘breathing’ motions to 

the strong N-H motions in the H2Pc mode. 

 The results for the correlation curves for the Raman active modes are 

shown in Figure IV.21 within the spectral region of the NH OP and IP bending 

modes (B2g and B1g symmetry). Like the IR active modes discussed above, few 

crossings occur between masses 1 and 2 for OPB modes while the diagrams are 

more complex for IPB modes, involving both large avoided crossings and the 

traversal of weakly coupling modes.  In all cases where a νH/νD ratio of less than 1 

occurs, it is evident from the mode correlation diagrams that it results from 

avoided crossings. Moreover, the vector displacement diagrams reveal that in 

these cases, the direction of the N-H bending motion changes between the light and 

the heavy isotopomers.  
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Figure IV.21: DFT predictions of the isotope dependence of the Raman active OPB B2g (left panel) 
and IPB B1g (right panel) modes in H2Pc and D2Pc calculated at 0.05 amu increments.   

Initial attempts to correlate the B1g modes of the free-base phthalocyanine 

isotopomers and the A2g and B2g modes of zinc phthalocyanine were found to be 

difficult. In particular, the B1g modes of H2Pc calculated at 841.82 and 907.44 cm-1 

with those belonging to D2Pc calculated at 762.54 and 880.30 cm-1 and one of these 

free-base modes with the optically inactive A2g mode of ZnPc at 864.41 cm-1. 

Comparisons of the very similar vector diagrams for these vibrations in Figure 

IV.22 found that the best matches for the 864.41 cm-1 mode of ZnPc were the 

841.82 cm-1 mode of H2Pc and 880.30 cm-1 mode of D2Pc. The remaining H2Pc 

vibration at 907.44 cm-1 was correlated with the D2Pc vibration at 762.54 cm-1 

with a νH/νD ratio of 1.19. The νH/νD ratio for the former pair of vibrations was, 

however, exceptional low at 0.9563. From the results of the calculation of the 

isotope dependence of the B1g vibrational energies shown in the right-hand panel 

of Figure IV.21, a clear correlation between the 841.82 and 762.54 cm-1 modes and 

907.44 and 880.30 cm-1 of H2Pc and D2Pc was seen, reversing the previous 

assignments and giving more orthodox νH/νD ratios of 1.1040 and 1.0308 

respectively. The 864.41 cm-1 mode of ZnPc has been tentatively assigned to the 

907.44 and 880.30 cm-1 modes of H2Pc and D2Pc due to their lower νH/νD ratio and 

that the additional H2/D2Pc B1g symmetry mode was expected to contain a 

significant contribution from the N-H IP bending motion. 
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Figure IV.22: Correlation of B2g symmetry modes of H2Pc and D2Pc and A2g mode of ZnPc. The 
curved arrows indicate the corresponding H2Pc and D2Pc modes matched by comparing the 
diagrams shown and using the mass correlation plot in Figure IV.21. The ZnPc diagram may be 
rotated by 180° around the N-Zn-N bonds for comparison with the H2/D2Pc modes. The dashed 
arrows represent the initial correlations made between the H2/D2Pc and ZnPc modes using the 
vector diagrams only. 

IV.5 Summary and conclusions 

The use of the low temperature, matrix-isolation technique provides narrow IR 

lines and spectra that are largely free of aggregate species compared with 

conventional sampling methods. It allows new assignments of the N-H In Plane 

Bending (NH-IPB) and N-H Out-of-Plane Bending (OPB) IR modes of free-base 

phthalocyanine. The assignments were confirmed by isotopic substitution with 

deuterium for the two central N-H bonds and by DFT calculations. The calculated 

frequencies are in very good agreement with the experimental values.  

 DFT calculations are an indispensible tool for band assignments and 

essential for predictions of non-observed vibrational modes. They are conducted 

on the three isotopomers of the free-base (H2Pc, HDP, and D2Pc) together with a 

metallo-phthalocyanine (ZnPc). An overview of the vibrations of these molecules is 

necessary to achieve global assignments and establish correlations between the 

modes of the four molecules. All the computational data, combined with IR and 
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Raman experimental results, give a comprehensive overview of the vibrational 

behaviour of phthalocyanines, with a specific emphasis on the NH motion of the 

free-base Pc. 

 The NH stretching modes are confirmed to be well isolated from other 

motions of the Pc skeleton. Thus the H2Pc (D2Pc) NH(D) antisymmetric stretch is 

located around 3310 (2480) cm-1 in rare gas matrices (a slightly higher value than 

in KBr) while the NH(D) stretch of HDPc is at 3337 (2500) cm-1 in the same solids. 

The H2Pc (D2Pc) symmetric stretch is predicted 52 (34) cm-1 above its 

antisymmetric counterpart, corresponding to very weak bands of Raman spectra 

in KBr located at  3363 cm-1 (2504.7 cm-1). 

 Two of the OP bending modes are found to be specifically assigned to NH 

bends, around 700 cm-1 for NH and around 500 cm-1 for ND. Only one of these two 

is IR active in H2Pc and D2Pc. They are observed around 765 cm-1 and 555 cm-1 

respectively in rare gas matrices. The corresponding NH band of HDPc is 

experimentally identified at 742 cm-1, whereas theoretical results clearly show a 

less isolated NH bending motion in this isotopomer. In partial agreement with 

Zhang’s results11, we find other OPB modes affected upon H/D substitution. 

Calculations established that previous assignments of the IR NH-IPB in H2Pc 

and D2Pc in KBr or Nujol were not correct. The present work leads only partly to 

the same conclusions as Zhang’s calculations. The NH-IP bending modes are spread 

out over eight modes, four of which have been clearly identified in the matrix IR 

spectra. The others are predicted to be too weak to be observed.  The IPB most 

affected modes by NH(D) motion are located between 750 and 1250 cm-1 for both 

IR and Raman modes. The largest observed νH/νD ratio for this kind of mode is 

1.083 for the band at 1045 cm-1 in the IR spectrum of H2Pc in rare gas matrices. 

The small ratio arises as a result of the coupling of the mode with other modes and 

its ensuing dilution over these modes.   

Several N-H bending modes exhibit the peculiar behaviour of νH <νD in H/D 

substitution work, one of them, an OPB mode, is observed in the 730 cm-1 region.  

This behaviour can be traced back to the avoided-crossing of these modes by the 

“pure” NH bending mode.  This effect has been examined in a theoretical study 

involving a continuous change of the isotopic mass from H2Pc to D2Pc.  A 

consequence of this frequency increase in the heavier isotopomer is that the 

direction of the N-D OP bend is reversed from the N-H OP bending.  
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The spectral window between the C-H stretching and the N-H stretching 

modes (3100 - 3300 cm-1) was carefully examined in the low temperature matrix-

IR spectra for evidence of the cis isomer of H2Pc, predicted by DFT calculations 

from the work of Strenalyuk et al.7 to absorb in this region.  One unaccounted for 

band is located at 3104 cm-1 in Ar and using the scaling factor of 0.93 we found 

appropriate for the N-H stretch, it is close to the predicted value of 3094 cm-1 

(unscaled 3323 cm-1). However, as this band is only a partially resolved feature on 

the shoulder of the strongest C-H stretching mode of the dominant trans form, the 

existence of the unstable cis isomer cannot be identified in the present study.  To 

examine this possibility adequately, one would propose working with H2Pc-d16 but 

in addition, a means of increasing the content of the cis form must be utilised.  A 

possible approach for enhanced isolation of the cis form involves electronic 

promotion of the interconversion of the two trans forms of H2Pc. 
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Figure IV.23: A comparison of the experimentally recorded Raman spectrum and the visible 
fluorescence spectrum of H2Pc in an Ar matrix.  The correspondence between the two spectra is 
striking especially with regard to the line positions. DFT prediction of the ground state vibrations 
clearly allows assignment of the emission bands. 

The Raman spectra of H2Pc in KBr reveal, as presented in Figure IV.23 a 

striking resemblance to the fluorescence recorded for the same molecules isolated 

in rare gas and nitrogen matrices (see Chapter VI).  The very evident similarities 
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between the recorded Raman scattering and the matrix fluorescence spectra 

indicates the close correspondence between the vibrational levels accessed in 

these transitions.  This behaviour can be understood when it is noted that the 

observed Raman modes all involve in-plane vibrations and it is known15 that the 

fluorescence lines involve gerade, and in-plane vibrational modes of the ground 

state, more precisely A1g, A2g, B1g and B2g modes for ZnPc and Ag and B1g modes for 

H2Pc.  Since the selection rules for Raman scattering and S1 – S0 vibronic intensity 

distributions are very similar, the present Raman analysis will be very useful for 

band assignments of the emission spectra. 

The ground state vibrational analysis conducted in this study is an essential 

precursor to understanding the transitions to and from the first excited electronic 

states.  The Raman active N-H in-plane band observed at 1025.5 cm-1 is identified 

as the most likely mode capable of coupling the v=0 level of the S2 (QY) electronic 

state and vibrationally excited levels of the S1 (QX) states of H2Pc. Moreover, its 

shift to 986.1 cm-1 for D2Pc is fully consistent with Bondybey’s results16 on 

fluorescence excitation of the H2Pc and D2Pc in solid Ar 
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Appendix IV.A: DFT vibrational 

frequencies of H2Pc, D2Pc and ZnPc 

IV.A.1 Introduction 

In this appendix the vibrational frequencies and infra-red absorption and Raman 

scattering intensities of H2Pc, D2Pc and ZnPc calculated using the DFT B3LYP 

functional and 6-311++G(2d,2p) basis set. By convention the D2h symmetry labels 

of the normal modes of H2Pc produced by the Gaussian-03 computational software 

package has the z-axis aligned with the N-H bonds in the molecular plane.  In 

contrast it has the z-axis perpendicular to the plane of the molecule for the D4h 

symmetry of ZnPc.  For ease of comparison of the vibrational modes of these two 

molecules it is advantageous to re-orient the z-axis of H2Pc perpendicular to the 

molecule plane.  This has the effect of interchanging the 1 and 3 subscript labels of 

the Mulliken symmetry symbols. The symmetry labels listed for D2Pc are also valid 

for H2Pc.  

IV.A.2 IR and Raman DFT vibrational frequencies 

Table IV.A.1 contains the infra-red vibrational frequencies and intensities. 

The IR active B2u and B3u symmetry modes of H2Pc/D2Pc correlate to the 

degenerate Eu modes of ZnPc. The IR active B1u modes of H2Pc/D2Pc however 

correlated with the IR active ZnPc A2u modes and optically silent B2u modes. Table 

IV.A.2 contains the Raman active vibrational frequencies and intensities. The Ag 

modes of H2Pc/D2Pc correlate with the A1g and B1g modes of ZnPc. The B3g and B2g 

symmetry modes H2Pc/D2Pc correlate with the degenerate Eg modes of ZnPc. The 

Raman active B1g modes of H2Pc/D2Pc correlate with the Raman active B2g and 

optically silent A2g modes of ZnPc.  
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Table IV.A.1: DFT B3LYP / 6-311++G(2d,2p) computed infra-red frequencies (, cm-1) and 
intensities (km/mole) for H2Pc, D2Pc and ZnPc. 

H2Pc D2Pc ZnPc HD 

 
H Int D Int Sym Zn Int Sym Ratio 

1 122.96 4.73 122.90 4.73 B3u 120.61 3.60 Eu 1.0005 

2 283.07 8.16 282.74 8.09 B3u 306.37 2.51 Eu 1.0012 

3 502.57 6.18 502.48 6.30 B3u 511.37 7.87 Eu 1.0002 

4 567.38 2.59 564.42 1.59 B3u 585.85 10.37 Eu 1.0052 

5 632.31 38.21 630.00 41.13 B3u 652.85 7.78 Eu 1.0037 

6 746.46 74.09 743.13 70.60 B3u 768.00 61.07 Eu 1.0045 

7 799.06 9.49 796.68 11.85 B3u 814.13 0.81 Eu 1.0030 

8 891.84 69.19 889.97 67.59 B3u 906.01 55.53 Eu 1.0021 

9 1028.73 1.99 1028.57 1.17 B3u 1030.03 11.40 Eu 1.0002 

10 1037.22 661.50 1037.12 660.35 B3u 1111.13 174.45 Eu 1.0001 

11 1086.86 0.64 1085.32 0.94 B3u 1084.48 153.67 Eu 1.0014 

12 1131.89 75.42 1130.74 71.07 B3u 1138.25 146.17 Eu 1.0010 

13 1186.12 13.25 1185.99 14.29 B3u 1190.02 30.39 Eu 1.0001 

14 1209.22 0.53 1205.74 1.17 B3u 1210.25 2.10 Eu 1.0029 

15 1312.67 52.22 1312.06 50.11 B3u 1320.40 49.72 Eu 1.0005 

16 1338.84 11.65 1330.91 0.00 B3u 1343.80 21.81 Eu 1.0060 

17 1358.84 176.97 1355.29 186.12 B3u 1359.59 233.93 Eu 1.0026 

18 1429.46 22.07 1427.69 16.16 B3u 1436.61 56.00 Eu 1.0012 

19 1490.66 61.09 1490.66 60.72 B3u 1491.01 32.70 Eu 1.0000 

20 1504.98 0.51 1504.97 0.43 B3u 1509.13 0.14 Eu 1.0000 

21 1531.54 119.23 1531.48 121.27 B3u 1511.62 97.41 Eu 1.0000 

22 1610.84 4.40 1610.83 4.49 B3u 1615.53 8.41 Eu 1.0000 

23 1639.07 10.05 1639.07 10.13 B3u 1641.29 10.73 Eu 1.0000 

24 3172.80 5.45 3172.80 5.45 B3u 3173.97 5.98 Eu 1.0000 

25 3190.06 27.20 3190.06 27.29 B3u 3187.58 30.09 Eu 1.0000 

26 3200.16 12.59 3200.16 12.63 B3u 3201.49 9.71 Eu 1.0000 

27 3207.80 37.96 3207.81 37.34 B3u 3204.81 46.69 Eu 1.0000 

28 3556.22 133.75 2613.61 112.94 B3u 250.27 5.38 Eu 1.3607 

1 121.79 3.64 121.49 3.60 B2u 120.61 3.60 Eu 1.0025 

2 275.06 0.11 272.15 0.05 B2u 306.37 2.51 Eu 1.0107 

3 499.06 2.13 489.42 0.71 B2u 511.37 7.87 Eu 1.0197 

4 560.32 0.01 555.40 0.59 B2u 585.85 10.37 Eu 1.0089 

5 633.47 5.87 632.04 3.54 B2u 652.85 7.78 Eu 1.0023 

6 750.80 67.97 735.93 84.69 B2u 768.00 61.07 Eu 1.0202 

7 804.11 2.69 804.12 2.64 B2u 814.13 0.81 Eu 1.0000 

8 854.68 0.25 779.19 2.07 B2u 906.01 55.53 Eu 1.0969 
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9 1029.32 10.98 1029.37 14.31 B2u 1030.03 11.40 Eu 0.9999 

10 1068.39 28.79 981.15 88.55 B2u 1111.13 174.45 Eu 1.0889 

11 1109.04 217.46 1096.50 111.67 B2u 1084.48 153.67 Eu 1.0114 

12 1139.58 133.14 1136.89 51.27 B2u 1138.25 146.17 Eu 1.0024 

13 1181.40 2.22 1170.12 31.92 B2u 1190.02 30.39 Eu 1.0096 

14 1214.60 29.43 1212.99 0.05 B2u 1210.25 2.10 Eu 1.0013 

15 1286.42 19.32 1216.31 60.00 B2u 250.27 5.38 Eu 1.0576 

16 1334.09 37.10 1332.63 99.85 B2u 1320.40 49.72 Eu 1.0011 

17 1339.90 114.76 122.90 4.73 B2u 1343.80 21.81 Eu 1.0015 

18 1370.56 116.07 282.74 8.09 B2u 1436.61 56.00 Eu 1.0003 

19 1473.48 96.92 502.48 6.30 B2u 1491.01 32.70 Eu 1.0040 

20 1513.99 7.08 564.42 1.59 B2u 1509.13 0.14 Eu 1.0004 

21 1529.99 31.61 630.00 41.13 B2u 1511.62 97.41 Eu 1.0006 

22 1567.89 8.45 743.13 70.60 B2u 1359.59 233.93 Eu 1.0142 

23 1625.98 12.78 796.68 11.85 B2u 1615.53 8.41 Eu 1.0001 

24 1646.78 14.96 889.97 67.59 B2u 1641.29 10.73 Eu 1.0001 

25 3176.56 6.92 1028.57 1.17 B2u 3173.97 5.98 Eu 1.0000 

26 3186.53 33.00 1037.12 660.35 B2u 3187.58 30.09 Eu 1.0000 

27 3203.63 47.26 1085.32 0.94 B2u 3204.81 46.69 Eu 1.0000 

28 3204.82 9.17 1130.74 71.07 B2u 3201.49 9.71 Eu 1.0000 

1 19.90 0.00 19.90 0.00 B1u 22.37 0.00 B2u 1.0000 

2 38.47 1.53 38.26 1.50 B1u 31.61 0.57 A2u 1.0055 

3 136.17 0.38 136.10 0.40 B1u 134.30 0.00 B2u 1.0005 

4 217.25 7.15 214.18 7.83 B1u 249.71 0.02 A2u 1.0143 

5 256.63 1.70 255.90 1.58 B1u 249.91 0.00 B2u 1.0029 

6 340.23 1.66 340.23 1.66 B1u 352.00 2.18 A2u 1.0000 

7 431.00 0.26 430.99 0.22 B1u 433.57 0.00 B2u 1.0000 

8 444.31 14.38 443.68 15.75 B1u 446.22 12.41 A2u 1.0014 

9 704.03 4.78 704.28 4.03 B1u 715.88 0.00 B2u 0.9997 

10 740.49 127.16 746.78 248.74 B1u 748.97 246.81 A2u 0.9916 

11 778.36 184.33 566.31 18.00 B1u 122.63 11.08 A2u 1.3744 

12 784.63 23.57 784.59 15.03 B1u 788.29 0.00 B2u 1.0000 

13 804.01 4.93 795.67 23.91 B1u 797.02 31.45 A2u 1.0105 

14 975.37 1.84 975.37 1.88 B1u 978.41 3.74 A2u 1.0000 

15 980.94 1.97 980.93 1.82 B1u 977.91 0.00 B2u 1.0000 
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Table IV.A.2: DFT B3LYP / 6-311++G(2d,2p) computed Raman frequencies (cm-1) and intensities 
[scattering activities (Å4/amu)] for H2Pc, D2Pc and ZnPc. The symmetry labels listed for D2Pc are 
also valid for H2Pc.  

H2Pc D2Pc ZnPc HD 

H Int D Int Sym Zn Int Sym Ratio 

1 132.88 32.17 132.66 32.12 Ag 157.58 19.82 B1g 1.0016 

2 229.72 74.90 229.34 74.54 Ag 258.37 76.58 A1g 1.0016 

3 551.31 38.40 550.28 39.46 Ag 562.60 8.86 B1g 1.0019 

4 577.52 49.75 575.39 47.62 Ag 600.07 116.02 A1g 1.0037 

5 690.37 377.39 690.31 382.41 Ag 689.90 318.35 A1g 1.0001 

6 743.52 1177.46 739.95 1131.63 Ag 764.79 928.75 B1g 1.0048 

7 779.27 14.02 778.65 30.22 Ag 788.74 380.92 B1g 1.0008 

8 810.69 172.30 805.98 178.69 Ag 851.61 172.77 A1g 1.0058 

9 1029.03 242.78 1028.88 255.13 Ag 1029.79 244.29 B1g 1.0001 

10 1029.67 562.80 1029.62 553.30 Ag 1030.45 527.33 A1g 1.0000 

11 1138.32 1089.91 1135.53 1036.39 Ag 1146.80 1266.13 A1g 1.0025 

12 1164.00 2523.97 1162.81 2528.87 Ag 1164.30 2844.76 B1g 1.0010 

13 1185.19 352.54 1185.16 348.43 Ag 1186.33 409.97 A1g 1.0000 

14 1203.96 998.66 1200.75 665.94 Ag 1202.09 1319.63 B1g 1.0027 

15 1327.29 5525.98 1323.34 5987.30 Ag 1323.12 5181.51 B1g 1.0030 

16 1360.92 2581.95 1355.50 2828.61 Ag 1363.78 2102.53 A1g 1.0040 

17 1373.33 2815.23 1373.11 2646.15 Ag 1368.90 1713.40 B1g 1.0002 

18 1422.37 479.56 1419.24 371.63 Ag 1421.41 588.56 A1g 1.0022 

19 1460.91 490.84 1460.85 477.32 Ag 1455.62 478.64 A1g 1.0000 

20 1481.64 1758.49 1481.63 1759.71 Ag 1478.71 2000.23 B1g 1.0000 

21 1541.07 1810.91 1541.07 1815.39 Ag 1529.73 689.94 A1g 1.0000 

22 1582.92 18943.34 1582.77 18899.00 Ag 1557.23 19777.07 B1g 1.0001 

23 1611.42 108.35 1611.42 108.39 Ag 1614.66 85.11 B1g 1.0000 

24 1626.52 39.91 1626.51 40.21 Ag 1617.53 121.12 A1g 1.0000 

25 3186.54 633.00 3186.54 633.07 Ag 3187.54 674.71 B1g 1.0000 

26 3190.08 678.73 3190.08 678.62 Ag 3187.64 626.18 A1g 1.0000 

27 3203.69 717.09 3203.69 717.21 Ag 3204.75 97.81 B1g 1.0000 

28 3207.86 785.98 3207.86 786.17 Ag 3204.99 1444.68 A1g 1.0000 

29 3612.04 13.17 2649.28 35.98 Ag 1.3634 

1 56.85 0.09 56.85 0.09 B3g 60.13 0.15 Eg 1.0000 

2 126.40 5.39 126.40 5.39 B3g 125.24 5.12 Eg 1.0000 

3 232.80 1.96 232.80 1.96 B3g 235.35 2.24 Eg 1.0000 

4 287.33 0.07 287.33 0.07 B3g 288.36 0.04 Eg 1.0000 

5 430.59 0.02 430.59 0.02 B3g 433.50 0.00 Eg 1.0000 

6 503.88 0.01 503.88 0.01 B3g 508.73 0.03 Eg 1.0000 

7 648.09 0.01 648.09 0.01 B3g 659.12 0.03 Eg 1.0000 
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8 740.37 0.42 740.37 0.42 B3g 739.11 0.40 Eg 1.0000 

9 793.08 16.26 793.08 16.26 B3g 792.07 16.68 Eg 1.0000 

10 802.06 6.87 802.06 6.87 B3g 809.00 2.40 Eg 1.0000 

11 896.46 0.48 896.46 0.48 B3g 897.77 0.40 Eg 1.0000 

12 975.36 0.02 975.36 0.02 B3g 978.15 0.26 Eg 1.0000 

13 1008.46 0.44 1008.46 0.44 B3g 1006.68 0.21 Eg 1.0000 

1 52.87 0.15 52.47 0.16 B2g 60.13 0.15 Eg 1.0075 

2 116.84 4.44 116.46 4.38 B2g 125.24 5.12 Eg 1.0032 

3 220.35 2.67 214.42 2.64 B2g 235.35 2.24 Eg 1.0276 

4 271.88 0.02 271.83 0.03 B2g 288.36 0.04 Eg 1.0002 

5 431.40 0.07 430.37 0.09 B2g 433.50 0.00 Eg 1.0024 

6 505.86 0.02 511.42 0.00 B2g 508.73 0.03 Eg 0.9891 

7 657.47 0.16 659.10 0.18 B2g 659.12 0.03 Eg 0.9975 

8 680.33 0.04 495.23 0.03 B2g 1.3738 

9 730.47 1.60 729.66 1.62 B2g 739.11 0.40 Eg 1.0011 

10 786.56 15.21 786.54 15.19 B2g 792.07 16.68 Eg 1.0000 

11 810.37 0.90 810.28 0.87 B2g 809.00 2.40 Eg 1.0001 

12 898.03 0.30 898.03 0.30 B2g 897.77 0.40 Eg 1.0000 

13 980.86 0.72 980.85 0.71 B2g 978.15 0.26 Eg 1.0000 

14 1004.59 0.12 1004.59 0.12 B2g 1006.68 0.21 Eg 1.0000 

1 84.78 5.07 84.24 4.93 B1g 112.54 12.92 B2g 1.0064 

2 181.25 28.90 179.15 28.05 B1g 231.86 31.49 B2g 1.0117 

3 211.90 1.34 211.68 1.69 B1g 213.89 0.00 A2g 1.0011 

4 487.58 134.53 486.28 138.50 B1g 489.67 115.86 B2g 1.0027 

5 580.49 1.99 563.31 1.81 B1g 588.59 0.00 A2g 1.0305 

6 612.25 0.58 599.53 0.01 B1g 629.19 0.00 A2g 1.0212 

7 699.34 3.15 696.47 2.36 B1g 701.63 4.69 B2g 1.0041 

8 841.82 1.14 762.54 5.27 B1g 1.1040 

9 907.44 1.12 880.30 0.00 B1g 864.41 0.00 A2g 1.0308 

10 1049.73 227.80 1007.27 134.25 B1g 1056.58 115.99 B2g 1.0422 

11 1106.98 43.02 1068.51 65.13 B1g 963.56 42.27 B2g 1.0360 

12 1121.65 0.12 1117.37 29.74 B1g 1116.17 0.00 A2g 1.0038 

13 1132.51 411.86 1132.15 424.96 B1g 1131.91 375.42 B2g 1.0003 

14 1211.42 271.33 1211.42 260.77 B1g 1208.88 0.00 A2g 1.0000 

15 1223.56 520.38 1191.40 58.66 B1g 1157.23 0.00 A2g 1.0270 

16 1258.70 73.14 1237.35 535.53 B1g 1232.04 741.76 B2g 1.0173 

17 1322.50 156.25 1322.34 145.67 B1g 1325.10 0.00 A2g 1.0001 

18 1339.32 336.17 1339.09 353.25 B1g 1331.44 454.81 B2g 1.0002 

19 1458.98 554.95 1452.44 568.44 B1g 1457.03 323.28 B2g 1.0045 

20 1504.73 81.21 1504.73 82.33 B1g 1507.69 0.00 A2g 1.0000 

21 1515.01 167.52 1514.97 161.82 B1g 1509.64 222.51 B2g 1.0000 
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22 1565.84 3.16 1549.62 13.84 B1g 1484.87 0.00 A2g 1.0105 

23 1639.07 0.05 1638.96 0.12 B1g 1640.17 0.00 A2g 1.0001 

24 1646.82 71.75 1646.71 71.82 B1g 1642.50 31.02 B2g 1.0001 

25 3172.80 189.65 3172.80 189.66 B1g 3173.95 0.00 A2g 1.0000 

26 3176.57 219.98 3176.57 219.98 B1g 3173.99 400.78 B2g 1.0000 

27 3200.16 164.45 3200.16 164.45 B1g 3201.40 0.00 A2g 1.0000 

28 3204.82 170.82 3204.82 170.78 B1g 3201.57 344.47 B2g 1.0000 
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Appendix IV.B: MgPc, AlPc+ and 

ClAlPc DFT Results 

IV.B.1 Introduction 

This appendix will present the optimised geometries and vibrational analysis of 

magnesium, aluminium and chloro-aluminium phthalocyanine (MgPc, AlPc+ and 

ClAlPc respectively) calculated using density functional theory. All calculations 

were made using the B3LYP hybrid functional and the 6-311++G(2d,2p) basis set. 

The calculated geometries of these phthalocyanines (a neutral s-block metal 

complex, a cationic p-block metal complex and its chlorinated salt) will be given in 

Section IV.B.2 and compared to the x-ray and gas phase structure. The tabulated 

infra-red and Raman active vibrational frequencies will be presented in Section 

IV.B.3 along with the calculated IR absorption and Raman scattering intensities. 

 Two of these molecules, MgPc and AlPc+, were found to be planar with an 

inversion centre. Like the case of ZnPc, these 57 atom D4h molecules will have 165 

vibrational modes, 68 Raman active (14 A1g, 14 B1g, 14 B2g and 26 Eg) , 40 IR active 

(8 A2u and 32 Eu) and 33 optically silent modes (6 A1u, 7 B1u, 7B2u and 13 A2g). With 

58 atoms ClAlPc has 168 normal vibrational modes. Due to its lower C4v symmetry, 

ClAlPc has 23 A1 and 84 E symmetry modes that are both IR and Raman active. 21 

B1 and 21 B2 modes are also Raman active with 19 A2 inactive modes. The 

following correlations may be made between the C4v and D4h symmetries: A1 → A2u 

and A1g, A2 → A1u and A2g, B1 → B2u and B1g, B2 → B1u and B2g and E → Eg and Eu. 

Table V.B.2 contains the IR active modes of AlPc+ and MgPc and the equivalent IR 

and Raman modes of ClAlPc correlated by first symmetry then by comparison of 

the displacement diagrams. Table V.B.3 contains the Raman active modes of AlPc+ 

and MgPc again with the equivalent ClAlPc modes. Where ClAlPc Raman modes of 

B1 and B2 symmetry correlate with an inactive mode of AlPc+ and MgPc, these are 

also given. The extra Cl stretch of A1 symmetry and degenerate pair of Cl bends of E 

symmetry are duplicated in both tables and are highlighted in bold. To save space 

and simplify the table, only one each of the degenerate pairs of E, Eg and Eu modes 

are shown. 
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IV.B.2 Optimised Geometries 
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Figure V.B.1: The structures of magnesium, aluminium and chloro-aluminium phthalocyanine. 
Using DFT calculations MgPc and AlPc+ were found to have square planar geometries, with a point 
group symmetry D4h.  The chlorinated salt of AlPc+, ClAlPc, was found to be non-planar, with a slight 
‘bowling’ of the Pc ring structure and the Al and Cl atoms above the ring (see Figure V.B.2). ClAlPc 
therefore has a point group symmetry of C4v. The atom labelling used in these calculations is 
indicated and the structural parameters determined are provided in Table V.B.1.  

The geometry optimised structures of MgPc, AlPc+ and ClAlPc were determined 

by DFT using the B3LYP functional and the 6-311++G(2d,2p) basis set. MgPc was 

found to have a planar structure with D4h symmetry. In the x-ray crystal data, this 

molecule is found to have a pyramidal structure where the Mg atoms complexes 

not only to the four pyrrole N atoms in the ring but also to a meso N atom of 

another MgPc molecule directly above or below. The Mg ion is said therefore to 

have a 4+1 coordination structure1. As the calculations presented here represent 

the molecule in the gas phase, inter-molecular interactions would not occur for the 

monomeric molecule and the molecule would be expected to be planar. The 

calculated geometric parameters have, none-the-less, been compare to the average 

of their equivalents in the pseudo-C4v structures found by x-ray crystallography in 

Table V.B.1. 

The DFT optimised structure for ClAlPc was found to have C4v symmetry. Figure 

V.B.1 clearly shows that not only is the Cl- anion above the plane of the molecule, as 

presumed from the start of the calculation, but also the Al atom is significantly 

(0.450 Å) above the plane formed by the four pyrrole N atoms with a noticeable 

‘bowling’ of the phthalocyanine ring. This geometry (Table V.B.1).  is consistent 

with the structural data found using gas electron diffraction (GED)2. Also given in 

Table V.B.1 are the structural parameters for the cation AlPc+. This species exists in 

solution when ClAlPc is dissolved in a polar solvent. Its structure was found to be 
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D4h, like MgPc and ZnPc, and was used to compare the C4v ClAlPc ground state 

properties with those of the planar Pcs. 

