
 
 
 
 
 
 
 
 

Title: An Analysis of Hydrological Model Uncertainty at the 

Local Stage of a Climate Change Impact Assessment in the Suir 

Catchment 

 

  

Nuala Murphy 

 

 

Thesis submitted in fulfilment of the requirements of the Master of 

Literature Degree, 

Faculty of Social Sciences 

Department of Geography 

National University of Ireland, Maynooth 

 

September 2010 

 

 

Head of Department: Professor Mark Boyle 

Supervisor: Doctor Conor Murphy 

 



 ii 

 

            
            
   
 
 
 
 
 
 
 
 
 
 

 

 

 

This research was funded by an Irish Research Council for Science 

Engineering and Technology Embark Initiative scholarship. 

 

 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 iii 

 
 

 

 

 

 

 

 

 

 

 

 

I dedicate this thesis to my mother Jan and to the loving memory of my 

father Michael, who encouraged me in lifelong learning long before it was 

fashionable and without  whose quiet support over the years this thesis 

would not have been written. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 iv 

Acknowledgements 

 

I could not have completed this thesis without the support and encouragement of many 

people.  First and foremost I wish to extend my deepest appreciation to my parents, Jan and 

Michael.  They have been a source of great encouragement to all their family especially in 

the field of learning.  As children, we were taken on regular outings to the local mountains 

and countryside and instilled with a deep interest in and curiosity about the world around 

us.  Indeed, my interest in all things environmental and geographical began during those 

great summer picnics in the Cooley Mountains.  I’m lucky that those picnics took place 

during the 1970s, one of the driest decades of the twentieth century.  Although my father 

Michael is no longer with us, I still hear his wise words of guidance.  

 

 I also wish to thank my brothers and sisters, Liam, Michéal, Peter, Gráinne, Janet, 

Anthony, Eamonn and Rónan.  They were very encouraging of me returning to university 

and have been a constant source of advice (and some good-natured teasing!).  Special 

mention goes to my brother Rónan, budding Danté scholar, who thoughtfully copy-edited 

chapter drafts.  I also wish to thank my nieces and nephews.  Whenever I felt overwhelmed 

by life’s demands, they helped me put it all into perspective.   

 

My friend Alice Blumlein deserves special mention for her continuing words of support, 

her great outlook and her wonderful cooking skills.  I wish to thank her for allowing me to 

be taster for so many delicious meals.  Dr. Georgina Larkin was always at the end of the 

phone whenever I need to chat about the research process.  As one of my oldest friends she 

provided timely advice, especially during our film outings.   

 

Dr. Ro Charlton, my friend and second supervisor, encouraged me to persevere when the 

going was tough at the start of the project. Our Sunday runs were very enjoyable and 

informative as was the obligatory cup of coffee afterwards.  Mary Weld, Gay Murphy, 

Mick Bolger and Jim Keenen in the Geography Department were always ready to help out 

with a smile. Professor Mark Boyle, Professor John Sweeney and the staff of the 

Geography Department were also very supportive.   



 v 

Special thanks are also due to my flat mate Henry Langton.  He was always a calming 

influence and we enjoyed many episodes of Frasier together. My fellow runners in the 

Lucan Harrier Athletics Club have been a great source of encouragement (both for my 

running and my masters!) and through the club I have been introduced to the joys of 

running, surely one of the most effective ways of keeping the mind clear, the body fit and 

the weight under control. Special thanks to Clodagh Ashe for her words of encouragement 

during our runs together.  

 

All my fellow research students in ICARUS and in the Geography Department have 

provided encouragement and great humour on our shared research path.  I thank them all.  I 

shared an office with Jackie, Colin, Claire, Nichola, Sylvia and Julia and thank them for the 

shared laughter and practical advice.  Special mention must go to Colin Holman for 

providing access to Autosim and to Jackie McGloughlin and her husband John who 

patiently explained document formatting to me.  It was always great meeting up with Mary 

Kelly, Fionnuala Ni Mhorda and Adrienne Hobbs for coffee and a chat. Together we put 

the world to rights many times over! 

 

The Irish Research Council for Science, Engineering and Technology do great work by 

funding so many budding scholars in their PhD and masters studies. Without their funding 

of this project I would not have experienced such a great learning adventure.  

 

Lastly, but by no means least, I extend my  sincere thanks to my supervisor, Dr. Conor 

Murphy, for his patience, his advice and his prompt reading and constructive comments on  

each chapter draft.  



 vi 

Abstract 

 

This thesis presents an analysis of uncertainty at the local stage of a climate impact 

assessment. Impact model structural uncertainty and uncertainty due to equifinality of 

parameter sets are evaluated, in addition to uncertainty due to GCMs and emissions 

scenarios. The Suir catchment is employed as a case study area to analyse the changes in 

catchment hydrology and in future flood magnitude and frequency relationships due to 

climate change.  Two lumped conceptual rainfall-runoff models of different degrees of 

complexity are forced with the output of three GCMs and two emissions scenarios (A2 and 

B2) downscaled to synoptic station level by empirical statistical downscaling (Fealy and 

Sweeney, 2007). In the analysis of changes to catchment hydrology for the 2050s and the 

2080s, GCM uncertainty is the greatest source of uncertainty.  However, by the 2080s, 

uncertainty due to equifinality of parameter sets and model structure is also a significant 

source of uncertainty, with increases in streamflow being most extreme in February.  

Furthermore, results suggest that flood magnitude and frequency relationships will intensify 

under climate change. A robust finding is the notable agreement in new return period 

values in the 2080s with both models suggesting that the 10, 25 and 50 year flood events 

simulated in the control period will become 3.2, 5.4 and 9 year flood events. However, the 

magnitudes of the flood events differ for each model. These results suggest that model 

structural uncertainty is a significant source of uncertainty and should be taken into account 

by employing a suite of hydrological models at the local stage of climate change impact 

analyses that inform anticipatory flood adaptation decisions or policy frameworks.  
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1 Chapter 1 – Introduction 

 

1.1 Introduction 

 

The climate of planet Earth is changing.  Numerous scientific studies indicate that the 

increase in greenhouse gases emitted by human society since the Industrial Revolution is 

the main cause of this global warming.  Indeed, the vast majority of climate scientists now 

accept that anthropogenic emissions are the cause of climate change.  Evidence is already 

mounting that the planet is warming at an alarming rate.  In The IPCC Fourth Assessment 

Report (AR4) it states that “warming of the climate system is unequivocal, as is now 

evident from observations of increases in global average air and ocean temperatures, 

widespread melting of snow and ice, and rising global average sea level” (IPCC 2007, p.5).  

However, the effects will be quite diverse and location specific (Dessai and Hulme, 2007).  

 

One method of translating changes in global climate into local impacts is a climate change 

impact assessment, whereby future socio-economic storylines are translated into global 

emissions scenarios of greenhouse gases, downscaled to regional level and finally inputted 

to local impact models (Wilby, 2005). This has been a favoured technique of much research 

on the hydrological impacts of climate change (e.g., Minville et al., 2008; Murphy and 

Charlton, 2008; Wilby, 2005; Wilby and Harris, 2006).  Uncertainty flows through impact 

assessments leading to the so-called “cascade of uncertainty” (Jones, 2000).  However, 

there are also important flows of uncertainty within each stage of an impact assessment. 

This thesis seeks analyse the flow of uncertainty within the local level stage of such an 

assessment. Specifically, uncertainty due to model structural error and equifinality of 

parameter sets will be analysed. Wilby et al. (2009, p.1206) note that “Environmental 

models play an integral part in many climate risk assessments…However, uncertainty in 

responses due to the impact model structure and/or parameters is very seldom specified let 

alone reported: much more attention is typically given to the influence of different climate 

models or downscaling methods on the outcome”. The Suir catchment is employed as a 

case study area to evaluate if uncertainty can be analysed in a meaningful way that will aid 

in developing more useful adaptation decisions. This case study will examine how the 

incidence of flood magnitude and frequency may vary in the Suir catchment due to climate 
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change.   The catchment was chosen because of the high quality of the streamflow data 

from the gauging station at Clonmel (given an A1 (high quality) rating in the forthcoming 

Office of Public Works Flood Studies Update report).  Clonmel is also a flood-prone town, 

with recent large flood events creating national headlines.   

  

Beven (2000) and Koutsoyiannis (2010) suggest that uncertainty be seen as an intrinsic part 

of all natural systems (and their representations) and that this should be acknowledged and 

included in a modelling study.  Accordingly, several recent Irish studies  into the impacts of 

climate change on water resources have analysed uncertainty flowing through each stage of 

an assessment using two well-known hydrological models (HYSIM and HBV-Light) 

(Charlton et al., 2006; Murphy and Charlton, 2008, Semmler et al., 2006: Steele-Dunne et 

al., 2008; Wang et al., 2005). Uncertainty due to GCMs, emissions scenarios and 

equifinality of parameter sets was analysed in these studies.  However, only one impact 

model was employed in each of the above studies thereby preventing a comprehensive 

analysis of model structural uncertainty. This thesis seeks to fill the gap with an analysis of 

model structural uncertainty using the aforementioned two models, while also analysing 

uncertainty due to GCMs, emissions scenarios and equifinality of parameter sets. 

Specifically, the project will analyse changing flood magnitude/frequency relationships 

within the Suir catchment in a climate change context.  It is important to state at the outset 

the assumptions in such a project, i.e. that land use remains constant and that soils and their 

hydrological behaviour remain the same under changing circumstances (e.g. Wilby, 2005).  

Furthermore, it is assumed that the uncertainties are not so large when the hydrological 

models are used for extrapolation purposes (i.e., outside their calibration ranges) as to 

render the extrapolation results meaningless (Bergström et al., 2000). 

1.2 Project Objectives 

 
The objectives of the project are threefold: 
 

� To calibrate and validate two conceptual rainfall-runoff models for use in the 

climate impact assessment and to analyse the uncertainty derived from their 

application. 
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� To assess the likely impacts of anthropogenic climate change on the hydrology of 

the Suir catchment by forcing two rainfall-runoff models with downscaled data 

from a range of GCMs and  two greenhouse gas emissions scenarios.   

� To analyse the uncertainty in future changes to catchment hydrology and flood 

magnitude/frequency relationships within the Suir catchment originating from the 

use of different GCMs, emissions scenarios and impacts models.  

 

HYSIM HBV-Light

Modelling Framework 

Global Level

Uncertainty

Regional Level
Uncertainty

Local Level

Uncertainty

CSIRO HADCM3 CCCM

Statistical Downscaling

A2 B2

Use projections from 3

Global Climate Models

X 2 Emission Scenarios

Downscaling Technique

Input to Hydrological 

Models

 

 

HYSIM

Parameter Uncertainty

Model Structural Uncertainty
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Uncertainty

Analyse Parameter

Uncertainty

Modelling Framework (Continued)

Analyse Model Structural
Uncertainty

Use Extreme Value analysis 
To quantify changes to flood

magnitude/frequency 
relationships in the Suir 

catchment

HBV - Light

 

 

Figure 1.1 Modelling framework employed in the project 
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Figure 1.1 represents the modelling framework adopted in the project. It is important to 

note that this approach to uncertainty analysis can only measure a portion of the uncertainty 

embodied within the study context, methodology and the parameter space within each of 

the hydrological models (see Figure 1.2).  It does it purport to present a “global” 

uncertainty analysis. Another set of models would no doubt deliver a different result, as 

would the techniques and methodology employed by a different modeller! Indeed, much 

more uncertainty is omitted from the framework structure than embodied within it.  

Uncertainty is a multi-dimensional concept that can ultimately be viewed as a function of 

human consciousness. 