 

Figure V.B.3: Plot of the atomic positions calculated using DFT of ClAlPc projected onto the zx axis 
illustrating the loss of planarity of the Pc ring. Distances are in shown Å units and the atomic 
positions on the vertical axis are plotted relative to the 4 central N atoms. The atoms of the two 
isoindole fragments along the y axis have been removed for clarity.  
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Table V.B.1: Selected structural parameters obtained using the B3LYP/6-311++G(2d,2p) method 
for MgPc, AlPc+ and ClAlPc. Note the experimental parameters for MgPc are taken from x-ray 
diffraction data of a solid crystal, where the molecule has a pyramidal shape (~C4v) due to inter-
molecular interactions. The z-axis positions of the atoms in ClAlPc are also given and the values are 
relative to the plane of the central N atoms. 

 MgPc  AlPc+  ClAlPc  

Lengths (Å) Exp(C4v)1 B3LYP(D4h)  B3LYP  Exp2 B3LYP  

N-M 2.047 2.002  1.915  1.976 1.981  

N-Cα 1.369 1.369  1.395  1.395 1.379  

Cα-Nm 1.351 1.329  1.313  1.326 1.317  

Cα- Cβ 1.461 1.460  1.441  1.458 1.450  

Cβ- Cβ 1.411 1.408  1.401  1.393 1.399  

Cβ- Cγ 1.382 1.391  1.394  1.387 1.393  

Cγ- Cδ 1.392 1.389  1.386  1.383 1.388  

Cδ- Cδ 1.410 1.403  1.407  1.400 1.406  

Cγ- H1 0.950 1.080  1.080  1.111 1.080  

Cδ- H2 0.950 1.081  1.081  1.112 1.081  

Al-Cl N/A N/A  N/A  2.145 2.175  
Bond Angles 
(deg)   

 
 

 
   

M-N-Cα 123.609 125.077  126.701  124.2 125.689  

N-Cα- Nm 127.491 127.373  126.868  127.5 127.413  

Cα-N-Cα 107.920 109.846  106.598  105.8 107.535  

N-Cα-Cβ 108.665 108.491  109.830  110.6 109.840  

Cα-Cβ-Cβ 106.564 106.586  106.871  106.6 106.482  

Cβ-Cβ-Cγ 120.991 120.993  121.309  121.1 121.248  

Cβ-Cγ-Cδ 118.087 117.864  117.324  117.7 117.532  

Cγ-Cδ-Cδ 120.898 121.142  121.366  121.2 121.220  

Cβ-Cγ-H1 120.956 120.690  121.061  120.8 120.855  

Cγ-Cδ-H2 119.534 119.640  119.595  119.6 119.639  

ClAlPc – B3LYP         

Atom Cl Al  N  Cα Nm  

Z-Position (Å) 2.625 0.450  0  -0.045 -0.053  

Atom Cβ Cγ  H1  Cδ H2  

Z-Position (Å) -0.109 -0.169  -0.169  -0.224 -0.267  
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IV.B.3 IR and Raman DFT vibrational frequencies 

Table V.B.2: DFT B3LYP / 6-311++G(2d,2p) computed Infra-red frequencies (, cm-1) and 
intensities (km/mole) of AlPc+ and MgPc with the frequencies and IR and Raman intensities 
[scattering activities (Å4/amu)] of the equivalent modes of ClAlPc. The symmetry samples are the 
same for AlPc+ and MgPc. 

 ClAlPc AlPc+ MgPc  

 Sym ν IR Int Ram Int ν Int ν Int Sym 

1 A1 40.98 2.16 0.74 45.43 1.69 31.80 0.27 A2u 

2 A1 172.26 5.44 0.21 200.83 19.81 150.63 28.64 A2u 

3 A1 293.97 0.01 3.13 307.89 9.24 263.95 5.20 A2u 

4 A1 359.43 6.51 5.41 373.22 5.90 354.20 0.57 A2u 

5 A1 443.16 26.91 0.27 444.76 11.45 447.11 11.56 A2u 

6 A1 483.16 91.08 7.10      

7 A1 753.76 281.31 0.01 756.85 244.49 751.07 263.56 A2u 

8 A1 802.24 11.92 1.16 805.19 29.28 799.08 21.80 A2u 

9 A1 980.23 2.73 0.04 991.33 2.03 978.82 3.71 A2u 

1 E 93.88 1.12 3.80      

2 E 135.09 0.08 2.86 125.53 3.87 122.43 4.28 Eu 

3 E 311.82 3.58 0.42 311.43 4.78 290.89 5.88 Eu 

4 E 391.41 4.29 0.05 431.69 1.15 427.77 0.02 Eu 

5 E 527.84 11.42 0.00 536.89 12.42 514.87 8.07 Eu 

6 E 587.27 7.01 0.05 590.26 2.82 589.81 11.88 Eu 

7 E 659.17 4.84 0.06 667.62 0.62 663.02 4.25 Eu 

8 E 773.62 58.12 0.72 776.91 19.72 770.73 62.06 Eu 

9 E 818.09 1.42 0.85 827.27 6.48 820.19 1.08 Eu 

10 E 921.18 58.48 0.09 926.05 62.69 909.64 61.04 Eu 

11 E 1028.69 12.57 0.43 1029.52 2.70 1030.04 11.02 Eu 

12 E 1087.16 136.92 1.19 1065.19 45.59 1082.69 204.08 Eu 

13 E 1096.60 132.95 0.61 1104.93 116.95 1102.73 150.99 Eu 

14 E 1142.98 159.63 0.54 1147.14 128.59 1137.85 127.66 Eu 

15 E 1190.04 24.20 0.37 1195.79 8.74 1188.86 20.59 Eu 

16 E 1220.68 0.16 0.73 1224.52 3.45 1209.70 1.53 Eu 

17 E 1324.98 46.96 0.01 1328.39 36.50 1319.05 48.88 Eu 

18 E 1350.26 35.91 3.86 1333.80 137.04 1346.02 6.36 Eu 

19 E 1365.62 227.49 0.92 1368.15 343.25 1359.78 250.51 Eu 

20 E 1456.69 83.08 0.08 1460.46 77.09 1432.51 37.49 Eu 

21 E 1508.56 23.80 0.00 1513.58 21.82 1486.33 32.44 Eu 

22 E 1520.34 1.64 0.24 1527.32 0.61 1504.52 104.09 Eu 

23 E 1546.11 50.64 1.50 1550.93 3.94 1508.90 2.29 Eu 

24 E 1622.01 7.80 0.67 1618.93 0.33 1614.60 6.95 Eu 

25 E 1642.69 13.72 0.03 1638.52 12.46 1641.07 10.48 Eu 



Appendix IV.B: MgPc, AlPc+ and ClAlPc DFT Results 

155 

26 E 3176.18 6.52 0.23 3188.38 2.93 3173.75 6.15 Eu 

27 E 3189.88 29.97 2.03 3199.95 5.77 3187.36 30.20 Eu 

28 E 3205.33 6.83 0.10 3212.73 0.72 3201.20 9.95 Eu 

29 E 3208.21 38.50 0.74 3215.52 13.14 3204.55 47.40 Eu 

 

Table V.B.3: DFT B3LYP / 6-311++G(2d,2p) computed Raman frequencies (cm-1) and intensities 
[scattering activities (Å4/amu)] for AlPc+ and MgPc with the frequencies and Raman and IR 
intensities (km/mole) of the equivalent modes of ClAlPc. The symmetry samples are the same for 
AlPc+ and MgPc. 

 ClAlPc AlPc+ MgPc  

 Sym ν IR Int Ram Int ν Int ν Int Sym 

1 A1 255.58 0.25 70.68 264.93 102.08 254.76 72.25 A1g 

2 A1 483.16 91.08 7.10      

3 A1 601.41 1.05 63.80 604.49 61.53 598.01 100.49 A1g 

4 A1 695.31 0.01 320.44 688.76 445.64 690.02 337.39 A1g 

5 A1 850.46 4.41 226.48 857.45 218.66 846.87 197.70 A1g 

6 A1 1029.09 0.24 505.28 1029.90 488.64 1030.33 529.35 A1g 

7 A1 1155.59 0.61 727.46 1159.42 798.84 1145.22 1255.56 A1g 

8 A1 1189.96 0.40 582.47 1196.76 718.64 1186.11 401.16 A1g 

9 A1 1367.76 1.75 2733.99 1367.47 3025.30 1363.79 2184.95 A1g 

10 A1 1429.87 8.14 532.55 1420.45 82.79 1422.67 577.00 A1g 

11 A1 1469.50 0.02 210.73 1472.21 285.28 1453.13 608.82 A1g 

12 A1 1565.98 0.00 785.28 1577.82 871.82 1524.53 630.87 A1g 

13 A1 1624.27 0.25 170.24 1620.79 2.26 1616.50 109.09 A1g 

14 A1 3189.94 0.07 743.12 3200.00 687.97 3187.42 617.36 A1g 

15 A1 3208.38 0.14 1327.42 3215.65 1450.80 3204.73 1454.40 A1g 

1 B1 218.27 0.00 0.08 180.59 10.24 182.16 15.69 B1g 

2 B1 526.94 0.00 0.97 571.14 0.18 569.72 5.35 B1g 

3 B1 705.25 0.00 5.60 768.19 872.75 764.20 870.24 B1g 

4 B1 896.62 0.00 0.01 798.42 329.41 797.37 513.21 B1g 

5 B1 1008.36 0.00 0.01 1029.14 312.07 1029.82 253.23 B1g 

6 B1 1064.23 0.00 224.81 1170.18 2980.21 1164.87 2998.29 B1g 

7 B1 1128.87 0.00 486.10 1197.31 373.05 1204.83 1762.34 B1g 

8 B1 1223.74 0.00 619.93 1316.59 5368.45 1332.12 4872.03 B1g 

9 B1 1334.48 0.00 484.86 1381.21 1136.44 1369.01 1976.77 B1g 

10 B1 1486.76 0.00 324.76 1486.63 2359.03 1477.92 2095.35 B1g 

11 B1 1516.27 0.00 167.63 1600.21 21410.53 1548.39 20262.60 B1g 

12 B1 1643.91 0.00 89.04 1620.15 1458.58 1613.59 145.94 B1g 

13 B1 3176.21 0.00 423.36 3199.92 694.16 3187.32 671.83 B1g 

14 B1 3205.43 0.00 321.30 3215.42 96.05 3204.49 101.05 B1g 

1 B2 133.42 0.00 4.22 120.04 12.62 111.21 12.98 B2g 
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2 B2 296.83 0.00 1.03 265.54 38.72 225.54 29.61 B2g 

3 B2 434.24 0.00 0.48 498.43 113.03 489.33 122.55 B2g 

4 B2 770.10 0.00 1009.37 703.97 8.51 701.34 4.61 B2g 

5 B2 979.64 0.00 0.06 978.38 75.68 960.32 32.65 B2g 

6 B2 1167.30 0.00 2161.73 1055.12 478.43 1052.98 146.97 B2g 

7 B2 1206.62 0.00 1302.10 1124.34 542.62 1130.93 420.14 B2g 

8 B2 1333.66 0.00 5299.85 1214.11 507.67 1230.35 814.29 B2g 

9 B2 1375.12 0.00 1393.48 1336.80 492.56 1330.69 496.65 B2g 

10 B2 1485.90 0.00 2027.59 1491.66 402.06 1446.66 282.39 B2g 

11 B2 1596.95 0.00 9915.46 1525.48 122.81 1509.45 248.54 B2g 

12 B2 1622.21 0.00 184.91 1638.44 100.15 1642.18 52.00 B2g 

13 B2 3189.85 0.00 697.72 3188.40 393.04 3173.77 404.01 B2g 

14 B2 3208.13 0.00 70.36 3212.86 348.56 3201.27 346.27 B2g 

1 E 57.34 0.33 1.92 65.60 0.10 59.59 0.17 Eg 

2 E 93.88 1.12 3.80      

3 E 124.72 3.75 0.04 122.77 5.86 126.08 5.16 Eg 

4 E 255.32 0.14 0.89 249.86 0.94 236.62 2.08 Eg 

5 E 301.08 0.98 0.44 294.71 0.58 289.67 0.03 Eg 

6 E 434.82 0.03 0.00 433.89 0.00 434.43 0.00 Eg 

7 E 501.44 0.67 0.01 493.14 0.00 509.75 0.03 Eg 

8 E 652.38 3.62 0.19 648.15 0.03 660.50 0.03 Eg 

9 E 743.09 0.34 0.21 746.24 0.72 741.83 0.29 Eg 

10 E 793.89 0.89 12.20 798.57 6.34 793.58 17.28 Eg 

11 E 805.50 0.12 4.55 805.55 8.44 809.29 2.73 Eg 

12 E 896.60 0.01 0.33 903.33 0.29 898.32 0.39 Eg 

13 E 979.92 0.02 0.40 991.04 0.18 978.62 0.27 Eg 

14 E 1008.24 0.00 0.35 1022.53 0.56 1006.87 0.25 Eg 
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Chapter V: Visible spectroscopy of 

H2Pc and ZnPc isolated in cryogenic 

matrices 

V.1  Introduction 

In this chapter, a description of the study of the absorption and luminescence 

spectra of ZnPc and H2Pc isolated in rare gas and molecular matrices in the region 

of the Q band will be given. Very strong similarities were noted in Chapter IV 

between the vibrational structure in Raman and the vibronic emission spectra. A 

key aspect of the present work is the exploitation of vibrational analysis of Raman 

spectra, obtained by large basis set DFT calculations, to obtain vibrational 

assignments for the emission bands and then for excitation bands for matrix-

isolated phthalocyanines (Pcs).  Due to the strong mirror symmetry between 

emission and excitation spectra, an opportunity is thereby at hand to achieve 

vibrational assignments for the multiple lines present in the excitation and 

emission spectroscopy of these important molecules. Moreover this comparison 

between fluorescence and Raman data will allow the identification of the 

vibrational mode coupling the higher energy Qy state to the lower Qx seen in 

excitation. 

In light of the success of density functional methods to predict the ground state 

properties of H2Pc and ZnPc, the ability of time dependent DFT (TD-DFT) was 

assessed with regard to the prediction of the vertical electronic transition energies 

to the Q states. Large basis sets and molecular geometries calculated at a high level 

of theory were used. Porphyrins and their derivatives have been extensively 

studied using TD-DFT. Baerends et al.1 presented an analysis of TD-DFT 

calculations using the Statistical Averaging of different Orbital dependent model 

Potentials (SAOP) method for Mg, Zn and Ni porphyrin and tetraazaporphyrin 

(TAP, which was referred to by the authors as porphyrazine). They concentrated 

on the origin of the excitation energies and absorption intensities for these 

molecules by considering the Kohn-Sham (KS) orbitals of the pyrrole, methine and 

aza fragments, as well as the metallic KS orbitals that make up the metallo-P/ 
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metallo-TAP molecules. Nguyen and Pachter2 reported TD-DFT results for the 

metallo-porphyrins ZnP, ZnTBP (zinc tetrabenzoporphyrin), ZnPc and ZnTAP, 

using the B3LYP functional and 6-31G(d) basis set. They reported all the allowed 

transitions predicted for the four porphyrins up to the vacuum UV (~200 nm) and 

compared the excitation and oscillator strengths calculated for ZnP using the 6-

31G(d), 6-31+G(d) and 6-311+G(d) basis sets. The lowest energy transitions of 

H2P, H2TBP, H2Pc and H2TAP predicted using the TD-DFT method and B3LYP/6-

31G(d) functional and basis set have been reported by Song et al.3 while the higher 

energy transitions of H2Pc and its multiple protonated analogues, H2+nPcn+, have 

been calculated at the same level by Lu et al.4. The Q bands of both H2Pc and ZnPc 

and various derivatives have been calculated by Quartarolo et al.5 with TD-DFT at 

the PBE0/SVP level of calculation. 

The outline of this chapter is as follows. After a brief note on the experimental 

procedures used, the results for the visible absorption spectra recorded will be 

given in Part V.3.I. This will be followed in Part V.3.II by the emission results using 

pulsed laser excitation and monitoring with a time-gated iCCD detector for H2Pc 

and ZnPc in various low-temperature matrices. In Part V.3.III the time-resolved 

emission results will be given. The excitation spectra will be reported in Part 

V.3.IV. In Part V.3.V the results from linear-response TD-DFT calculations will be 

given and compared to experiment. The TD-DFT and fluorescence lifetime results 

will be discussed in Parts V.4.I and V.4.II. The vibronic structures of H2Pc and ZnPc 

in emission will be analysed in Part V.4.III and the vibrations assigned by 

comparison with the ground state Raman spectra and the vibrations calculated 

using DFT. In Part V.4.IV the excitation and emission spectra of both molecules will 

be compared and assignments, where possible, made. A brief discussion of the 

possible resonance mechanism coupling the vibrations of the two lowest allowed 

excited states of H2Pc and site structures observed in the electronic spectra of 

matrix-isolated H2Pc and ZnPc will be given in Parts V.4.V and V.4.VI. 

V.2  Experimental 

Experimental results for H2Pc and ZnPc in Ar, Kr, Xe and N2 matrices were 

recorded in Maynooth using the apparatus described in Chapter II. Spectroscopic 

results for both these molecules in neon were obtained in Orsay in collaboration 

with the group of Dr. Claudine Crépin, L’Institut des Sciences Moléculaires d’Orsay 
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(ISMO) at l’Université Paris-Sud. Their cryogenic set-up6 had a base temperature of 

7 K allowing the formation of Ne matrices which would be unattainable using the 

set-up in Maynooth with a base temperature ~12.5 K. The optical set-up at ISMO 

was also different with a home built dye laser6 and a higher resolution 0.6 m Jobin-

Yvon emission monochromator. Emission was recorded using the same model 

Andor DH720 iCCD detector (the spectra recorded in Orsay had to be calibrated 

post hoc due to the lack of suitable calibration curves being included with the 

Andor software for the Jobin-Yvon monochromator). 

V.3  Results 

V.3.I Visible absorption 

The absorption spectra of ZnPc in all matrices are dominated, as shown on the left 

panel in Figure V.1, by the intense 0-0 transition of the Q band. The band maximum 

of this transition has been observed in the gas phase under static cell conditions7 at 

15128 cm-1 while the band origin has been identified at 15766 cm-1 under free jet 

conditions8. The latter value is indicated by the dashed vertical line in Figure V.1.  

The 0-0 transition of the Q band is situated at 15574, 15328, 15309, 15182 and 

15035 cm-1 in Ne, N2, Ar, Kr and Xe respectively. These bands are all red-shifted 

from the gas phase position and the energy of the transition decreases from Ne to 

Xe as the interaction with the matrix gets stronger. Thus the largest shift from the 

gas phase has been observed in Xe with a value of 731 cm-1 while the smallest is 

192 cm-1 in neon. Other vibronic bands of lower intensity are evident in the region 

from 15500 to 17000 cm-1. The Ne and N2 spectra in Figure V.1 have been recorded 

at 7 K and these matrices, especially N2, exhibit resolved site structure. The 

absorption spectra in Ar, Kr and Xe were recorded at a higher temperature (13 K) 

and while the bands are broader, they do show resolved features in laser excitation 

scans. 
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Figure V.1: Absorption spectra of ZnPc (left panel) and H2Pc (right panel) trapped in Ne, N2, Ar, Kr 
and Xe solids. All the spectra were recorded at 7 K except for ZnPc in Ar, Kr and Xe which were 
recorded at 13 K. The locations of the gas phase band origins are indicated by the dashed vertical 
lines. 

 The absorption spectra of H2Pc, shown on the right of Figure V.1, recorded at 7 

K, appears more structured than for ZnPc. In addition, two intense features are 

evident in the spectra, recorded in all samples, corresponding to absorptions of the 

Qx and Qy states. The band origin of the QX ← G transition in the gas phase is 

known from laser excitation spectroscopy9 to be 15132 cm-1. As indicated in Figure 

V.1 a red-shift exists in all matrices – it is smallest in Ne (193 cm-1) and largest in 

Xe (615 cm-1). Even under free-jet conditions, the region of the band origin of the 

Qy ← G is spectrally congested and the bands are broader. This is due to the mixing 

of the band origin of Qy excited electronic state with the excited vibrational levels 

of the Qx excited state10. Because of this coupling, the exact position of the band 

origin of the Qy state is still unknown in the gas phase. The absorption values 

recorded in all the matrices studied are collected in Table V.1 as well as the matrix 

shifts. 
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Table V.1: Absorption values in wavenumbers (cm-1) units for the  transition in ZnPc (Q band) 
and H2Pc (Qx and Qy bands) in different matrices. The gas phase band origins are from the 
published data of Fitch et al.10 for H2Pc and of Plows and Jones8 for  ZnPc.  In determining the matrix 
shift, the highest energy component of the Qy band was used in all hosts (except Ar) where multiple 
features were present. This component was also used to calculate the splitting of the Qx and Qy 
matrix bands – values which are only indicators in the absence of detailed analysis.  The helium 
droplet data is from the work of Lehning et al. 11 while the Shpol’skii data is that of Huang et al.12. 

 H2Pc ZnPc 

 QX 
Matrix 

shift, Δ 
QY 

QY - QX 

Splitting 
Q 

Matrix 

shift, Δ 

Free jet 15132 - ~16680 ~1548 15766 - 

Ne 15007.2 -115 15950.9 943.7 15574 -192 

N2 14840.1 -292 15775 935 15328 -428 

Ar 14767.9 -364 15753.2 985.3 15309 -457 

Kr 
14685.1 -447 15655 970 15182 -584 

14670  15624    

Xe 
14558.6 -573 15474.5 916 15035 -731 

14517.7  15411.6    

He 

droplets 
15089 -43 ~16500 ~1400 15703 -63 

Shpol’skii 14475 -657 15332 857 14914 -852 

 14411 -721 15275 864 14885 -881 

       
 In contrast to ZnPc, the shapes of the H2Pc bands differ markedly from one solid 

to another with a highly structured band present in N2 and a broad but structured 

band in Ne. Ar presents the simplest absorption spectrum with a single dominating 

feature.  However, as revealed in laser excitation spectroscopy, the widths of the 

bands in all matrices arise from occupancy of the H2Pc or ZnPc molecules in 

multiple sites. However, in the case of H2Pc/N2, the resolved lines of the structured 

absorption band are very narrow and could correspond to distinct sites. Their 

linewidths (4 to 5 cm-1) are close to the resolving power of the recording 

instruments, ~2 cm-1 in this case.  

V.3.II Emission Spectra 

Only emission corresponding to transitions from ν’=0 in the first excited state 

(Q(S1) or  Qx(S1) in the case of ZnPc or H2Pc respectively) to various vibrational 

levels ν” in the ground G(S0) electronic state was observed. Thus in both cases 

vibrationally relaxed emission occurs.  In particular, emission with similar 

lifetimes was observed with laser excitation in the Qx or Qy states of H2Pc. This fact 
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shows that the relaxation from Qy to Qx is much faster than the time scale of the 

experiment (~1 ns).   

 Figure V.2 provides a comparison of the emission spectra recorded for ZnPc and 

H2Pc in an Ar matrix. Both molecules show a well-resolved vibronic structure 

extending from 0 to 1600 cm-1 from the origin of the electronic transition. It is 

evident that the emission spectra of the two molecules exhibit many similarities, 

especially the vibronic progression consisting of three dominant bands in the red 

part of the spectrum. The frequencies of the emission vibronic bands of ZnPc 

recorded in different solids are collected in Table V.2, while those for H2Pc in the 

same solids are given in Table V.3. For each species, the fluorescence intensity 

distribution of the vibronic structure is the same in all the matrices (and all the 

families of sites). It is also evident in Figure V.2 that the 0-0 transition dominates 

the emission intensity by more than a factor of 10. This is consistent with the 

results of measurements made in low temperature molecular beams in which the 

0-0 transition was found to carry most of the Franck-Condon intensity. 
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Figure V.2: A comparison of the fluorescence and Raman spectra of the ZnPc (upper panel) and 
H2Pc (lower panel) revealing the very strong similarities between the emission and Raman spectra. 
Emission spectra of ZnPc/Ar (excited in the Q band, λ=647.2 nm) and H2Pc/Ar (excited in Qy) and 
H2Pc (excited in Qx).  The scale on the top of both plots shows the emission energies as a shift from 
the position of the 0-0 transition. Raman spectra of ZnPc and H2Pc in KBr pellets are given in red. 
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When the laser excitation frequency is tuned inside the 0-0 band of the first 

excited state, the emission spectra show slight changes in terms of frequency shift 

and shape of the vibronic bands. This is due to multiple site occupancy. 

Nevertheless, the fluorescence line narrowing effect is not strong because of a non 

negligible coupling with the lattice phonons. In the case of ZnPc, two or three main 

families of sites are thus detected in all the matrices. Similarly, very few sites were 

also observed for H2Pc, except in solid nitrogen where the number of clearly 

distinct matrix environments is higher. However, while the Qx state provides good 

site selective excitation, with narrow emission bands, Qy excitation yields a much 

poorer site selection, as evident in emission by a broadening of bands in Ar (see 

Figure V.2) or additional structures involving multiple sites in nitrogen. This effect 

arises as a result of the spectral overlap of the absorption bands of the two 

electronic states in H2Pc. Moreover site selectivity upon excitation in Qy might be 

different from the site selectivity upon excitation in the Qx state. 
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Table V.2: Frequencies (in cm-1) of the vibronic bands of G(S0) of ZnPc measured in emission for 
different matrices.  The Shpol’skii data is from Huang et al.12. The symmetries of the bands were 
determined using assignments made using DFT calculations presented in Chapter 4. 

N2 Ar Kr Xe  Shpolskii Raman Sym 

- 9 11  w    

21 34 79  w    

104 102 104 102 w 125 110 B2g 

163 165 167 161 m  157 B1g 

227 240 237  w 232 228 B2g 

262 267 260 265 w  257 A1g 

488 490 491 488 m 482 480 B2g 

     536 551 B1g 

597 600 598  m 592 558 A1g 

683 689 688  s 681 677 A1g 

752 759 756  s 750 747 B1g 

     815   

     836 830 A1g 

845 847 854  m 852   

945 947 931 954 w 950 946 B2g 

- - 958      

1147 1150 1149 1152 m 1143 1142 B1g 

     1183 1183 B2g 

1215 1221 1221 1223 w  1210 B2g 

1346 1349 1347 1350 s 1342 1338 A1g 

1448 1454 1446 1452 m  1447 B1g 

1525 1522 1524 1522 s 1518 1526 B1g 

1587 1624 1610 1613 w  
1584 

1608 
A1g/ B2g 
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Table V.3: Frequencies (in cm-1) of the vibronic bands of G(S0) of H2Pc measured in emission for 
different matrices.  The Shpol’skii data is from Huang et al.12. The symmetries of the bands were 
determined using assignments made using DFT calculations presented in Chapter 4. 

N2 Ar Kr Xe  Huang Raman Sym 

-- 142 143 -- m 136 130 Ag 

-- 190 -- -- vw 184 178 B1g 

-- 239 238 -- vw 232 225 Ag 

-- 489 494 -- vw 487 478 B1g 

-- -- 544 -- vw 542 540 Ag 

574 579 576 572 w 569 566 Ag 

687 688 688 682 s 683 677 Ag 

731 730 731 727 s 725 729 Ag 

-- -- 771 -- vw 769 764 Ag 

802 802 802 800 m 801 795 Ag 

-- -- -- 965 vw 1009 1008 Ag 

-- -- 1031 1030 vw 1030 1029 B1g 

-- -- -- 1090 vw 1107 1110 B1g 

-- 1149 1145 1143 m 1141 1141 Ag 

-- -- -- --  1160 1161 Ag 

-- 1188 1190  
(broad 

sh) 
1184 w 1183 1179 Ag 

-- -- -- --  1188 1187 B1g 

-- -- -- 1253 vw 1233 1233 B1g 

-- -- -- --  1316 1313 B1g 

-- -- -- --  1343 1346 Ag 

1356 1351 1351 1350 s 1352  Ag 

-- -- -- 1376 vw 1372  Ag 

1460 1460 1456 1456 w 1453 1452 Ag 

-- 1523 -- -- vw 1522 1510 Ag 

-- -- -- --  1542 1534 B1g 

-- -- -- --  1546  Ag 

1553 1550 1550 1554 s 1555 1551 Ag 
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V.3.III Time resolved emission 

A summary of the emission decay curves recorded for H2Pc and ZnPc isolated in 

different solids (N2, Ar, Kr and Xe) is given in Figure V.3. The fluorescence decay 

curves were measured with time-gated iCCD detection and the lifetimes extracted 

by single exponential fits. The fluorescence lifetimes of H2Pc are longer than those 

of ZnPc. Thus the lifetimes of free-base phthalocyanine are 13, 13, 8 and 2.7 ns for 

N2, Ar, Kr and Xe respectively, while the lifetimes measured for ZnPc in N2, Ar and 

Kr all have very similar values around 3 ns.  The recorded lifetimes are all in the 

nanosecond range, as expected for fully allowed electronic transitions. The 

shortening of the lifetimes of ZnPc compared to H2Pc could be due to spin-orbit 

coupling  which had been observed for other porphyrins in the gas phase13. The 

fluorescence lifetimes of H2Pc and ZnPc are shortest in Xe (~2.8 ns) and may be 

due to the competitive, non-radiative S1 - T1 intersystem crossing - a transition 

enhanced in this heavy host solid. Attempts to observe the phosphorescence, 

predicted to occur in the near infrared (NIR), from the triplet states of H2Pc and 

ZnPc in Xe with dye laser excitation of the Q state proved unsuccessful using both 

FT-NIR interferometer and NIR diode array dispersive detection methods. 

 
Figure V.3: Semi-log plots of the emission decay curves extracted from Time resolved emission 
spectra recorded at 13 K for ZnPc and H2Pc isolated in a variety of low temperature matrices.  The 
shape of the excitation pulse of the laser is also shown. 
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V.3.IV Excitation spectra 

The excitation spectra recorded for H2Pc isolated in different matrices are shown 

in Figure V.4. All the spectra presented are shown as the shift from the band origin 

(ν0-0) of the Qx state to facilitate easy comparison of the spectra in different 

environments. The spectra are the same in all matrices up to ~900 cm-1, but 

differences appear at higher wavenumbers. The reason for this is the fact that the 

Qy band of H2Pc, located around 1000 cm-1 from ν0-0 of Qx, can induce a vibronic 

analogue of Fermi resonance with the vibronic transitions of Qx. Since the Qx-Qy 

splitting depends on the matrix (cf. Table V.1) the vibronic resonance will couple 

different vibrational modes of Qx with those of Qy for different matrices.  The 

energies of the less complicated modes of ZnPc for the major sites in Ar, Kr, Xe and 

N2 (calculated as the shift from the 0-0 transitions) are collected in Table V.4 and 

compared with Shpol'skii matrix and gas phase data.  The energies of the different 

vibronic modes observed for H2Pc are collected in Table V. 5 and compared with 

Shpol'skii matrix12 and data in Ar published previously14.  
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Figure V.4: A comparison of the fluorescence excitation spectra of H2Pc isolated in Ne, N2, Ar and 
Xe at T=7 K recorded by monitoring the vibronic band at 1550 cm-1. Particularly noteworthy in this 
plot is the similarity of the vibronic structure up to about 950 cm-1 from the band origin and the 
irregular nature of the structure present at higher energies. 
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Table V.4: Wavenumbers of vibronic transitions in excitation spectra of ZnPc trapped in N2, Ar, Kr 
and Xe matrix.  The gas phase values were published by Plows and Jones8 while the Shpol’skii data 
is from Huang et al.12. The symmetries were determined by comparison with DFT Raman results. 

N2 Ar Kr Xe gas 
phase Shpol’skii Sym 

    33   

 87   103  B2g 

    131   

164 154 155 155 153  Ag 

229 225 224 227 226  B3g 

259 252 253 255 256  Ag 

 314 315 314 306   

 356   324   

 412 410 410 419   

 439   430   

     450w/456w/466vw  

479 478 476 479 482 477vs B3g 

     520w  

    565 568w B1g 

     577w  

593 586 587 586 589 587vs Ag 

     659w  

676 675 675 671  673vs Ag 

744 742 742 737  742s Ag 

     803w/820vw/824w  

832 837 838 837  832m/839m Ag 

846 851    851w  

     889w/899w  

 940 942   937w Ag 
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Table V. 5: Wavenumbers of vibronic transitions in excitation spectra of H2Pc trapped in different 
matrices.  The Shpol’skii data is from Huang et al.12 and the Ar data is from Bondybey14. 