 

 

Figure 1.2 Schematic depiction of the relationship between scenarios, a projected range and total 

uncertainty.  M1 to M4 represent scenarios produced by four models.  The projected range consists of a 

quantifiable range of uncertainty that encompasses the scenarios.  This lies within a total range of 

uncertainty that cannot be fully quantified.  (Jones,  2000) 

 

1.3 Why use Uncertainty Analysis? 

 
Pappenberger and Beven (2006) present seven reasons why uncertainty analysis is not a 

standard practice in environmental modelling and then explain why each one of them is 

untenable.  These reasons are:  

 

• Uncertainty analysis is not necessary given physically realistic models. 

• Uncertainty analysis is not useful in adding to process understanding. 

• Uncertainty (probability) distributions cannot be understood by policy makers and the 

public. 

• Uncertainty analysis cannot be incorporated into the decision-making process. 

• Uncertainty analysis is too subjective. 

• Uncertainty analysis is too difficult to perform. 
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• Uncertainty does not really matter in making the final decision. 

 

Beven (2009) and this author assert that uncertainty analysis is critical when carrying out an 

environmental modelling exercise.  Chapter 2 reviews the literature regarding each stage of 

a climate impact assessment.   The focus of Chapter 3 is on a description of the physical 

characteristics of the Suir catchment and the methodology for generating the future 

downscaled climatic data (Fealy and Sweeney, 2007).  Chapters 4 and 5 describe the 

structures of HYSIM and HBV-Light and outline the methodologies employed for 

parameterising both models. The calibration and validation of the models is then described 

in Chapter 6. Changes to the hydrological regime of the Suir catchment and to flood 

magnitude and frequency relationships under climate change scenarios will be the focus of 

Chapter 7 and Chapter 8.  Finally, Chapter 9 will outline conclusions drawn and 

suggestions for further research.  
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2 Chapter 2 – Literature Review 

 

2.1 Introduction 

 

This chapter explores the literature regarding climate change impact assessments with a 

particular focus on uncertainty.  The body of literature regarding climate change and local 

impacts is vast and growing. Uncertainties arising within impact assessments will be 

presented, namely: uncertainties at the global scale; scenario uncertainty; global climate 

model (GCM) uncertainty and uncertainty regarding the global climate sensitivity.  

Regional scale uncertainties arising from the use of different downscaling techniques 

(dynamical downscaling and empirical statistical downscaling) will then be outlined.  The 

final section of the chapter will detail uncertainties at the local scale, due to model 

structural uncertainty and equifinality of parameter sets.   

2.2 Global Climate Change 

 

2.2.1 Evidence for Global Climate Change 

During the nineteenth and twentieth centuries, western societies became dependent on 

burning fossil fuels as the industrial revolution and the resulting technology and energy 

developments gathered pace.  The resulting levels of carbon dioxide (CO2) in the 

atmosphere have risen dramatically from pre-industrial times, with a present amount of 

approximately 385 parts per million (ppm) in sharp contrast to pre-industrial levels of 

270ppm (IPCC, 2007). This exceeds by far the natural range of CO2 in the atmosphere over 

the past 650,000 years (IPCC, 2007). If other greenhouse gases (e.g. methane) are included 

in this statistic, the resulting concentrations are nearer 425 parts per million by volume 

(Fealy and Sweeney, 2008).   

 

There now appears to be an overwhelming correlation between climate change and an 

increase in atmospheric greenhouse gas (GHG) concentrations.  In the Fourth Assessment 

Report (AR4) the IPCC state “warming of the climate system is unequivocal, as is now 

evident from observations of increases in global average air and ocean temperatures, 

widespread melting of snow and ice, and rising global average sea level” (IPCC 2007, p.5).  

During the twentieth century the mean global annual temperature increased on average by 
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0.07oC per decade, however during the last 50 years of the twentieth century, the decadal 

temperature increase has accelerated from 0.07oC per decade to approximately 0.13oC per 

decade (IPCC, 2007). Eleven of the twelve hottest years since temperature records began in 

1850 have occurred since 1995 (IPCC, 2007). If greenhouse gas emissions continue 

unabated, a doubling of atmospheric concentrations of CO2
 is likely by 2100. Throughout 

the globe the evidence for climate change is mounting through decreases in the artic sea ice, 

decreases in northern hemisphere snow cover, retreat of mountain glaciers and increases in 

the strength of tropical cyclones. 

2.3 The Role of Uncertainty in the formulation of Climate Projections 

 
While the changes to the earth’s average temperature are not unprecedented, contemporary 

human society has altered the structure of the atmosphere in a way that is unique in earth’s 

history.  Humans have also modified the landscape to an unprecedented scale during the 

nineteenth and twentieth centuries, and the human population is growing exponentially, 

doubling in size in the past 50 years. Pittock and Jones (2000) note that the impacts of the 

resulting changes to natural and anthropogenic systems will be extremely complex, with 

many forces acting collectively.  

2.3.1 Towards a Typology of Uncertainty 

Predicting the affects of climate change is a complex exercise fraught with uncertainty.  

Moss and Schneider (2000, p.35) state that “the term ‘uncertainty’ can range in implication 

from a lack of absolute sureness to such vagueness as to preclude anything more than 

informed guesses or speculation….some categories of uncertainty are amenable to 

quantification, while other kinds cannot be sensibly expressed in terms of probabilities”. 

Walker et al. (2003, p.8) define uncertainty as “…any departure from the unachievable 

ideal of complete determinism”.  Indeed, uncertainty propagates and intensifies through all 

the stages of climate change prediction from projections of future socio-economic 

development paths through the  regional stage to local climate change impacts leading to a 

cascade of uncertainty or uncertainty explosion (Schneider, 1983; Jones, 2000a; Wilby, 

2005) (see Figure 2.1). While there is no universal typology of uncertainty, for practical 

reasons researchers have attempted to distinguish between different dimensions of 

uncertainty in order to understand it better (Winkler, 1996).  Uncertainty results from 

‘incomplete’ knowledge and ‘unknowable’ knowledge (Hulme and Carter, 1999; 
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Oberkampf et al., 2002). Incomplete knowledge, otherwise known as epistemic uncertainty 

(type B) stems from lack of knowledge of different factors that influence events.  Examples 

of epistemic uncertainty are incomplete knowledge about ice and cloud albedo feedbacks.  

This type of uncertainty is potentially reducible and quantifiable as understanding of the 

different factors influencing the global climate system advances and computing power 

increases.   

 

 

Figure 2.1 The cascade of uncertainty. Modified after Jones (2000) and “cascading pyramid of 

uncertainties in Schneider (1983) 

 

Aleatory uncertainty (type A) or ‘unknowable’ knowledge stems from the chaotic, 

stochastic nature of the global climate system and from the uncertain future pathways of 

humanity which are the biggest influence on emissions scenarios.  The chaotic nature of the 

global climate system means that a small change in any part of the system can have a large 

impact (Lorenz, 1993).  Such unpredictability is irreducible.  Even the best global 

circulation models will never eliminate this inherent unpredictability.  Mitchell and Hulme 

(1999, p.57) note that “it is commonly inferred from the differences between climate 

models on regional scales that the models are deficient, but climate system unpredictability 

is such that …the differences are due to an unresolved combination of climate system 

unpredictability and model deficiencies”.    
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Dessai and Hulme (2003) have defined another category of uncertainty: human “reflexive” 

uncertainty. By critically reflecting on information regarding climate change and its 

impacts, humans will surely act on the problem.  They may consider how climate change 

will affect their livelihoods and those of future generations, and choose new actions and 

behaviours to reflect this. This can render any probabilities attached to emissions scenarios 

invalid.  Dessai and Hume (2003, p.14) add that “the fact that humans are part of the system 

being researched in the case of the climate change problem therefore makes the uncertainty 

irreducible in the context of prediction: it makes all probabilities ‘provisional’”. Both 

aleatory and human reflexive uncertainties make up ‘deep’ uncertainty.  Deep uncertainty 

cannot be adequately quantified, and pervades climate impact assessments from projections 

of future concentrations of GHGs to local impact assessments (Dessai and Hulme, 2007). 

Nonetheless, humans have always made adaptation decisions based on imperfect 

(uncertain) analysis.  Furthermore, the possibility of being wrong in making adaptation 

decisions is not an excuse for inaction (Webster, 2003). Indeed, the presence of uncertainty 

highlights the need for flexible adaptation decisions which can be updated in light of new 

information (Hallegatte, 2009; Wilby and Dessai, 2010).  

2.4 Uncertainties at the Global Scale 

 

2.4.1 Emission Scenario Uncertainty 

In order to account for uncertainty in the future development of human society, the IPCC 

have developed a range of scenarios in the Special Report on Emissions Scenarios (SRES) 

(Nakicenovic et al., 2000).  The SRES comprises 40 scenarios grouped into four different 

storylines.  Each storyline details a distinctive development pathway to be taken by 

humanity which encompasses uncertainty due to differences in technological development 

and demographic and socio-economic change (see Appendix 1).  The different 

developmental pathways were assigned different emissions scenarios which were translated 

into atmospheric concentrations of greenhouse gases and aerosols.   

 

Six marker scenarios (A1FI, A1B, A1T, A2, B1, B2) were defined and climate modellers 

employed these as input to drive their GCMs and develop a range of climate scenarios 

(Arnell et al., 2004.).  As with all future scenarios, uncertainty increases the further into the 

future one projects (Figure 2.1).  No likelihoods have been attached to the different 
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storylines as they are considered equally valid.  The SRES do not take account of all 

possible futures, for example they do not include specific “disaster” scenarios (e.g., a 

possible melting of the Greenland Ice Sheet and the subsequent effect of rising sea levels).  

Neither do the SRES storylines take account of possible climate mitigation policies which 

may be enacted by the international community.   

 

 

 

Figure 2.2 Globally averaged surface temperature change by 2100 depending on emission scenario 

(IPCC, 2007) 

 
The SRES are one of a number of different global scenarios developed to take account of 

future uncertainties in population, technological and economic change. Other scenarios 

include the ones detailed in the UNEP Global Environmental Outlook report (2002).  

Nonetheless the SRES have been the ones most extensively employed as the basis for 

calculating future greenhouse gas emissions.    Arnell et al. (2004) recommend the use of a 

wider range of socio-economic scenarios than those provided in the SRES in order to better 

estimate the range of possible future climate impacts. They also note that land cover trends, 

while being consistent with the SRES storylines, are inconsistent with current global 

developments in land use (Arnell et al., 2004). The EU ENSEMBLES project has recently 
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developed the E1 scenario, which is the first to incorporate an aggressive mitigation policy.  

Under this scenario, CO2 levels peak at 535ppm in 2045 before stabilising at 440 ppm 

during the 22nd century (Lowe et al., 2009).  

 

Several studies on the effects of climate change on water resources and catchment 

hydrology have assessed the role of emission scenario uncertainty using the A2 and B2 

scenarios (with different GCMs). Wilby (2005) found uncertainty due to emissions 

scenarios to be comparable to uncertainty due to the choice of calibration period in a simple 

conceptual rainfall-runoff model. Minville et al. (2008) assessed seasonal changes to 

catchment hydrology and noted that emission scenario uncertainty was less significant than 

GCM uncertainty, particularly in the 2080s.  Wilby and Harris (2006) observed that 

emission scenario uncertainty was the least significant of the sources of uncertainty 

analysed (GCM, downscaling method, hydrological model structure and parameters, 

emission scenario) and GCM uncertainty the most significant.   