Huang Bondybey      
Shpol’skii Ar Ar N2 Kr Xe Ne 

  87   86  
136 132 129 131  129  

-- 178 175 179  172  
231 231 228 229    
474 475  --   476 
565 567  --   568 
679 680 677 --  680 680 
720 721 722 719  722 722 

  768(vw)   766(vw) 784(vw)  
779 --  763    
799 795 795 794 795 795 796 
809 --  -- 811   
818 --  --  819  
828 827 828(vw) 825 825(vw) 827  

    876(s) 861-872  
890 880 882 878  895 881 
900 899 900 896  910  
933 -- 933(vw) 935  928-932 926(vw) 

       
 951 949(vw) 947-963 946 946  

--  960(vw)  956 958  
982 985 987-991 982  983  

1009 990 1009(vw)   993-1000 1013 1016 1013-1019
       

1025 --  --   1028 
1028 1034 1034 1030 1033 1030 1035 
1036 1039 1041 1036 1044 1048 1044 

-- 1051 1052 1049 1064  1054 
  1065(vw)     

1083 1071 1074 1070 1081 1070 1076 
1109 1095 1098 1094 1111 1094 1096 
1115 1113 1126 1119 1128 1118 1128 
1142 1141 1144 1142 1150 1143 1143 
1156    1176 1161(vw) 1178(vw) 
1180  1194(vw)   1189  

  1212  1213 1207  
  1264  1251 1243  
  1291-1297  1285   
  1336  1353   
    1451   
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V.3.V TDDFT 

Electronic excitation energies and oscillator strengths were calculated using linear 

response time-dependent density functional theory (TD-DFT)15-17. The TD-DFT 

calculations were carried out with Gaussian 0318 utilising the B3LYP19-23 functional 

and the 6-311++G(2d,2p) basis set using geometries calculated in the ground state 

at the same level of theory. Both spin allowed singlet and forbidden triplet 

excitation energies were calculated. Calculations of the D2h point group symmetry 

molecule H2Pc were carried out with the principal z-axis collinear with the two N-

H bond and the x-axis perpendicular to the molecular plane. To facilitate 

correlation and comparison to the D4h symmetry ZnPc molecule, the x and z axes 

were exchanged.  

 The vertical excitation energies and oscillator strengths for zinc and free-base 

porphyrin, tetrabenzoporphyrin, phthalocyanine and tetraazaporphyrin were also 

calculated using time-dependent DFT with same functional and basis set. These 

structurally similar molecules were used to give a more general assessment of the 

transition energies calculated for H2Pc and ZnPc. The ground state geometries 

calculated at the same level (see Chapters IV and VI) were used for the TD-DFT 

calculations on all eight porphyrin derivatives. The addition of diffuse functions, an 

extra d polarization function on the heavier atoms (i.e. C, N and Zn atoms) and p 

polarization functions on the H atoms to the basis set were found to improve the 

ground state characterisation of these molecules and was used in the current 

excited state calculations. The selection of the B3LYP functional allowed 

comparison with previously reported results. Despite its relative old age (1994 -  

Stephens et al.22,23), B3LYP is one of the better performing hybrid functionals used 

in time-dependent studies when compared to experimental results, in particular 

when applied to heterocyclic aromatic molecules24. 

 The results for the lowest allowed singlet transitions (‘Q’ bands) for both zinc 

and free-base forms are given in Table V.6 and Table V.7. The lowest energy, spin 

forbidden triplet transitions are also given. These triplet states are not only 

important as a competitive relaxation path from the 1S1 excited state to the 1S0 

ground state via phosphorescence but are important in the production of singlet 

oxygen as a reactive species in photodynamic therapy. The experimental results, 

where available, are also presented in Table V.6 and Table V.7. An extensive 



Chapter V: Visible spectroscopy of H2Pc and ZnPc isolated in cryogenic matrices 

171 

analysis of the orbital contributions to the transition energies and oscillator 

strengths is given in Appendix V.A.
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Table V.6: TD-B3LYP/6-311++G(2d,2p) and experimental results for the singlet ‘Q’ and corresponding triplet transitions of H2 and Zn-TAP and H2 and Zn-Pc aza-
porphyrins. The main KS orbital coefficients are also given. Note: the orbital coefficients for each degenerate orbital involved the Eu symmetry transitions are given. 

Transition 
Symmetry 

Excitation Energy 
eV (cm-1) {nm} f Orbitals Coefficients Experimental Energy 

eV (cm-1) {nm} 
Transition 
Symmetry 

Excitation Energy 
eV (cm-1) {nm} f Orbitals Coefficients Experimental Energy 

eV (cm-1) {nm} 
H2TAP      ZnTAP      

1B3u 2.363 (19058.87) 
{524.68} 

0.1472 4b1u-4b2g -0.16848 2.05 (16537) {604.7} 
Ar25 

1Eu 2.4386 (19668.63) 
{508.43} 

0.1683 5a2u-5eg 0.26074 2.13 (17178) {582.1}   5b1u-4b2g -0.36517   5a2u-5eg -0.22209 
   2au-4b3g 0.56609     1a1u-5eg 0.38060 CHCl3/CH3OH26 
         1a1u-5eg 0.44684  
            

1B2u 2.4951 (20124.33) 
{496.91} 

0.1441 4b1u-4b3g 0.20293 2.35 (18978) {526.9} 
Ar25 

1Eu 2.4386 (19668.63) 
{508.43} 

0.1683 5a2u-5eg 0.22209    5b1u-4b3g 0.30863   5a2u-5eg 0.26074 
   2au-4b2g 0.57472     1a1u-5eg -0.44684  
         1a1u-5eg 0.38060  
            

3B3u 1.4617 (11789.40) 
{848.21} 

 2au-4b3g 0.80933  3Eu 1.466 (11824.08) 
{845.73} 

 1a1u-5eg 0.46691        1a1u-5eg 0.66652 
            

3B2u 1.4285 (11521.62) 
{867.96} 

 5b1u-4b3g 0.22581  
3Eu 1.466 (11824.08) 

{845.73} 
 1a1u-5eg -0.66652    2au-4b2g 0.81793   1a1u-5eg 0.46691 

            
H2Pc      ZnPc      
1B3u 2.0331 (16398.05) 

{609.83} 
0.4079 6b1u-6b2g 0.21433 1.88 (15132) {660.9} 

Gas10 
1Eu 2.0536 (16563.40) 

{603.74} 
0.432 6a2u-7eg 0.13954 1.95 (15766) {634.3} 

Gas8   7b1u-6b2g -0.14924   6a2u-7eg -0.15158 
   4au-6b3g 0.60042     2a1u-7eg 0.44482  
         2a1u-7eg 0.4095  
            

1B2u 2.051 (16542.42) 
{604.5} 

0.4497 6b1u-6b3g -0.19235 ~2.07 (~16680) {~600} 
Gas10 

1Eu 2.0536 (16563.40) 
{603.74} 

0.432 6a2u-7eg 0.15158    7b1u-6b3g 0.10005   6a2u-7eg 0.13954 
   4au-6b2g 0.59866     2a1u-7eg -0.4095  
         2a1u-7eg 0.44482  
            

3B2u 1.0095 (8142.16) 
{1228.12} 

 4au-6b2g 0.86361  
3Eu 1.1141 (8985.82) 

{1112.91} 
 2a1u-7eg 0.6389 1.13 (9150) {1092.9} 

1-chloronaphthalene27       2a1u-7eg -0.53607 
            

3B3u 1.1605 (9360.06) 
{1068.34} 

 4au-6b3g 0.81834 1.24 (10001.3) {999.9} 
1-chloronaphthalene28 

 

3Eu 1.1141 (8985.82) 
{1112.91} 

 2a1u-7eg 0.53607 
       2a1u-7eg 0.6389 
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Table V.7: TD-B3LYP/6-311++G(2d,2p) and experimental results for the singlet ‘Q’ and corresponding triplet transitions of H2 and Zn-TBP and H2 and Zn-P methine 
porphyrins. The main KS orbital coefficients are also given. Note, the orbital coefficients for each degenerate orbital involved the Eu symmetry transitions are given. 

Transition 
Symmetry 

Excitation Energy 
eV (cm-1) {nm} f Orbitals Coefficients Experimental Energy 

eV (cm-1) {nm} 
Transition 
Symmetry 

Excitation Energy 
eV (cm-1) {nm} f Orbitals Coefficients Experimental Energy 

eV (cm-1) {nm} 
H2TBP      ZnTBP      

1B3u 2.0865 (16828.75) 
{594.21} 

0.0963 7b1u-6b2g 0.43833 1.895 (15284) {654.3} 
Ar29 

1Eu 2.1426 (17281.23) 
{578.65} 

0.1803 6a2u-7eg -0.36716 2.03 (16339.9) {612} 
Ar29   4au-6b3g 0.57334   2a1u-7eg 0.59788 

            
1B2u 2.1211 (17107.82) 

{584.53} 
0.2177 7b1u-6b3g 0.34953 2.124 (17132) {583.7} 

Ar29 
1Eu 2.1426 (17281.23) 

{578.65} 
0.1805 6a2u-7eg -0.36717    4au-6b2g -0.59456   2a1u-7eg -0.59788 

            
3B2u 1.3176 (10627.16) 

{941} 
 7b1u-6b3g -0.2774  

3Eu 1.4992 (12091.86) 
{826.98} 

 6a2u-7eg -0.11188 1.57 (12662.9) {789.7} 
Ar29   4au-6b2g 0.79104   6a2u-7eg 0.14039 

         2a1u-7eg 0.60634  
         2a1u-7eg 0.4832  
            

3B3u 1.6169 (13041.17) 
{766.79} 

 7b1u-6b2g 0.12528  
3Eu 1.4992 (12091.86) 

{826.98} 
 6a2u-7eg 0.14039  

  4au-6b3g 0.76415   6a2u-7eg 0.11188  
         2a1u-7eg 0.4832  
         2a1u-7eg -0.60634  

H2P      ZnP      
1B3u 2.2704 (18312.00) 

{546.1} 
0.0001 2au-4b3g -0.48516 1.98 (15969.8) {626.2} 

Gas30 
1Eu 2.4083 (19424.24) 

{514.81} 
0.0027 5a2u-5eg 0.37619 2.25 (18140) {551} 

N231   5b1u-4b2g -0.54406   5a2u-5eg 0.3383 
         1a1u-5eg 0.34179  
         1a1u-5eg -0.38008  
            

1B2u 2.4162 (19487.96) 
{513.14} 

0.0002 2au-4b2g -0.49226 2.42 (19518.6) {512.3} 
Gas30 

1Eu 2.4083 (19424.24) 
{514.81} 

0.0027 5a2u-5eg -0.3383    5b1u-4b3g 0.50965   5a2u-5eg 0.37619 
         1a1u-5eg 0.38008  
         1a1u-5eg 0.34179  
            

3B2u 1.5066 (12151.54) 
{822.97} 

 2au-4b2g -0.4202  
3Eu 1.7735 (14304.24) 

{699.1} 
 5a2u-5eg 0.64185 1.84 (14808) {675.3} 

Xe31   5b1u-4b3g 0.76229   5a2u-5eg 0.23879 
         1a1u-5eg -0.42560  
         1a1u-5eg 0.15834  
            

3B3u 1.8321 (14776.88) 
{676.74} 

 2au-4b3g 0.2576 1.58 (12743.6) {784.7} 
Xe32 

3Eu 1.7735 (14304.24) 
{699.1} 

 5a2u-5eg -0.23879    5b1u-4b2g 0.74584   5a2u-5eg 0.64185 
         1a1u-5eg 0.42560  
         1a1u-5eg 0.15834  
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Figure V.5 TD-DFT calculated and experimental transition energies for free
porphyrins. TD-DFT results were calculated using the 
basis set and are indicated by the solid lines
lines (see Table V.6 and 
experiment and theoretical values for the 
representing these results overlap.
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DFT calculated and experimental transition energies for free
DFT results were calculated using the B3LYP/6-311++G(2d,2p) 

dicated by the solid lines. The experimental results are indicated by the dashed 
and Table V.7 for values used). Note: there is an excellent match between the 

ent and theoretical values for the 1B2u transitions of H2P and H2TBP and the lines 
representing these results overlap. 

isolated in cryogenic matrices 

DFT calculated and experimental transition energies for free-base and zinc 
311++G(2d,2p) functional and 
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A plot of the calculated vertical excitation energies compared to the 

experimental values is given in Figure V.5. The 1Eu TD-DFT results for ZnPc, ZnTBP 

and ZnP are between 5.1 – 7.1 % higher than the experimental values while ZnTAP 

is 14.5 % higher. The closest theoretical results to experiment are for the larger 

zinc porphyrins where the 1Eu ZnPc transition is found to be 797 cm-1 higher than 

the gas phase experimental results and ZnTBP 941 cm-1 higher than the matrix 

isolated N2 results. The ZnP TD-DFT results are 1284 cm-1 higher than 

experimental results also recorded in a N2 low-temperature solid. The largest 

difference between theory and experiment for these zinc complexed molecules is 

for ZnTAP, which is predicted to be 2489 cm-1 higher in energy. It should be noted 

that the experimental results were for ZnTAP in a mixture of dichloromethane and 

methanol and not in an low-temperature inert solid or in the gas phase. 

In general, there is a good match between the experimental and TD-DFT Qy 

excitation energies for the free-base molecules. The theoretical 1B2u transition of 

H2Pc is 137 cm-1 lower than experiment while H2P and H2TBP are even closer with 

the theoretical values only 31 and 24 cm-1 lower than experiment. The TD-DFT 

result for the Qy transition of H2TAP is 1145.4 cm-1 higher than experiment. 

Despite the reasonably good match between the theoretical and experimental Qy 

transitions of H2Pc, H2TBP and H2P, the same conclusions cannot be made for the 

lower energy Qx transitions. 

Table V. 8 presents the experimental and TD-DFT results for the Qy and Qx 

transitions of the four free-base porphyrins and the energy gap between them, ∆ν. 

In all cases, TD-DFT underestimates the splitting between the transitions. The 

splitting calculated for the small porphyrins are 44.9 % for H2TAP and 33.1 % for 

H2P of the experimentally determined band difference. The experimental results 

for H2TAP were recorded in an Ar matrix and may be affected by its environment, 

the comparison with the gas phase results of H2P still shows an underestimation of 

the Qx/Qy energy gap by the TD-DFT method. 

 While the TD-DFT method underestimated the Qx/Qy gap for H2TAP and H2P by 

factors of approximately two and three, for H2Pc and H2TBP there is an order of 

magnitude difference between experiment and theory. The experimental splitting 

between the Qy and Qx transitions are ~1548 cm-1 for H2Pc and 1848 cm-1 for 

H2TBP (approximately 1.5 to 2 times smaller than their non-benzo analogues). 



Chapter V: Visible spectroscopy of H2Pc and ZnPc isolated in cryogenic matrices 

176 
 

However, the TD-DFT differences in energy are 144 cm-1 for H2Pc and 279 cm-1 for 

H2TBP, only 9.3 and 15.1 % respectively of the experimentally determined ∆ν 

value and significantly smaller the theoretical splitting calculated for H2TAP and 

H2P. Though small changes to the splitting between Qx and Qy in H2Pc have been 

seen in different experimental environments (cf. Figure V.4), these shifts are far 

smaller than the large error between experiment and theory.  

Table V. 8: Experimental and theoretical Qx/Qy (1B3u/1B2u) splitting frequencies, Δν, for the free-
base porphyrins. Values shown are in cm-1 and the experimental conditions are indicated by the 
superscripts. 

 H2TAP H2Pc H2TBP H2P 

 ExpAr TD-DFT Expgas TD-DFT ExpAr TD-DFT Expgas TD-DFT 

Qy 18979 20124 16680 16542 17132 17108 19519 19488 

Qx 16537 19059 15132 16398 15284 16829 15970 18312 

∆ν 2442 1065 1548 144 1848 279 3549 1176 

 The calculated oscillator strengths for the zinc porphyrins follow the following 

trend: ZnPc > ZnTBP ≈ ZnTAP >> ZnP. This trend is found with the experimental 

values available. For ZnPc the experimental f value of 0.40 is slightly lower than 

the DFT value of 0.432. The experimental f value of 0.30 for ZnTBP however, is 66 

% higher than the f value calculated at 0.1804. For the weakly allowed 1Eu 

transition of ZnP the experimental f value of 0.005 is 46 % higher than the 

calculated value of 0.0027 but proportionally lower than the other fully allowed 

transitions. No experimentally determined oscillator strengths were available for 

ZnTAP. For the 1B2u (Qy) transition oscillator strengths of the free-base porphyrins 

a similar trend to the zinc porphyrins is seen, with H2Pc > H2TBP > H2TAP >> H2P. 

A slightly different trend is found for the oscillator strengths of the 1B3u (Qx) ← 1S0 

transition, H2Pc > H2TAP > H2TBP >> H2P where the f value calculated for the Qx of 

H2TAP is 53 % higher than the Qx for H2TBP. For H2P and H2TBP, the higher energy 

Qy transitions are experimentally more allowed than the Qx transitions, with larger 

absorption strengths consistent with current calculated results. From experiments 

on the aza bridged porphyrins, the intensities of the states is reversed and the Qx is 

more allowed than the Qy. The TD-DFT results for H2TAP show the correct f value 

trend with the Qx oscillator strength of 0.1472 only 0.0031 larger than the Qy f 

value of 0.1441. The calculated oscillator strengths for H2Pc show the same trend 

as is apparent for the methine bridged molecule with the Qy slightly more intense 
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than the Qx with f values of 0.4497 and 0.4079 respectively, contrary to the 

experimental results. 

 The experimental triplet results are taken from the 0-0 phosphorescent 

emission bands reported in the literature. The 3Eu theoretical results for ZnPc and 

ZnTBP were lower in energy than experimental phosphorescence results by 164 

and 571 cm-1 respectively. These results represent a 1.8 % and 4.6 % difference. 

There was a comparable difference between the ZnP results of 432 cm-1 (2.9 %) 

but for this molecule the theoretical triplet excitation energy was higher than the 

experimental phosphorescence value recorded in a Xe matrix. No phosphorescence 

data for ZnTAP was found in the literature. For the triplet transitions of the free-

base molecules, only emission from one state has been reported experimentally 

analogous to fluorescence only from the Qx state. In all free-base molecules, the 
3B3u transition, which has been calculated to be higher in energy than 3B2u 

transition, a reversal of the energy order of the singlet transitions. No 

phosphorescence for H2TAP and H2TBP has been reported. The experimental 

results for H2Pc in 1-chloronaphthalene are 641 cm-1 higher in energy than the TD-

DFT 3B3u calculated at 9360 cm-1. The TD-DFT 3B3u transition is 2033 cm-1 higher 

in energy than the H2P in Xe result and the calculated 3B2u transition is in fact 

closer, being only 592 cm-1 lower and could be assigned as such. It is interesting to 

note that the energy difference between the H2Pc, H2TBP and H2P triplet B3u and 

B2u transitions of 1218, 2414 and 2625 cm-1 are closer to the experimental Qy/Qx 

splitting than the corresponding singlet TD-DFT results reported above. The 

difference between the calculated triplet transitions of H2TAP is however much 

smaller at 268 cm-1. 

V.4  Discussion 

V.4.I TDDFT 

 The TD-DFT result presented above, calculated using the B3LYP/6-

311++G(2d,2p) combination of functional and basis set, are consistent with the 

theoretical results in the literature with an improvement in the excitation energies 

when compared to previous work using the same functional but with much smaller 

basis sets.  Despite the improved results, some significant discrepancies still exist 

between the theoretical and experimental excitation energies. Most pertinent to 
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the current work, the Qy/Qx splitting is grossly underestimated for H2Pc at only 

144 cm-1. This, as well as the incorrect ratio of oscillator strengths of these two 

states, would limit the ability for use of any direct calculation of the Franck-Condon 

factors with TD-DFT methods in order to identify the modes coupling between the 

states. Calculations using the Symmetry Adapted Cluster/Configuration Interaction 

(SAC-CI) method by Toyota et al.33 predicted a more accurate Qy/Qx splitting of 

1694 cm-1 with an oscillator strength ratio of 1 : 1.79. However the actual 

excitation energies they calculated of 1.30 and 1.51 eV (10,485 cm-1, 953.72 nm 

and 12179 cm-1, 821.1 nm) were much lower than the experimental values and far 

less accurate than the TD-DFT results presented here. 

V.4.II Fluorescence Lifetimes 

The fluorescent lifetime (τ) of a transition may be calculated from the oscillator 

strength (f) and transition wavelength (λ) using the following relationship34, 

 
߬ =

݉ܿߝଶߣ
ଶ݂݁ߨ2

 
(V.1) 

where ε0 is the vacuum permittivity, c is the speed of light and me and e are the 

mass and charge of an electron respectively. Applying Equation V.1 with λ and f 

values for the lowest energy Q transitions determined using TD-DFT, the lifetimes 

calculated for H2Pc are 16.68 ns and 6.32 ns for ZnPc. Even accepting the 

weaknesses of the TD-DFT method to predict the excited state transition 

properties, these lifetimes do reflect the trend seen in experiment where H2Pc 

emission was significantly longer lived than ZnPc. It is apparent that the longer 

lifetime calculated for H2Pc using Equation V.I is due to its weaker oscillator 

strength predicted at 0.4076 compared to ZnPc with an oscillator strength of 0.864 

(the degenerate Q transitions give f = 2 x 0.432). A simple field correction factor 

may be applied to f to approximate the apparent oscillator strength f” given as, 

 ݂" ݂⁄ = ଶ݊)ݏ] − 1) + 1]ଶ/݊ (V.1) 

where n is the index of refraction of the host material and s is a shape factor for the 

cavity related to the depolarization factor35. Taking into account the 

experimentally observed matrix shifts Δ (see Table V.1), giving λ = λTD-DFT + Δ, and 

selecting a suitable s value for a square thin slab (0.5), the lifetimes of H2Pc and 

ZnPc in different inert gas solids were determined and are given in Table V.9. For 
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ZnPc a relatively small variation in the calculated lifetimes in different host 

materials is observed with longer lifetimes in N2 compared to Xe, consistent with 

experimental results. The results for H2Pc in N2, Ar and Kr reflect the same trend 

observed in experiment but the experimentally determined lifetime for Xe is 

considerably shorter than theory and may indicate phosphorescence due to the 

heavy atom effect. Temperature studies for H2Pc and ZnPc in Kr and Xe between 

13 and 35 K for showed no change in fluorescence lifetimes. 

Table V.9: Theoretically predicted (τTD-DFT) and experimental (τexp) lifetimes of H2Pc and ZnPc in 
different host media. Lifetimes are in ns. 

  H2Pc ZnPc 

 n τTD-DFT τexp τTD-DFT τexp 

Vacuum 1 13.68 - 6.32 - 

N2 1.22 11.17 13 5.25 3 

Ar 1.29 10.04 13 4.70 3 

Kr 1.428 8.94 8 4.20 3 

Xe 1.49 8.44 2.7 3.98 2.8 

 

V.4.III Vibronic structure in Emission 

ZnPc and H2Pc are large molecules exhibiting a lot of vibrational modes but due to 

their high symmetry (D4h and D2h) these modes can be separated into several 

symmetry groups. A simplifying consequence is that a limited number of modes 

are infrared or Raman active. As these molecules have a centre of inversion, there 

is mutual exclusion behaviour between IR-active modes and Raman active modes, 

shown by the vibrational representations. Selection rules will also reduce the 

number of vibrational modes involved in the electronic transitions. The S1 ↔ S0 

transitions for both ZnPc and H2Pc are electronic allowed and, depending on the 

Franck-Condon selection rules, , the totally symmetric A1g /Ag modes as well as 

vibrational modes of other symmetries of these molecules should also be 

observable. Accordingly, for the S1 state of ZnPc which has 1Eu symmetry, modes 

that transform as the A1g, A2g, B1g and B2g irreducible representations are predicted 

to couple to the S1 ↔ S0 transitions (where ν = 0 in the initial state and S0 has A1g 

symmetry). Similarly, the S1 (Qx) state of H2Pc, which has 1B3u symmetry according 

to TD-DFT, may couple to Ag and B1g modes. Formally, the Eg modes of ZnPc and B2g 
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modes of H2Pc may also couple to these transitions. These modes however would 

be expected to be extremely weak because they are predicted to transform 

perpendicular to the main dipole moment of the transitions (which are in the xy 

plane of the molecule). All these modes, except A2g modes of ZnPc, are Raman 

active modes. These symmetry arguments are consistent with those made 

previously by Huang et al.12. 

The conventional Raman scattering spectra of ZnPc and H2Pc recorded in KBr 

pellets with CW 532 nm excitation are shown in Figure V.2 by the red trace. The 

vibrational frequencies measured for the Raman active modes of both molecules 

have been presented and analysed in Chapter IV. What is very evident in Figure V.2 

is the strong similarity between the visible emission and the normal Raman 

spectra in the case of both molecules. Thus while there are some intensity 

differences between the emission and Raman spectra, the line positions all agree.  

The significance of this observation is that the mode assignments established with 

large basis set DFT calculations for the Raman bands can now be used to assign the 

bands present in the emission spectra.   

 In Chapter IV, density functional theory (DFT) at the B3LYP /6-311++G(2d,2p) 

level was used to predict the infrared and Raman frequencies for ZnPc. In these 

high level calculations it was found that the most stable geometry for the molecule 

has D4h symmetry with the Zn atom in the plane of the phthalocyanine ring. A key 

result of the vibrational analysis conducted is that no Eg Raman modes were 

clearly observed experimentally in KBr pellets. This is the principal reason for the 

observed similarities between the experimental Raman and fluorescence spectra. 

The theoretically predicted Raman spectra are compared with experimental data 

in Figure V.6. The most intense Raman active mode is predicted at 1557 cm-1 (1526 

cm-1 scaled) with B1g symmetry. According to Tackley et al.36 and verified by the 

current study, this mode corresponds to an out-of-phase stretching of the C-N-C 

bonds in the tetrapyrrole ring.  It is noteworthy that the fluorescence band at 1525 

cm-1, which exhibits amplified emission with higher laser intensity (see Chapter 

VI), is very close to the calculated frequency for the most intense Raman mode.  
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Figure V.6: A detailed comparison of the emission spectra recorded for ZnPc isolated in Ar and the 
Raman spectra of both experimentally recorded (red trace) and the scaled results of high level DFT 
predictions (blue trace).  The motions of the numbered modes are provided in Table V. 10. 

In the same way the Raman spectrum of H2Pc is very similar to the fluorescence 

spectrum of H2Pc in N2 (Figure V.2). Again fluorescence active modes are also 

observed in Raman spectroscopy. The most intense Raman band coincides with the 

band at 1550 cm-1 which exhibits amplified emission (AE). Since replacing the two 

hydrogens by a Zn atom only shifts this mode by 27 cm-1, it is reasonable to assume 

that the AE mode in H2Pc will also involve an out-of-phase stretching of the C-N-C 

bonds in the tetrapyrrole ring. This assumption was confirmed by the DFT 

calculations performed and presented in Chapter IV. A more comprehensive 

description of this mode and its role in amplified emission will be given in the 

chapter following this. 
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Figure V.7: A detailed comparison of the emission spectra recorded for H2Pc isolated in Ar and the 
Raman spectra for both experimentally recorded (red trace) and the scaled results of high level DFT 
predictions (blue trace).  The motions of the numbered modes are provided in Table V.11. 

 The good agreement between the Raman and fluorescence frequencies was 

expected because of the similar selection rules, but the observed intensities in 

Raman and fluorescence spectra are also very similar. This is consistent with the 

fact that all the vibronic transitions observed in fluorescence are transitions from 

ν’=0 to νi”=1 for different vibrational modes (i.e. no overtones or progressions 

were observed). Assignment of the vibronic structure of the emission is possible 

using the ground state Raman results.  The most prominent bands in the emission 

and Raman spectra are numbered in Figure V.7 and Figure V.6 while the mode 

assignments, taken from the DFT Raman predictions are listed in Table V. 10 and 

Table V.11 for ZnPc and H2Pc respectively.  
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Table V. 10: Characteristic vibrational motions of the most intense bands in the Raman spectra of 
ZnPc as determined by DFT calculations.  The frequencies are given in wavenumber (cm-1) units 
and all the observed Raman modes involve in-plane motions. 

Mode # Obs. DFT 
(unscaled) Sym Mode description 

1 157.4 157.6 B1g Bridging C-N-C sym. rocking 

2 228.3 231.9 B2g Bridging C-N-C asym. deformation 

3 257.2 258.4 A1g Bridging C-N-C sym. def. 

4 479.9 489.67 B2g Aryl rocking & central ring def. 

5 588.3 600.1 A1g Aryl deformation/ sym. ring def. 

6 676.5 689.9 A1g Bridging C-N-C sym. def and aryl def 

7 746.0 764.8 B1g Central ring contraction & aryl def.. 

8 829.9 851.6 A1g Central ring expansion & pyrrole def.. 

9 945.8 963.6 B2g C-H def & aryl  C-C str. 

10 1141.9 1164.3 B1g aryl  C-C str. and C-H def 

11 1197.1 1232.0 B2g aryl  C-C str. and C-H def 

12 1304.8 1323.1 B1g C-H def/aryl def 

13 1338.3 
1363.8 A1g aryl  C-C str. and C-H def 

1368.9 B1g aryl  C-C str. and C-H def 

14 1431.7 1478.7 B1g C-H def 

15 1506.8 1557.2 B1g Bridging  Cα-Nm-Cα asym.str and sym str 
of the Cα-NH-Cα bonds 

16 1607.6 1642.5 B2g Pyr  C-C str. & aryl C-C str 
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Table V.11: Characteristic vibrational motions of the most intense bands in the Raman spectra of 
H2Pc as determined by DFT calculations.  The frequencies are given in wavenumber (cm-1) units 
and all the observed Raman modes involve in-plane motions. 

Mode # Obs. DFT 
(unscaled) Sym Mode description 

1 129.9 132.9 Ag Bridging C-N-C sym. rocking 

2 182.9 181.2 B1g Bridging C-N-C asym. deformation 

3 228.3 229.7 Ag Bridging C-N-C sym. def. 

4 479.9 487.6 B1g Aryl rocking & central ring def. 

5 541.3 551.3 Ag Aryl deformation/central ring def 

6 565.7 577.5 Ag Aryl deformation/sym. ring def. 

7 679.9 690.4 Ag Bridging C-N-C sym. def and aryl def 

8 722.8 743.5 Ag Central ring twisting & pyrrole def. 

9 763.0 779.3 Ag Central ring contraction & aryl def.. 

10 796.1 810.7 Ag Central ring expansion & pyrrole def.. 

11 1007.3 1029.3 Ag C-H def & aryl C-C str. 

12 1081.4 1106.9 B1g N-H IP bending aryl def 

13 1140.3 1164.0 Ag aryl  C-C str. and C-H def 

14 1180.9 1203.9 Ag aryl  C-C str. and C-H def 

15 1312.8 1339.3 B1g C-H def/aryl def 

16 1336.7 
1360.9 

1373.3 
Ag aryl  C-C str. and C-H def 

17 1406.5 1422.4 Ag pyrrole C-C & C-N str. 

18 1426.9 1460.9 Ag C-H def 

19 1450.5 1481.6 Ag aryl  C-C str. and C-H def 

20 1511.5 1541.0 Ag Pyr  C-N-C str & C-H def. 