2.4.2 GCM Uncertainty 

The most powerful global circulation models are the coupled atmosphere/ocean models 

(AOGCMs).  These models are extremely complex with many parameters. Additionally, 

the parameters within each model are unique and reflect the climatological conditions of 

their region of origin. When different external conditions are used to model the global 

climate system (e.g. anthropogenic emissions of greenhouse gases, volcanic eruptions, and 

variations in solar radiation) it is open to question how much uncertainty is due to the 

inherent unpredictability of the global climate system and how much is due to the different 

parameter values and model structures of the GCMs. Tebaldi and Knutti (2007, p.2056) 

observe that “…simplifications, assumptions and choices of parameterisations have to be 

made when constructing a model, as they inevitably lead to errors in the model and the 

forecasts it produces”. Furthermore, even if a model structure was perfect, uncertainty 

would remain because of the inherent unpredictability of both human society and climate 

(Mitchell and Hulme, 1999). 

  

Until recently, the practice of forcing a single GCM by a single emissions scenario led to a 

suppression of a large amount of uncertainty, which Hulme and Carter (1999) call a 

“dangerous practice”.  Current practice involves simulating a given scenario in an ensemble 
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of GCMs, which leads to a more comprehensive representation of uncertainty. The 

performance of an individual model is often weighted based on its skill at simulating 

observed climate. However, the ensemble projections are conditional on the scenario(s) and 

GCMs employed (Hall, 2007).  Furthermore, the issue of equifinality (that many parameter 

sets and model structures simulate observed climate equally well) has been little explored 

within GCMs to date (Dessai et al., 2009).   All the AOGCMs employed in the multi-model 

ensemble for the IPCC AR4 included parameters for ocean, atmosphere, sea-ice and land 

(Tebaldi and Knutti, 2007). However, as these models become more sophisticated to 

include components such as atmosphere chemistry and embedded RCMs it may become 

increasingly difficult to arrive at a standard interpretation of the ensemble results (Tebaldi 

and Knutti, 2007).  Computing power has also compromised the degree of complexity of 

GCMs.  Nonetheless, the uncertainty space within the models may well increase in tandem 

with increasing computing power (Dessai et al., 2009).  Uncertainty due to the choice of 

GCMs has been shown to be the most significant source of uncertainty in several studies on 

the effects of climate change on catchment hydrology and extreme fluvial events (e.g., 

Bergström et al., 2000; Minville et al., 2008; Prudhomme et al., 2003; Wang et al., 2006: 

Wilby and Harris, 2006).  

2.4.3 Global Climate Sensitivity 

The standard metric employed in estimating the response of the global climate system to 

increased concentration of greenhouse gases is the equilibrium climate sensitivity (∆T), i.e. 

the increase in global mean surface temperature that results from a doubling of atmospheric 

CO2 concentrations over pre-industrial levels (IPCC AR4, p.629). The uncertainty range for 

the global climate sensitivity has changed little in the last decades.   In the IPCC Third 

Assessment Report (TAR) the global climate sensitivity was estimated to range from 1.5oC 

- 4.5oC (IPCC, 2001).  In estimating the global climate sensitivity using a 53-member 

model ensemble, Murphy et al. (2004) obtained a probability density function (PDF) with a 

5% to 95% probability range of 2.4 -5.4oC. In the IPCC AR4 it states “the global climate 

sensitivity…is likely to be in the range of 2oC to 4.5oC with a best estimate of about 3oC, 

and is very unlikely to be less than 1.5oC.  Values substantially higher than 4.5oC cannot be 

excluded, but agreement of models with observations is not as good for those values” 

(IPCC AR4, p.12; italics mine) (see Figure 2.3). Roe and Baker (2007) emphasise that the 

climate sensitivity range is unlikely to change much in the next IPCC report due to the non-
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linearity of feedbacks of individual climate processes. Indeed, the scientific community are 

not sure about how uncertain is the response of the climate to radiative forcing (Hall, 2007).   

The increase in temperature is the most obvious result of anthropogenic climate change, 

however there are also likely to be changes in precipitation levels over a regional and local 

basis.  These are much more difficult to estimate as precipitation is not normally distributed 

and is much more variable spatially and temporally than temperature.    In the IPCC AR4 it 

is noted that “for the same emissions scenario, different GCMs produce different 

geographical patterns of change, particularly with respect to precipitation, which is the most 

important driver for freshwater resources” (IPCC AR4, p.180).   

 

Figure 2.3 Cumulative distributions of global climate sensitivity (IPCC, 2007) 

2.5  Regional Level Uncertainties 

 
Uncertainties at the regional level hinge on the choice of downscaling method. GCM output 

is generally too coarse (typically 150 – 300km2) to be of use in regional or local level 

assessment and therefore some sort of downscaling is required.  In recent years two 

methods of downscaling have come to the fore: dynamical downscaling and statistical 

downscaling. 
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2.5.1 Dynamical Downscaling 

Recent increases in computational power have led to the increasing use of dynamical 

downscaling and Regional Climate Models (RCMs) are being more extensively employed    

RCMs use the information embedded within their parent GCM to derive smaller-scale 

regional information. They generally have a resolution of 20km to 60km and a domain area 

of 106km to 107km (UNFCCC, 2010). The advantages of RCMs are that they produce data 

at a much higher resolution than their parent GCM which takes account of local and 

regional topography. However, RCMs use a lot of computational resources and require 

considerable expertise in climate modelling.  Moreover, all forms of downscaling propagate 

the uncertainties contained within their parent GCM as well as adding intrinsic 

uncertainties of their own. Fowler and Ekström (2009) employed 13 RCMs from the EU 

PRUDENCE ensemble to assess changes to seasonal precipitation extremes in 9 UK 

catchments for the 2070 to 2100 period using the A2 scenario. Extremes were well 

simulated for the winter but poorly simulated for the summer. Dessai et al. (2009) highlight 

the dangers of confusing higher precision (spatial or temporal resolution) with greater 

accuracy, when in fact there are irreducible uncertainties not amenable to quantification due 

to the chaotic, unpredictable nature of the global climate system.   

2.5.2 Empirical Statistical Downscaling 

Another viable method of increasing the resolution of GCMs for use in regional and local 

analysis is empirical statistical downscaling.  Statistical downscaling derives statistical 

relationships between observed high resolution mesoscale variables e.g., geopotential 

heights, humidity and vorticity, (typically local level) and lower resolution (GCM) 

variables. One of the most important assumptions in statistical downscaling is that these 

relationships will remain stationary in a changing climate (Hewitson and Crane, 2006). 

Another assumption is that the predictor variables employed in the downscaling are 

adequately simulated by GCMs (Fealy and Sweeney, 2007; 2008). One advantage of this 

method is that it uses considerably less computing power than RCMs, and has comparative 

ease of application (Hewitson and Crane, 2006).  

 

There are many methods of statistical downscaling, including multiple regression 

techniques and weather generators.  The Statistical Downscaling Model (SDSM) was 

developed by Wilby et al. (2002).  This model includes both stochastic weather generator 
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techniques and multiple regression methods.  While both RCMs and empirical statistical 

downscaling use different predictor and predictands, and operate on different spatial 

domains, it is difficult to compare methods directly.  However, the Statistical and Regional 

Dynamical Downscaling of Extremes for European regions (STARDEX) project has 

attempted a comparison of both downscaling techniques.   One of the focuses of the project 

was in formulating mean climate projections for the present century. Generally, the models 

performed better downscaling temperature than precipitation and capturing means rather 

than extremes (STARDEX, 2006).   

2.6 Downscaling of Extreme Values  

 
As this project is concerned with exploring uncertainty in the changing magnitude and 

frequency of flooding  within the Suir catchment due to climate change, it is pertinent to 

include a brief discussion of the success or otherwise of the simulation of extreme 

precipitation in both dynamical and statistical downscaling.  Fowler et al. (2007) note that 

it this is a difficult exercise, since there are many methods for evaluating extreme values 

(e.g. 5th and 95th percentiles, or rare events such as the 1 in 50 year rainstorm). One of the 

conclusions of the STARDEX project was that the models performed better downscaling 

temperature than precipitation and capturing means rather than extremes (STARDEX, 

2006). Moreover, extreme precipitation events vary greatly in magnitude from catchment to 

catchment.  Haylock et al. (2006) compared six dynamical and two statistical downscaling 

models based on their ability to simulate seven seasonal indices of heavy precipitation 

events at the station scale in the UK.  Generally winter showed the highest downscaling 

skill and summer the lowest. Additionally, precipitation occurrence was better simulated 

than precipitation intensity.  Inter-model differences between future simulations were 

shown to be as significant as differences between future scenarios for a single model 

(Haylock et al., 2006).  Kyselỳ (2002) notes that extremes produced by all downscaling 

methods would be too moderate compared with observed data, possibly due to the 

assumption of linearity in most of the methods.   

 

Although the main focus in Fealy and Sweeney (2008) was also in generating scenarios 

representing the projected mean climate state for the present century, a significant 

increasing trend was detected in 5-day rainfall totals in 8 midland and eastern synoptic 

stations.  However, they add that while confidence in the precipitation indices should be 
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considered low, they are still in agreement with changes in precipitation suggested by the 

driving GCMs (Fealy and Sweeney, 2008). 

2.7 Uncertainties at the Local Level 

 
Much uncertainty accumulates before the local stage of a climate impact assessment. 

However, local impact models present additional uncertainty.  In this section, the literature 

review focuses on two sources of uncertainty: model structural uncertainty and uncertainty 

due to equifinality of parameter sets. A methodology for taking account of uncertainty due 

to equifinality of parameters will also be discussed.  Although uncertainty is also associated 

with input data, it will not be evaluated in this thesis.   

2.7.1 Model Structural Uncertainty 

Model parsimony, sometimes called Ocham’s razor, is the concept that a model should only 

be as complex as is necessary to simulate observations precisely enough to be useful 

(Beven, 2000). This idea was outlined in Nash and Sutcliffe (1970) who emphasised that 

complexity should be added to a model only as long as it increases accuracy and efficiency.   

As understanding of different catchment processes has become more sophisticated, there is 

a tendency to build models of increasing complexity to reflect this (Perrin et al., 2001).   

 

However, increasing complexity does not necessarily improve model performance.  Studies 

which have researched this issue include Francini and Pacciani (1991) who compared seven 

different conceptual rainfall-runoff models and concluded that there was little to distinguish 

between the models output despite structural differences.  Chiew et al. (1993) compared six 

rainfall-runoff modelling approaches and concluded that a complex conceptual model 

(MODHYROLOG) gave the best simulation of daily high and low flows. However, a 

simple conceptual model (SFB) gave satisfactory results when simulating monthly and 

annual yields in wetter catchments.  Jakeman and Hornberger (1993) using only 

precipitation, air temperature and stream flow as inputs found that a two component linear 

model with four parameters was the optimal model for simulating flow in 7 catchments 

with a temperate climate regime. They also noted that the information content in a runoff 

record alone is too small to conclude that the concepts within the conceptual rainfall-runoff 

model are ‘true’ for that catchment even if a good simulation of observed flow is obtained 

(Jakeman and Hornberger, 1993).   
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Perrin et al. (2001) suggested that equifinality of model structures should be investigated to 

evaluate if different models provide equally good results when simulating observed 

catchment flow.  Perrin et al. (2001) in an inter-comparison study of 19 lumped rainfall-

runoff models (including HBV) found that 3 to 5 parameters produced satisfactory results 

in simulating a time-series of daily data. They further argued that even though model 

parsimony is an important issue or models may become over-parameterised, there are also 

limits to model simplicity.  In their study, Perrin et al. (2001) tested the models on 429 

catchments in France, the United States, Australia, the Ivory Coast and Brazil in order to 

evaluate the models’ versatility.  One of the limitations of the modelling framework 

employed in this project is that it tests the models on only one catchment so model 

versatility is not evaluated.  One of the conclusions in Georgakakos et al. (2004) is that 

multi-model ensembles should be used to account for uncertainty at the local level of a 

climate impact analysis. Butts et al. (2004), support this finding. Moreover, in their study of 

model structural uncertainty sensitivity of streamflow to variations in model structure was 

as large as parameter and measurement uncertainty. A framework for dealing with 

uncertainty due to model structural error is presented in Refsgaard et al. (2006), which 

involves the use of multiple conceptual models and tests the tenability of each model within 

a prescribed framework.   

2.7.2 Model Structural Uncertainties in Climate Change Studies 

It is one thing to test models on catchments not undergoing dynamic change (e.g., land use 

or climate change), quite another to use rainfall-runoff models in a climate change 

simulation.  Cameron et al. (2000) evaluated changes to flood frequency using a continuous 

simulation methodology with one model (TOPMODEL). The scenarios employed 

generated little uncertainty, however, the distribution of T year floods changed. Cameron et 

al. (2000) concluded that hydrological model structural uncertainty needs to be accounted 

for in estimating impacts of climate change. Prudhomme et al. (2003) studied the 

uncertainty of climate change impacts on the flood regime of small UK catchments using 

25,000 climate scenarios randomly generated and one hydrological model (PDM). They 

found that while the magnitude of flood peaks could increase under the climate scenarios, 

the median value of changes was within the 95% confidence intervals associated with 

present climate. Wilby and Harris (2006) assessed the different sources of uncertainty in a 

climate impact assessment of future low-flow in the River Thames using six different 
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GCMs, two emissions scenarios and two hydrological models (CATCHMOD and 

REGMOD).  Q95 simulated in both models was comparable to observed flow for the 

calibration period (1961 – 1990), although low flows were more conservatively modelled in 

the more complex model (CATCHMOD) than for REGMOD. This was believed to be due 

to the soil moisture accounting routine in CATCHMOD which was unseen in REGMOD 

(Wilby and Harris, 2006).  Højberg and Refsgaard (2005) studied 3 groundwater models of 

different complexity and concluded that climate change uncertainties would be 

underestimated if model structural uncertainty was not explicitly taken into account. 

Ludwig et al. (2009) evaluated 3 hydrological models of different complexity (a spatially 

distributed model – PROMET; a semi-distributed model operating on relative homogenous 

hydrological units – HYDROTEL; a lumped bucket-type conceptual model – HSAMI) 

modelling future discharge in the Ammer basin in Southern Bavaria from 2071 - 2100.  

HSAMI modelled future runoff far below plausible values, while the other two models 

behaved within a comparable range.  One of the conclusions was that simple conceptual 

models are inadequate for assessing climate change impacts and that an ensemble of impact 

models should be employed for an improved understanding of local impact model 

complexity (Ludwig et al., 2009).   

2.7.3 Irish Hydrological Impact Studies 

In Ireland, several studies have also focussed on the effects of climate change on catchment 

hydrology and extreme fluvial events (Charlton et al., 2006; Murphy and Charlton, 2008; 

Semmler et al., 2006; Steele-Dunne et al., 2008; Wang et al., 2006). Murphy and Charlton 

(2008) assessed changes to the hydrological regime and extreme flows due to climate 

change in 10 Irish catchments using HYSIM. By the 2050s the current T50 flood may 

become a 7.2 year event and by the 2080s it could be reduced to a 4.5 year event using both 

A2 and B2 scenarios and HADCM3 GCM.  Steele-Dunne et al. (2008) evaluated changes 

to the hydrology of the same Irish catchments from 2021 to 2060 using HBV-Light to 

model the output from the RCA3 regional climate model driven by the ECHAM 5 GCM 

and the A1B emission scenario.  The risk of extremely high winter flows was projected to 

almost double in the Suir catchment for the future time period. All the above studies 

employed only one hydrological model: HYSIM in the former two papers and HBV in the 

latter.  Both models proved plausible representations of Irish catchments.  However, as only 

one hydrological model was used in each study, model structural uncertainty was not 
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adequately accounted for.  Nonetheless, in several studies cited in the paragraph above, 

model structural uncertainty is an important source of uncertainty at the local stage of a 

climate impact assessment. If such an assessment is employed to inform adaptation 

decisions or policy, then an ensemble of hydrological models should be employed at the 

local stage to better characterise ranges of change in catchment hydrology and extreme 

events due to climate change (e.g., Butts et al., 2004; Georgakakos et al., 2004; Højberg 

and Refsgaard, 2005; Ludwig et al., 2009; Refsgaard et al., 2006).  

2.7.4 Equifinality of Parameter Sets and Model Structures 

Equifinality is the concept that many parameter sets and models give equally good results 

in simulating observed flow (e.g., Beven and Binley, 1992; Beven, 1993; Beven and Freer, 

2001). This can be due to model structural complexity, model structural error, model over-

parameterisation, input data error, non-linearity of model structure, parameter interactions 

and the complexity of the system being modelled.  In practice, it can be difficult to 

differentiate between these different sources of uncertainty (Butts et. al.,                                         

2004).  Beven (2000, p.21) lists two implications of the above: 

 

• Parameter values determined by calibration are valid only inside the model structure 

used. 

 

• The optimal parameter set may be a dubious concept in hydrological modelling, where 

it has been demonstrated that many parameter combinations and models give 

acceptable simulations of the response of a catchment.   

 

While accepting the concept of equifinality and incorporating it into model calibration and 

validation implies that some means of quantifying uncertainty must be included at these 

stages, it can be argued that equifinality is a more realistic way of approaching a 

hydrological modelling exercise. Recent studies which have found many models giving 

good fits to observed data include Blasone et al. (2008); Cameron et al. (2000); Christiaens 

and Feyen (2002); Højberg and Refsgaard (2005); Murphy (2006); Wilby (2005) and  

Wilby and Harris (2006). Equifinality of model structure was studied by Perrin et al., 2000. 

Conversely, the assumption that a given model structure or parameter set represents the 

“true” version of a catchment response is ill-founded.  It is accepted that hydrological 
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models, no matter how sophisticated, will never fully represent the complex and 

heterogeneous reality of a river catchment.  Indeed, environmental systems are so complex 

that many different interpretations of that system may be plausible (Beven, 2002).   

 

It can also be argued that model results should be given as a range rather than a single result 

(Steele-Dunne et al., 2008; Uhlenbrook et al., 1999).  The use of just one model structure 

and one optimal parameter set suppresses much uncertainty.  This may lead to dubious 

results and even maladaptive policies being implemented if the modelling exercise is used 

as a basis for informing policy decisions. Beven (2000, p.240) notes that “…the choice of 

just a single model is equivalent to assigning a positive prior likelihood to parameter sets 

sampled for that model…and zero to all other models”. This project attempts to analyse 

uncertainty of model structure and uncertainty of parameters and to evaluate which 

provides the greatest source of uncertainty within the modelling framework.  

2.7.5 Parameter Definition, Identifiability and Non-Uniqueness 

Historically the problem with identifying a global optimal parameter combination was 

described as an issue of parameter identifiability or non-uniqueness (Beven, 2009). A well-

identified parameter is one in which the objective function value decreases away from an 

optimal value, and has a distinct peak (Uhlenbrook et al. 1999). The issue of parameter 

identifiability (and non-uniqueness) is particularly relevant if the modeller comes from a 

standpoint of there being a single optimal parameter set within the response surface.  

However, if equifinality of models and parameter sets is accepted then the scatter graphs 

show that many parameter values may be behavioural.  Moreover, Beven (2000) highlights 

the fact that scatter graphs of individual parameters are a crude projection of the parameter 

response surface and cannot show the complex interactions between parameters.  A less-

than-optimal value of one parameter may be compensated for by other parameters.  What is 

important in taking equifinality into account is not so much the individual parameter values, 

but the parameter values within behavioural sets (Beven, 2000; 2002).  Indeed, Beven 

(2005) argues that parameter non-uniqueness and non-identifiability are intrinsic to the 

modelling process.  

 

Traditional sensitivity analyses highlight individual sensitive parameters (as opposed to 

insensitive parameters where various parameter values do not influence the model output).  
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However, such analyses cannot take account of parameter interactions within the response 

surface. Uhlenbrook et al. (1999) distinguish between insensitive parameters and uncertain 

ones. Model output does not vary when the values of an insensitive parameter are changed.  

Conversely, model output may be sensitive to the changing values of an uncertain 

parameter, but these changes can be compensated for by other parameters in the set.  

.Beven and Binley (1992) devised a methodology for model calibration and validation 

which takes account of parameter uncertainty: the GLUE methodology. The advantage of 

the GLUE methodology is that by randomly sampling parameter sets, these interactions are 

implicitly captured and behavioural parameter sets can be evaluated by a chosen likelihood 

measure (Beven, 2009).    

2.7.6 The GLUE Methodology 

Generalised Likelihood Uncertainty Estimation (GLUE) is a strategy for model calibration 

and uncertainty estimation based on the theory that there is no optimal model structure or 

parameter set.  Rather, there are many parameter sets and models which give good 

simulations of observed data (Beven and Binley, 1992). Variants of the GLUE 

methodology include Dynamic Identifiability Analysis (Wagener et al., 2003). In GLUE 

random parameter sets are generated from a prior distribution of parameter values using 

Monte Carlo sampling. The modelled output from each of these parameter sets is then 

compared quantitatively to the calibration data using a likelihood measure.  Obviously, this 

methodology depends on a number of subjective decisions. Beven (2000, p.235) identifies 

the decisions which must be made before GLUE can be implemented.   

 

• A decision about the model or models to be included in the analysis 

• A decision  about the feasible range for each parameter value 

• A decision about the sampling strategy for the parameter sets 

• A decision about an appropriate likelihood measure 

 

While these decisions are undoubtedly subjective (in common with similar decisions made 

in any modelling exercise) and therefore qualitative rather than strictly quantitative, the 

explicit nature of the decisions and the fact that they can be critiqued ensures that there is 

some quality control in the methodology (Beven, 2000).   
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2.8 Conclusion 

 

This chapter has explored the literature regarding uncertainties in each stage of a climate 

change impact assessment.  In several studies, GCM uncertainty was the most significant 

source of uncertainty, while uncertainty due to emissions scenarios was less significant.  

There are also sources of uncertainty at the local stage of climate change impact 

assessments: namely model structural uncertainty and equifinality of parameter sets.  The 

GLUE methodology was introduced as an effective method of analysing such uncertainty.  

In order to represent model structural uncertainty more comprehensively, it is suggested 

that a suite of impact models be included in further Irish studies that employ the climate 

change impact assessment methodology to inform adaptation decisions or policy.  This 

follows the practice of using an ensemble of GCMs to better represent the uncertainties at 

the global stage of such an assessment.   

 

Chapters 7 and 8 will focus on changes to catchment hydrology and flood magnitude and 

frequency resulting from project streamflow changes.  The next chapter (Chapter 3) will 

focus on a description of the Suir Catchment and outline the methodology employed to 

generate the future climate data used in this project.   
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3 Chapter 3: Characteristics of the Suir Catchment and Description of 

the Future Climatic Data 
 

3.1 Introduction 
 

The Suir catchment has been chosen as the case study catchment for this project.   The main 

characteristics of the catchment will be described under bedrock geology; catchment soils; 

land use and catchment aquifer potential.  These characteristics are especially relevant to 

the parameterisation of HYSIM. Some causes of climate variability within Ireland will then 

be examined, followed by a summary of recent trends in Irish climate. The following 

section of the chapter will provide a brief description the methodology  for generating the 

downscaled future climatic data used in this project and will outline projected changes to 

temperature and precipitation for the 2050s and the 2080s (Fealy and Sweeney, 2007; 

2008).   In the concluding section there will be a more detailed analysis of the future 

climate scenarios generated for the Kilkenny synoptic station, which is closest to the Suir 

catchment and from where the future data employed in this project originates.   