21 1539.5 1582.9 Ag Bridging  Cα-Nm-Cα asym.str and sym str 
of the Cα-NH-Cα bonds 

22 1616.8 1646.8 B1g Pyr  C-C str. & aryl C-C str 
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V.4.IV Comparison of the excitation and emission spectra 

Figure V.8 provides a comparison of the excitation and emission spectra recorded 

for zinc phthalocyanine in Ar.  The apparent weak intensity of the 0-0 band is an 

artefact due to strong re-absorption arising from the overlap between absorption 

and emission bands.  The characteristic most evident in Figure V.8 is the mirror 

symmetry that exists between the excitation and emission spectra. This is best 

illustrated in Ar data but the frequencies found for the vibronic modes in excitation 

and emission in a variety of matrices are listed in Table V.2 and Table V.4 

respectively.  

 
Figure V.8: A comparison of the absorption (black trace), excitation spectra and reversed emission 
spectra of ZnPc.  Very close agreement exists between the excitation and reversed emission 
indicating very strong mirror symmetry of the two spectra. 

The same selection rules exist for vibronic coupling for an electronic 

transition in both absorption and emission. The similarities in the vibronic 

intensity distributions in emission and excitation indicate that the molecular 

geometry in this molecule is not greatly changed when in the first excited 

electronic state compared to the ground state. This is also confirmed by the fact 

that the 0-0 band is the most intense band observed in fluorescence spectra.  

Another key observation which can be made is that positions of the 0-0 transition 
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in emission and excitation in all matrices agree to within 1 cm-1 which is less than 

the experimental error of the spectroscopic setups.  Thus there is no Stokes shift 

on the Q state emission indicating very similar geometries in the ground and first 

excited electronic states. The vibrational frequencies of the two electronic states 

G(S0) and Q(S1) of ZnPc isolated in different matrices are in good agreement with 

those obtained in Shpol’skii matrices as shown in Table V.2 and Table V.4. The 

current excitation spectra vanish above 1000 cm-1 from the 0-0, as those obtained 

in He droplets11 also do. The discrepancy from mirror symmetry noticed in 

Shpol’skii matrices concerned the vibronic structure at higher energy and is not 

observed in work presented here. 

For ZnPc in the gas phase, 13 vibronic bands have been observed in 

excitation ranging from 33 to 589 cm-1 from the band origin. As collected in Table 

V.4 and shown in Figure V.8, all these modes have been observed for ZnPc in 

matrices at very similar energies to the gas phase except the modes at 33, 103, 131 

and 565 cm-1. The origin of the lowest frequency gas phase mode is unclear as DFT 

calculations find no vibrational modes less than 22 cm-1 making the attribution of 

the 33 cm-1 band to an overtone rather unlikely. On the other hand the 103 and 

131 cm-1 are present but extremely weak in Raman spectra and most likely 

correspond to DFT predicted modes at 112.54 and 125.24 cm-1.  These modes are 

probably not observed because they are in the phonon side band of the intense 0-0 

band and the mode at 131 cm-1 has a very low intensity in the jet experiments.  In 

jet-cooled experiments the most intense band by far was the 0-0, with the band at 

153 cm-1 being the second most intense in the spectrum. It is also the case in 

Lehnig’s study11 in helium droplets. In matrices the 0-0 transition is the most 

intense, but other bands have significant intensities. For example as shown in 

Figure V.8 the bands at 675 and 153 cm-1 are more intense than the 0-0 band. Such 

intensity ratios will not reproduce the true ratio of the oscillator strengths. This 

might be due to self absorption phenomena and/or to the fact that the dyes used 

(DCM and LDS90) are not very intense in the region of the 0-0.  The bands between 

675 and 938 cm-1 may not have been identified in the gas phase because of their 

low intensity. 
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Figure V. 9: A comparison of the absorption (black trace), excitation spectra and reversed emission 
spectra of H2Pc.  Very close agreement exists between the excitation and reversed emission up to 
~950 cm-1 from the 0-0 after which the mirror symmetry breaks-down due overlap with the Qy. 

 Contrary to ZnPc, for H2Pc a breakdown of the mirror symmetry occurs in 

excitation and emission spectra above 1000 cm-1 from the 0-0 as shown for the 

case of H2Pc in Ar (cf. Figure V. 9). By comparison between the results for emission 

and excitation of H2Pc in the other matrices (Table V.3 and Table V. 5 respectively), 

a similar breakdown of the mirror symmetry is seen. This difference in vibronic 

structure between emission and excitation is because of the existence of the Qy(S2) 

state at ~1000 cm-1 from the Qx(S1) state which is not present in ZnPc. The matrix 

dependence of the position of the Qy state relative to the 0-0 of the Qx and 

subsequent change in structure of this band, indicate coupling between different 

vibrational modes in the Qx state depending on the host environment. 

 From the luminescence study of H2Pc and D2Pc in argon reported by Bondybey 

and English14, the intense band assigned to the origin of the Qy electronic transition 

at 983 cm-1 from the 0-0 of the Qx in H2Pc was seen to shift by 37 cm-1 to 946 cm-1 

upon deuteration, indicating an isotopic dependence of the vibrational mode 

coupling the Qy to the Qx state. In the current work, a weak feature around 1000 

cm-1 in emission was correlated to the weak but resolved bands in the 

experimental Raman spectrum at 1007 and 1025 cm-1. From DFT, the 1025 cm-1 
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mode has been assigned to an in-plane N-H bending frequency calculated at 1049.7 

cm-1 (1028.7 cm-1 scaled) which shifts by 42.4 cm-1 (41.6 cm-1) to 1007.3 cm-1 

(987.1 cm-1) in D2Pc.  

 An intense band found at 882 cm-1 in the Ar excitation spectra does not 

correlate with any feature seen in either emission or Raman spectra. From 

Bondybey and English, the equivalent excitation band at 880 cm-1 in Ar was 

observed to reduce dramatically in intensity upon deuteration with the growth of a 

new band at 870 cm-1 but with considerably weaker intensity. The closest 

correlation to these modes in the DFT results were an isotopic pair of B1g modes at 

907.44 cm-1 (889.29 cm-1) in H2Pc and at 880.30 cm-1 (862.70 cm-1) in D2Pc, with 

vanishingly small Raman scattering activities. These modes involve a N-H(D) 

bending motion coupled to the bridging atoms C-N-C and peripheral aryl C-C-C 

atoms.  Other modes at higher energies than the Qy were also noticed to shift with 

deuteration but due to the complex overlap of Qx and Qy vibronic bands in this 

region, they are difficult to assign. No isotopic dependence was seen for the 

vibronic bands in the excitation spectra up to and including the mode at 795 cm-1 

from the Qx 0-0. The excitation spectra of H2Pc isolated in inert solids also agrees with 

the results obtained by Plows and Jones8. 

V.4.V Vibronic analogue of the Fermi resonance (H2Pc) 

In contrast to the excitation spectra of ZnPc, which have very similar structures in 

all solids, the excitation spectra of H2Pc are quite different to the emission spectra.  

Moreover, the excitation spectra of H2Pc depend on both the matrix and on the site 

that is being monitored. The latter effect can be followed very well in nitrogen 

matrices which presents many different sites. 

 The region of the band origin of the Qy ← G transition is situated at ~1000 cm-1 

from the Qx ← G transition, so it is expected that vibronic transitions to the excited 

vibrational states of Qx will be situated in the same region. The density of 

vibrational states of Qx is high in this region and non-adiabatic electronic-

vibrational interactions arise between the accidentally degenerate vibronic levels 

of Qx and Qy. As a result, the vibronic lines of the Qx ← G transition increase in 

intensity and are shifted which is analogous to Fermi resonance. The oscillator 

strength of the Qy ← G transition is predicted by TD-DFT to be slightly stronger 

than that of the Qx ← G transition. The enhancement of the weakly allowed 

vibronic transitions of the Qx and possible reduction in absorption intensity of the 
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allowed 0-0 Qy transition may explain the difference seen between the 

experimental and theoretical absorption strengths.  

 In the case of H2Pc trapped in different solids, the Qx-Qy splitting is different. In 

this way multiple distinct vibronic bands will couple with the Qy for different 

matrices. It can also be expected that different sites in the same matrix might have 

different Qx-Qy splittings. This phenomenon has already been observed for other 

porphyrins (meso-tetraazaporphyn, meso-tetrapropylporphin and 

tetrabenzoporphine) in Shpol’skii matrices37,38. In the case of H2Pc the vibrational 

modes coupled by the “Fermi resonance” are the fundamental modes of Qx and not 

the combination modes as observed for meso-tetraazaporphyn and 

meso-tetrapropylporphin38. 

V.4.VI Sites of ZnPc and H2Pc 

It has been shown before that both ZnPc and H2Pc isolated in N2 show well defined 

site structures both in absorption and emission. However the number of resolved 

features is very different for the two molecules with seven observed for H2Pc and 

two identified for ZnPc in emission spectra. 

The H2Pc molecule can exist in two different tautomeric forms when isolated in 

solids depending on the position of the two hydrogen atoms on the inner ring of 

the phthalocyanine. Because of the interaction with the host matrix, these two 

tautomers are known to have different absorption frequencies. Thus, where only 

one band appears in the ZnPc absorption spectrum two bands are expected for 

H2Pc. This fact can explain why some of the absorptions peaks of free-base 

phthalocyanine do not exist in the spectrum of the metal-phthalocyanine, but more 

experiments are needed in order to identify the correspondence between sites of 

H2Pc and ZnPc in N2. 

V.5  Conclusions 

The electronic spectra of two tetrapyrrolic molecules isolated in rare gas and 

molecular matrices namely free-base phthalocyanine and zinc phthalocyanine 

were investigated. A close comparison was observed between the vibrational 

bands recorded using Raman spectroscopy and those in emission. This behaviour 

is explained by the similarities in the selection rules for both types of transitions in 

these planar molecules. This allowed the use of the Raman active modes calculated 
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with large basis set density function theory to assign the vibronic modes of the 

ground state seen in emission for both H2Pc and ZnPc. 

 The observed vibronic frequencies in the ground (G) and first excited (Q) states 

of ZnPc were found to be very similar. This indicated a very similar geometry in 

the excited state to that in the ground state and allowed the vibrational modes in 

the Q state to be assigned using the DFT calculated Raman spectra. In the case of 

H2Pc the existence of the second exited state Qy only 1000 cm-1 above Qx is 

responsible for the observation of a very complicated excitation spectrum due to 

non-adiabatic coupling between electronic and vibrational states. This made 

assignment of the modes above the Qy difficult using the ground state vibrational 

mode observed in emission or Raman spectra.  

The energy difference between the Qx and Qy states was found to be dependent 

on the host matrix, with the largest Qy-Qx splitting of 985.3 cm-1 found for H2Pc in 

Ar and the smallest splitting of 916 cm-1 in Xe. An electronic analogy to Fermi 

resonance has been proposed to explain the coupling of various quasi-degenerate 

vibronic modes in Qx to those in Qy. A tentative assignment of one of these modes 

985.3 cm-1 from the 0-0 of Qx in Ar has been made by comparison of the results 

reported here and those of previous excitation spectra recorded for D2Pc. Using 

DFT calculations this mode is identified as a B1g symmetry in-plane deformation 

mode of the two central N-H bonds. Further analysis, including more extensive 

experimental analysis and theoretical calculations, is required in order to fully 

resolve the vibrational modes coupling in both excited states of H2Pc and in 

various host environments. 

The excitation energies and oscillators strengths of H2Pc and ZnPc were 

calculated using linear-response time-dependent DFT. The results from TD-DFT 

were compared to both experiment and to calculated values for free-base and zinc 

TAP, TBP and porphine. They were found to be qualitatively useful in identifying 

and accounting for trends seen in experiment. By examining the KS orbitals 

described in Appendix V.A, the conjugated π systems contributing to the 

aromaticity of Pc and TBP were seen to be not only localized to the central ring, as 

is the case for the smaller P and TAP molecules, but distributed over the fused 

benzene annulations. This extension of the π system has the effect of perturbing 

the energies of these orbitals when compared to the non-benzo porphyrins. The 
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replacement of the CH bridging groups with the more electronegative N atoms 

lowered the energy of  the orbitals with significant coefficients at the meso 

positions, resulting in the breakdown of Gouterman’s four-orbital model for the 

electronic transitions of porphyrins and their derivatives. Experimentally, the Q 

band positions are observed at similar wavelengths, between 527-661 nm. This 

was accounted for by TD-DFT in that despite the changes in the relative orbital 

energies, the HOMO-LUMO gaps remain similar in all eight molecules theoretically 

examined. 

Unfortunately, the absolute values obtained during the excited state calculations 

were unreliable, with no systematic error between TD-DFT and experimental 

transition energies or oscillator strengths. Of particular concern was the 

considerable underestimation of the Qy-Qx splitting. Development of newer 

functionals adapted for use in time-dependent calculations is ongoing and coupled 

with the continued increase in computer powers available, may allow TD-DFT to 

routinely calculate excited state properties with the accuracy and reliability found 

for many calculations of the ground state properties. 
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Appendix V.A: KS-MO contributions to 

TD-DFT transitions of porphyrins 

V.A.1 Introduction 

In the following appendix, a detailed description will be given of lowest energy 

transitions predicted using TD-DFT of eight structurally related porphyrins. All 

calculations discussed were calculated at the B3LYP/6-311++G(2d,2p) level of 

theory. The TD-DFT results for these molecules (zinc and free-base 

tetraazaporphyrin, phthalocyanine, tetrabenzoporphyrin and porphine) have been 

tabulated in Table V.6 and V.7 of Chapter V and will be referenced throughout. In 

this chapter, particular attention will be paid to the Kohn-Sham (KS) orbitals of the 

single electron transitions predicted to have the largest contributions to the overall 

electronic state transitions and the effect of the different molecular structures have 

on the equivalent KS orbital energies of each molecule. These KS orbitals are 

mathematical constructs used in the determination of the electron density, 

describing the energy properties of the molecule, and are therefore important in 

the calculation of transition energies using TD-DFT. 

The results for the zinc molecules will be given in Part V.A.2, starting with the 

methine bridged porphyrins, porphine (P) and tetrabenzoporphyrin (TBP), 

followed by the aza bridged analogues, phthalocyanine (Pc) and tetraazaporphyrin 

(TAP). The similarities and differences between the orbital contributions for the 

different systems will be discussed. A short description of the correlation between 

the D4h symmetry metallo- and D2h symmetry free-base porphyrins will be given in 

Part V.A.3 using ZnPc and H2Pc as examples. In Part V.A.4, the results for the free-

base molecules will be described and compared in the same order as for the Zn 

molecules (that is to say H2P, H2TBP, H2Pc and H2P). 
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V.A.2 TD-DFT ― zinc porphyrins 
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Figure V.A.1: Energy level correlation diagram of the valence Kohn-Sham orbitals of ZnTAP, ZnPc, 
ZnTBP and ZnP. The major orbital contributions for the Q band transitions are indication by the 
solid arrow and the significant minor contributions by the dashed arrows. 

  The TD-DFT results for the two lowest energy singlet and triplet vertical 

transitions of zinc aza bridged porphyrins are tabulated on right-hand side of 

Table V.6 while those of the methine bridged porphyrins are given on right-hand 

side of Table V.7. Considering ZnP first, the Q band 1Eu transition is predicted to 

originate primarily from an almost equal “plus” combination of the one electron 

excitations from the quasi-degenerate 1a1u and 5a2u HOMO and HOMO-1 to the 

degenerate 5eg LUMO orbitals  with an excitation energy of 2.4083 eV (19424.24 

cm-1, 514.81 nm). As the 1a1u, 5a2u and the degenerate 5eg orbitals have a node 

through the plane of the molecule, they may be described as π orbitals. As shown 

in Figure V.A.1, there is a large energy gap between the LUMO and HOMO orbitals 

with a significant gap between the HOMO orbitals and lower energy occupied 

orbital.  This explanation of the origin of the Q transitions is consistent with the 

four-orbital model proposed by Gouterman in the 1960s1.  
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 The coefficients for the 5a2u orbital are mostly localised to the meso C and 

pyrrole N atoms with contributions also from the Cβ atoms on the pyrrole ring 

(Figure V.A.5). The 1a1u orbital coefficients are localised between the Cα and Cβ 

atoms of the pyrrole rings with nodal plains going through the meso methine 

groups and pyrrole N atoms. The degenerate pair of LUMO orbitals have 

coefficients localised between the Cα and Cβ atoms along one axis and between the 

Cα and Cm atoms, pyrrole N atoms and between the Cβ atoms on the other axis. 

Though individually both 1a1u → 5eg and 5a2u → 5eg are allowed with large 

transition dipole matrix elements2, in the plus combination, they have opposite 

directions and in effect cancel each other out, leading to a low intensity (f=0.0027). 

The higher energy B band has a minus combination of the same orbital transitions 

with parallel transition dipoles and hence have a large intensity (predicted using 

TD-B3LYP/6-311++G(2d,2p) at 3.4816 eV with f=0.9392). 

 The corresponding triplet 3Eu transitions involve the same orbitals but with 

a larger contributions from the 5a2u → 5eg orbitals than the 1a1u → 5eg. The 

coefficients for the 5a2u → 5eg transitions shown in Table V.7 make up 41.2 and 5.7 

% of the transition with the 1a1u → 5eg transition making up only 18.1 and 2.5 %. 

This 2.3:1 ratio between the orbital contributions means that the 3Eu electronic 

transition may be thought of as a simple 5a2u → 5eg transitions with small 1a1u → 

5eg contributions.  It should be noted that whereas the coefficients for the 

contributions to the singlet transitions are normalised to 0.5, the coefficients for 

the triplet contributions are normalised to 1. The predicted excitation energy is 

1.7735 eV (14,304.24 cm-1, 699.1 nm), red-shifted by 0.6348 eV (5120 cm-1) 

compared to the singlet transition. 

 Looking now at ZnTBP, the lowest degenerate 1Eu symmetry transition 

predicted at 2.1426 eV (17281.23 cm-1, 578.65 nm) involves the equivalent KS 

orbitals seen in ZnP but the addition of the benzo annulations has a noticeable 

effect on the energies of some of these orbitals (Figure V.A.1) and their 

contribution to the transition. The 6a2u orbital is very similar to the 5a2u orbital of 

ZnP, that is, the orbitals are localized to the Cm, pyrrole N and Cβ atoms with only a 

very small coefficient on the Cδ atoms of the benzene rings. This results in a small 

reduction in the energy of this orbital. The coefficients for the 2a1u orbital are 

affected by the addition of the benzene rings. Like the equivalent 1a1u orbital of 
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ZnP, there are large coefficients between the Cα and Cβ of the pyrrole rings but 

there are now also large coefficients between the Cγ and Cδ atoms on the benzo 

annulations. As a consequence of the addition of π orbital contributions from the 

benzene rings, the energy of the 2a1u orbital in ZnTBP is raised considerably 

compared to the 1a1u orbital of ZnP. The LUMO 7eg orbital like the 2a1u orbital has 

significant contributions from the π orbitals of the benzo groups. As well as the Cα 

and Cβ coefficients along one axis seen in the ZnP 5eg orbitals, there are large 

orbital coefficients between the Cγ and Cδ along the same axis. Along the other axis, 

the orbitals are more similar with coefficients between the Cα and Cm atoms and on 

the pyrrole N atom and only small contributions on the Cβ and Cδ atoms. Despite 

these extra benzo coefficients only a small rise in the energy of the 7eg orbital was 

calculated.  

 The effect of the benzo annulations on the energy of the orbitals, in 

particular, on the raising of the energy of the 2a1u orbital, removes the quasi-

degeneracy of the two HOMOs. Though Gouterman’s four-orbital model is strained, 

there is still a large enough energy gap between the 6a2u orbital and the other 

orbitals of the molecule to make it still applicable but the spectroscopic properties 

predicted are now significantly different from those of ZnP. The smaller energy gap 

between the 2a1u and 7eg orbitals leads to a lower excitation energy of 2.1426 eV 

(17281.23 cm-1, 578.65 nm) and to a larger contribution from the 2a1u → 7eg 

transition (71.49 %) compared to the 6a2u → 7eg transition (26.96 %). This 

increase in the contribution from one orbital transition has an effect on the 

absorption strength, allowing one dipole moment contribution to dominate and 

raising the oscillator strength to 0.1803. The corresponding triplet transition was 

calculated to have an excitation energy of 1.4992 eV (12091.86 cm-1, 826.98 nm) 

involving similar orbital transition contributions to the singlet and red-shifted by 

0.6434 eV (5189.37 cm-1). 

 The exchange of the meso Cm-Hm group for the more electronegative Nm in 

ZnPc has a dramatic effect on the KS orbitals and consequentially on the 

spectroscopic properties predicted using TD-DFT. The HOMO 2a1u orbitals in ZnPc 

and ZnTBP are almost identical due to negligible coefficients on the bridging meso 

groups and only a relatively small reduction in energy was seen between this 

orbital in ZnPc and ZnTBP. There was, however, a major effect on the energy of the 
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6a2u orbital. Comparably large orbital coefficients are now seen between the Cα 

atoms and Cγ atoms of the benzene rings with a reduction of the coefficients on the 

pyrrole N but the most important orbital component in terms of the energy 

difference between ZnTBP and ZnPc is the continuing presence of a large 

coefficient at the meso position. The electronegativity of the N atom has the effect 

of lowering the energy of this orbital greatly, shifting it into a more complicated 

energy region with other π and σ orbitals (Figure V.A.1). The 7eg LUMOs of ZnPc 

and ZnTBP have almost indistinguishable orbital coefficients but, like the 6a2u 

orbital, there is large reduction in the energy of these orbitals due to the 

electronegative Nm atoms but a significant HOMO-LUMO gap still exists. 

 The lowering of the 6a2u orbital from HOMO-1 to HOMO-4 below the 3b2u, 

6eg and 16b1g orbitals cause a breakdown of the simple four-orbital model used to 

describe the Q transitions of porphyrins. The mixing of the single electron 

contributions from the 2a1u → 7eg and 6a2u → 7eg orbital transitions is further 

reduced compared to ZnTBP and ZnP, with the 2a1u → 7eg transition with a total 

contribution of 73.11 % versus only 8.49 % for the 6a2u → 7eg transition. The 

lower energy transition of 2.0536 eV (16,563.40 cm-1, 603.74 nm) and increased 

oscillator strength of f=0.432 is a consequence of lowering the energy gap between 

the HOMO and LUMO (which is now the primary contributor to the transition by a 

factor of 8.61). The triplet transition is now predicted to consist of only 2a1u → 7eg 

components above 1 % (i.e. coefficients above 0.1) with an excitation energy of 

1.1141 eV (8985.82 cm-1, 1112.91 nm), red-shifted by 0.9395 eV (7,577.58 cm-1) 

compared to the singlet. 

 Removing the benzo annulations of ZnPc to produce ZnTAP has the overall 

effect of lowering the energy of KS orbitals. The coefficients for these orbitals 

resemble the general description of those found for ZnP but with different 

energies. The coefficients on the meso Nm atom significantly lower the energy of 

the 5a2u orbital of ZnTAP compared to the same orbital in ZnP. The removal of the 

benzo groups also reduces its energy relative ZnPc. The removal of the benzene 

rings also has the large effect on the HOMO 1a1u of lowering its energy significantly 

relative the 2a1u orbital of ZnPc. Also due to the negligible orbital coefficients on 

the meso atoms, this orbital is somewhat lower in energy than the corresponding 

KS orbital in ZnP. The energy of the LUMO 5eg is also reduced relative to ZnPc and 
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is now much lower than the LUMOs in ZnP but with a comparable HOMO-LUMO 

gap due to the lower HOMO in ZnTAP 

 The overall effect of these orbital energy changes is that the excitation 

energy for the Q transition is calculated to be 2.4386 (19,668.63 cm-1, 508.43 nm) 

only 0.0303 eV (244.43 cm-1) higher than the corresponding transition in ZnP but 

with a much larger oscillator strength of 0.1683. Like ZnPc and ZnTBP, the higher 

oscillator strength is due to the reduction in the mixing of the 1a1u → 7eg and 5a2u 

→ 7eg transitions. The lowering of the 5a2u orbital from HOMO-1 to HOMO-2 

causes a breakdown of the four-orbital model and mixing of the orbital transitions. 

The 1a1u → 7eg transitions make up the greater percentage of the components to 

the excitation transition with 39.93 % and 28.97 % (total of 68.90 %) against those 

from the 5a2u → 7eg transition with 13.60 % and 9.86 % (total of 23.46 %). Though 

the energy of the triplet transition of ZnTAP of 1.466 eV (11,824.08 cm-1, 845.73 

nm) are comparable to those of the ZnP, the orbital transition contribution are 

similar to those of ZnPc, with 66.24 % coming from the 1a1u → 7eg transitions. 
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V.A.3 The correlation between D4h and D2h symmetry orbitals -

 ZnPc versus H2Pc 
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Figure V.A.2: Correlation between the KS orbitals of the D4h symmetry ZnPc and D2h symmetry 
H2Pc. 

 When comparing the results from the D4h point symmetry Zn porphyrins 

with their D2h point symmetry free-base analogues, important correlations may be 

made using group theory. The D4h A2u and B2u representations correlate with the 

B1u representation of D2h. Likewise, A1g and B1g correlate with Ag, A2g and B2g 

correlate with the D2h B1g representation and A1u correlates with Au. Of significance 

to the current study, the doubly degenerate Eu and Eg representations of D4h group 

symmetry, split into B2u/B3u and B2g/B3g representations, respectively, of the lower 

symmetry D2h group symmetry. The consequences of the change in symmetry may 

be seen in Figure V.A.2. For example, the degenerate 30eu orbital of ZnPc (lowest 

lying orbital of ZnPc shown in Figure V.A.2) correlates with the slightly higher 

energy 28b2u and lower energy 29b3u orbitals of H2Pc. Changes in energy are also 

apparent in other orbitals, in part due to the slightly different geometries of the Zn 

and H2 analogues and the spatial arrangement of the orbital components around 

those geometries raising or lower the energy. The 3d orbitals from the central zinc 

atom were found to be very low lying and did not contribute to valence orbitals 

involved in the visible transitions. The most important difference between ZnPc 

and H2Pc, in terms of the visible spectroscopic properties of these molecules, is the 
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loss of the degeneracy of the 7eg lowest unoccupied molecular orbitals. These 

orbitals correlate in H2Pc with the non-degenerate 6b2g and 6b3g orbitals. The 

splitting of these orbitals leads to a splitting of the Q transitions of 1Eu symmetry in 

ZnPc into Qy and Qx transitions of 1B2u and 1B3u symmetry.  

V.A.4 TD-DFT ― free-base porphyrins 
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Figure V.A.3: Energy level correlation diagram of the valence Kohn-Sham orbitals of H2TAP, H2Pc, 
H2TBP and H2P. The major orbital contributions for the Qx and Qy transitions are indication by the 
solid arrow and the significant minor contributions by the dashed arrows. 

The TD-DFT results for the two lowest energy singlet and triplet vertical 

transitions of free-base aza bridged porphyrins are tabulated on left-hand side of 

Table V.6 while those of the methine bridged porphyrins are given on left-hand 

side of Table V.7. An energy correlation diagram of the KS orbitals involved in the 

transitions is presented in Figure V.A.3 and pictorial representations of the orbital 

coefficients of the main MOs contributing to the transitions are given in Figure 

V.A.5. Like the zinc porphyrins, a description of the orbital contributions to the Q 

transitions of free-base porphyrin (H2P) will be given first, followed by free-base 
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tetrabenzoporphyrin (H2TBP), phthalocyanine (H2Pc) and tetraazaporphyrin 

(H2TAP). 

The Q band transitions of H2P predicted by TD-DFT, like those of ZnP, are 

consistent with the Gouterman four-orbital model. The lower energy Qx transition 

is calculated at 2.2704 eV (18,312 cm-1, 546.1 nm) with 1B3u symmetry while the 

higher energy Qy transition is calculated at 2.4162 eV (19,488 cm-1, 513.14 nm) 

with 1B2u symmetry with a splitting of 0.1458 eV (1,176 cm-1) between them. The 

largest contribution of the 1B3u excitation is the 5b1u → 4b2g transition with a 

slightly smaller contribution from the 2au → 4b3g transition. In the 1B2u transition, 

the upper orbitals are reversed and the main contribution is from the 5b1u → 4b3g 

orbital transition and the minor contribution from the 2au → 4b2g transition. 

Comparing the orbital coefficients of the occupied orbitals of H2P and ZnP, the 2au 

orbital of H2P correlates with the 1a1u orbital of ZnP and the 5b1u orbital of H2P 

correlates with the 5a2u orbital of ZnP but due to the difference in charge now 

between the H bonded N atom and N’ atom on the alternative pyrrole rings, the 

5b1u orbital is higher in energy than the 2au orbital. 

The 5eg lowest unoccupied orbitals in ZnP lose their degeneracy and split into a 

lower energy 4b3g LUMO and higher energy 4b2g LUMO+1. The coefficients of the 

4b3g orbital are localized between the Cα and Cβ atoms of the pyrrole rings along 

the x-axis (i.e. the pyrrole rings bonded to the central hydrogens) with orbital 

coefficients on the N’ atoms and between the Cα’ and meso Cm atoms and to a lesser 

extent between the Cβ’ atoms on the other pyrroles. The 4b2g orbital has the orbital 

coefficient pattern for 4b3g rotated by 90°, with coefficients localized between the 

Cα’ and Cβ’ atoms of the pyrrole rings along the y-axis and on the NH atoms and 

between the Cα and meso Cm atoms and the Cβ atoms along the x-axis. The nearly 

50:50 mixing of the contributions has the effect, again like ZnP, of cancelling the 

dipole moments leading to a small oscillator strength for both 1B3u and 1B2u 

transitions, 0.0001 and 0.0002 respectively. The 3B2u triplet transition is predicted 

at 1.5066 eV (12,152 cm-1, 822.97 nm) with 58.11 % from 5b1u → 4b3g and 17.66 

% from 2au → 4b2g while the higher energy 3B3u transition at 1.8321 eV (14,777 

cm-1, 676.74 nm) consists of 55.63 % from 5b1u → 4b2g and 6.64 % from 2au → 

4b3g. 



Appendix V.A: KS-MO contributions to TD-DFT transitions of porphyrins 

203 

 For H2TBP, the excitation energy calculated for the Qx transition of 1B3u 

symmetry is 2.0865 eV (16,829 cm-1, 594.21 nm) and for the Qy transition of 1B2u 

symmetry, 2.1211 eV (17,108 cm-1, 584.53 nm). The difference between these two 

excitation values of 0.0346 eV (279.07 cm-1) is more than four times smaller than 

the splitting between the Qx and Qy transitions calculated for ZnP. The equivalent 

orbitals that were involved in the Qx and Qy transitions of H2P contribute to the 

H2TBP transitions with the 1B3u transition consisting of 68.74 % 4au → 6b3g and 

38.43 % 7b1u → 6b2g contributions and the 1B2u transition of 70.70 % 4au → 6b2g 

and 24.43 % 7b1u → 6b3g contributions. Analogous to ZnTBP, the benzene 

annulations have an effect on the energies of these orbitals, moving the 7b1u orbital 

to slightly lower energy and the 4au orbital to higher energy. The increase in the 

energy gap between the HOMO levels reduces the mixing of the contributions, 

leading to one dominant single orbital transition and larger oscillator strengths 

(1B3u: f=0.0963 and 1B2u: f=0.2177). 

 The addition of the benzo groups has the effect of increasing the energy 

splitting and reversing the energy order between the LUMOs with the 6b3g orbital 

now higher in energy than the 6b2g orbital. Looking the orbital diagrams in Figure 

V.A.5 a clear difference in orbital distributions is apparent. Orbital coefficients are 

found for the 6b2g orbital on the central ring and benzene rings along the y-axis 

with smaller contributions on the alternative y-axis benzenes but for 6b3g, they are 

found almost exclusively on the central ring and isoindole ring along the x-axis. 