 

Figure 3.1 The Suir catchment 
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3.2 The Suir Catchment 

 
The Suir catchment is the largest in the South Eastern River Basin District (SERBD), with 

a total catchment area of 2143 km2 to the gauging station in Clonmel (see Figure 3.1). Six 

Irish counties make up the catchment including Waterford, Tipperary, Laois, Kilkenny, 

Cork and Limerick.  The Comeragh and Knockmealdown mountain ranges form part of the 

southern boundary of the catchment and the Galtee mountain range lies to the southwest of 

the catchment.  The topography of the Suir catchment is rolling lowland with a 

mountainous fringe in southern areas. It has an annual average precipitation of 1110 mms 

and estimated annual losses of 483 mm, giving total effective rainfall of 627 mms.  The 

mean annual flow in the river at Clonmel from the period 1940 – 2005 has been 45.28 

m3/sec and annual average runoff from 1961 to 2000 is 702.19 mms.  The catchment 

elevation ranges from sea level to 910 metres, with a mean elevation of 129 metres 

approximately.  Most of the land is worked agriculturally and land use in the catchment is 

dominated by pasture, which accounts for approximately 70% of the total land area.  

Coniferous forest accounts for 7% of the catchment area.  Arable land and peat bogs which 

account for a further 5% approximately of the total land area of the catchment.   

3.2.1 Bedrock Geology of the Suir Catchment 

The bedrock geology of the Suir catchment is complex but is comprised mainly of 

Palaeozoic sedimentary rocks from the Carboniferous Period (354 – 298 million years ago) 

(see Figure 3.2). Indeed, the bedrock geology of the Suir catchment reflects that of Ireland 

as rocks from the Carboniferous period (354 – 298 million years ago) are the most 

abundant of any found on the island. The main formations in the catchment include Old 

Red Sandstone, conglomerate and siltstone from the Devonian  Period (410 – 354 million 

years ago) which underlies 24% of the catchment and forms the main material in the 

mountain ranges which lie within the catchment boundary. A further 33% of the catchment 

is underlain by a marine shelf facies formation of limestone and calcareous shale from the 

Carboniferous Period.  Courceyan limestone from the early Carboniferous Period underlies 

a further 17% of the catchment area.  The bedrock of the Suir catchment gives rise to many 

regionally and locally important aquifers.  
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Figure 3.2  Bedrock map of the Suir Catchment 

 

3.2.2 Soils of the Suir Catchment 

The Suir catchment is characterised by well drained soils.  The most extensive soil types in 

the catchment are minimal grey brown podzolics, brown podzolics, gleys and acid brown 

earths (see Figure 3.3).  These soils are part of the Great Soil Groups of Ireland and 

together account for 79% of all soils in the catchment (Gardiner and Radford, 1980).  Many 

of these soils are subject to the process of podzolisation. During this process the soils are 

first subject to leeching (whereby solid constituents are carried down through the soil 

layers).  As soon as conditions are suitably acidic, iron and aluminium are removed in 

solution. 
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The calcareous parent material which usually forms grey brown podzolics prevents the 

effects of extensive leeching from these soils.  This in turn restricts the podzolisation 

process and the principal materials moved from the A to the B horizon are clay particles.   

The B horizon is heavier in texture than the A horizons due to the presence of so many clay 

particles.  Grey brown podzolics make good farming soils, with the heavier textured soils 

more suitable for pasture production (Gardiner and Radford, 1980).   

 

 

Figure 3.3 Principle soil types in the Suir catchment 

 
The soil profile of brown podzolics consists of an A1 horizon with a mixture of organic and 

mineral matter.  Accumulations of aluminium, iron and sometimes humus are present in the 

B horizon and unlike podzols, there is no iron pan present.  Brown podzolics are good soils 

for use as pasture and for crop cultivation (Gardiner and Radford, 1980).  Gleys develop in 

permanent or intermittent soil saturation.  This may be due to a high water table, or a 

perched water table due to the impermeable nature of the soil itself.  Runoff from slopes 
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can also be a causative factor.  The poor physical condition of most gleys makes them 

unsuitable for cultivation or pasture. 

 

Acid brown earths form well drained, mineral soils with a profile that is uniform and does 

not consist of distinct horizons. They are not as susceptible to leeching as podzols or brown 

podzolics. The acidic nature of these soils is due to the lime-deficient parent material.   

Brown earths are medium textured and because of their high mineral content and good 

drainage they are extensively cultivated (Gardiner and Radford, 1980).  Subsoils within the 

catchment are formed from glacial tills, sands and gravel.  The well drained nature of the 

soils in the Suir catchment together with highly permeable subsoils means that the Suir is a 

baseflow dominated river, which is particularly sensitive to soil moisture reductions that 

may occur as a consequence of climate change.  The nature of the soils also has a big 

influence on land use within the catchment. 

3.2.3 Land Use within the Suir Catchment 

The Suir catchment area comprises areas of counties Cork, Limerick, Laois, Kilkenny, 

Tipperary and Waterford.  The CORINE (Co-ordinate of Information on the Environment) 

2000 land use database supplied by the EPA was employed to define the land use types 

within the catchment.  The shapefiles from Cork, Limerick, Laois, Kilkenny and Waterford 

were loaded and merged using the merge command from data management in ArcToolBox.  

In the accompanying shapefile databases the land use codes were recorded under “CODE 

3”.  The six counties were merged under this code, in order to aggregate the land use codes 

for the different shapefiles. 

 

The Suir catchment is characterised by a mainly rural agricultural hinterland. Pasture is by 

far the dominant land use type in the catchment, accounting for 70% of the catchment area 

(see Figure 3.4).  Coniferous forests account for a further 7% each of the catchment.  Non-

irrigated arable land and peat bogs are the next most dominant land use types, accounting 

for a further 5% of the catchment.  Major urban areas form a very small part of the 

catchment, with 80% of the population of the SERBD living in small villages.  However, 

the SERBD is the most densely populated RBD after the Eastern RBD.  Despite the rural 

nature of the catchment, population pressure is putting demands on the natural resources of 

the area. 
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Figure 3.4 Land use types within the Suir catchment 

 

3.2.4 Suir Catchment Aquifer Potential 

In most Irish aquifers, groundwater flow is through fissures and fractures due to the karstic 

nature of the bedrock (largely limestone). Within the Suir catchment there are a number of 

regionally and locally important aquifers.  Figure 3.5 below was delineated from the aquifer 

map of the Geological Survey of Ireland (GSI). Moderately productive, locally important 

aquifers underlie almost half the catchment. Regionally important aquifers account for a 

further 35% approximately of aquifer types within the catchment and of these diffuse karst 

aquifers are the most common type.  In the land above these aquifers there is a strong 

connection between groundwater and surface water.   The principle aquifer types in the 

catchment are shown below: 
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Rf    :  Regionally important aquifer – fissured bedrock 

Rkd :  Regionally important aquifer – karsified (diffuse) 

Lm  :  Locally important aquifer – bedrock moderately productive 

LI    :  Locally important aquifer – bedrock moderately productive only in local zones 

Lk   :   Locally important aquifer – karsified 

PI    :   Poor aquifer – bedrock unproductive except for local zones 

Pu   :   Poor aquifer – bed generally unproductive  

  

 

Figure 3.5 Suir catchment aquifer potential 

 

3.3 The Climate of Ireland 

 
Ireland lies in the mid latitudes off the north-western European landmass between 51.43°N 

and 55.38°N and 5.38°W and 10.51°W.  The climate of Ireland is dominated by its 

proximity to the Atlantic Ocean and by the accompanying thermohaline circulation which 
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ensures that north-western Europe has a milder climate than other regions at the same 

latitude.  Average annual temperature within Ireland is approximately 9ºC. Ireland’s 

proximity to the Atlantic means that there is great year to year variability in rainfall.  Based 

on thirty year averages (1961 – 1990) precipitation receipts in lowland areas  range from 

750 mm in eastern  and north-eastern  parts to more than 1200 mm in the west, north-west 

and south-west (Keane and Sheridan, 2004).    However, there is a lot of spatial variation 

around the island with mountainous areas having much higher precipitation receipts.  For 

example, on Corrán Tuathail annual precipitation can reach a maximum of 3200 mm 

(Keane and Sheridan, 2004).   

 

There are also prominent rain shadows in the lee of mountain ranges, for example the 

Wicklow mountains.  April is generally the driest month of the year, however in southern 

areas June is the driest month while December and January are the wettest months (Met 

Eireann, 2010). In general, the dry period in Ireland extends from April to July while the 

wettest period is from October to January.   In terms of seasons, winter is the wettest season 

followed by autumn.  The average number of wet days (days with more than 1 mm of rain) 

ranges from 150 days in the east and southeast coasts to approximately 225 days per year in 

parts of the west (Met Eireann, 2010).  At present there are 15 synoptic stations where air 

pressure, wind air and soil temperatures, humidity and precipitation are measured hourly 

and a number of climatological stations where precipitation and air temperature are 

measured daily (Figure 3.6).   

 

Mean annual temperature exhibits a north-northeast to southwest gradient with average 

values varying from 9ºC in parts of the northeast to 10.6ºC in the extreme southwestern 

part of the country (Keane and Sheridan, 2004 p.34).   Lowest air temperatures in Ireland 

occur in mid-winter with mean daily maximum temperatures during the summer reaching 

16oC to 17oC in coastal areas and 19oC or 20oC inland (Keane and Sheridan, 2004).  A 

warming trend has been observed in Ireland during the twentieth century with a 

temperature increase of 0.7oC between 1890 and 2004  and six of the ten warmest years on 

record occurring since 1995 (McElwain and Sweeney, 2007).   
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Figure 3.6 The Irish synoptic weather stations 

 

The amount of solar radiation received in Ireland is strongly correlated to the seasons. 

Because of Ireland’s northerly position, the length of day varies between 7.5 hours in mid-

winter to 16.5 hours in mid summer.   There is a west to east gradient in annual sunshine 

hours from under 1200 hours in parts of the north-west, west and south-west, to 

approximately 1600 hours in the south-east. Based on mean monthly totals of sunshine 

from a sample of nine synoptic stations from 1971 to 2000, May tends to be the sunniest 

month of the year in most of the synoptic stations, followed by June (Keane and Sheridan, 

2004).  

 

Evapotranspiration (ET) is the sum of evaporation and transpiration (water flux through 

plant stomata) from land surfaces into the atmosphere. In Ireland, The energy for ET is 

supplied principally by solar radiation but also depends on humidity and wind speed.  

Potential evapotranspiration (PE) is the same flux under saturated soil conditions.  It can be 

difficult to measure accurately. In Ireland, PE is calculated from data recorded at the 

synoptic stations using the Penman-Monteith equation.  
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3.3.1 Climate Variability within Ireland 

Several authors have examined changes in the synoptic pattern of precipitation in Ireland 

(Houghton and O’Cinneide, 1976; Sweeney, 1985; Sweeney and O’Hare, 1992; Kiely, 

1999; McElwain and Sweeney, 2007). Sweeney (1985) studied the influence of Lamb 

circulation categories over Ireland.  He observed that while cyclonic and westerly 

circulation categories accounted for 66% of annual rainfall, the influence of the westerly 

circulation type had noticeably diminished between 1961 and 1984 compared to the 

previous 100 year averages. There was a substantial reduction in days with westerly 

circulation patterns from 80 per year in the 1940s to approximately 50 per year in the 

1970s, which has been linked to changes in the global circulation.  However, in terms of 

total precipitation, decreasing contributions from westerly airflows had been balanced by 

increases in precipitation from other sources, principally cyclonic and hybrid. (Sweeney, 

1985  p.478). Furthermore, days with westerly circulation increased once again in the 1970s 

(Mayes, 1991). 