The main contribution to the lower energy 1B3u transition, counter-intuitively, 

comes from a transition from the HOMO to the higher energy 6b3g orbital and for 

the higher energy 1B3u transition, from the same HOMO to the lower energy 6b2g 

orbital. The 3B2u triplet transition is predicted at 1.3176 eV (10,627 cm-1, 941 nm) 

with 62.57 % from 4au → 6b2g and 7.66 % from 7b1u → 6b3g while the higher 

energy 3B3u transition at 1.6169 eV (13,041 cm-1, 766.79 nm) consists of 58.39 % 

from 4au → 6b3g and only 1.57 % from 7b1u → 6b2g a reversal in the percentage of 

equivalent contributions seen in ZnP. 

 The 1B3u Qx transition of H2Pc was calculated at 2.0331 eV (16,398 cm-1, 

609.83 nm) and the 1B2u Qy transition at 2.0510 eV (16,542 cm-1, 604.5 nm) with a 

small splitting of 0.0179 eV (144.37 cm-1) between the two excitations. As seen in 

the relationship between ZnTBP and ZnPc, replacing the methine bridging group in 
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H2TBP with a more electronegative Nm atom in H2Pc reduces the energies of most 

of the orbitals, in particular the HOMO-1 7b1u in H2TBP to the HOMO-3 6b1u orbital. 

The 6b3g and 6b2g LUMOs were also lowered in energy, though the difference 

between the orbitals is reduced, the energy order remains the same relative to 

H2TBP. The contributions to the transitions reflect the changes in orbital energy. 

The 1B3u transition is composed primarily of 72.10 % 4au → 6b3g with lesser 

coefficients from 6b1u → 6b2g (9.19 %) consistent with ZnPc but now also with 

4.45 % from 7b1u → 6b2g. Likewise the 1B2u transition is predominantly formed of 

71.68 % 4au → 6b2g with 7.40 % from 6b1u → 6b3g and 2.00 % from 7b1u → 6b3g. 

The addition of lower energy orbital transitions from the 7b1u π orbital which was 

not seen in any of the zinc molecules or free-base methine bridged porphyrins is 

indicative of the breakdown of the 4 orbital model and results in the large 

oscillator strengths of 0.4079 for 1B3u and 0.4497 for 1B2u transitions. The triplet 

transitions are predicted to be predominantly single orbital transitions with the 
3B2u transition at 1.0095 eV (8142 cm-1, 1228.12 nm) consisting of 74.58 % 4au-

6b2g and the 3B3u transition at 1.1605 eV (9360 cm-1, 1068.34 nm) consisting of 

66.97 % 4au-6b3g. 

 

H2Pc H2TAP

7b1u
LUMO -1

5b1u
LUMO -1

 
Figure V.A.4:  The 7b1u and 5b1u π orbitals of involved in the Qx and Qy transitions of H2Pc and 
H2TAP. Contributions above 1 % of transitions involving the equivalents of these orbitals were not 
apparent for H2P and H2TBP or any of the zinc porphyrins. 
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 The H2TAP results like the three previous free-base molecules reflect the 

same changes in orbital energies seen in the zinc molecules and the effect these 

changes have on the spectroscopic properties calculated. There is a significant 

lowering in energy of the HOMO 2au orbital with a smaller reduction in the energy 

of the 5b1u and 4b1u orbitals. In the case of the LUMOs, the 4b2g and 4b3g orbitals 

have been further reduced relative to H2Pc but the energy ordering of these 

orbitals has reversed to match the order seen in H2P. The 1B3u Qx transition is 

predicted to have an excitation energy of 2.363 eV (19,059 cm-1, 524.68 nm) with a 

64.06 % contribution from the 2au → 4b3g transition, 26.67 % from 5b1u → 4b2g 

and, like H2Pc, a small 5.68 % contribution from the 6b1u → 4b2g transition. The 

higher energy 1B2u Qy transition, predicted at 2.4951 eV (20,124 cm-1, 496.91 nm), 

consists of 66.06 % contribution from the 2au → 4b2g transition, 19.05 % from 5b1u 

→ 4b3g and again a small 8.24 % contribution from the 6b1u → 4b3g transition. A 

splitting of 0.1321 eV (1065.46 cm-1) is predicted, comparable to the difference 

between the Qx and Qy transitions in H2P. The reduction of the mixing from 

contributions from the lower lying orbitals means that these transitions are 

predicted to be more allowed than those of H2P, with oscillator strengths of 0.1472 

for 1B3u and 0.1441 for 1B2u. Finally the triplet transitions are predicted at 1.4617 

eV (1,1789 cm-1, 848.21 nm) for the 3B3u transition and at lower energy the 3B2u 

transition at 1.4285 eV (1,1522 cm-1, 867.96 nm). 
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Figure V.A.5: The major Kohn-Sham orbitals involved in Q band and lowest energy triplet 

transitions. The LUMO eg orbitals of the Zn porphyrins are degenerate (as indicated by the “x 2”). 
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Chapter VI: Amplified emission of 

phthalocyanines isolated in 

cryogenic matrices 

VI.1 Introduction 

 Laser-induced fluorescence is very well suited for studies of phthalocyanine due 

to the close match between their strong absorptions in the visible spectral region 

and the output of tuneable dye lasers. While undertaking such a spectroscopic 

study of matrix-isolated free-base phthalocyanine (H2Pc) and zinc phthalocyanine 

(ZnPc), by means of emission–excitation spectra using pulsed dye lasers for 

excitation, a vibronic band was observed to increase in intensity non-linearly with 

slightly increased laser powers. It is noteworthy that two previous matrix 

luminescence studies on the phthalocyanines, one by Bondybey and English1 on 

H2Pc and another by Williamson and coworkers2 on ZnPc in Ar matrices, did not 

report such a novel solid state effect. In contrast, stimulated emission has been 

reported by Sorokin and co-workers3,4 for the closely related molecule 

chloroaluminium phthalocyanine in solution. Significantly, this was achieved with 

pulsed ruby laser excitation and within a resonator cavity. 

 In this chapter, the unusual emission recorded for matrix-isolated H2Pc and 

ZnPc will be presented. The possible reasons for the different results of the 

previous laser matrix studies and the present observations will also be discussed. 

DFT calculated Raman frequencies and intensities of other aromatic tetrapyrroles, 

in particular tetraazaporphyrins (TAP), tetrabenzoporphyrins (TBP) and 

porphines, will be presented and discussed to assess their potential for exhibiting 

the same unusual emission behaviour. 

VI.2 Results 

The absorption, emission and excitation spectra of ZnPc and H2Pc in various low-

temperature solids were previously presented and discussed in Chapter V. Figure 

VI.1 shows typical emission spectra of ZnPc and H2Pc resulting from excitation to 

the S1 (Q) state of ZnPc and to both the S1 (Qx) and S2 (Qy) states of H2Pc. These 
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emission bands were assigned to transitions from ν’=0 in the first excited state (Q 

or Qx) to various vibrational levels ν’’ in the ground electronic state, S0. In the 

spectra of both molecules, the 0-0 transition dominates the emission with other 

much weaker vibronic transitions seen at longer wavelengths. As discussed in 

Chapters IV and V, the vibronic progression of both ZnPc and H2Pc corresponds to 

the Raman vibrational modes and was assigned with the assistance of DFT 

calculated frequencies. 
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Figure VI.1: Visible emission bands of ZnPc and H2Pc in Ar. These results were recorded with low 
intensity laser excitation. The intense 0-0 transition is identified using the dashed line. 

VI.2.I Amplified Emission 

While optimising the emission signal with the iCCD camera operating in real time, 

the intensity of the exciting laser was increased with a quite unexpected result. To 

illustrate the observed effect, a summary of the changes that were recorded for 

H2Pc in solid N2 is presented in Figure VI.2. In this Figure the normal fluorescence, 

described in the previous section, is shown by the lower, black trace. Shown above 

this, by the solid trace, is the emission recorded by increasing the laser power from 

tens of µJ/pulse to hundreds of µJ/pulse. It is very evident that the strongest (other 

than the 0–0 band) emission band at 755.5 nm has gained enormously in intensity 
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while the others have remained unchanged or diminished slightly. Moreover, it is 

immediately evident that the linewidth of this emission band reduces considerably 

when its intensity increases as shown on the upper right panel of Figure VI.2. 

Under this condition the width of the band approaches that of the exciting laser, 

decreasing from approximately 8 cm-1 to 2 cm-1 and thereby reaching the resolving 

limit of the emission monochromator. 

 
Figure VI.2: Variations in the emission characteristics of the 755.5 nm emission of H2Pc/N2 system with laser 
intensity. The lower trace presents the normal emission (fluorescence) produced with lower laser power (10 
µJ/pulse). The upper trace shows the dramatic increase in the intensity of the 755.5 nm emission with the use 
of approximately 100 µJ/pulse. The inset on the right shows details of the lineshape changes on the 755.5 nm 
band under both low and high pulse energies. Temporal profiles of the 755.5 nm emission decay curves are 
shown in the inset on the left hand side. 
 
 Shown in the inset on the left of Figure VI.2 are the emission decay curves 

recorded for the 755.5 nm emission band using selected laser excitation 

intensities. With low laser power, the long-lived decay (stars) is found to have a 

lifetime of around 12 ns. With higher laser power the intense emission (squares) 

clearly follows the temporal profile of the laser pulse (triangles). From the spectral 

and temporal behaviour observed on this band, it is concluded that the 755.5 nm 

emission is being amplified when the excitation laser intensity exceeds a certain 

value. It corresponds to reaching a threshold value in the population inversion 
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between ߥ′ =  0 of the excited (QX) electronic state and ߥ′′ =  1 of a specific 

vibrational mode in the ground electronic state. For the mode involved, 

spontaneous emission is amplified by stimulated emission once the threshold 

value is exceeded. This process will be referred to in a general way as amplified 

emission (AE). 

 
Figure VI.3: A comparison of amplified emission (black trace) and normal fluorescence (red trace) 
of H2Pc in Xe, Kr, Ar and N2 low-temperature solids. The left hand panel shows the significant 
increase in intensity of the vibronic band found at 1550 cm-1 from the 0-0 transition with moderate 
increases in laser intensity. The right hand panel shows details of the line shapes. A general 
narrowing of the lines is seen with the relatively broad band widths in Xe due to the use of a lower 
resolution 0.3 m monochromator. In Kr, the multiple resolved lines of the AE band are due to sites 
of isolation. 

 Amplified emission was also observed for H2Pc isolated in Ne, Ar, Kr and Xe 

hosts matrices. When observed, AE always appears on the same vibronic transition 

involving a vibrational mode around 1550 cm-1 (see Figure VI.3). In xenon, the 

conditions for amplified emission were difficult to achieve and it had been 

reported previously as not occurring at all5. It has been determined that the 

normal fluorescence decay time in xenon is considerably shorter than in the other 

hosts, indicating that an efficient nonradiative decay mechanism may be present in 
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this solid. The likely origin of this effect lies in the external heavy atom effect which 

increases the probability of intersystem crossing from the excited singlet S1 state 

to the lower lying spin triplet state, T1 state. Thus another relaxation mechanism 

may be competing for the fluorescence and thereby reducing the chance of the 

excited singlet state population reaching the threshold condition. Attempts to 

record near-IR phosphorescence from the T1 state of H2Pc in Xe were unsuccessful. 

In the case of H2Pc/Ne, a very efficient hole-burning phenomenon is observed in 

the 0–0 ܳ ← ܵ absorption band with even weak dye laser excitation [data not 

shown]. As the excited family of sites disappears during excitation, AE is not 

sustainable for long periods in this solid.  

 

Figure VI.4: A comparison of amplified emission (black trace) and normal fluorescence (red trace) 
of H2Pc in Xe, Kr, Ar and N2 low-temperature solids. The left hand panel shows the significant 
increase in intensity of the vibronic band found at 1525 cm-1 from the 0-0 transition with moderate 
increases in laser intensity. The right hand panel shows details of the line shapes. A general 
narrowing of the lines is seen and is limited by the resolution of the monochromator used. No 
amplified emission was observed for ZnPc in Xe. 

 The results obtained in the ZnPc systems closely mirror those for the free-base 

systems (see Figure VI.4). Thus, a single mode is amplified in ZnPc at 1525 cm-1 

equivalent to the 1550 cm-1 mode of H2Pc. AE was observed for ZnPc in all the 

solids studied except xenon. Even though the emission lifetimes for ZnPc in all 
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hosts were similar (3 ns for ZnPc in Ar, Kr and N2 and 2.8 ns in Xe), an external 

heavy atom effect similar to that described above for H2Pc in Xe may exist for ZnPc 

in Xe. This again may result in non-radiative decay mechanism to the T1 state, 

competing with fluorescence from the S1 state. Attempts to record the near-IR 

phosphorescence from the T1 state of ZnPc in Xe were also unsuccessful. An 

alternative reason why AE may not have been observed in the present study may 

be due to the weak laser powers available using DCM (which has a range of 615 – 

660 nm) and LDS 698 (which has a range of 665 – 730 nm) laser dyes in the region 

of the Q band of ZnPc at 665 nm. 

VI.2.II Excitation spectra and improved site resolution with 

amplified emission 
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Figure VI.5: 2-D excitation/emission plots of the AE observed for free-base phthalocyanine (H2Pc) 
isolated in solid N2. The data were recorded by monitoring emission with iCCD detection while 
scanning the tunable dye laser used for excitation at high intensity. The variety of sites is indicated 
in the central portion of the plot. Characteristic excitation and emission slices are shown on the 
right hand side and on the upper parts of the figure respectively, corresponding to the positions in 
emission and excitation given by the black dots on the 2-D plot. Particularly noteworthy is the 
improved resolution of the AE excitation/emission scans compared with that recorded from the 
conventional fluorescence signal shown by the dotted lines at the same emission/excitation 
wavelengths. 
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Figure VI.5  shows an example of a two-dimensional (2-D) excitation/emission plot 

of the AE observed for free-base phthalocyanine (H2Pc) isolated in solid N2. The 

plot depicts the variety of sites detected with excitation in the 0–0 region of the 

ܳ ← ܵ transition while monitoring the AE band centred around 755 nm. Shown 

on the right hand side and on the upper part of the figure are characteristic 

excitation and emission slices recorded for normal fluorescence (dotted lines) and 

under AE conditions. The increased resolution on an individual site is evident in 

both emission and excitation spectra. However, it is especially evident in the 

excitation scans shown on the right hand side where the lineshapes change from a 

featureless band (dotted line) to a highly structured band (solid trace) exhibiting 

what appears to be a sharp zero-phonon line and a structured side-band. Other 

examples of excitation spectra recorded for H2Pc/N2 under AE conditions are 

depicted by traces b–e in Figure VI.6 and compared with normal fluorescence 

excitation scans recorded with the pump laser intensity below threshold (a). 

Clearly excitation spectra recorded for the AE signal provide greatly enhanced 

spectroscopic information over what can be extracted from either conventional 

fluorescence excitation or absorption spectroscopy. 
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Figure VI.6: A selection of laser excitation scans recorded with AE, involving the 1550 cm-1 (b-d) 
and the 730 cm-1 (e) modes, for a variety of sites occupied by H2Pc isolated in solid N2. The emission 
bands monitored are at 13236 cm-1 (a-b), 13279 cm-1 (c), 13302 cm-1 (d) and 14126 cm-1 (e). For 
the purpose of comparison a conventional fluorescence excitation scan is shown in (a). The spectra 
recorded range from a site with moderate electron-phonon coupling (b) to one with vanishing 
small coupling (d). The sharp features evident in the four AE scans (b) – (e), correspond to the low 
frequency vibrational modes in the QX excited state. 

 The sharp, resolved lines present in the AE excitation scan in N2 are shifted by 

130, 178 and 228 cm-1, as shown in Figure VI.6, from the 0–0 transition. They 

correspond to a vibronic progression on the ܳ ← ܵ transition that has been 

identified in the excitation scans of the molecule in low temperature matrices1 and 

molecular beams6.  The AE excitation spectra (b–e) shown in Figure VI.6 depict the 

range of behaviour exhibited by the different sites for the QX state of H2Pc in N2. 

The most representative is trace (b) which exhibits a clearly identifiable zero-

phonon line (ZPL) for the 0–0 transition with a more intense phonon sideband 

(PSB). Due to the strength and the width of the latter bands, excitation of the ZPL 

of a blue site simultaneously excites the PSBs of the red sites. As a result, AE is then 
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observed in all the sites as shown in Figure VI.5. Strong phonon sidebands are also 

observed in the excitation spectra recorded in Ar and Kr matrices. Indeed for some 

sites the ZPL can even be absent. In solid Ar, AE appears mainly at only one 

frequency assigned to a vibronic transition of the molecule occupying the main 

site: the threshold of AE is much easier to reach for this specific site which can be 

efficiently populated in the excited state through the phonon band. In contrast, 

excitation spectra of AE in solid Ne are dominated by the 0–0 transition line. There 

is a continuum of equally occupied sites and the AE frequency follows the 

excitation frequency all along the excitation in the broad absorption band. It seems 

that in this ‘‘soft’’ solid there is no preferential site geometry—a possible reason 

for the unusual behaviour sometimes observed7 with the use of neon as a host 

material. Thus, the observation of AE should be useful to determine the number of 

main families of sites in a given host and to underline the differences between the 

sites occupied in these hosts. 

VI.2.III Threshold for amplified emission 

A threshold in the dependence of the intensity of the amplified emission on the 

excitation laser intensity is clearly observed under both QX and QY excitation. 

Threshold data is shown inn Figure VI.7 for the dominant site emission in H2Pc/N2 

(755.5 nm) produced with excitation at 634 nm (QY excitation). The band 

exhibiting amplification at 755.5 nm is represented in Figure VI.7 by the filled 

stars. For comparison, normal fluorescence from the same site is shown in Figure 

VI.7  by the emission bands at 744.4 and 676.3 nm (the 0–0 band) which were not 

observed to be amplified. As shown in the lower portion of the plot, the growth in 

the intensities of these two emission bands track the 755.5 nm band up to a 

specific value of the exciting laser intensity. Beyond this value, the intensity of 

755.5 nm band rapidly increases while the fluorescence intensity remains 

unchanged on the scale shown. To identify the point beyond which amplified 

emission takes over from fluorescence, the three sets of data are shown on a larger 

scale in the upper portion of the plot. The threshold value is indicated in Figure 

VI.7 by the vertical dashed line at approximately 0.95 mW (95 µJ/pulse). The 

intensity of non-amplified emission follows the same behaviour as the amplified 

band before the threshold, but the slope slightly decreases beyond this point. 

When the amplification of one vibronic emission occurs, the corresponding specific 

transition becomes a preferential relaxation path (open stars). 
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 The threshold condition for amplified emission is given8 by the expression, 

 ௧ܰ

ܸ
=

8πτΔν
݈߶ଶߣ

݊ଶ (VI.1) 

in terms of the number density of the excited state molecules per cubic centimetre. 

In this equation τ is the radiative lifetime of the excited S1 (QX) state (assumed to 

be equal to the measured lifetime, 12 ns), Δν is the emission linewidth (8 cm-1, 240 

GHz), ߣ is the wavelength (755.5 nm) and ߶ is the emission quantum yield of this 

vibronic transition (f = 0.05). ݈ is the sample pathlength (0.025 cm) and ݊ is the 

index of refraction (1.22) of the medium. Making substitutions for the 

photophysical parameters measured for the H2Pc/N2 transition, given in 

parenthesis, we obtain a threshold value of 2x1016cm-3. While this is a very large 

value for gas phase conditions, it is at least 2 orders of magnitude less than the 

concentration of the ground state molecules isolated in the solid. Accordingly, it 

has been observed that AE does not occur in very dilute samples in which this 

threshold cannot be reached with similar excitation powers. In contrast, AE is 

easily observed for slightly higher concentration, as shown in the example of 

Figure VI.5 where AE has been recorded on most of the families of sites in N2.  
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Figure VI.7: Threshold curves measured for the dominant site emission of H2Pc isolated in solid N2. 
The data was recorded by monitoring the intensities of emission at the indicated wavelengths while 
varying the laser excitation intensity at 634 nm. The wavelengths selected 676.3, 744.4 and 755.5 
nm correspond to 0-0 emission of the ܳ ← ܵ transition at 14787 cm-1 (0-0), fluorescence of a 
vibronic band at 13433 cm-1 (Flour) and the amplified emission band at 13236 cm-1 (AE) 
respectively. The change in slope, depicted by the dashed vertical line, indicates the onset of AE 
from normal fluorescence. This point reveals the threshold for the generation of AE on the 13236 
cm-1 band which is 1551 cm-1 from the band origin. The open symbols correspond to full symbols at 
a scale enlarged by a factor of 25 or 80 depending on the band; it shows that before the threshold 
all the emission bands follow the same intensity dependence. 
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VI.2.IV  Ground State DFT Geometries 

The ground state geometries and vibrational spectra of ZnPc and H2Pc were 

compared to six other related porphyrins. Free-base porphyrin (or porphine) is 

regarded as the parent molecule for the porphyrins. It consists of four pyrrole sub-

groups connected via a CH methine bridge to produce an aromatic, macrocyclic 

ring. Tetrabenzoporphyrin is a benzo annulation of porphyrin where a benzene 

rings have been attached to the pyrrole rings, producing isoindole sub-groups. The 

methine bridges may be substituted with aza groups producing tetraazaporphyrin 

from porphyrin and phthalocyanine from tetrabenzoporphyrin. All four of these 

porphyrins may act as ligands (with a 2- charge) to form complexes with metals in 

the central cavity of the macrocycle. Without metallation, two hydrogen atoms 

bind to the central nitrogens to form free-base porphyrins. 
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Figure VI.8: Molecular structures of the zinc (Zn) and free-base (H2) derivatives of 
tetraazaporphyrin (TAP), phthalocyanine (Pc), tetrabenzoporphyrin (TBP) and porphine (P). The 
Zn porphyrins (top row) were all found to have D4h symmetry while the H2 porphyrins (bottom 
row) were found to have D2h symmetry. The atoms in bold represent the atomic labeling used in 
this work. 
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The ground state geometries of porphine (H2P), tetraazaporphyrin (H2TAP) and 

tetrabenzoporphyrin (H2TBP) as well as their zinc (II) metallo-porphyrin 

derivatives (ZnP, ZnTAP and ZnTBP) were optimised using DFT calculations with 

the B3LYP hybrid functional and large Pople basis set 6-311++G(2d,2p). The 

geometries of H2Pc and ZnPc were also calculated at the same level of theory 

(Chapter VI). The molecular structures determined are shown in Figure VI.8. All 

minimised structures were found to be planar, with the Zn porphyrins having the 

square planar D4h point group symmetry and, due to the presence of two 

hydrogens in binding to N atoms on opposite isoindole subgroups, the free-base 

molecules have a D2h point group. From calculations of the vibrational frequencies, 

where the energy second derivative Hessian matrix was calculated, no imaginary 

frequencies were found and the geometry parameters shown in Table VI.1 may be 

regarded as minima for the current level of calculation. 
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Table VI.1: Bond lengths and angles determined from DFT calculations for H2TAP, H2Pc, H2TBP and 
H2P and ZnTAP, ZnPc, ZnTBP and ZnP.  The atom labelling system used is provided in Figure VI.8. 

 H2TAP H2Pc H2TBP H2P ZnTAP ZnPc ZnTBP ZnP 
Lengths (Å)         

N-H(Zn) 1.008 1.009 1.011 1.010 1.977 1.998 2.074 2.051 
N-Cα 1.370 1.375 1.371 1.369 1.365 1.369 1.370 1.369 

Cα-N(C)m 1.320 1.313 1.384 1.390 1.332 1.327 1.388 1.393 
Cα- Cβ 1.444 1.450 1.445 1.432 1.457 1.459 1.452 1.443 
Cβ- Cβ 1.362 1.409 1.413 1.368 1.356 1.407 1.406 1.360 

Cβ- Cγ(Hβ) 1.076 1.394 1.399 1.077 1.077 1.391 1.397 1.078 
Cγ- Cδ  1.386 1.383   1.390 1.386  
Cδ- Cδ  1.406 1.407   1.403 1.405  
Cγ- H1  1.080 1.081   1.080 1.082  
Cδ- H2  1.081 1.081   1.081 1.081  
Cm- Hm   1.081 1.081   1.081 1.081 
N'-Cα' 1.360 1.362 1.360 1.360     

Cα'- N(C)m 1.334 1.332 1.395 1.396     
Cα'- Cβ' 1.466 1.465 1.463 1.457     
Cβ'- Cβ' 1.347 1.400 1.404 1.352     

Cβ'- Cγ'(Hβ’) 1.077 1.389 1.393 1.078     
Cγ'- Cδ'  1.392 1.389      
Cδ'- Cδ'  1.401 1.401      
Cγ'- H1'  1.081 1.082      
Cδ'- H2'  1.081 1.081      

Angles (deg)         
H(Zn)-N-Cα 124.59 123.74 123.65 124.57 125.69 125.06 125.71 126.43 
N-Cα- N(C)m 127.75 128.10 126.13 125.65 127.25 127.46 125.47 125.14 

Cα-N-Cα 110.81 112.53 112.71 110.86 108.62 109.89 108.58 107.14 
N-Cα-Cβ 106.55 106.14 106.14 106.53 108.52 108.45 109.33 109.44 
Cα-Cβ-Cβ 108.04 107.60 107.51 108.04 107.16 106.61 106.39 107.00 

Cβ-Cβ-Cγ(Hβ) 128.62 120.96 120.50 127.58 128.71 121.02 120.65 127.97 
Cβ-Cγ-Cδ  117.83 118.48   117.84 118.40  
Cγ-Cδ-Cδ  121.21 121.02   121.14 120.95  
Cβ-Cγ-H1  120.59 121.15   120.71 121.35  
Cγ-Cδ-H2  119.62 119.70   119.64 119.73  
Cα-Cm-Hm   116.18 115.91   115.34 116.57 

N'-Cα'- N(C)m 127.56 121.69 125.70 125.52     
Cα'-N'-Cα' 105.53 107.23 107.61 105.76     
N'-Cα'-Cβ' 111.04 110.70 110.52 110.85     
Cα'-Cβ'-Cβ' 106.20 105.69 105.68 106.28     

Cβ'-Cβ'-Cγ'(Hβ’) 129.57 121.22 120.73 128.28     
Cβ'-Cγ'-Cδ'  117.67 118.40      
Cγ'-Cδ'-Cδ'  121.11 120.88      
Cβ'-Cγ'-H1'  120.93 121.49      
Cγ'-Cδ'-H2'  119.64 119.72      
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There are many similarities between the equivalent geometric parameters for 

these porphyrins but there are some notable differences. The N-H bond lengths for 

the free-base molecules are quite similar with the methine bridged molecule’s N-H 

bond lengths only 0.002 Å longer than their aza counterparts. There is a larger 

difference between the Zn-N bond lengths calculated. The Zn-N bond in ZnP is 

greater than that in ZnTAP by 0.074 Å and similarly for the benzo annulated pair, 

the Zn-N bond of ZnTBP is greater than ZnPc by 0.076 Å. A similar trend exists 

between the distances of opposite pairs of central nitrogens (N-N and N’-N’) in the 

free-base molecules with H2P greater than H2TAP by 0.238 Å (H2P: 4.221 and 4.062 

Å versus H2TAP 3.983 and 3.825 Å) and H2TBP greater than H2Pc by 0.239 Å 

(H2TBP: 4.284 and 4.140 Å versus H2Pc: 4.045 and 3.901 Å). This difference in 

cavity size is primarily due to the longer Cα-Cm bond in the non-aza substituted 

porphyrins, 0.061 Å for the zinc molecules and ~0.07 Å (Cα-Cm) and ~0.063 Å (Cα’-

Cm) for the free-base ones. There is also a compression of the pyrrole rings with 

the Cα-N-Cα ~2° smaller in the non-aza substituted forms. 

VI.2.V DFT calculated harmonic frequencies 

 The vibrational frequencies, infrared intensities and Raman scattering activities 

for the eight porphyrins were calculated using the geometries optimised using the 

B3LYP/6-311++G(2d,2p) method and at the same level of theory. H2TAP, H2Pc, 

H2TBP and H2P have 34, 58, 62 and 38 atoms respectively giving a total of 96, 168, 

180 and 108 vibrational normal modes. According to group theory, 48, 84, 90 and 

54 modes are Raman active, 41, 71, 76 and 46 are IR active while 7, 13, 14 and 8 

are optically inactive modes of Au symmetry. Table VI.2 lists the number of modes 

of each symmetry for the four D2h molecules. The metallo-porphyrins of D4h 

symmetry have one less atom than their free-base equivalents and therefore three 

less vibrational modes. Of these modes, ZnTAP, ZnPc, ZnTBP and ZnP have 38, 68, 

73 and 43 Raman active modes, 37, 64, 69 and 42 IR active modes and 18, 33, 35 

and 20 inactive modes respectively. A full break-down of the symmetries of these 

modes is given in Table VI.3. 
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Table VI.2: Number and symmetry of the vibrational modes of the D2h symmetry molecules H2TAP, 
H2Pc, H2TBP and H2P. Also tabulated are the total number of Raman (Ram), infrared (IR) and 
inactive (IA) modes. The z-axes have been re-oriented perpendicular to the molecule plane to ease 
the comparison with the D4h Zn porphyrins.  

 Ag B1g B2g B3g 

Total 

Ram B1u B2u B3u 

Total 

IR 

Au 

IA 

Total 

Modes 

H2TAP 17 16 8 7 48 9 16 16 41 7 96 

H2Pc 29 28 14 13 84 15 28 28 71 13 168 

H2TBP 31 30 15 14 90 16 30 30 76 14 180 

H2P 19 18 9 8 54 10 18 18 46 8 108 

 

Table VI.3: Number and symmetry of the vibrational modes of the D4h symmetry molecules ZnTAP, 
ZnPc, ZnTBP and ZnP. Also tabulated are the total number of Raman (Ram), infrared (IR) and 
inactive (IA) modes. 

 A1g B1g B2g Eg 

Total 

Ram A2u Eu 

Total 

IR A1u A2g B1u B2u 

Total 

IA 

Total 

Modes 

ZnTAP 8 8 8 14 38 5 32 37 3 7 4 4 18 93 

ZnPc 14 14 14 26 68 8 56 64 6 13 7 7 33 165 

ZnTBP 15 15 15 28 73 9 60 69 6 14 8 7 35 177 

ZnP 9 9 9 16 43 6 36 42 3 8 5 4 20 105 

 

 All IR and Raman vibrational frequencies and intensities for both zinc and free-

base porphyrin, tetraazaporphyrin and tetrabenzoporphyrin are tabulated in the 

appendix to this chapter (Appendix VI.A). A full vibrational analysis of ZnPc and 

H2Pc has already been presented in Chapter IV. Considering the Franck-Condon 

factors governing the vibronic selection rules, emission from an Eu electronic state 

of a D4h molecule will relax to the Raman active A1g, A2g, B1g, B2g and Eg symmetry 

modes in the ground state and emission from a B3u electronic state of a D2h 

molecule will relax to Raman active Ag, B1g and B2g symmetry modes. B3g Raman 

active modes of D2h molecules are predicted to be vibronically forbidden in 

emission from a B3u excited electronic state (see Chapter III for vibronic selection 

rules). In all the systems considered in this work, Raman modes of B3g symmetry 

were found to be very weak and were not seen in the experimental spectra. 

 Due to vibronic selection rules and similarities seen between intensities of the 

Raman scattering spectra and fluorescence spectra of H2Pc and ZnPc (calculated 

Raman frequencies and intensities shown in Figure VI.9), particular attention will 

be paid to the calculated Raman frequencies and intensities. The following sections 
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will review important results from the DFT calculated Raman spectra including the 

similarities/differences between the zinc and free-base spectra and identification 

of the most intense modes. The spectra of the four porphyrins (both zinc and free-

base) will be compared. 