   

Kiely (1999) studied changes in precipitation patterns in Ireland arising in the mid 1970s 

which were strongly correlated to a positive phase of the North Atlantic Oscillation Index 

(NAOI). The resulting enhanced flow of westerly winds increased precipitation depths and 

streamflow especially in the west of the island.  Kiely (1999) observed that there was a 

significant increase in precipitation on the west coast after the change point year of 1975, 

however there was  little increase in post-1975 annual precipitation on the east coast. 

Discharge series (1958 to 1995) for the rivers Boyne, Erne, Blackwater and Brosna were 

also examined to detect any changes in streamflow. Three rivers (the Erne, Blackwater and 

Boyne) showed increases in annual mean daily flow after the mid 1970s. Kiely (1999) 

notes that Ireland is experiencing an enhanced hydrological cycle (beginning in the mid-

1970s) which will have critical implications for flood management, particularly in the west.   

 

3.4 Trends in the Climate of Ireland 

3.4.1 Temperature  

Trends in the observed temperature of Ireland are largely consistent with the global 

temperature increase. McElwain and Sweeney (2007) used data from 11 synoptic stations 

in Ireland to evaluate key meteorological indicators of climate change.   From 1890 to 
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2004, mean annual temperatures in Ireland have risen by 0.7oC at a rate of 0.06oC per 

decade.  Nonetheless this trend is not linear, with particular increases in two periods: 1910 

to 1949 and 1980 to 2004 (McElwain and Sweeney, 2007).   During the first period the rate 

of warming was 0.23oC, while during the latter period the rate of warming increased to 

0.42oC.  McElwain and Sweeney (2007) also identified fewer frost days from 1961 to 2005 

due to a marked increase in the maximum and minimum observed temperatures.   

 

 

Figure 3.7 Percentage change in annual precipitation, 1960 – 2005 (McElwain & Sweeney, 2007) 

 

3.4.2 Precipitation 

 McElwain and Sweeney (2007) also noted changes to precipitation patterns with increases 

in precipitation in the northern and western Ireland.  Westerly synoptic station records 

showed the greatest increases in the maximum number of consecutive wet days.   The 

authors also noted increases in the number of wet days greater or equal to 10 mm in the 

west coast synoptic stations (Claremorris, Valentia and Belmullet) across all seasons 

(McElwain and Sweeney, 2007).  The general trend was for an increase in the number of 

wet days on the west coast while decreases were observed at east coast synoptic stations 
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(see Figure 3.7). These findings support those of Kiely (1999) who noted the enhancement 

of the hydrological cycle particularly in the west of Ireland and the significance of this 

development regarding fluvial flood management. 

 

3.5 Generation of the Future Climatic Data 

 

The data used in this project were obtained from the Irish Climate Analysis and Research 

Units (ICARUS) in N.U.I. Maynooth.  An in-depth discussion of the techniques employed 

in generating the downscaled data is beyond the scope of this project.  Full details are 

presented in Fealy and Sweeney (2007).  A brief description methodology employed for 

generating the statistically downscaled data is provided here followed by an outline of the 

results.  

 

The data used for the downscaling were obtained from Met Eireann. It comprised daily 

precipitation, sunshine hours and temperature from 14 synoptic stations for the period 1961 

to 2000. Only observed values were used in the downscaling.  The UK Statistical 

DownScaling Model (SDSM) data archive was used as the source of the surface and 

atmospheric data.  After these data were re-gridded to conform to the output of the Hadley 

Centre GCM, transfer functions were then calibrated to link large-scale atmospheric and 

surface variables to each of the 14 synoptic station daily precipitation data series (Fealy and 

Sweeney, 2007).   

 

GCM data from three models (the UK Hadley Centre Model HadCM3; the Commonwealth 

Scientific and Industrial Research Model CSIRO Mark2; and the Canadian Centre for 

Climate Modelling and Analysis CCCM2) and 2 emissions scenarios (A2 and B2) were 

obtained in order to derive the future climate series from the transfer functions.  This 

ensemble of models overcomes the danger of deriving a climate series from just one model 

and one emissions scenario, thus repressing much uncertainty.  An ensemble of models and 

emissions scenarios allows for a more comprehensive representation of the uncertainty 

ranges.   
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3.5.1 Temperature 

Temperature, being a relatively homogenous variable with a normal distribution was 

modelled using multiple linear regressions. The calibration period chosen for both 

temperature and precipitation was 1961 to1978 and 1994 to 2000 with the independent 

verification period 1979 to 1993.  Seasonal variation accounted for a large portion of the 

variance in the regression models of the maximum and minimum temperature data series.   

3.5.2 Precipitation 

 Precipitation is far more variable within Ireland than temperature and it is more 

challenging to produce plausible daily future precipitation output using empirical statistical 

downscaling as it varies both spatially and temporally throughout the island. 

 

Precipitation occurrence: Logistic regression, one of the family of Generalised Linear 

Models (GLM) was used to model wet and dry day sequences of precipitation.  

 

Precipitation amounts:  A gamma distribution was employed to model precipitation 

amounts.  

 

Radiation: The Angstrom formula together with sun hours was employed to convert sun 

hours to radiation, as only sun hours are recorded in all synoptic stations.  Local climate 

variables as well as large scale predictors were used in the regression model as local 

predictors can provide additional useful information at a small spatial scale.  

  

Potential Evaporation (PE):  Precipitation occurrence, precipitation amounts, and radiation 

were used as predictors for the regression model for PE.  Wind was excluded as a predictor 

variable as it has a strong seasonal dependence, being more common during the winter 

months than in other seasons of the year.  Potential evaporation is also at its minimum 

values during the winter months.   

3.6 Statistical Downscaling Results 

3.6.1 Temperature 

Results for three distinct time periods during the present century were modelled for 

temperature and precipitation.  These are the 2020s (2010 to 2039), the 2050s (2040 to 

2069) and the 2080s (2070 to 2099).  Results for the 2050s and 2080s will be presented 
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here as analysis of data from the 2020s has been emitted from this project due to the 

predominance of natural climate variability. The seasons  follow those used by Met Eireann 

i.e.. Winter is December, January and February (DJF); Spring is March, April, and May 

(MAM); Summer is June, July and August (JJA); and Autumn is September, October and 

November (SON).  

 
2050s: The HADCM3 shows the smallest temperature range between the 14 synoptic 

stations by the 2050s while the CCCM shows the greatest between-station temperature 

range.  While all the models simulate a warming during all the seasons by this period, the 

temperature difference is greatest in the winter with a difference of almost 2oC between the 

warmest station according to the CCCM GCM and the coolest station according to 

HADCM3.   
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Figure 3.8 Seasonal temperature ranges in the 2080s for stations showing the smallest and greatest 

changes for the A2 emissions scenario (Fealy & Sweeney, 2008) 

 

2080s:  The temperature increase across all seasons is greatest by the 2080s.  The 

temperature range between seasons is also greatest by this period.   The range is again 

greatest in the winter season with a difference between the warmest and coolest synoptic 

station and model of almost 3oC, while in the summer season the range is approximately 

2oC (see Figure 3.8).   

3.6.2 Precipitation 

The only season in all the future time periods in which all the GCMs agree on the direction 

of change is the summer season where all the models  show a decrease in precipitation 
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receipts, in particular the CSIRO model which shows the greatest decrease during each time 

period.   However the ranges differ between time periods. 

 

2050s:  By the 2050s both the winter and summer seasons show a definite trend with all 

models simulating increases in winter precipitation receipts. Decreases in summer receipts 

more marked than those in the 2020s.   

 
2080s:  Winter ranges in this period widen from a slight decrease to an increase in 

precipitation of approximately 40%.  The only season in which all models agree during this 

period is again in the summer period.  All the results indicate that large spatial and seasonal 

ranges in precipitation occur even on a small island like Ireland.  This further illustrates the 

importance of taking account of local topographical and climate variables when 

downscaling (see Figure 3.9).   
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Figure 3.9  Seasonal precipitation ranges for stations showing the smallest and greatest changes for the 

A2 emissions scenario (Fealy & Sweeney, 2008) 

 

3.6.3 Changes in Extremes of Temperature and Precipitation 

Changes in the projected extremes of temperature and precipitation are important in a 

project such as this, which is investigating possible changes to magnitude and frequency of 

fluvial flooding for the present century due to climate change.  The proximity of Ireland to 

the Atlantic Ocean and its small size buffers the island from extremes of precipitation and 

temperature in comparison to the climate of mainland Europe where there is a marked 

continental effect. However, variability is an intrinsic aspect of all climates and the severe 
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flooding in the western and southern areas of Ireland in November 2009 may become more 

frequent throughout the course of the present century.  

 

The period of unsettled weather started in October 2009 and the amount of precipitation 

falling on already saturated ground exacerbated the flood conditions.  November 2009 

rainfall totals were the highest November totals on record in most synoptic stations, 

including the long-term stations at Valencia and Malin Head, where records extend back 

over 100 years.  Indeed, Valencia station recorded its highest total (360 mm) of any month 

since records began in 1866 (McGrath et al., 2010).  Parts of the Shannon, Suck and Lee 

catchments saw their greatest floods in living memory as river levels rose to unprecedented 

heights.  While it is not possible to infer trends from such extreme events or indeed from a 

series of events, flooding of this magnitude may become more common in the future.   

 

TEMPERATURE INDICES OF EXTREMES 
Tmax 90

th
 Percentile Hot day threshold 

Tmin 90
th

 Percentile Cold day threshold  
Number of frost days Frost days 
Heatwave duration Longest heatwave 

  

PRECIPITATION INDICES OF EXTREMES 

90
th

 percentile of rain-day amounts Heavy rainfall threshold 

Greatest 5-day total Greatest 5-day accumulation 

Daily intensity (rain per rain-day) Average wet-day rainfall 

Number of consecutive dry-days Longest dry period 

% total rainfall from events >90
th

 percentile Heavy rainfall proportion 

No. of events >90
th

 percentile of rain days Heavy rainfall days 

 

Table 3.1 Indices of extreme temperature and precipitation used in the analysis (Fealy and Sweeney, 

2008) 

 

As noted above, downscaling may simulate temperature and precipitation extremes that are 

too moderate compared with observations (Kyselỳ, 2002). Fealy and Sweeney (2007, 

p.2083) state that “difficulties still exist with predicting extreme precipitation events, which 

tend to be underestimated by the methodology employed”.  The authors also observe that as 

the downscaling focused primarily on producing mean climate projections for the present 

century, changes in the extremes of precipitation and temperature are likely to be 
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underestimated (Fealy and Sweeney, 2008).  Nevertheless, ten core indices of extremes 

were selected, based on those in the STARDEX (2006) project (see Table 3.1).   

3.6.4 Changes in Extreme Temperature 

 Significant trends (1% significance level) were observed at all stations for all temperature 

indices selected.  A significant decrease in the number of frost days per decade was 

associated with a marked increase in cold night temperatures. Heat wave durations were 

found to increase by 3 to 4 days per decade according to the data.  Warming at all stations 

was also suggested according to the hot day threshold and was particularly marked in 

inland synoptic stations away from the coast.   

3.6.5 Changes in Extreme Precipitation 

 An increasing trend was suggested in the greatest 5-day precipitation totals for eight of the 

synoptic stations studied (5% significance level) which are located in the midlands and the 

east coasts.  Conversely, a positive trend was also suggested in the maximum number of 

consecutive dry days. An increasing trend was evident for this from the west to the east 

coasts.  Trends in the indices of heavy rainfall days, heavy rainfall threshold and average 

wet-day amount were found to be small but significant.  Fealy and Sweeney (2007) 

highlight the fact that the methodology employed tends to underestimate extreme 

precipitation events.  Consequently, the results should be interpreted as indices of likely 

changes based on the climate projections employed (Fealy and Sweeney, 2008 p.32).  