 
Figure VI.9: DFT calculated Raman spectra of zinc (upper plot) and free-base phthalocyanine 
(lower plot). The symmetry of each mode is indicated by the colour coding shown on the figure. The 
frequencies <2000 cm-1 have been scaled by a factor of 0.98 and the C-H and N-H stretches have 
been scaled by 0.96 and 0.931 respectively. The intensities have been normalized and the same 
scale is used in both spectral regions. 
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VI.2.V.a ZnP and H2P 

 
Figure VI.10: DFT calculated Raman spectra of zinc (upper plot) and free-base porphyrin (lower 
plot). The symmetry of each mode is indicated by the colour coding shown on the figure. The 
frequencies <2000 cm-1 have been scaled by a factor of 0.98 and the C-H and N-H stretches have 
been scaled by 0.96 and 0.931 respectively. The intensities have been normalized and the same 
scale is used in both spectral regions. 

 The scaled DFT vibrational frequencies and intensities of the Raman active 

mode of ZnP and H2P are shown in Figure VI.10. Both spectra are very similar, 

dominated by the A1g and B1g vibrations in ZnP and the equivalent Ag vibrations in 

H2P. There are also a small number of B2g modes visible in the ZnP plot as well as 

their B1g equivalents in H2P plot. The Eg modes in ZnP and B2g and B3g modes in H2P 

have been calculated to have very weak intensities and cannot be seen in plots 

shown. The most intense bands predicted are in the C-H stretching region between 

3000 and 3200 cm-1. The lower frequency modes in this region have been assigned 

to the stretching vibrations of the meso Cm-Hm atoms with the higher frequency 

modes to the pyrrole Cβ-Hβ modes. The structure of the pyrrole C-H bands 

predicted in H2P is slightly more complicated than that seen in ZnP due to the 

reduction in symmetry but as seen in the experimental Raman spectra of H2Pc and 

ZnPc, these bands would be expected to be difficult to resolve. The weak N-H 

stretching Ag symmetry mode of H2P is only just visible at 3345.5 cm-1. 

  The four most intense modes predicted below 1800 cm-1 in ZnP at 1378, 1496, 

1548 and 1605 cm-1 and in H2P at 1397, 1500, 1552 and 1602 cm-1 have been 
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found to be equivalent. The 1378/1397cm-1 (Zn/H2P) mode is primarily a C-H 

bending mode of the bridging meso group while the 1496/1500 cm-1 mode in both 

molecules is the most intense mode in this region and is a bending motion of the C-

H bonds on the pyrrole rings with some coupling to the other bonds of the ring. 

The mode at 1548 cm-1 in ZnP and 1552 cm-1 in H2P may be described as an 

expansion of the distance between the Cα atoms in each pyrrole ring coupled to a 

contraction of the Cβ- Cβ bonds. Finally the mode at 1605/1602 cm-1 is a ring mode 

involving stretching motions of the Cm-Cα bonds. This mode is equivalent the most 

intense mode identified in ZnPc and H2Pc but is the 3rd most intense ZnP mode and 

4th most intense H2P mode <1800 cm-1 and are both predicted to be less intense 

the C-H stretch modes. The DFT calculated frequencies and intensities of all the IR 

and Raman active vibrational modes of H2P and ZnP are tabulated in Appendix 

IV.A, Tables IV.A.1 and IV.A.2.  

VI.2.V.b ZnTAP and ZnTAP 

 
Figure VI.11: DFT calculated Raman spectra of zinc (upper plot) and free-base tetraazaporphyrin 
(lower plot). The symmetry of each mode is indicated by the colour coding shown on the figure. The 
frequencies <2000 cm-1 have been scaled by a factor of 0.98 and the C-H and N-H stretches have 
been scaled by 0.96 and 0.931 respectively. The intensities have been normalized and the same 
scale is used in both spectral regions. 

The Raman spectra predicted for ZnTAP and H2TAP are qualitatively different from 

those predicted for Zn and H2-porphyrin. As shown in Figure VI.11, the most 

intense modes are now predicted below 1800 cm-1 with the C-H stretching modes 
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having relatively lower but still significant intensity. The most intense modes are 

still of B1g and A1g symmetry in ZnTAP and Ag symmetry in H2TAP and the only 

modes of B2g (ZnTAP) and B1g (H2TAP) now with noteworthy intensity being the 

asymmetric C-H stretches at ~3110 cm-1. Replacing the methine bridge with an aza 

bridge in the porphyrin ring leads to a simpler band structure in C-H stretching 

region but the lower symmetry free-base TAP is still more complicated than the 

zinc TAP. 

 The most intense bands predicted in ZnTAP and H2TAP are of B1g and Ag 

symmetry respectively and are to be found in the spectral region 1290-1570 cm-1. 

The ratios of the intensities of the three most intense bands are approximately 

2.5:6.2:1 for ZnTAP and 1:1.5:1.1 for H2TAP. The existence of one dominant band 

in ZnTAP is similar to the very intense band found in ZnPc and H2Pc through which 

amplified emission occurred but the nature of this vibration is very different. In 

both ZnTAP and H2TAP the most intense mode at 1489.9 cm-1 and 1504.9 cm-1 

consist of a N-Cα-Cβ bending motion coupled to a Cβ-Cβ stretch and Cb-Hb bend. 

These vibrations are equivalent to the modes found at 1548 cm-1 in ZnP and 1552 

cm-1 in H2P. The second most intense modes found in ZnTAP at 1293.3 cm-1 and in 

H2TAP at 1301.5 cm-1 are equivalent, consisting of alternating Cα-N-Cα bends 

around the TAP ring moving the central N atoms in and out from the centre of the 

molecule. Interestingly, a similar motion was found for the second most intense 

modes in ZnPc at 1296.7 cm-1 and H2Pc at 1300.8 cm-1 with very similar 

frequencies. The DFT calculated frequencies and intensities of all the IR and Raman 

active vibrational modes of H2TAP and ZnTAP are tabulated in Appendix IV.A, 

Tables IV.A.3 and IV.A.4. 
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VI.2.V.c ZnTBP and H2TBP 

 
Figure VI.12: DFT calculated Raman spectra of zinc (upper plot) and free-base 
tetrabenzoporphyrin (lower plot). The symmetry of each mode is indicated by the colour coding 
shown on the figure. The frequencies <2000 cm-1 have been scaled by a factor of 0.98 and the C-H 
and N-H stretches have been scaled by 0.96 and 0.931 respectively. The intensities have been 
normalized and the same scale is used in both spectral regions. 

The Raman spectra predicted for ZnTBP and H2TBP are qualitatively different from 

for the corresponding spectra of ZnP and H2P and are more similar to their aza 

bridged analogues, ZnPc and H2Pc. As shown in Figure VI.12, the higher frequency 

C-H and N-H stretches are relatively weak with the most intense modes in the 

1200-1700 cm-1 region. The C-H modes are noteworthy in that the most intense of 

these, of A1g symmetry in ZnTBP and Ag symmetry in H2TBP, involve a coupling of 

the benzo Cγ(δ)-H1(2) and meso Cm-Hm bonds, a coupling not seen in the smaller 

porphyrine molecules between the pyrrole Cβ-Hβ and meso Cm-Hm bonds. Like all 

the molecules seen so far, the inner hydrogen stretch frequency calculated at 

3335.96 cm-1 (3583.21 cm-1 unscaled) is predicted to have an extremely low 

Raman scattering intensity. 

 The most intense modes in ZnTBP and H2TBP, predicted at 1616.69 and 

1607.83 cm-1 (scaled) respectively, correspond to the intense modes which 

exhibited amplified emission in ZnPc and H2Pc, predicted at 1526.09 and 1551.26 

cm-1 (scaled). The intensities of this mode in tetrabenzoporphyrin relative to the 

other vibrations are lower than that seen in DFT calculations of the 
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phthalocyanines. The ratios of this mode and the second most intense mode 

(1235.21 cm-1 in ZnTBP and 1233.29 cm-1 in H2TBP) are 1.73:1 and 1.71:1 for 

ZnTBP and H2TBP versus 3.82:1 and 3.43:1 for ZnPc and H2Pc. The reason for this 

lowering in Raman scattering activity is probably due to coupling of the Cm-Cα 

stretches which make up this mode in both TBP and Pc molecules with a Cm-Hm 

bending motion seen for the TBP molecules which obviously do not occur in the 

aza bridged Pc molecules. The second most intense modes predicted at 1235.21 

cm-1 in ZnTBP and 1233.29 cm-1 in H2TBP consist of a bending vibration of all C-H 

bonds coupled to stretches of the Cα-Cβ bonds. The other two intense bands seen in 

the spectra in Figure VI.12 at 1332.04 and 1571.63 cm-1 in ZnTBP and 1328.24 and 

1567.60 cm-1 in H2TBP consist of a bending of the C-N-C atoms coupled to an 

antisymmetric stretching of the Cβ-Cβ and Cδ-Cδ bonds in the lower energy 

vibration and a symmetric stretch of the Cβ-Cβ and Cδ-Cδ bonds in the higher energy 

vibration distorting the size of the benzo annulations. The 1332.04/1328.24 cm-1 

vibrations correspond to the second most intense modes seen in ZnPc and H2Pc. 

The DFT calculated frequencies and intensities of all the IR and Raman active 

vibrational modes of H2TBP and ZnTBP are tabulated in Appendix IV.A, Tables 

IV.A.5 and IV.A.6. 
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VI.2.V.d Comparison of DFT Raman spectra 

 

Figure VI.13: Absolute Raman scattering activity of H2TAP, H2P, H2Pc and H2TBP (left panel) and 
ZnTAP, ZnP, ZnPc and ZnTBP (right panel). The intensities are given in Å4/amu and both panels use 
the same scale. The larger Pc and TBP molecules have significantly larger intensities than the 
smaller TAP and P molecules. The larger intensity seen for the aza bridged porphyrins on certain 
modes is due to coupling of motions from the meso C-H in the methine bridged molecules. 

 The spectra shown above in Figure VI.9, Figure VI.10, Figure VI.11 and Figure 

VI.12 have been presented with normalized intensities. Looking at the absolute 

intensities calculated by Gaussian 03 in units of Å4/amu, a large difference in 

intensity is seen. As shown in Figure VI.13, the larger phthalocyanines and 

tetrabenzoporphyrins are calculated to have a much greater scattering intensity 

than the smaller tetraazaporphyrins and porphyrins. The maximum intensity value 

calculated for ZnPc and H2Pc are 2.73 and 2.75 times more intense than the 

maximum values for ZnTBP and H2TBP but this difference in intensity may be 

explained due to coupling of the Cm-Hm bonds in this particular vibration. As can be 

seen in Figure VI.13, most of the other vibrational modes are predicted to have 

comparable intensities. The Raman active modes of ZnTAP and H2TAP are 

generally much less intense than those calculated for the Pc and TBP molecules 

with the ZnP and H2P modes weaker again. The addition of aromatic rings to a 

molecule, increasing its size, has been seen to increase the Raman activity of 

particular modes in polycyclic aromatic hydrocarbons (PAHs)9, molecules with 

many similarities to porphyrins and phthalocyanines. The differences between the 
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intensities found for TAP and porphyrin molecules (like the difference found 

between Pc and TBP) are primarily due to the presence of Cm-Hm contributions in 

certain modes, reducing the components of the polarizability tensor which 

determines the Raman scattering activity. 

 
Figure VI.14: Frequencies and normalized Raman scattering intensities of zinc and free-base TBP, 
P, Pc and TAP calculated using DFT. The plots shown have been convoluted with a 5 cm-1 Lorentzian 
line-shape. 

 Comparing the frequencies calculated for the eight porphyrins, a greater 

similarity is apparent between the aza bridged derivatives and methine bridged 

derivatives than between the benzo annulations and non-benzo annulations. A 

good example of these similarities and differences is the most intense mode in 

ZnTBP and H2TBP and ZnPc and H2Pc (Figure VI.14). The unscaled vibrational 

frequencies calculated for ZnTBP and H2TBP were 1640.64 and 1649.69 cm-1 and 

are a close match to the equivalent modes found in ZnP and H2P at 1638.02 and 

1634.71 cm-1. Likewise, the unscaled vibration frequencies calculated for ZnPc and 

H2Pc were shifted to lower frequencies of 1557.23 and 1582.92 cm-1 and are a 

close match to ZnTAP and H2TAP at 1564.32 and 1595.96 cm-1. There is however a 

disparity between the relative intensity of this mode and the other Raman active 

modes of the molecules. While in the larger molecules this is the most intense 

mode, in the smaller molecules this mode is comparatively minor, particularly in 

ZnTAP and H2TAP. As the TAP molecules are thought to be good candidates for AE, 

the reason for this lower intensity was further investigated. 

600 800 1000 1200 1400 1600 1800

Energy (cm-1)

N
or

m
al

is
ed

R
am

an
Sc

at
te

rin
g

A
ct

iv
ity

ZnTAP

ZnPc

ZnP

ZnTBP

600 800 1000 1200 1400 1600 1800

Energy (cm-1)

H2TAP

H2Pc

H2P

H2TBP



Chapter VI: Amplified emission of phthalocyanines isolated in cryogenic matrices 

232 

1564.32 cm-1

370.1 Å4/amu
(0.161)

1638.02 cm-1

217.4 Å4/amu
(0.214)

1557.23 cm-1

19,777.1 Å4/amu
(1.000)

1640.64 cm-1

7,234.3 Å4/amu
(1.000)

ZnP

ZnTBP

ZnTAP

ZnPc

1595.96 cm-1

247.3 Å/amu
(0.167)

1634.71 cm-1

199.5 Å4/amu
(0.328)

1582.92 cm-1

18,899.0 Å4/amu
(1.000)

1649.69 cm-1

6,879.1 Å4/amu
(1.000)

H2P

H2TBP

H2TAP

H2Pc

 
Figure VI.15: Displacement vector diagrams of the most intense Raman vibrations in TBP and Pc 
molecules and the corresponding modes in P and TAP. The values given are the un-scaled 
frequencies, absolute intensities and relative intensities calculated using the B3LYP/6-
311++G(2d,2p) method. 

 Examining the atomic displacements of the vibration calculated at 1582.92 cm-1 

in H2Pc, most of the motion involves an asymmetric stretching of the Cα-Nm bonds 

making up the ring of the phthalocyanine. Though there is some coupling to the C-

H bonds of the benzene rings, their contribution is very minor and the vibration 
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may be regarded as a ‘pure’ ring mode. Considering the corresponding vibration in 

H2TAP, a similar stretching of the Cα-Nm bonds is evident but there is also a 

significant contribution from bending of the Cβ-Hβ bonds. An attempt to 

demonstrate the effect of decoupling Cβ-Hβ was made by calculating the vibrational 

frequencies and Raman intensities of H2TAP with very large Hβ masses. Figure 

VI.16 shows the results of these calculations with Hβ masses up to 20 amu. The 

vibrational frequencies of modes involving significant Hβ contributions show a 

large reduction in energy. The mode originating at 1595.96 cm-1 however, 

displayed a relatively small decrease of 31.09 cm-1 to 1564.87 cm-1 with a Hβ mass 

of 20 amu. As shown in the vector displacement diagrams in Figure VI.16, the 

larger mass of the Hβ atoms has decoupled the contributions of the C-H motions, 

leaving an almost pure ring mode like that seen in H2Pc.
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Figure VI.16: Change in intensity of selected Ag symmetry modes of H2TAP with increasing Hβ 
mass. The plots in the lower half of the figure show change of frequency (un-scaled) and change in 
Raman scattering activity with increasing mass of the outer pyrrole hydrogen atoms, Hβ. The red 
circles represent the values for the equivalent mode in H2TAP (vector displacement diagrams 
shown in upper half of figure) found to exhibit amplified emission in H2Pc. The black squares 
represent the values determined for H2TAP’s fluoridated analogue H2TAP-F8. 

  What is also evident is the dramatic increase in intensity of this mode from the 

fourth most intense mode in the normal proton H2TAP with a calculated Raman 

activity of 247.3 Å4/amu to the most intense mode in the 20 amu proton form, with 

a calculated activity of 2115.5 Å4/amu. Analysis of the effect on the other Ag modes 

is made more complicated by a series of non-crossing events as the mass of the Hβ 
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atoms increase. The vibrational modes numbered 12 and 11 are assigned to modes 

10 and 9 respectively in the heavier isotopomer, reducing in both frequency and 

intensity. Mode 9 has been assigned to mode 11 with a slight increase in intensity 

and frequency (due to originating in a higher frequency mode) and remains the 

second most intense vibrational mode. Similarly, mode 10 has been assigned to 

mode 12 with a small change in frequency and intensity. The results for the same 

isotopic substitutions for ZnTAP are shown in Figure VI.17 with similar effects as 

seen for H2TAP. In particular, the vibrational frequency at 1564.32 cm-1, 

corresponding to the mode calculated at 1595.96 cm-1 in H2TAP, decreases to 

1535.97 cm-1 (a difference of 28.35 cm-1) with a large increase in Raman scattering 

intensity from 370.1 to 2246.3 Å4/amu.
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Figure VI.17: Change in intensity of selected B1g symmetry modes of ZnTAP with increasing Hβ 
mass. The plots in the lower half of the figure show change of frequency (un-scaled) and change in 
Raman scattering activity with increasing mass of the outer pyrrole hydrogen atoms, Hβ. The red 
circles represent the values for the equivalent mode in ZnTAP (vector displacement diagrams 
shown in upper half of figure) found to exhibit amplified emission in ZnPc. The black squares 
represent the values determined for the fluoridated analogue ZnTAP-F8. 

 Decoupling the Cβ-Hβ motion by increasing the Hβ atomic masses clearly 

increases the intensity calculated for the corresponding vibrational modes in 

ZnTAP and H2TAP that were seen to exhibit amplified emission in ZnPc and H2Pc, 

resulting in a simpler predicted Raman spectrum, dominated by one vibrational 

mode. A mass greater than three amu is of course unrealistic for hydrogen. A more 

experimentally viable model would be to replace the H atoms with a heavier mono-
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valence atom. The optimised geometries and vibrational frequencies and 

intensities for the fluoridated analogues of ZnTAP and H2TAP, ZnTAP-F8 and 

H2TAP-F8 were calculated using the same B3LYP/6-311++G(2d,2p) DFT method. 

The frequencies and intensities calculated compare favourably to those calculated 

for the Hβ mass approximately equal to the mass of fluorine, i.e. 19 amu, as 

indicated by the black squares in Figure VI.16 and Figure VI.17. The optimised 

geometeries and DFT calculated frequencies and intensities of all the IR and 

Raman active vibrational modes of H2TAP-F8 and ZnTAP-F8 are presented in 

Appendix IV.B. 

VI.3 Discussion 

The essentials of the AE observed in this work can be described with the energy 

level scheme shown in Figure VI.18. It comprises the ground state [Level 1, S0 

ᇱᇱߥ) = 0)], which is the only one populated at cryogenic temperatures before laser 

excitation, the pumped state, the upper level of the AE [Level 2, in H2Pc QX (ν’ = 0) 

or in ZnPc Q] and the lower level of AE [Level 3, S0 (ν’’ = 0 of a specific mode)] i.e. 

in H2Pc at 1550 cm-1 and in ZnPc at 1525 cm-1 above the vibrationless ground 

state. In general we have a 4-level scheme because a Level 2’ is usually involved. As 

indicated in Figure VI.18, this is either a vibrationally excited level of QX or the QY 

electronic state. For AE to occur, an efficient route for populating Level 2 is 

required. This is provided by very efficient pumping with pulsed laser excitation of 

an electronic transition having a huge extinction coefficient—ε= 162 000 cm-1/M at 

698.5 nm for H2Pc in chloronaphthalene10. For indirect excitation in H2Pc via the 

QY state (Level 2’) an efficient relaxation to Level 2 is required. This is indeed the 

case, because the only emission that has been observed with QY is relaxed, 

originating from ߥᇱ = 0 in the QX state. For the main sites of H2Pc and ZnPc in the 

low temperature solids studied, no Stokes shift on the 0–0 ܳ ↔ ܵ  transition was 

observed so with direct pumping of ߥᇱ = 0 in the QX or Q states, there is only a 

single Level 2. Consistent with this, AE in H2Pc seems easier to reach by pumping 

QX than QY. Finally, Level 3 corresponds to a non-thermally populated level at 1550 

or 1525 cm-1 so that the inversion population on the (2)→(3) transition is easily 

obtained. 
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Figure VI.18: A schematic energy level diagram of the states involved in the amplified emission of 
the phthalocyanines. The effect of AE can be produced with 0-0 excitation (2) or with higher energy 
excitation (2’). 

 In order to maintain the population inversion during the course of the 10 ns 

laser pump pulse, the vibrational Level 3 must rapidly relax to vibrational levels of 

lower energy. Level 2 of H2Pc has observed lifetimes of 13, 13, 8 and 2.7 ns in N2, 

Ar, Kr and Xe solids while ZnPc has lifetimes of 3 ns in N2, Ar and Kr and 2.7 ns in 

and Xe, indicating that Level 3 must decay more quickly than this. From DFT 

calculations on ZnPc, the 1525 cm-1 vibrational mode (equivalent to 1550 cm-1 

mode in H2Pc) involves out-of-phase stretching of the C–N–C bridges on the inner 

ring of Pc. Thus it is expected that this mode can relax very quickly towards low 

frequency modes. Indeed the measured fluorescence bandwidth of a few 

wavenumbers (cm-1) is consistent with typical vibrational lifetimes in the 

picosecond range. 

 As already mentioned, a large population can be very efficiently pumped into 

the available Levels 2 with pulsed laser excitation of phthalocyanines. These dye 

materials were examined by Sorokin3,4 as good candidates to generate stimulated 

emission around 750 nm. With this characteristic, H2Pc and ZnPc seem ideal 

molecules to observe the AE process in low temperature matrices. From Equation 

VI.1 it is evident that threshold will be reached most easily for strongly allowed 

transitions (short ߬) with narrow linewidths (small Δߥ) and for high fluorescence 

quantum yields. All of the parameters in the threshold equation, except the 

pathlength, are favoured in the case of H2Pc and ZnPc emission in low temperature 
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matrices. Especially favourable is the narrow emission linewidth (~8 cm-1) on a 

fully allowed electronic transition. Arising from these observations, we predict that 

AE should also be possible for these dye molecules isolated in Shpol’skii matrices 

when excited with short pulse lasers. 

 Another key factor in generating amplified emission is the nature of the laser 

excitation. Thus to achieve the threshold population in the excited state, it is 

essential that a temporally compact excitation is used such as that provided by the 

nanosecond pulse of a Q-switched Nd:YAG laser. In this regard, when we used a 

low intensity laser pulse, only normal fluorescence was observed. Similarly, if a cw 

laser is used, the threshold condition will not be attained. We surmise that it was 

for these reasons that AE emission was not observed in any of the previous laser 

studies of the matrix-isolated phthalocyanines. Thus, Bondybey and English1 used 

a low power pulsed nitrogen laser, while in the more recent study of Williamson 

and co-workers2,  a dye laser pumped by a cw Ar+ laser was employed. The 

detailed spectroscopic work that has been done on free-base and metallo-

phthalocyanines, by Huang et al.11, also utilised a dye laser pumped by a cw Ar+ 

laser. With cw excitation the threshold population will not be reached and only 

normal fluorescence will be observed. An additional parameter that renders this 

effect difficult to observe in low temperature matrices is the short path length (݈= 

250 µm) of these thin film samples. In comparison, production of amplified 

emission in the gas phase12-14 requires the use of cells whose length are typically 

tens of centimetres. 

 The next question that must be addressed in the observations presented in this 

article is why does only a single mode exhibit amplification? The answer to this 

question is also to be found in Equation VI.1. Thus for molecular emission 

involving several vibrational transitions, the threshold will be reached most easily 

for the mode with the largest Franck–Condon factor in order to optimise ߶. In 

other words, it is to be expected that the most intense emission band will reach 

threshold first. It will be remembered as shown in Figure VI.1, the 0–0 band 

(around 676 nm) is much stronger than the vibronic band around 755 nm which 

becomes amplified. However, there is extensive spectral overlap of absorption and 

emission bands for the 0–0 transition. Hence, this transition will suffer from 

competitive absorption and accordingly will not reach threshold. Moreover, the 

threshold in this specific case is much higher than that given by Equation VI.1 
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because of the large population in the lower level, i.e., the vibrationless ground 

state. 

 In the previous studies of phthalocyanine in solution3,4,  isolated in organic 

solids11,15 or matrices1,2 the transition involving the vibrational mode around 1550 

cm-1 is always either one of the more intense bands or the most intense band in 

emission spectra. The stimulated emission observed by Sorokin et al.3,4 for AlPc in 

ethanol was also on this vibronic transition. Other vibrational modes appear in the 

emission spectrum with intensities similar to the 1550 cm-1 mode (Figure VI.1). In 

fact, some experiments done on quite concentrated H2Pc samples with high laser 

intensities have shown that AE is also possible on other vibronic transitions. Thus 

AE has been observed in N2 solid, when exciting specific sites involving modes at 

687 and 730 cm-1 (a related excitation spectrum is shown in Figure VI.6e). 

 For other systems to demonstrate AE, they must exhibit strongly allowed 

transitions with short lifetimes and high fluorescence quantum yields in order to 

meet the threshold conditions described in Equation VI.1.The visible Q band 

absorption strengths of free-base and zinc porphine are very weakly allowed16,17 

with low fluorescence quantum yields and competitive triplet phosphorescence in 

inert host solids17,18. This means that even though the vibronic structures 

determined from the Raman spectra may be sufficient to create vibronic bands 

with high quantum yields compared to the 0-0, the overall fluorescence quantum 

yield and competitive emission pathway offered by phosphorescence will make AE 

unlikely. Alternatively, the visible transitions of tetraazaporphyrins and 

tetrabenzoporphyrins are more fully allowed and would be expected to fulfil the 

short lifetime and longer wavelength requirements of Equation VI.1.  

 As with H2Pc and ZnPc, the AE threshold will be most easily reached for the 

vibronic mode with the largest Franck-Condon factor in emission. For H2Pc and 

ZnPc the intense mode in emission that exhibited AE corresponded to the most 

intense Raman modes predicted at 1551.26 and 1526.09  cm-1 (scaled).  Due to the 

similarities between the in-plane motion of the Raman allowed modes in H2/ZnPc 

and those predicted for H2/ZnTAP and H2/ZnTBP, a correlation between the 

Raman intensity and vibronic intensity would be expected. The dominant Raman 

mode predicted for ZnTAP at 1489.9 cm-1 (with scaling) would be expected to 

exhibit a larger fluorescence quantum yield and reach the threshold criteria more 



Chapter VI: Amplified emission of phthalocyanines isolated in cryogenic matrices 

239 

easily than the other vibronic modes, analogous to ZnPc. Unlike ZnTAP, no single 

mode is expected to dominate the vibronic structure H2TAP in emission. AE would 

therefore be predicted to be more difficult to achieve. However, if the AE 

population threshold conditions were met for H2TAP, the similar intensities 

predicted for the most intense Raman modes may allow AE to occur through 

multiple vibronic bands at 1504.9, 1301.5 and 1544.3 cm-1 from the 0-0 origin.  

 As has already been noted, the Raman spectra predicted for H2TBP and ZnTBP 

show many similarities to those of H2Pc and ZnPc. It is therefore expected that the 

vibronic structure of the emission bands will also be similar. The most intense 

Raman bands calculated at 1607.8 cm-1 for H2TBP and 1616.7 cm-1 for ZnTBP (both 

frequencies scaled by 0.98) are predicted to exhibit AE.  This prediction has 

recently been confirmed by Crépin et al.19, where the most intense vibronic band of 

H2TBP observed at 1620 cm-1 from the 0-0 exhibited AE in Ar and N2 low 

temperature solids but, like ZnPc, not in Xe. They also presented emission spectra 

of ZnTBP where the most intense vibronic band was located at 1636 cm-1 from the 

0-0. Despite the similarities in the fluorescence spectra of H2TBP and ZnTBP no AE 

was seen for ZnTBP but competitive phosphorescence was observed below 12,500 

cm-1.  

VI.4 Conclusions 

The luminescence spectroscopy of phthalocyanines embedded in low temperature 

solids has revealed the phenomenon of amplified emission under modest 

conditions of pulsed laser excitation. The possibility an iCCD camera provides of 

very efficiently collecting high resolution 2-D excitation/emission scans has been 

central to the discovery of this unexpected phenomenon. In addition to the huge 

increase in intensity, the lineshape of the AE band narrows and its decay time 

shortens so that it matches the Q-switch laser used for excitation. The 

photophysical characteristics conducive to this effect are analysed and it is 

concluded the key conditions are (1) the large absorption strengths of these dye 

materials, (2) the spectrally narrow emission lines that these molecules exhibit 

and (3) the use of a Q-switched excitation laser. Accordingly, AE should also be 

observable for these molecules isolated in other solid materials that produce 

narrow linewidths such as Shpol’skii matrices. 
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 DFT calculations not only allowed assignment of the vibronic modes of H2Pc and 

ZnPc but also allowed predictions of the characteristics of the Raman and emission 

spectra of other similar molecules and if AE can be observed. H2TBP has already 

been shown to exhibit AE and future study of the TAP molecules may be warranted 

to confirm if AE is possible or will competitive relaxation paths and small quantum 

yields impede this unusual phenomenon occurring as occurred in the case of 

ZnTBP. It will also be interesting to see that if AE does occur, will it be through one 

mode as predicted for ZnTAP and for the fluoridated molecules H2TAP-F8 and 

ZnTAP-F8 (at 1533.6 and 1505.3 cm-1 respectively) or through multiple modes as 

predicted for H2TAP. If the fluoridated molecules can be synthesised, the addition 

of the highly electronegative fluorine atoms may detrimentally affect the 

absorption and fluorescent properties of the molecules but the results presented 

for H2TAP-F8 and ZnTAP-F8 may act as a model for other tetraazaporphyrins with 

heavy atoms or groups attached to the β carbons. 

 Excitation scans recorded for the AE mode yield greatly enhanced site 

selectivity compared to what is obtained in normal fluorescence excitation scans. 

This behaviour stems from the increased resolution of individual sites whose 

lineshape change from featureless fluorescence excitation bands to a highly 

structured AE excitation band. The very well-resolved spectra available in AE 

excitation scans allows detailed exploration of site occupancies in a given solid and 

from one solid to another. Differences in matrix sites have been observed and 

analysed by Waluk and co-workers20 in the case of porphyrins and porphycenes 

which are very similar molecules. The observations of AE, made in the present 

study with only moderate laser excitation intensities, should allow new insights 

into site effects and site selectivity in future studies of solid state spectroscopy.   
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Appendix VI.A: DFT vibrational 

frequencies of free-base and zinc 

porphyrins 

VI.A.1 Introduction 

In this appendix the vibrational frequencies, infra-red absorption and Raman 

scattering intensities of free-base and zinc porphyrin (H2P and ZnP), 

tetraazaporphyrin (H2TAP and ZnTAP) and tetrabenzoporphyrin (H2TBP and 

ZnTBP) calculated using DFT will be presented. All optimized geometries were 

found to be planar with the H2 molecules having D2h symmetry and the Zn 

molecules having D4h symmetry. By convention the D2h symmetry labels of the 

normal modes the free-base molecules produced by the Gaussian-03 

computational software package have the primary z-axis aligned along the axis 

containing the most atoms, that is the axis containing the N-H bonds in the 

molecular plane.  In contrast, it has the z-axis aligned with the highest order axis 

(C4 axis), perpendicular to the plane of the molecule for the D4h symmetry of ZnPc.  

For ease of comparison of the vibrational modes of the free-base and metallo 

molecules it is advantageous to re-orient the z-axis of the D2h molecules 

perpendicular to the molecule plane.  This has the effect of interchanging the 1 and 

3 subscript labels of the Mulliken symmetry symbols.  

 Parts VI.A.2, VI.A.3 and VI.A.4 contain tables of the infra-red vibrational 

frequencies and intensities and Raman active vibrational frequencies and 

intensities. The IR active B2u and B1u symmetry modes of the D2h molecules 

correlate to the degenerate Eu modes of the D4h molecules. The IR active B3u modes 

of the D2h molecules however correlated with the IR active D4h A2u modes and 

optically silent B2u modes. The Ag modes of the D2h molecules correlate with the A1g 

and B1g modes of the D4h molecules. The B3g and B2g symmetry modes the D2h 

molecules correlate with the degenerate Eg modes of the D4h molecules. The Raman 

active B1g modes of the D2h molecules correlate with the Raman active B2g and 

optically silent A2g modes of the D4h molecules. 
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 In order to compensate for the approximations made when calculated the 

vibrational frequencies, in particular the lack of anharmonicity, scaling factors 

have been applied to the calculated vibrational frequencies. For frequencies below 

1800 cm-1, a scaling factor of 0.98 was found to give a good match with experiment 

while factor of 0.96 for C-H stretches and 0.931 for N-H stretches were found to be 

suitable for these higher energy, more anharmonic modes. Part VI.A.2 presents the 

IR (Table IV.A.1) and Raman (Table IV.A.2) results for H2P and ZnP. All the 

optically active modes for these two molecules have been correlated by 

comparison of the displacement vector diagrams of the vibrations. Part VI.A.3 

presents the IR (Table VI.A.3) and Raman (Table VI.A.4) results for H2TAP and 

ZnTAP while Part VI.A.4 presents the IR (Table VI.A.5) and Raman (Table VI.A.6) 

results for H2TBP and ZnTBP. Like H2P and ZnP, the optically active modes for the 

free-base form of these molecules have been correlated with those of the metallo 

form. All vibrational frequencies presented were determined using the B3LYP DFT 

hybrid functional with the 6-311++G(2d,2p) basis set using the geometries 

optimized using tight convergence criteria and determined using the same level of 

theory. 
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VI.A.2 H2P and ZnP DFT vibrational frequencies 

Table IV.A.1: DFT B3LYP/6-311++G(2d,2p) computed Infra-red frequencies (ν, cm-1) and 
intensities (km/mole) for H2P and ZnP. The scaled calculated frequencies (νscaled, cm-1) are also 
given using the factors described in the introduction to this appendix. 

 H2P ZnP 

 ν νscaled  IR Int Sym ν νscaled  IR Int Sym 
1 318.23 311.86 2.59 B3u 358.83 351.65 7.15 Eu 

2 357.54 350.39 8.91 B3u 390.25 382.44 10.02 Eu 

3 737.62 722.87 33.57 B3u 753.06 738.00 27.91 Eu 

4 798.64 782.66 2.09 B3u 811.93 795.69 5.63 Eu 

5 988.76 968.98 55.49 B3u 1011.26 991.04 105.12 Eu 

6 1016.57 996.24 0.26 B3u 1036.96 1016.22 0.49 Eu 

7 1070.16 1048.76 41.03 B3u 1077.66 1056.10 58.13 Eu 

8 1160.42 1137.21 26.01 B3u 1174.32 1150.84 8.73 Eu 

9 1218.15 1193.78 1.74 B3u 1265.50 1240.19 0.13 Eu 

10 1312.83 1286.57 1.16 B3u 1323.01 1296.55 11.64 Eu 

11 1427.03 1398.49 32.59 B3u 1412.86 1384.60 10.37 Eu 

12 1433.08 1404.42 6.74 B3u 1462.47 1433.22 3.88 Eu 

13 1537.00 1506.26 0.00 B3u 1548.44 1517.47 14.55 Eu 

14 1552.74 1521.68 9.40 B3u 1578.55 1546.98 12.76 Eu 

15 3188.21 3060.68 7.63 B3u 3186.22 3058.77 8.77 Eu 

16 3217.70 3089.00 5.57 B3u 3223.36 3094.43 3.80 Eu 

17 3252.37 3122.28 7.34 B3u 3242.12 3112.43 19.34 Eu 

18 3552.33 3027.96 79.78 B3u 226.29 221.76 0.96 Eu 

1 293.57 287.70 0.19 B2u 358.83 351.65 7.15 Eu 

2 357.89 350.74 11.62 B2u 390.25 382.44 10.02 Eu 

3 757.61 742.46 31.56 B2u 753.06 738.00 27.91 Eu 

4 796.36 780.43 0.09 B2u 811.93 795.69 5.63 Eu 

5 967.16 947.82 95.02 B2u 1011.26 991.04 105.12 Eu 

6 1003.52 983.45 6.75 B2u 1036.96 1016.22 0.49 Eu 

7 1077.45 1055.90 39.96 B2u 1077.66 1056.10 58.13 Eu 

8 1179.32 1155.73 0.01 B2u 1174.32 1150.84 8.73 Eu 

9 1260.59 1235.38 52.74 B2u 226.29 221.76 0.96 Eu 

10 1274.48 1248.99 2.09 B2u 1265.50 1240.19 0.13 Eu 

11 1377.86 1350.30 2.96 B2u 1323.01 1296.55 11.64 Eu 

12 1435.09 1406.39 16.91 B2u 1412.86 1384.60 10.37 Eu 

13 1522.05 1491.61 3.52 B2u 1462.47 1433.22 3.88 Eu 

14 1571.16 1539.74 32.77 B2u 1548.44 1517.47 14.55 Eu 

15 1623.24 1590.77 25.96 B2u 1578.55 1546.98 12.76 Eu 

16 3188.20 3060.67 5.78 B2u 3186.22 3058.77 8.77 Eu 
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17 3235.61 3106.19 1.22 B2u 3223.36 3094.43 3.80 Eu 

18 3238.00 3108.48 27.74 B2u 3242.12 3112.43 19.34 Eu 

1 55.62 54.50 0.00 B1u 56.97 55.83 0.00 B2u 

2 92.76 90.90 9.75 B1u 74.22 72.74 2.09 A2u 

3 207.83 203.68 1.89 B1u 208.72 204.55 0.00 B2u 

4 336.16 329.44 5.66 B1u 349.31 342.33 8.68 A2u 

5 651.38 638.35 0.08 B1u 678.56 664.99 0.00 B2u 

6 709.52 695.33 57.21 B1u 721.12 706.69 69.19 A2u 

7 739.89 725.09 6.60 B1u 190.92 187.11 23.48 A2u 

8 788.37 772.60 112.23 B1u 776.84 761.30 51.04 A2u 

9 794.53 778.64 25.45 B1u 798.02 782.06 0.00 B2u 

10 880.12 862.52 142.60 B1u 887.82 870.06 131.00 A2u 

 
Table IV.A.2: DFT B3LYP / 6-311++G(2d,2p) computed Raman frequencies (ν, cm-1) and scattering 
activities (Å4/amu) for H2P and ZnP. The scaled calculated frequencies (νscaled, cm-1) are also given 
using the factors described in the introduction to this appendix. 

 H2P ZnP 

 ν νscaled Act Sym ν νscaled Act Sym 
1 155.90 152.78 31.13 Ag 180.15 176.54 27.68 B1g 

2 309.60 303.41 92.84 Ag 367.97 360.61 115.15 A1g 

3 732.79 718.14 25.43 Ag 736.73 721.99 27.41 A1g 

4 739.31 724.53 14.97 Ag 749.48 734.49 10.93 B1g 

5 971.20 951.77 90.12 Ag 1017.02 996.68 125.32 A1g 

6 1006.87 986.73 62.49 Ag 1018.50 998.13 1.86 B1g 

7 1080.73 1059.12 12.30 Ag 1081.86 1060.23 15.40 B1g 

8 1087.22 1065.48 19.05 Ag 1086.67 1064.94 11.40 A1g 

9 1199.47 1175.48 43.39 Ag 1197.37 1173.43 51.85 B1g 

10 1376.75 1349.21 39.32 Ag 1383.04 1355.38 22.38 A1g 

11 1425.42 1396.91 256.28 Ag 1406.14 1378.01 209.93 B1g 

12 1457.03 1427.89 118.44 Ag 1459.94 1430.74 125.64 A1g 

13 1530.15 1499.55 331.45 Ag 1526.53 1495.99 469.58 B1g 

14 1583.67 1551.99 347.35 Ag 1579.54 1547.95 337.48 A1g 

15 1634.71 1602.01 199.54 Ag 1638.02 1605.26 217.44 B1g 

16 3188.35 3124.59 311.49 Ag 3186.36 3122.63 301.17 A1g 

17 3238.05 3108.53 656.34 Ag 3241.97 3112.29 290.88 B1g 

18 3252.39 3122.30 609.16 Ag 3242.36 3112.67 1018.40 A1g 

19 3593.46 3027.98 2.27 Ag     

1 131.65 129.02 0.05 B3g 145.91 142.99 0.06 Eg 

2 205.64 201.53 2.32 B3g 210.09 205.89 2.32 Eg 

3 447.43 438.48 0.13 B3g 446.49 437.56 0.05 Eg 

4 676.89 663.35 1.21 B3g 683.46 669.79 1.29 Eg 
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5 712.47 698.22 1.27 B3g 718.54 704.17 1.04 Eg 

6 784.70 769.01 0.37 B3g 787.96 772.20 0.00 Eg 

7 870.59 853.18 1.27 B3g 878.37 860.80 1.02 Eg 

8 917.40 899.05 0.91 B3g 919.80 901.41 1.20 Eg 

1 124.48 121.99 0.31 B2g 145.91 142.99 0.06 Eg 

2 185.94 182.22 1.94 B2g 210.09 205.89 2.32 Eg 

3 432.78 424.12 0.14 B2g 446.49 437.56 0.05 Eg 

4 631.22 618.60 0.64 B2g     

5 679.19 665.60 1.22 B2g 683.46 669.79 1.29 Eg 

6 708.36 694.20 0.17 B2g 718.54 704.17 1.04 Eg 

7 783.58 767.91 0.06 B2g 787.96 772.20 0.00 Eg 

8 872.73 855.27 1.34 B2g 878.37 860.80 1.02 Eg 

9 916.20 897.88 1.48 B2g 919.80 901.41 1.20 Eg 

1 103.42 101.36 18.50 B1g 218.86 214.48 20.09 B2g 

2 397.91 389.95 0.07 B1g 418.59 410.22 0.00 A2g 

3 419.11 410.73 0.41 B1g 422.00 413.56 0.46 B2g 

4 800.34 784.33 0.01 B1g 811.11 794.88 0.00 A2g 

5 823.27 806.81 1.73 B1g 838.92 822.15 0.03 B2g 

6 992.92 973.06 3.18 B1g 1019.18 998.80 0.00 A2g 

7 1023.96 1003.48 7.05 B1g 1069.62 1048.22 10.72 B2g 

8 1158.29 1135.13 0.12 B1g 1170.46 1147.05 0.00 A2g 

9 1213.11 1188.85 0.76 B1g 1206.25 1182.12 0.12 B2g 

10 1264.10 1238.81 5.19 B1g     

11 1338.64 1311.86 81.63 B1g 1342.71 1315.86 0.00 A2g 

12 1386.10 1358.38 18.91 B1g 1383.13 1355.47 0.00 A2g 

13 1403.78 1375.71 37.56 B1g 1372.09 1344.64 131.45 B2g 

14 1522.16 1491.71 20.25 B1g 1497.75 1467.79 9.26 B2g 

15 1618.18 1585.82 0.11 B1g 1591.05 1559.23 0.00 A2g 

16 3188.22 3060.69 210.95 B1g 3186.23 3058.78 214.61 B2g 

17 3217.69 3088.98 258.55 B1g 3223.16 3094.23 0.00 A2g 

18 3235.63 2995.67 232.33 B1g 3223.54 3000.76 500.22 B2g 
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VI.A.3 H2TAP and ZnTAP DFT vibrational frequencies 

Table VI.A.3: DFT B3LYP / 6-311++G(2d,2p) computed Infra-red frequencies (ν, cm-1) and 
intensities (km/mole) for H2TAP and ZnTAP. The scaled calculated frequencies (νscaled, cm-1) are 
also given using the factors described in the introduction to this appendix 

 H2TAP ZnTAP 

 ν νscaled Int Sym ν νscaled Int Sym 
1 369.14 361.76 26.90 B3u 388.18 380.42 33.14 Eu 

2 376.00 368.48 8.30 B3u 435.28 426.57 0.69 Eu 

3 727.65 713.10 94.57 B3u 742.54 727.69 39.78 Eu 

4 775.83 760.31 13.28 B3u 795.01 779.11 7.22 Eu 

5 950.94 931.92 232.49 B3u 995.30 975.40 204.21 Eu 

6 1002.45 982.41 0.57 B3u 1027.69 1007.14 4.55 Eu 

7 1063.06 1041.79 71.00 B3u 1070.28 1048.87 80.44 Eu 

8 1139.55 1116.76 4.88 B3u 1193.97 1170.09 0.44 Eu 

9 1254.82 1229.72 33.23 B3u 1273.63 1248.16 11.51 Eu 

10 1356.87 1329.73 1.40 B3u 1353.59 1326.51 10.74 Eu 

11 1442.76 1413.91 3.55 B3u 1449.69 1420.70 0.04 Eu 

12 1510.34 1480.13 39.85 B3u 1490.55 1460.74 34.32 Eu 

13 1542.38 1511.54 83.83 B3u 1551.27 1520.25 90.56 Eu 

14 3240.45 3110.83 0.23 B3u 3241.77 3112.10 0.16 Eu 

15 3267.65 3136.94 0.03 B3u 3259.57 3129.19 3.78 Eu 

16 3565.39 3319.37 111.63 B3u 252.27 247.22 0.23 Eu 

1 343.36 336.49 5.88 B2u 388.18 380.42 33.14 Eu 

2 377.44 369.89 7.35 B2u 435.28 426.57 0.69 Eu 

3 748.85 733.87 50.48 B2u 742.54 727.69 39.78 Eu 

4 776.51 760.98 0.09 B2u 795.01 779.11 7.22 Eu 

5 957.24 938.09 124.64 B2u 995.30 975.40 204.21 Eu 

6 970.33 950.92 39.56 B2u 1027.69 1007.14 4.55 Eu 

7 1069.60 1048.21 38.86 B2u 1070.28 1048.87 80.44 Eu 

8 1198.73 1174.76 19.22 B2u 1193.97 1170.09 0.44 Eu 

9 1266.18 1240.86 28.14 B2u 252.27 247.22 0.23 Eu 

10 1313.93 1287.65 2.89 B2u 1273.63 1248.16 11.51 Eu 

11 1367.02 1339.68 3.29 B2u 1353.59 1326.51 10.74 Eu 

12 1517.65 1487.29 7.89 B2u 1490.55 1460.74 34.32 Eu 

13 1543.66 1512.79 10.31 B2u 1449.69 1420.70 0.04 Eu 

14 1596.03 1564.11 114.20 B2u 1551.27 1520.25 90.56 Eu 

15 3251.54 3121.48 0.00 B2u 3241.77 3112.10 0.16 Eu 

16 3260.14 3129.74 5.29 B2u 3259.57 3129.19 3.78 Eu 

1 54.23 53.15 0.02 B1u 62.40 61.15 0.00 B2u 

2 89.27 87.49 3.19 B1u 52.04 50.99 0.17 A2u 
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3 196.51 192.58 3.17 B1u 178.51 174.94 0.00 B2u 

4 349.79 342.80 7.51 B1u 365.30 357.99 7.44 A2u 

5 656.65 643.52 1.26 B1u 679.35 665.76 0.00 B2u 

6 722.50 708.05 33.10 B1u 732.03 717.39 44.08 A2u 

7 760.83 745.61 18.63 B1u 171.43 168.00 17.73 A2u 

8 820.78 804.36 0.08 B1u 822.82 806.36 0.00 B2u 

9 832.20 815.56 248.11 B1u 826.10 809.58 169.61 A2u 

 
Table VI.A.4:  DFT B3LYP / 6-311++G(2d,2p) computed Raman frequencies (ν, cm-1) and scattering 
activities (Å4/amu) for H2TAP and ZnTAP. The scaled calculated frequencies (νscaled, cm-1) are also 
given using the factors described in the introduction to this appendix. 

 H2TAP ZnTAP 

 ν νscaled Act Sym ν νscaled Act Sym 
1 181.26 177.63 33.04 Ag 226.17 221.65 24.22 B1g 

2 337.65 330.90 83.27 Ag 400.31 392.31 110.01 A1g 

3 704.23 690.15 14.82 Ag 701.09 687.07 10.92 A1g 

4 744.26 729.37 90.68 Ag 760.99 745.77 99.15 B1g 

5 970.35 950.95 112.47 Ag 1024.45 1003.96 137.80 A1g 

6 1002.01 981.97 130.30 Ag 1012.59 992.34 127.24 B1g 

7 1074.19 1052.71 5.57 Ag 1081.96 1060.32 0.14 A1g 

8 1079.00 1057.42 69.65 Ag 1077.06 1055.52 99.29 B1g 

9 1328.06 1301.50 990.00 Ag 1319.68 1293.28 928.67 B1g 

10 1421.44 1393.01 66.46 Ag 1423.14 1394.68 37.29 A1g 

11 1473.69 1444.21 150.21 Ag 1455.76 1426.64 108.32 A1g 

12 1535.62 1504.91 1478.59 Ag 1520.22 1489.81 2305.02 B1g 

13 1575.80 1544.29 942.52 Ag 1565.60 1534.28 212.44 A1g 

14 1595.96 1564.04 247.34 Ag 1564.32 1533.03 370.10 B1g 

15 3260.16 3129.76 617.55 Ag 3259.49 3129.11 294.39 B1g 

16 3267.65 3136.94 625.71 Ag 3259.69 3129.30 1033.47 A1g 

17 3629.13 3483.97 5.82 Ag     

1 122.16 119.72 0.81 B1g 119.89 117.49 1.22 Eg 

2 218.93 214.55 0.45 B1g 219.72 215.32 0.27 Eg 

3 464.22 454.94 0.49 B1g 461.22 452.00 0.73 Eg 

4 687.71 673.96 2.31 B1g 693.20 679.33 2.76 Eg 

5 740.80 725.98 1.82 B1g 752.20 737.16 1.47 Eg 

6 824.25 807.76 1.33 B1g 823.60 807.13 0.49 Eg 

7 939.85 921.05 0.01 B1g 940.60 921.79 0.11 Eg 

1 102.16 100.11 1.12 B2g 119.89 117.49 1.22 Eg 

2 194.26 190.37 0.13 B2g 219.72 215.32 0.27 Eg 

3 439.58 430.79 0.62 B2g 461.22 452.00 0.73 Eg 

4 641.40 628.58 1.56 B2g     
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5 689.42 675.63 2.44 B2g 693.20 679.33 2.76 Eg 

6 755.09 739.99 1.17 B2g 752.20 737.16 1.47 Eg 

7 823.17 806.71 0.13 B2g 823.60 807.13 0.49 Eg 

8 940.53 921.72 0.26 B2g 940.60 921.79 0.11 Eg 

1 138.79 136.01 10.55 B3g 225.87 221.35 14.14 B2g 

2 439.15 430.37 7.29 B3g 436.09 427.37 6.12 B2g 

3 453.35 444.28 0.00 B3g 475.38 465.87 0.00 A2g 

4 778.95 763.37 1.20 B3g 795.13 779.23 0.00 A2g 

5 806.65 790.52 4.40 B3g 817.21 800.86 14.02 B2g 

6 950.62 931.60 16.71 B3g 1007.03 986.89 0.00 A2g 

7 1014.76 994.47 12.81 B3g 1056.36 1035.24 17.18 B2g 

8 1164.36 1141.07 2.86 B3g     

9 1216.82 1192.48 14.47 B3g 1201.48 1177.45 12.46 B2g 

10 1250.89 1225.87 0.12 B3g 1220.75 1196.34 0.00 A2g 

11 1334.27 1307.59 0.14 B3g 1328.62 1302.05 1.54 B2g 

12 1364.27 1336.99 0.50 B3g 1342.33 1315.48 0.00 A2g 

13 1468.73 1439.36 12.15 B3g 1478.16 1448.59 0.00 A2g 

14 1565.33 1534.02 7.99 B3g 1475.86 1446.34 28.14 B2g 

15 3240.44 3110.82 240.63 B3g 3241.64 3111.97 0.00 A2g 

16 3251.54 3121.48 258.76 B3g 3241.86 3112.18 509.61 B2g 
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VI.A.4 H2TBP and ZnTBP DFT vibrational frequencies 

Table VI.A.5: DFT B3LYP / 6-311++G(2d,2p) computed Infra-red frequencies (ν, cm-1) and 
intensities (km/mole) for H2TBP and ZnTBP. The scaled calculated frequencies (νscaled, cm-1) are 
also given using the factors described in the introduction to this appendix. 

 H2TBP ZnTBP 

 Ν νscaled Int Sym ν νscaled Int Sym 
1 123.51 121.04 1.58 B3u 122.00 119.56 0.98 Eu 

2 263.26 258.00 1.35 B3u 287.78 282.02 0.16 Eu 

3 491.44 481.61 2.43 B3u 505.34 495.24 3.15 Eu 

4 560.10 548.89 0.28 B3u 577.22 565.67 0.85 Eu 

5 628.29 615.72 24.90 B3u 640.18 627.38 18.36 Eu 

6 740.51 725.69 73.87 B3u 755.01 739.91 87.66 Eu 

7 798.31 782.35 13.65 B3u 809.11 792.93 1.84 Eu 

8 896.13 878.21 16.07 B3u 910.78 892.56 31.33 Eu 

9 1036.06 1015.34 36.16 B3u 1037.52 1016.77 33.94 Eu 

10 1066.99 1045.65 116.79 B3u 1079.37 1057.79 82.78 Eu 

11 1107.46 1085.31 64.05 B3u 1134.04 1111.36 103.68 Eu 

12 1137.61 1114.85 42.08 B3u 1143.99 1121.11 71.01 Eu 

13 1184.70 1161.01 15.13 B3u 1186.17 1162.44 0.08 Eu 

14 1197.63 1173.68 26.48 B3u 1220.41 1196.00 29.04 Eu 

15 1253.07 1228.01 56.45 B3u 1266.22 1240.89 71.06 Eu 

16 1319.73 1293.34 4.54 B3u 1329.53 1302.94 32.11 Eu 

17 1358.69 1331.52 8.98 B3u 1359.07 1331.89 39.07 Eu 

18 1406.73 1378.60 2.80 B3u 1407.06 1378.92 0.88 Eu 

19 1447.87 1418.91 52.95 B3u 1450.22 1421.22 57.48 Eu 

20 1500.15 1470.14 7.25 B3u 1505.39 1475.28 4.11 Eu 

21 1510.21 1480.00 54.07 B3u 1519.97 1489.57 57.46 Eu 

22 1558.73 1527.56 13.52 B3u 1581.81 1550.18 25.05 Eu 

23 1602.95 1570.89 0.81 B3u 1610.31 1578.11 2.92 Eu 

24 1636.56 1603.83 5.19 B3u 1640.36 1607.55 5.59 Eu 

25 3167.02 3040.34 0.79 B3u 3169.36 3042.59 0.02 Eu 

26 3180.65 3053.43 2.90 B3u 3176.43 3049.37 2.79 Eu 

27 3183.19 3055.86 32.66 B3u 3185.76 3058.33 24.82 Eu 

28 3190.89 3063.26 6.53 B3u 3191.29 3063.64 7.35 Eu 

29 3199.18 3071.21 64.38 B3u 3196.42 3068.56 80.01 Eu 

30 3546.66 3301.94 100.63 B3u 220.88 216.46 6.17 Eu 

1 122.60 120.15 1.15 B2u 122.00 119.56 0.98 Eu 

2 252.74 247.68 1.32 B2u 287.78 282.02 0.16 Eu 

3 490.27 480.46 0.05 B2u 505.34 495.24 3.15 Eu 

4 555.44 544.33 1.62 B2u 577.22 565.67 0.85 Eu 
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5 627.24 614.70 13.52 B2u 640.18 627.38 18.36 Eu 

6 743.34 728.47 83.59 B2u 755.01 739.91 87.66 Eu 

7 805.49 789.38 6.59 B2u 809.11 792.93 1.84 Eu 

8 875.37 857.87 1.64 B2u 910.78 892.56 31.33 Eu 

9 1038.52 1017.75 30.36 B2u 1037.52 1016.77 33.94 Eu 

10 1067.70 1046.35 5.54 B2u 1079.37 1057.79 82.78 Eu 

11 1117.54 1095.19 239.00 B2u 1134.04 1111.36 103.68 Eu 

12 1145.28 1122.37 9.00 B2u 1143.99 1121.11 71.01 Eu 

13 1181.27 1157.64 2.34 B2u 1186.17 1162.44 0.08 Eu 

14 1231.67 1207.04 31.03 B2u 1220.41 1196.00 29.04 Eu 

15 1262.91 1237.66 78.67 B2u 1266.22 1240.89 71.06 Eu 

16 1295.17 1269.27 9.67 B2u 220.88 216.46 6.17 Eu 

17 1346.22 1319.29 39.55 B2u 1329.53 1302.94 32.11 Eu 

18 1357.78 1330.63 73.55 B2u 1359.07 1331.89 39.07 Eu 

19 1438.66 1409.88 21.58 B2u 1407.06 1378.92 0.88 Eu 

20 1478.22 1448.65 90.31 B2u 1450.22 1421.22 57.48 Eu 

21 1513.53 1483.26 0.01 B2u 1505.39 1475.28 4.11 Eu 

22 1553.03 1521.97 39.33 B2u 1519.97 1489.57 57.46 Eu 

23 1609.86 1577.67 10.00 B2u 1581.81 1550.18 25.05 Eu 

24 1619.63 1587.24 0.92 B2u 1610.31 1578.11 2.92 Eu 

25 1647.71 1614.75 9.36 B2u 1640.36 1607.55 5.59 Eu 

26 3172.86 3045.94 0.45 B2u 3169.36 3042.59 0.02 Eu 

27 3173.27 3046.34 2.08 B2u 3176.43 3049.37 2.79 Eu 

28 3188.81 3061.26 7.97 B2u 3185.76 3058.33 24.82 Eu 

29 3191.82 3064.15 13.12 B2u 3191.29 3063.64 7.35 Eu 

30 3194.85 3067.06 91.12 B2u 3196.42 3068.56 80.01 Eu 

1 19.94 19.54 0.00 B1u 20.21 19.81 0.00 B2u 

2 39.20 38.41 1.66 B1u 37.54 36.79 0.90 A2u 

3 131.87 129.24 0.29 B1u 128.14 125.58 0.00 B2u 

4 218.60 214.22 0.48 B1u 260.67 255.45 1.58 A2u 

5 267.59 262.23 0.79 B1u 277.01 271.47 0.00 B2u 

6 319.60 313.21 5.79 B1u 328.73 322.15 6.97 A2u 

7 432.24 423.59 0.15 B1u 436.14 427.41 0.00 B2u 

8 442.76 433.90 21.24 B1u 443.74 434.87 18.28 A2u 

9 684.58 670.88 3.97 B1u 704.04 689.96 0.00 B2u 

10 713.22 698.96 28.14 B1u 723.37 708.91 96.42 A2u 

11 766.77 751.43 303.21 B1u 774.80 759.30 166.14 A2u 

12 770.33 754.92 0.34 B1u 775.19 759.68 0.00 B2u 

13 786.72 770.99 2.39 B1u 136.96 134.22 6.49 A2u 

14 862.28 845.04 37.00 B1u 871.02 853.60 41.21 A2u 

15 958.81 939.64 1.28 B1u 962.10 942.86 0.00 B2u 
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16 965.54 946.23 1.19 B1u 962.81 943.55 2.22 A2u 

 
Table VI.A.6: DFT B3LYP / 6-311++G(2d,2p) computed Raman frequencies (ν, cm-1) and scattering 
activities (Å4/amu) for H2TBP and ZnTBP. The scaled calculated frequencies (νscaled, cm-1) are also 
given using the factors described in the introduction to this appendix. 