3.7 Analysis of the Downscaled Climatic Data for the Kilkenny Synoptic Station 

 
This section focuses on an analysis of the statistically downscaled climatic data for the 

Kilkenny synoptic station, as this station is located closest to the Suir catchment and is the 

source of the future climatic data employed in the project. The main climatic parameters of 

temperature, precipitation and potential evaporation were analysed in order to detect 

percentage changes in precipitation and potential evaporation, and degree changes in 

temperature for the 2050s and the 2080s due to climate change.  Nonetheless, while one 

GCM output may be more extreme, it is important to note that the structure of hydrological 

models is highly non-linear and therefore this influences greatly the data output from such 

models.   
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3.7.1 Projected Changes in Seasonal Temperature 

 

 A2 B2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.10 Degree changes in seasonal temperature for all GCMs and scenarios for the 2050s and the 

2080s (Fealy and Sweeney, 2007) 

 
 
Figure 3.10 above details the projected seasonal changes in temperature for the 2050s and 

the 2080s for both emissions scenarios.  All GCMs model temperature increases across all 

seasons in the 2050s and the 2080s.  In the 2050s under the A2 scenario, both CSIRO and 

CCCM show a marked temperature increase in winter temperature (over 2.5oC), however 

HADCM3 models a more conservative increase and the uncertainty range is particularly 

marked. Indeed, the uncertainty range is marked for all seasons in the 2050s.  By the 2080s 

the uncertainty range is again high for winter with CSIRO modelling a dramatic increase in 

temperature of ~4.2oC. Apart from the A2 scenario in the 2050s, the temperature ranges are 

marked by higher increases and a greater uncertainty range in winter (all models and 

scenarios) and autumn (all models and scenarios apart from the A2 scenario in the 2080s).  
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Another notable point is that CCCM models the highest increases in summer and autumn 

temperatures across all scenarios and time slices and CSIRO models the greatest increases 

in autumn and winter temperature.  Notably, too, HADCM3 models the lowest increases in 

temperature across all time slices and scenarios, apart from the spring and summer in the 

2080s under the A2 scenario. Greater increases in temperature are also projected for the A2 

than the B2 scenarios for both time periods.  The dramatic increases in seasonal 

temperatures suggested by the GCMs for both time slices could have very negative effects 

on a host of natural and anthropogenic systems.  

3.7.2  Projected Changes in Seasonal Precipitation   

All GCMs model increases to precipitation during the winter season for all scenarios and 

time slices, however unlike the temperature projections, there is more agreement among the 

models for the percentage change in precipitation during the winter season for both 

scenarios and time slices apart from the A2 scenario in the 2050s (see Figure 3.11).  By the 

2050s under the A2 scenario, CSIRO and CCCM model an increase of 20% in winter 

precipitation.  There is no change in precipitation according to HADCM3 in the 2050s. 

However under the B2 scenario HADCM3 models a winter increase of 10% while CSIRO 

again models a 20% increase in precipitation.  The summer season shows the greatest range 

of uncertainty in the 2050s (under the A2 scenario). CCCM and HADCM3 show a decrease 

in precipitation of ~10%.   Conversely, CSIRO A2 models a decrease of almost 30% in 

precipitation.  The models show much more agreement in the 2050s for the B2 scenario, 

with a notable agreement in the spring, and an uncertainty range of ~10% for both the 

summer and the autumn.  

 

In the 2080s, CSIRO A2 again models the greatest increase in winter precipitation. 

However, it is only slightly greater than the 2050s, at 23%. The uncertainty range is smaller 

than the 2050s with HADCM3 again modelling the smallest increase of 8% in winter 

precipitation.  The range of uncertainty is greater for spring and by summer HADCM3 

models the greatest decrease in precipitation of -30%, while CCCM models a more modest 

decrease of ~12%. In the B2 scenario there is general agreement among the models as to 

the percentage increase in precipitation during the winter time. Nonetheless, the range of 

uncertainty in the spring is much greater, with disagreement between the GCMs as to the 

direction of change.  CCCM models a decrease of -15%, while CSIRO and HADCM3 
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model a slight increase of 2% and 5% respectively.  The percentage decrease in summer 

precipitation is not as extreme as the A2 scenario with HADCM3 again modelling the 

greatest decrease in precipitation of ~18%; however the uncertainty range is comparable to 

that of the A2 scenario. There is more agreement among the models in the autumn season. 

 

A2       B2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.11 Percentage changes in seasonal precipitation for all GCMs and scenarios for the 2050s and 

the 2080s  (Fealy and Sweeney, 2007) 

 

3.7.3 Projected Changes in Potential Evaporation 

All the GCMs show agreement in the direction of change in potential evaporation (PE) for 

both scenarios and time slices, especially for the autumn and winter seasons (Figure 3.12).   

What is also notable is that HADCM3 models the lowest reductions during the winter and 

autumn periods, and the greatest increases during the summer months for both time slices 

and scenarios, apart from the B2 scenario in the 2080s when CCCM models a slightly 

higher increase.  Moreover, CSIRO consistently models the greatest decreases in PE for the 

2050s

-30

-20

-10

0

10

20

30

DJF MAM JJA SON

P
e

rc
e

n
ta

g
e

 c
h

a
n

g
e

2080s

-40

-30

-20

-10

0

10

20

30

40

DJF M AM JJA SON

P
e

rc
e

n
ta

g
e

 c
h

a
n

g
e

HADCM 3 CSIRO CCCM  

2050s

-30

-20

-10

0

10

20

30

DJF MAM JJA SON

P
e

rc
e

n
ta

g
e

 c
h

a
n

g
e

2080s

-30

-20

-10

0

10

20

30

DJF MAM JJA SON

P
e

rc
e

n
ta

g
e

 c
h

a
n

g
e

HADCM3 CSIRO CCCM  



 43 

winter period for both scenarios and time slices. In the 2050s during the winter season 

CSIRO and CCCM A2 model a decrease in PE of -15%, while HADCM3 models a more 

modest decrease of -8%.  By summer, the models agree on a slight increase of ~4%.  

 

        A2               B2 
 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 Percentage changes in seasonal PE for all GCMs and scenarios for the 2050s and the 2080s  

(Fealy and Sweeney, 2007) 

 

The uncertainty ranges are higher for the B2 scenario across all seasons in the 2050s, 

however the maximum and minimum values of percentage change are comparable to those 

of the A2 scenario.  In the 2080s, HADCM3 A2 models an increase in PE of over 10% 

during the summer period, while the other two models output values close to those of the 

control period.  Decreases in PE in the winter are greater than the 2050s with CSIRO 

modelling a decrease in PE of nearly -25%, while CCCM and HADCM3 show more 

agreement with -15%.  Decreases in spring are closer to control period value at ~-5% for all 

models, while decreases in the autumn are more pronounced (between -7% and -15%).  
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Percentage changes according to the B2 scenario are not as extreme for any season apart 

from autumn. 

3.8 Conclusion 

 

This chapter began with a description of physical characteristics of the Suir catchment.  

These will be revisited in the Chapter 5, which focuses on the parameterisation of the 

rainfall-runoff models. Recent trends in the climate of Ireland (largely consistent with 

global scale ones and include an average temperature increase of 0.7oC from 1890 to 2004) 

and changes to precipitation patterns with increases in precipitation, particularly in northern 

and western Ireland were then outlined (McElwain and Sweeney, 2007).  This was 

followed by a brief description of the methodology employed for generating the future 

climatic data being used in this project. Regarding the statistical downscaling of extreme 

precipitation, Fealy and Sweeney (2007) caution that statistical downscaling tends to 

underestimate such extremes.   

 

In the concluding section of the chapter an analysis was made of the downscaled future 

climatic data for the Kilkenny synoptic station, from where the future data employed in this 

project originates.  The increases that are projected for temperature, precipitation and PE 

for the 2050s and the 2080s may have a marked effect on catchment hydrology and extreme 

events. This is particularly relevant as the highest percentage increase to precipitation is 

projected for the winter, which is main flood season in Ireland.  Notably too are projected 

rises in temperature and evaporation (during the summer) which could have a marked effect 

on soil moisture storage in a highly permeable, baseflow dominated river like the Suir.  

These data will be used as input to HYSIM and HBV-Light in order to generate future time 

series data for analysis. The next chapter will outline the differences in the structures of the 

rainfall-runoff models.   
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4 Chapter 4: Choice and Structure of the Rainfall-Runoff Models 

 

4.1 Introduction 

 
This chapter begins by giving reasons for the choice of the hydrological models employed 

in the project, followed by a discussion of hydrological model development.  Different 

classes of hydrological models will be presented and the procedure for building 

hydrological models will be outlined. The rationale for the choice of lumped conceptual 

rainfall-runoff models will be given.   The structure of the two lumped conceptual models 

employed in this project, HYSIM and HBV-Light, will then be outlined. Although both 

models are conceptual and lumped, there are also many differences in structure and in the 

philosophy behind the development of the models.  The chapter will conclude with a 

comparison of the soil moisture accounting routine and the routine for the generation of 

runoff in both models.   

 

4.1.1 Reasons for the Choice of Hydrological Models 

Both HYSIM and HBV-Light were chosen for this project as they have been employed 

successfully in recent research on the effects of climate change on catchment hydrology in 

Ireland and both models have proved plausible representations of the hydrological 

behaviour of Irish rivers (Charlton et al., 2006; Murphy and Charlton, 2008; Semmler et 

al., 2006; Steele-Dunne et al., 2008; Wang et al., 2006).  However, to date they have not 

been employed together in an analysis of the effects of climate change on an Irish 

catchment.  

 

One of the ways in which hydrological models are defined is by the degree of parsimony 

i.e. that a model should only be as complex as is necessary to simulate observations 

precisely enough to be useful (Beven, 2000).  This is another reason for choosing the two 

models. Although both models are lumped, HYSIM has a more complex, physically 

realistic structure than HBV-Light, whose structure is based on parsimony.   
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4.2 Hydrological Model Development 

 

4.2.1 Classes of Hydrological Models 

A model is a conceptual representation of a real-world complex system. In hydrology, 

models have been applied to a range of issues in both surface and sub-surface water 

systems such as surface and groundwater flow, water quality, geo-chemical properties of 

water and sediment transport. Refsgaard and Knudsen (1996) distinguished between three 

classes of hydrological models: 

 

• empirical  black box models 

• lumped conceptual models 

• physically based distributed models 

 

The unit hydrograph is a simple example of an empirical black box model.  Black box 

models are based on the analysis of inputs and outputs with little explanation of the 

physical principles of the underlying processes. Physically based distributed models such as 

MIKE-SHE have parameters that have a physical counterpart within the catchment (soil, 

land use, groundwater, vegetation etc.). They also divide the catchment into distinct spatial 

units to take account of the spatial heterogeneity within a given catchment. However, 

distributed models require much computing power and have large data requirements. For 

this reason lumped conceptual models have been the models of choice for climate impact 

assessment studies.  Moreover, all hydrological models, no matter how sophisticated, are 

lumped at some scale, because “their equations (and therefore their parameters) are 

aggregate descriptions…of real world processes” (Wagener et al., 2003, p.398).  In this 

thesis one particular class of hydrological model, the lumped conceptual rainfall-runoff 

model, will be employed.  