 H2TBP ZnTBP 

 Ν νscaled Act Sym ν νscaled Act Sym 
1 118.41 116.04 38.29 Ag 129.75 127.15 31.68 B1g 

2 216.24 211.91 80.47 Ag 244.88 239.98 85.95 A1g 

3 549.60 538.61 27.89 Ag 557.76 546.61 11.94 B1g 

4 574.36 562.88 12.46 Ag 595.74 583.82 34.17 A1g 

5 708.62 694.45 135.04 Ag 710.60 696.39 115.97 A1g 

6 737.78 723.03 392.03 Ag 754.06 738.98 419.91 B1g 

7 776.68 761.15 28.86 Ag 779.60 764.01 1.63 B1g 

8 815.19 798.89 292.15 Ag 844.62 827.73 287.67 A1g 

9 1036.30 1015.57 271.01 Ag 1037.16 1016.42 231.06 B1g 

10 1039.07 1018.29 414.65 Ag 1038.26 1017.49 431.36 A1g 

11 1124.16 1101.68 367.16 Ag 1138.14 1115.38 401.02 A1g 

12 1132.54 1109.89 208.56 Ag 1134.06 1111.38 154.56 B1g 

13 1181.42 1157.79 365.05 Ag 1179.99 1156.39 464.49 B1g 

14 1187.89 1164.13 173.86 Ag 1187.69 1163.94 77.49 A1g 

15 1258.46 1233.29 4239.71 Ag 1260.42 1235.21 3975.63 B1g 

16 1355.35 1328.24 2106.49 Ag 1359.22 1332.04 2666.04 A1g 

17 1361.55 1334.31 742.96 Ag 1362.82 1335.56 13.52 B1g 

18 1396.37 1368.44 580.03 Ag 1396.98 1369.04 586.44 A1g 

19 1432.73 1404.07 399.15 Ag 1414.59 1386.29 135.23 B1g 

20 1459.28 1430.10 96.94 Ag 1460.47 1431.26 89.15 A1g 

21 1484.36 1454.67 485.53 Ag 1485.30 1455.59 488.83 B1g 

22 1546.25 1515.33 120.58 Ag 1549.42 1518.44 129.50 A1g 

23 1599.59 1567.60 2197.67 Ag 1603.71 1571.63 2571.81 B1g 

24 1614.18 1581.90 1064.37 Ag 1610.93 1578.71 479.75 A1g 

25 1640.64 1607.83 7234.25 Ag 1649.69 1616.69 6879.05 B1g 

26 3173.28 3046.34 128.02 Ag 3176.30 3049.25 12.81 A1g 

27 3180.67 3053.44 185.14 Ag 3176.56 3049.50 294.24 B1g 

28 3190.68 3063.05 6.00 Ag 3190.95 3063.31 13.93 A1g 

29 3194.92 3067.13 1137.66 Ag 3196.22 3068.37 418.11 B1g 

30 3199.26 3071.29 1263.92 Ag 3196.77 3068.90 1990.84 A1g 

31 3583.21 3335.96 27.69 Ag     

1 58.55 57.38 0.02 B3g 64.02 62.74 0.03 Eg 

2 119.54 117.15 5.88 B3g 118.31 115.94 5.91 Eg 

3 238.64 233.86 2.57 B3g 248.77 243.79 2.59 Eg 
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4 267.89 262.53 0.15 B3g 274.10 268.62 0.00 Eg 

5 427.34 418.79 0.01 B3g 430.90 422.28 0.09 Eg 

6 487.71 477.96 0.04 B3g 493.27 483.41 0.03 Eg 

7 627.18 614.64 0.00 B3g 636.78 624.04 0.01 Eg 

8 719.09 704.71 0.32 B3g 717.60 703.25 0.13 Eg 

9 775.19 759.69 11.81 B3g 774.68 759.18 9.84 Eg 

10 785.26 769.55 1.84 B3g 789.68 773.88 0.45 Eg 

11 864.27 846.99 0.05 B3g 869.68 852.29 0.02 Eg 

12 880.01 862.41 0.42 B3g 883.90 866.22 0.26 Eg 

13 958.78 939.60 0.61 B3g 962.39 943.14 1.62 Eg 

14 997.40 977.45 0.21 B3g 995.39 975.48 0.08 Eg 

1 60.20 59.00 0.01 B2g 64.02 62.74 0.03 Eg 

2 111.86 109.62 5.68 B2g 118.31 115.94 5.91 Eg 

3 235.93 231.21 1.58 B2g 274.10 268.62 0.00 Eg 

4 255.22 250.11 1.59 B2g 248.77 243.79 2.59 Eg 

5 428.22 419.65 0.26 B2g 430.90 422.28 0.09 Eg 

6 493.73 483.85 0.07 B2g 493.27 483.41 0.03 Eg 

7 637.72 624.96 0.07 B2g 636.78 624.04 0.01 Eg 

8 689.25 675.46 0.72 B2g     

9 711.66 697.43 0.13 B2g 717.60 703.25 0.13 Eg 

10 768.57 753.19 7.92 B2g 774.68 759.18 9.84 Eg 

11 787.61 771.86 0.29 B2g 789.68 773.88 0.45 Eg 

12 864.26 846.98 0.07 B2g 869.68 852.29 0.02 Eg 

13 881.82 864.18 0.14 B2g 883.90 866.22 0.26 Eg 

14 965.45 946.14 2.31 B2g 962.39 943.14 1.62 Eg 

15 993.24 973.37 0.03 B2g 995.39 975.48 0.08 Eg 

1 69.10 67.71 0.80 B1g 113.88 111.61 9.49 B2g 

2 171.46 168.03 34.61 B1g 228.33 223.77 32.44 B2g 

3 213.09 208.83 1.07 B1g 217.62 213.27 0.00 A2g 

4 482.46 472.81 37.96 B1g 487.68 477.92 31.58 B2g 

5 555.44 544.33 0.21 B1g 574.52 563.03 0.00 A2g 

6 590.16 578.36 0.10 B1g 591.27 579.44 0.00 A2g 

7 689.69 675.89 4.80 B1g 693.22 679.36 5.94 B2g 

8 849.78 832.79 1.42 B1g 864.31 847.02 0.00 A2g 

9 927.18 908.64 1.74 B1g 977.83 958.27 2.18 B2g 

10 1046.68 1025.75 81.74 B1g 1061.17 1039.95 66.94 B2g 

11 1106.48 1084.35 0.20 B1g 1115.75 1093.44 0.00 A2g 

12 1143.31 1120.44 68.38 B1g 1146.09 1123.17 98.32 B2g 

13 1148.14 1125.18 43.84 B1g 1149.72 1126.73 0.00 A2g 

14 1217.56 1193.21 41.19 B1g 1218.08 1193.72 0.00 A2g 

15 1253.59 1228.52 42.22 B1g 1251.77 1226.74 61.90 B2g 
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16 1271.40 1245.98 67.29 B1g     

17 1316.56 1290.23 0.15 B1g 1316.58 1290.25 0.00 A2g 

18 1349.77 1322.78 182.89 B1g 1343.88 1317.01 124.56 B2g 

19 1373.57 1346.09 56.33 B1g 1356.45 1329.32 0.00 A2g 

20 1501.18 1471.16 87.49 B1g 1506.14 1476.02 0.00 A2g 

21 1509.17 1478.99 3.85 B1g 1508.48 1478.31 138.30 B2g 

22 1520.45 1490.04 156.14 B1g 1480.18 1450.58 25.94 B2g 

23 1616.30 1583.98 124.93 B1g 1594.40 1562.51 0.00 A2g 

24 1636.51 1603.78 5.93 B1g 1639.06 1606.28 0.00 A2g 

25 1647.14 1614.20 26.97 B1g 1641.41 1608.59 0.16 B2g 

26 3167.02 3040.34 51.73 B1g 3169.36 3042.58 149.69 B2g 

27 3172.87 3045.96 100.93 B1g 3169.36 3042.59 0.00 A2g 

28 3183.16 3055.83 240.43 B1g 3185.44 3058.03 331.05 B2g 

29 3188.94 3061.39 13.51 B1g 3186.08 3058.63 0.00 A2g 

30 3192.10 3064.42 388.31 B1g 3191.77 3064.10 319.02 B2g 
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Appendix VI.B: DFT geometries and 

vibrational frequencies of H2TAP-F8 

and ZnTAP-F8 

VI.B.1 Introduction 

In the following appendix the DFT optimised geometries and vibrational 

frequencies and intensities of H2TAP-F8 and ZnTAP-F8 will be presented. All 

calculations were completed using the B3LYP hybrid functional and 6-

311++G(2d,2p) basis set. In Part VI.B.2 the optimised geometries for of H2TAP-F8 

and ZnTAP-F8 will be presented. In Part VI.B.3 the calculated vibrational 

frequencies and intensities for the infrared and Raman active modes of H2TAP-F8 

and ZnTAP-F8 will be presented. The vibrational frequencies presented were 

calculated using the geometries presented in Part VI.B.3. As with the results of the 

other D2h molecules presented so far in this work, the x and z axis have been 

exchanged for H2TAP-F8 resulting in the z-axis orientated perpendicular to the 

plane of the molecule. Consequentially the 1 and 3 Mulliken symmetry labels have 

also been exchanged. 

VI.B.2 Optimised geometries 

The molecular structure for H2TAP-F8 and ZnTAP-F8 shown in Figure VI.B.1, were 

found to be plane with D2h and D4h point symmetries respectively. The geometric 

parameters for H2TAP-F8 and ZnTAP-F8 have been tabulated in Table VI.B.1 

alongside the DFT results for H2TAP and ZnTAP calculated at the same level of 

theory.  A favourable comparison can be made between the pairs of structures 

with the largest difference being the Cβ-Hβ and Cβ-Fβ bond lengths. 
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Figure VI.B.1: Molecular structures and atom labeling for ZnTAP, ZnTAP-F8, H2TAP and H2TAP-F8. 

Table VI.B.1: Bond lengths and angles determined from DFT calculations for H2TAP-F8, and ZnTAP-
F8 with H2TAP and ZnTAP.  The atom labelling system used is provided in Figure VI.B.1. 

 H2TAP H2TAP-F8 ZnTAP ZnTAP-F8 
Lengths (Å)     

N-H(Zn) 1.008 1.007 1.977 1.980 
N-Cα 1.370 1.371 1.365 1.366 

Cα-Nm 1.320 1.313 1.332 1.325 
Cα-Cβ 1.444 1.445 1.457 1.455 
Cβ-Cβ 1.362 1.361 1.356 1.356 

Cβ- Hβ(Fβ) 1.076 1.318 1.077 1.321 
N'-Cα' 1.360 1.360   

Cα'- Nm 1.334 1.328   
Cα'- Cβ' 1.466 1.463   
Cβ'- Cβ' 1.347 1.346   

Cβ'- Hβ'(Fβ)' 1.077 1.322   
Angles (deg)     
H(Zn)-N-Cα 124.59 124.15 125.69 125.27 

N-Cα- Nm 127.75 128.41 127.25 127.84 
Cα-N-Cα 110.81 111.70 108.62 109.46 
N-Cα-Cβ 106.55 105.83 108.52 107.79 
Cα-Cβ-Cβ 108.04 108.32 107.16 107.48 

Cβ-Cβ-Hβ(Fβ) 128.62 127.59 128.71 127.70 
N'-Cα'- Nm 127.56 128.09   
Cα'-N'-Cα' 105.53 106.32   
N'-Cα'-Cβ' 111.04 110.36   
Cα'-Cβ'-Cβ' 106.20 106.48   

Cβ'-Cβ'-Hβ'(Fβ)' 129.57 128.72   
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VI.B.3 H2TAP-F8 and ZnTAP-F8 DFT vibrational frequencies 

Table VI.B.2: DFT B3LYP/6-311++G(2d,2p) computed Infra-red frequencies (ν, cm-1) and 
intensities (km/mole) for H2TAP-F8 and ZnTAP-F8. The scaled frequencies, νscaled, have been 
multiplied by a factor of 0.98. 

 H2TAP-F8 ZnTAP-F8 

 ν νscaled IR Int Sym ν νscaled Act Sym 

1 168.99 165.61 1.82 B3u 163.59 160.31 0.82 Eu 

2 246.61 241.68 1.06 B3u 249.32 244.33 1.31 Eu 

3 330.31 323.71 8.20 B3u 363.24 355.97 1.73 Eu 

4 518.04 507.68 1.39 B3u 528.41 517.84 3.04 Eu 

5 642.17 629.32 135.28 B3u 652.76 639.70 115.88 Eu 

6 725.56 711.05 3.74 B3u 784.10 768.42 0.05 Eu 

7 847.60 830.65 18.37 B3u 860.29 843.09 12.34 Eu 

8 983.12 963.46 198.03 B3u 1014.33 994.04 88.31 Eu 

9 1066.00 1044.68 61.71 B3u 1134.41 1111.72 130.90 Eu 

10 1183.44 1159.77 711.66 B3u 1184.93 1161.23 786.81 Eu 

11 1322.94 1296.48 25.93 B3u 1332.40 1305.76 80.45 Eu 

12 1393.96 1366.09 129.49 B3u 1404.25 1376.17 95.57 Eu 

13 1456.26 1427.13 100.90 B3u 1467.55 1438.20 89.10 Eu 

14 1530.31 1499.70 174.14 B3u 1513.88 1483.60 192.19 Eu 

15 1680.36 1646.76 796.90 B3u 1690.10 1656.29 652.39 Eu 

16 3569.90 3498.50 125.94 B3u 261.84 256.61 7.41 Eu 

1 167.42 164.07 0.77 B2u 163.59 160.31 0.82 Eu 

2 241.69 236.86 7.75 B2u 249.32 244.33 1.31 Eu 

3 326.66 320.12 1.06 B2u 363.24 355.97 1.73 Eu 

4 526.92 516.39 2.54 B2u 528.41 517.84 3.04 Eu 

5 638.09 625.33 55.78 B2u 652.76 639.70 115.88 Eu 

6 726.73 712.19 1.27 B2u 784.10 768.42 0.05 Eu 

7 824.55 808.06 50.25 B2u 860.29 843.09 12.34 Eu 

8 996.35 976.43 5.35 B2u 1014.33 994.04 88.31 Eu 

9 1126.69 1104.16 513.10 B2u 1134.41 1111.72 130.90 Eu 

10 1182.73 1159.08 532.90 B2u 1184.93 1161.23 786.81 Eu 

11 1278.67 1253.10 21.24 B2u 261.84 256.61 7.41 Eu 

12 1336.74 1310.00 18.92 B2u 1332.40 1305.76 80.45 Eu 

13 1445.70 1416.79 118.36 B2u 1404.25 1376.17 95.57 Eu 

14 1540.66 1509.85 40.17 B2u 1467.55 1438.20 89.10 Eu 

15 1572.00 1540.56 210.68 B2u 1513.88 1483.60 192.19 Eu 

16 1725.36 1690.85 494.00 B2u 1690.10 1656.29 652.39 Eu 

1 29.27 28.68 0.00 B1u 34.72 34.03 1.65 A2u 

2 50.15 49.15 1.19 B1u 65.39 64.08 0.00 B3u 

3 165.33 162.02 0.84 B1u 134.43 131.74 3.24 A2u 
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4 292.73 286.87 0.01 B1u 236.63 231.90 0.00 B3u 

5 342.58 335.73 0.33 B1u 321.34 314.91 0.50 A2u 

6 396.76 388.82 9.29 B1u 402.74 394.68 11.94 A2u 

7 683.19 669.53 54.10 B1u 623.35 610.88 0.00 B3u 

8 720.95 706.53 3.98 B1u 764.78 749.48 0.00 B3u 

9 770.96 755.54 43.25 B1u 773.52 758.05 25.95 A2u 

 

 

Table VI.B.3: DFT B3LYP / 6-311++G(2d,2p) computed Raman frequencies (ν, cm-1) and scattering 
activities (Å4/amu) for H2TAP-F8 and ZnTAP-F8. The scaled frequencies, νscaled, have been multiplied 
by a factor of 0.98. 

 H2TAP-F8 ZnTAP-F8 

 ν νscaled Act Sym ν νscaled Act Sym 

1 139.60 136.81 18.13 Ag 169.51 166.12 13.52 B1g 

2 212.91 208.65 20.68 Ag 228.66 224.09 15.61 A1g 

3 275.60 270.08 0.21 Ag 277.02 271.48 0.26 B1g 

4 332.03 325.39 36.85 Ag 355.99 348.87 55.14 A1g 

5 654.58 641.49 16.97 Ag 656.79 643.65 35.05 A1g 

6 728.37 713.81 0.68 Ag 726.56 712.03 50.10 B1g 

7 735.74 721.02 99.44 Ag 780.91 765.29 63.30 B1g 

8 808.54 792.37 126.01 Ag 860.93 843.71 88.88 A1g 

9 1156.71 1133.58 8.43 Ag 1169.75 1146.36 11.27 A1g 

10 1215.72 1191.40 317.19 Ag 1215.18 1190.88 388.74 B1g 

11 1333.56 1306.89 987.18 Ag 1321.50 1295.07 903.74 B1g 

12 1416.67 1388.33 108.66 Ag 1417.08 1388.73 97.14 A1g 

13 1548.75 1517.78 80.08 Ag 1529.26 1498.68 65.54 A1g 

14 1587.62 1555.87 2150.97 Ag 1562.58 1531.33 2254.59 B1g 

15 1685.22 1651.51 103.27 Ag 1691.01 1657.19 25.69 B1g 

16 1727.13 1692.59 95.56 Ag 1694.47 1660.58 183.91 A1g 

17 3634.03 3561.35 13.54 Ag     

1 72.75 71.30 1.61 B3g 73.84 72.36 1.65 Eg 

2 134.15 131.47 0.82 B3g 129.53 126.94 0.66 Eg 

3 294.79 288.90 0.49 B3g 295.58 289.67 0.86 Eg 

4 345.28 338.37 3.90 B3g 351.09 344.07 3.89 Eg 

5 553.65 542.58 1.42 B3g 563.30 552.03 1.99 Eg 

6 746.36 731.43 1.59 B3g 747.33 732.38 1.71 Eg 

7 770.52 755.11 1.00 B3g 771.83 756.40 0.18 Eg 

1 47.60 46.65 1.88 B2g 73.84 72.36 1.65 Eg 

2 111.66 109.43 0.14 B2g 129.53 126.94 0.66 Eg 



Appendix VI.B: DFT geometries and vibrational frequencies of H2TAP-F8 and ZnTAP-F8 

259 

3 266.05 260.73 2.19 B2g 295.58 289.67 0.86 Eg 

4 342.49 335.64 3.75 B2g 351.09 344.07 3.89 Eg 

5 488.71 478.94 0.08 B2g     

6 559.40 548.21 2.53 B2g 563.30 552.03 1.99 Eg 

7 729.80 715.20 2.07 B2g 747.33 732.38 1.71 Eg 

8 767.86 752.50 0.00 B2g 771.83 756.40 0.18 Eg 

1 109.68 107.48 5.43 B1g 159.83 156.64 1.38 B2g 

2 207.38 203.24 7.15 B1g 233.40 228.73 15.07 B2g 

3 254.80 249.71 0.33 B1g 258.87 253.69 0.00 A2g 

4 496.54 486.60 4.02 B1g 498.44 488.47 3.54 B2g 

5 581.23 569.61 0.15 B1g 579.31 567.73 0.00 A2g 

6 646.29 633.36 0.57 B1g 680.49 666.88 0.00 A2g 

7 830.10 813.49 0.01 B1g 856.99 839.85 3.40 B2g 

8 950.71 931.69 18.09 B1g 1003.64 983.57 7.90 B2g 

9 1070.97 1049.55 0.04 B1g 1085.47 1063.76 0.00 A2g 

10 1143.81 1120.94 0.05 B1g 1176.24 1152.72 0.00 A2g 

11 1192.57 1168.72 10.79 B1g 1195.26 1171.35 6.86 B2g 

12 1247.53 1222.58 0.00 B1g     

13 1397.63 1369.68 0.73 B1g 1408.97 1380.79 5.40 B2g 

14 1443.50 1414.63 4.54 B1g 1413.46 1385.19 0.00 A2g 

15 1482.70 1453.04 15.00 B1g 1490.52 1460.71 34.23 B2g 

16 1579.20 1547.61 12.17 B1g 1493.57 1463.70 0.00 A2g 
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Chapter VII: Conclusions 

VII.1 IR and Raman spectra of H2Pc and ZnPc 

The use of the matrix-isolation as a sample preparation technique provided IR 

spectra of ZnPc, H2Pc and of its isopotomers with narrow, well resolved lines that 

were relatively free from aggregates. The Raman spectra of the phthalocyanines in 

KBr were recorded and were found to have broader line-widths than those in the 

matrix IR and bands due to aggregates. Historically, vibrational spectra of samples 

prepared in halide salt disks at room-temperature display broad line-shapes with 

additional peaks due to aggregate species and “hot-bands” from thermally 

populated excited states. The deuteration of free-base phthalocyanine not only 

produced samples containing D2Pc but also the partially deuterated species HDPc. 

The use of difference spectra of the IR results allowed the band positions of the 

deuterium/hydrogen vibrations to be resolved for the three isotopomers, H2Pc, 

D2Pc and HDPc. 

VII.2 Vibrational Analysis 

The DFT calculated vibrational frequencies and intensities were found to be 

essential in the assignment of the spectral features observed in both IR and Raman. 

Calculation of the optimised geometries and vibrations of the various Pcs using  the 

B3LYP functional with the large 6-311++G(2d,2p) basis set, resulted in an excellent 

match with the experimental spectra. Notably, the combination of the high level 

theoretical calculations and matrix IR spectra with narrow, weakly shifted lines, 

transitions from ν” = 0 only and few peaks due to aggregates, allowed an 

unambiguous assignment of the vibrations. Using the IR and Raman experimental 

results and accurate DFT computational data, a comprehensive overview of the 

vibrational behaviour of phthalocyanines was made, with a specific emphasis on 

the NH motion of free-base phthalocyanine. 

 Except for vibrational frequencies assigned to the higher energy NH/D 

stretching modes, relatively small shifts upon deuteration were seen for the 

vibrations involving in-plane and out-of-plane bending motions. The reason for the 

relatively low νH/νD ratios was due to coupling the NH motion to other atomic 

displacements that were clearly seen by inspection of the normal modes calculated 
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using DFT. Another interesting observation was the small differences apparent 

between the Raman spectra of H2Pc and D2Pc. This was again explained by the DFT 

calculations where the Raman active modes involving NH motion are predicted to 

be very weak. From careful analysis of the experimental and theoretical data, the 

following assignments of the important NH vibrations observed in both IR and 

Raman spectra were made: 

NH Stretching 

 IR – H2Pc: 3310 cm-1, D2Pc: 2480 cm-1, HDPc: (NH) 3337 cm-1, (ND) 2500 cm-1 

 Raman – H2Pc: 3363 cm-1, D2Pc: 2505 cm-1 

 NH Out-of-plane bending 

 IR –  H2Pc: 722 cm-1, D2Pc: 730 cm-1, HDPc: (ND) 719 cm-1 

   H2Pc: 765 cm-1, D2Pc: 555 cm-1, HDPc: (NH) 743 cm-1 

 Raman – Not observed (DFT H2Pc: 680 cm-1, D2Pc: 495 cm-1 with 0 intensity) 

NH In-Plane bending 

 IR –  H2Pc: 737 cm-1, D2Pc: 722 cm-1, HDPc: (ND) 728 cm-1 

  H2Pc: 1046 cm-1, D2Pc: 964 cm-1, HDPc: (NH) 1034 cm-1 (ND) 978 cm-1 

  H2Pc: 1096 cm-1, D2Pc: 1080 cm-1, HDPc: (NH) 1091 cm-1 (ND) 1066 cm-1 

  H2Pc: 1251 cm-1, D2Pc: 1189 cm-1, HDPc: (NH) 1240 cm-1 (ND) 1176 cm-1 

 Raman –  H2Pc: 1026 cm-1, D2Pc: 986 cm-1 

    H2Pc: 1081 cm-1, D2Pc: 1044 cm-1 

    H2Pc: 1228 cm-1, D2Pc: 1220 cm-1 

Several of the NH bending modes calculated using DFT were found to exhibit the 

peculiar behaviour of νH > νD. Most of the modes exhibiting positive H to D 

frequency shifts were either too weak to be seen in the experimental spectra or 

were difficult to resolve. However, an out-of-plane bend observed in the IR spectra 

at 722 cm-1 in H2Pc was assigned using the theoretical results to a band at 730 cm-1 

in D2Pc, a small positive shift of 8 cm-1 that is easily distinguishable in low-

temperature matrices. This unexpected behaviour of the νH/νD ratios was analysed 

through the examination of the continuous evolution of the frequencies calculated 

with sub-amu increments (atomic mass units of 0.05) for the central NH protons. 

This frequency increase in the heavier isotopomer was found to be a consequence 

of the reversal of the direction of the NH motion when going from H2Pc to D2Pc and 



Chapter VII: Conclusions 

262 

avoided crossing events between vibrational modes transforming with the same 

symmetry. 

 When a comparison was made between the Raman spectra of ZnPc and H2Pc in 

KBr and the emission spectra recorded for the same molecules in rare gas and 

nitrogen matrices, a striking resemblance was found. This correlation between 

Raman and fluorescence was to become crucial in the analysis of the visible 

luminescence spectroscopy of H2Pc and ZnPc. It allowed the assignments made for 

the Raman spectral bands using ground state DFT vibration calculations to be 

applied to the vibronic structures observed in not only emission but also 

excitation. 

VII.3 Visible Luminescence 

The absorption bands of the lowest allowed transitions of ZnPc and H2Pc, generally 

referred to as the ‘Q’ transitions after their weakly absorbing equivalents in the 

visible spectra of porphyrins, were observed in Ne, Ar, Kr, Xe and N2 host matrices. 

A matrix dependence on the spectral positions of the intense Q band of ZnPc was 

seen, with shifts to lower energies from the gas phase value of 15,766 cm-1 ranging 

with 192 cm-1 for Ne to 731 cm-1 for Xe due to increasing interactions with the host 

material. Two distinct visible absorption bands are observed for H2Pc, a lower 

energy Qx and higher energy Qy. Compared to the Q band of ZnPc, smaller matrix 

shifts from the gas phase value of 15,132 cm-1 for Qx of H2Pc were observed but a 

broadly similar trend is seen i.e. a red-shift of 155 cm-1 for Ne to 573 cm-1 for Xe. 

The same trend of decreasing energy with increasing interaction with the host 

material is seen for the Qy transition. 

The fluorescence of both Pcs isolated in various host matrices was recorded with 

pulsed dye laser excitation. Emission was observed exclusively from the Q state of 

ZnPc and from the lower energy Qx of H2Pc with well resolved vibronic structures. 

As had been noted in the pure vibrational analysis of H2Pc and ZnPc, a comparison 

of the fluorescence spectra with Raman spectra in KBr pellets had revealed very 

strong similarities. This is entirely consistent with the selection rules where the 

Raman active modes with A1g, B1g, B2g and Eg symmetry as well as the optical silent 

A2g modes are predicted to couple to the Eu symmetry Q ↔ G transitions of ZnPc. 

Similarly for H2Pc the Ag, B1g and B2g Raman active modes may couple to the B3u 

symmetry Qx ↔ G transitions with the weakly scattering B3g modes predicted not 
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to couple to this state.  This excellent match between fluorescence and Raman also 

points to the occurrence of only fundamental vibrational transitions in the 

emission spectra from ν’ = 0 in the excited state to those in the ground state. This 

favourable comparison allowed the vibronic modes of ZnPc and H2Pc coupling to 

the electronic emission to be assigned using the DFT calculated vibrational spectra. 

Emission lifetimes 3 ns for Ar, Kr, and N2 and 2.8 ns in Xe were determined for 

ZnPc using time-resolved spectroscopy. The emission recorded for H2Pc was 

generally longer lived with lifetimes of 13 ns for Ar and N2 and 8 ns for Kr. In Xe, 

the emission lifetime of H2Pc was found to be significantly shorter lived at only 2.7 

ns, comparable with that found for ZnPc in the same host. 

The excitation spectra were also recorded for ZnPc and H2Pc with laser excitation 

resulting in sharp, site selective vibronic lines. A mirror symmetry between the 

vibronic structures of ZnPc in emission and excitation was observed. This along 

with the negligible Stokes shift between the 0-0 transitions seen in emission and 

excitation, indicated similar geometries in the ground and excited states. The same 

selection rules exist for the vibronic coupling between both states which allowed 

the vibrational modes of ZnPc in the excited state to be assigned using the same 

DFT Raman vibrations determined for the ground state.  

For the excitation spectra of H2Pc, the onset of the higher energy Qy state 

absorption created a breakdown after ~950 cm-1 of the mirror symmetry with 

emission. The matrix dependence of Qx-Qy energy splitting made identification of 

the vibrational modes in Qx coupling to Qy very difficult. By comparison of the H2Pc 

excitation and emission spectra recorded in this work and those previously 

reported for D2Pc1, a tentative assignment of a vibrational mode in the Qx state 

coupling to the Qy in Ar was made. This vibration, at 985.3 cm-1 from the 0-0 of the 

Qx, was correlated with a weak Raman active vibronic mode which was seen to 

shift to 946 cm-1 upon deuteration. From the normal vibrations predicted by DFT, 

this B1g symmetry mode consists of an in-plane bending motion of the central N-H 

bonds. 

In order assess the ability of linear-response time-dependent DFT (TD-DFT) as a 

predictive tool, the vertical excitation energies and oscillator strengths of H2Pc and 

ZnPc as well as those of free-base and zinc tetraazaporphyrin (TAP), 

tetrabenzoporphyrin (TBP) and porphine (P) were calculated utilizing the B3LYP 
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hybrid functional and 6-311++G(2d,2p) basis set. The theoretical results for the 

lowest energy transitions were compared to experimental data and were found to 

correctly predict many of the trends apparent for these molecules. For ZnPc, 

ZnTBP and ZnP, the error between theory and experiment was between 5.1 and 

7.1 % higher than experiment. However, a larger error of 14.5 % was found for 

ZnTAP. For H2Pc, H2TBP and H2P, the TD-DFT excitation energies of the Qy were 

less than 1 % lower than the experimental values while the free-base analogue of 

ZnTAP, H2TAP, was again seen to have the largest error of 6.0 %. Significantly, one 

of the major discrepancies that was identified between the TD-DFT and 

experimental transition energies was the underestimation of the theoretically 

determined Qx-Qy splitting of all the free-base molecules and in particular H2Pc. 

The difference between the TD-DFT Qx and Qy states (of B3u and B2u symmetry 

respectively) was only 144 cm-1, significantly smaller the approximate gas phase 

value of ~1550 cm-1 and of the smallest matrix energy gap determined in this work 

of 916 cm-1 in Xe. The TD-DFT oscillator strengths for the visible transitions of 

H2Pc also incorrectly predicted the ratio the absorptions with the Qy calculated to 

be more allowed than the Qx, a reversal of what was observed in experiment. 

VII.4 Amplified Emission 

The luminescence spectroscopy of H2Pc and ZnPc embedded in low temperature 

solids revealed the unusual phenomenon of amplified emission (AE) under 

conditions of low intensity pulsed laser excitation. For these molecules in Ne, Ar, 

Kr, N2 and, with the exception of ZnPc in Xe matrices, a huge increase in the 

intensity of a one particular emission band was observed when pumping the S1 ← 

S0 transition. The band is located at 1550 and 1525 cm−1 from the 0-0 of H2Pc and 

ZnPc in emission, respectively and involves a vibrational mode of the ground state. 

This vibration was assigned in both phthalocyanines using DFT to the most intense 

Raman active mode involving an out-of-phase stretching of the C-N-C bonds in the 

tetrapyrrole ring.  

Many of the photophysical characteristics of AE are exhibited by this vibronic 

transition. By analysing the threshold conditions for amplified emission, it was 

concluded that the main conditions conducive to this non-linear optical effect 

occurring in these molecules were-   

 Their large absorption strengths 



Chapter VII: Conclusions 

265 

 The narrow spectral emission lines that were exhibited 

 The use of a Q-switched excitation laser 

 And the large population density of excited molecules in the host solids 

Another factor permitting this phenomenon to be seen for ZnPc and H2Pc was the 

large vibronic intensity of the mode exhibiting AE and its relatively high quantum 

yield. From the experimental spectra recorded and the scattering activities 

calculated using DFT, this mode corresponded to the most intense Raman active 

mode. 

With the success of DFT to correctly predict the both the spectral positions and 

relative intensities of the vibronic band coupling to emission of H2Pc and ZnPc, via 

calculation of the Raman active modes, a theoretical vibrational analysis was 

undertaken in order to assess the potential of other molecules to exhibit AE. The 

optimized geometries, vibrational frequencies and Raman scattering intensities 

were calculated for free-base and zinc tetraazaporphyrin (TAP), 

tetrabenzoporphyrin (TBP) and porphine (P), tetrapyrrolic molecules related to 

the Pcs. The porphines were immediately disregarded as likely AE candidates 

because of the weak visible absorptions but they were found useful in comparing 

the vibrational structures with the other molecules. From the calculated Raman 

results for H2TBP and ZnTBP, a very similar vibrational structure to H2Pc and ZnPc 

was found with their most intense mode corresponding to the same in-plane ring 

motion seen for the Pcs. The equivalent ring mode calculated for ZnTAP and H2TAP 

was found not to be the most intense and indeed for H2TAP no one dominant 

Raman vibration was predicted. The reduction in the intensity of the “AE mode” in 

the TAPs was due to coupling of the pyrrole CH motions to the in-plane ring 

motion not seen for the Pcs and TBPs due to the presence of the benzo annulations 

in the larger tetrapyrroles. By substituting the peripheral hydrogen atoms for a 

heavier element, for example fluorine, their motion was seen to decouple and the 

remaining ‘pure’ ring mode resulted in an increase in Raman intensity, producing a 

similar spectra to those of TBP and Pc, with one dominant vibration. 

 Using theoretically calculated Raman frequencies and intensities, AE emission is 

predicted to occur in the equivalent mode to H2Pc and ZnPc for H2TBP and ZnTBP, 

in one mode of ZnTAP and the fluoridated TAP molecules and possibly in multiple 

modes of H2TAP. The predictions made for H2TBP in low-temperature solids have 



Chapter VII: Conclusions 

266 

already been confirmed by Crépin et al2 where amplified emission was observed at 

1620 cm-1 close to the mode predicted in this work at 1608 cm-1 (scaled by 0.98). 

VII.5 Summary 

The rich optical spectroscopy displayed by the phthalocyanines and presented in 

this thesis offered a difficult yet interesting challenge to analyse. With ZnPc and 

H2Pc having 57 and 58 atoms respectively, high level theoretical calculations were 

crucial in the analysis and assignment of their spectroscopic features. Despite the 

successful assignment of the majority vibrational bands observed in IR, Raman and 

luminescence, much still remains to be understood about the optical properties of 

these important molecules. Unambiguous assignment of the vibrational modes 

coupling the Qx to Qy transitions of H2Pc remains to be resolved. It is hoped that the 

assignment of the vibrational bands in this work, made possible by the use of 

matrix-isolated spectroscopy and DFT calculations, will help in this task. It would 

be beneficial in any future experimental work into the proposed Fermi resonance 

analogy describing the coupling seen between the Qx and Qy that a pure sample of 

D2Pc be prepared. This may be possible to do this by treatment of a metallo-

phthalcyanine with a deuterated strong mineral acid, replacing the metal cation in 

the MPc to produce D2Pc without H2Pc impurities. Further research may also be 

warranted into the investigation of amplified emission occurring in other solids 

such as Shpol’skii matrices or for other molecules with high emissive quantum 

yields and narrow linewidths. 

Finally, it must be noted that the aesthetic beauty of these molecules was not lost 

on the author, from the brilliant blue colour of the matrix-isolated samples  formed 

to the high symmetry molecular structures determined using high level theoretical 

calculations. 
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