 

Like all hydrological models, lumped conceptual models are a gross simplification of the 

processes operating within a unique open flow system such as the catchment system. These 

models are based on the developer’s concepts of the main processes governing runoff 

within a catchment and do not necessarily have their basis in rigorous physical laws 

(Bergström, 1976).  Furthermore, these models do not allow for spatial descretisation; they 

treat the catchment as a single spatial unit without allowing for heterogeneity in soils, 
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topography, vegetation or land-use.  However, their low data requirements (precipitation, 

ET, temperature and flow) mean that lumped conceptual models have been the models of 

choice  in many catchment studies (e.g., Charlton et al., 2006; Driessen et al., 2009; Perrin 

et al., 2001; Refsgaard and Knudsen, 1996; Steele-Dunne et al., 2008; Uhlenbrook et al., 

1999; Wilby, 2005; Wilby and Harris, 2006). In this project two lumped conceptual 

rainfall-runoff models, HYSIM (Hydrological Simulation Model) and HBV-light 

(Hydrologiska Byråns Vattenbalansavdelning), have been chosen to simulate future flow in 

the Suir catchment.  While structurally there are similarities (e.g. in both models the 

catchment system is represented by a series of stores) each model structure is also defined 

in a subjective way.  

 

Both HBV and HYSIM were developed during the 1970s, shortly after digital computers 

become more widely available. Other models which developed at this time and are still in 

use include the HSPF and Sacramento models from the USA and the Tank model which 

was developed in Japan. As the digital age progressed and hydrological model structures 

became more complex, Dawdy and O’Donnell (1965 cited in Beven, 2000) were among the 

first researchers to attempt to define a generic model structure with just a few parameters 

(see Figure 4.1).  The structure that they proposed is based on a series of stores (reservoirs). 

The model structure consists of soil moisture and groundwater stores which are common to 

many conceptual rainfall runoff models. Both HYSIM and HBV have similarities with this 

generic type model in that their structures are a series of different stores, and they are both 

soil moisture storage type models (Perrin et al., 2001).  However, there are also differences 

in the degree of complexity in the two model structures.  HBV has a relatively simple 

structure with 9 free parameters, whilst HYSIM is a more complex model with 22 

hydrology parameters and 8 hydraulics parameters (albeit that all but four of these 

parameters can be estimated from a knowledge of catchment characteristics). This reflects 

the subjectivity of the model developer’s ideas and perceptions about the most important 

processes which lead to runoff in a catchment.   
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Figure 4.1 Schematic diagram of the conceptual rainfall-runoff model in Dawdy and O’Donnell (1965) 

(taken from Beven, 2000) 
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Figure 4.2 Procedure for building hydrological models. After Beven (2000) 

 

4.2.2 Building Hydrological Models 

The subjectivity in the model developer’s beliefs is evident from the beginning of the 

model development procedure.  The process of building hydrological models starts with the 

perceptual model (see Figure 4.2).  This is a set of personal beliefs about the different 

processes which control the hydrological response of a catchment and is not limited by 

mathematical theory. In effect, it is the model developer’s hypothesis about the main 

processes leading to runoff (Beven, 2000). Also contained within the perceptual model are 

the developer’s views about the type of hydrological model to be built, e.g., whether the 

model should be parsimonious or physically realistic.  Such decisions take place at the level 

of the perceptual model.  

 

 The conceptual model is based on the perceptual model and is defined in the form of 

mathematical equations (Beven, 2000).   At each stage of this model building process there 

is increasing simplification and increasing uncertainty.  The equations of the conceptual 

model are a gross simplification of the qualitative descriptions within the perceptual model. 

Beven (2002, p.2467 italics given) notes that “The perceptual model may only be as 

realistic as current understanding allows. The conceptual model will, however, be wrong 
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and will be known to be wrong…but will still have the possibility of being approximately 

realistic”. This process results in the procedural model which takes the form of computer 

code (Beven, 2000).   In order to obtain output from a hydrological model, its system must 

also be closed.  This presents further uncertainty, i.e. attempting to model a unique open 

flow system such as a river catchment within the closed system of the hydrological model 

(Beven, 2002).  Indeed, Beven (2002, 2009) has identified the central problem of 

environmental modelling as the uncertain mapping of the landscape space (in this case, the 

river catchment) into the model space.   

 

At the perceptual model level within HYSIM and HBV-Light there are notable differences 

in the philosophy of model development.  In Bergström (1976, p.7) the author notes that 

only the most important parts of the runoff-generating process were included in the HBV 

model as a detailed description of all components of the hydrological would lead to a model 

of excessive complexity. The HBV model was developed based on the hypothesis in Nash 

and Sutcliffe (1970) of building a simple model and only adding further complexity insofar 

as the model efficiency improved and the parameters remained stable.  Thus, a guiding 

principle in the development of the HBV model was parsimony.  Furthermore, soon after 

building in more complexity the point was reached at which model performance did not 

improve (Bergström, 1991).   

 
A different philosophy underpins the perceptual model on which HYSIM is based.   One of 

the major objectives in the development of the model was that it should be physically 

realistic “and in particular use relationships whose validity has been demonstrated 

experimentally” (Manley 1978, p.190).  Manley (1978) contrasts the approach of Nash and 

Sutcliffe (1970) with that of Dawdy and O’Donnell (1965) who argue that a model should 

be as physically realistic as possible, with physical parameters reflecting the properties of a 

catchment and processes within it which lead to runoff.  Manley (1978) adds that the 

HYSIM model fulfils many of the requirements of such a physically based model.  

Wagener et al. (2004) note that such models (e.g. the Stanford Watershed Model, the 

Sacramento Model and HYSIM) show a high level of complexity, especially within the soil 

moisture routine.  HYSIM exhibits this complexity with 13 basic hydrology parameters, 9 

advanced hydrology parameters and 8 hydraulic parameters.  However, these models can 

suffer from over-parameterisation, whereby there are enough degrees of freedom within the 
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model to give a good fit to observed data after optimisation. Conversely, the degrees of 

freedom mean that many other parameter combinations may give equally good fits to the 

observed data (Wagener et al., 2004).  

 

Wagener et al., (2004, p.42) identify four sources of uncertainty within the modelling 

process: 

 

Data uncertainty:  errors introduced by the input data.  

Model structural uncertainty: simplifications and errors within the model in the description 

or real-world processes, errors in the model code. 

Model specification uncertainty:  arises from data and model structural uncertainty and is 

the inability to identify the globally optimal model (parameter set) from the information 

provided by the data.  

Uncertainty due to unknown initial conditions:  the internal states of the model are usually 

unknown at the beginning of a calibration or modelling exercise.  However, this can be 

minimised by using a warming-up period.   

 

Wagener et al. (2004) further emphasise that even if the above uncertainties could be 

minimised, there is still irreducible uncertainty due to the random nature of processes 

within the river catchment.  Input data uncertainty (e.g. precipitation) is an important 

external source of uncertainty at the local stage of a climate impact analysis and can arise 

from instrument and measurement error, inadequate spatial or temporal resolution and the 

chaotic nature of weather systems (e.g., Melching, 1995; Georgakakos et al., 2004; Butts et 

al., 2004). However, it will not be evaluated within this thesis. Model parameter uncertainty 

will be examined through the GLUE methodology and model structural uncertainty will be 

evaluated through analysing differences in the output of future streamflow from both HBV-

Light and HYSIM.   
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4.3 Structures of the Rainfall Runoff Models 

 

4.3.1 Description of HYSIM 

In Manley (1976, p.341) the author states that “a catchment may be defined as a series of 

natural reservoirs of moisture and the calculation of the transfers between these reservoirs 

represents the central problem of catchment modelling”. HYSIM is a lumped conceptual 

rainfall runoff model which can be run on a daily time-step (Manley, 2003). Parameters are 

calculated both through estimation of physical properties of a catchment and through 

automatic calibration. Unlike other conceptual models where parameters do not necessarily 

have a physical interpretation within the river catchment, in HYSIM every effort has been 

made to give the parameters a physically realistic interpretation (Manley, 2003).  For 

example, physically identifiable parameters such as soil rooting depth, impermeable 

proportion and bubbling pressure are included in the model.   

 

HYSIM parameters are divided into hydrological and hydraulic parameters.  There are also 

a precipitation correction factor and a potential evaporation correction factor.  The 

hydrological parameters can be further subdivided into soil, groundwater, and land use 

parameters.  Of these parameters, most are estimated from knowledge of catchment 

characteristics.  There are, however, four process parameters (saturated permeability- 

horizon boundary; saturated permeability – base lower horizon; interflow runoff from upper 

horizon at saturation; interflow runoff from lower horizon at saturation) that are adjusted 

with reference to the flow record, during calibration (Manley, 1978).   HYSIM can use five 

types of input data: precipitation, potential evaporation (PET), potential snowmelt, 

discharges to and abstractions from the river system, abstractions from and augmentation of 

groundwater.  The model can also be run in a semi-distributed basis to simulate the natural 

heterogeneity of a river catchment. However, in this project the Suir catchment is treated as 

a single unit and both HYSIM and HBV-Light are run in lumped mode in order to achieve 

standardisation in the output of both models. HYSIM has been successfully applied in 

several studies (Charlton et al., 2006; Murphy and Charlton, 2008; Pilling and Jones, 

2002). 
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Figure 4.3 Hysim model structure 

 
This store is often reduced through potential evaporation, which is allowed for in HYSIM.  

Any moisture in excess of the storage limit is transferred onto the next store.  In the model 

the impermeable proportion of the catchment is also taken into account as a percentage of 

the excess moisture from the interception storage is diverted to minor channel storage.  The 

next store is the upper soil horizon reservoir.  This represents moisture held in the A 

horizon of the soil profile. This reservoir has a finite capacity. At more than 15 atmospheres 

pressure evaporation takes place at a rate lower in proportion to the remaining storage.  

 

Interflow is the next moisture loss from the model.  The equation for interflow in Manley 

(2003) is given as: 

 

Interflow = Rfac1(Se) 
(2+3γ)/γ 
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Where Rfac1 is interflow runoff from the upper soil horizon at saturation, Se is the effective 

saturation in the upper and γ is the pore size distribution index parameter.  The final 

moisture transfer from the upper to the lower soil horizon is percolation, which is given by 

the equation: 

 

Percolation =  Kb(Se) 
(2+3γ)/γ 

Where Kb is the saturated permeability at the horizon boundary and Se is the effective 

saturation in the upper horizon. 

 

The next store in HYSIM is the lower soil horizon reservoir (still in the rooting zone), 

which represents the B and C horizons of the soil profile.  Excess evaporation is subtracted 

from this store at the potential rate, subject to capillary suction of less than 15 atmospheres.  

Interflow runoff and percolation to groundwater are simulated with similar equations to the 

upper soil reservoir.  Three parameters define the rate of the movement of moisture in the 

soil layers: the pore size distribution index, saturated permeability and bubbling pressure.   

 

There are two stages of percolation represented in HYSIM: percolation for the upper soil 

horizon to the lower soil horizon and percolation from the lower soil horizon to 

groundwater.  Within the model, inter-horizon percolation is effected by capillary suction 

while the percolation to groundwater is assumed to be due to gravity only.  Transitional 

groundwater is the next store in the model.  This is an infinite reservoir and is the first stage 

of groundwater storage in HYSIM. In karstic limestone or chalk catchments many fissures 

holding water may lead to a stream rather than to deeper groundwater and this effect is 

represented in the transitional groundwater reservoir.  The last store is the groundwater 

reservoir, another infinite reservoir that is assumed in HYSIM to have a constant discharge 

coefficient.  Minor channel storage is also represented in HYSIM to simulate the routing of 

flows in minor streams and ephemeral channels if the catchment is saturated.   

4.4 The HBV Model 

The HBV model was first developed at the Swedish Meteorological and Hydrological 

Institute (SMHI) to be used for hydrological forecasting (Bergström, 1976; 1992).  It has 

now become the standard model for runoff simulations in Nordic countries. The HBV 

model is a semi-distributed conceptual model which is usually run in daily time-steps.  The 
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model simulates daily streamflow using daily rainfall, temperature and potential evapo-

transpiration (PET) as inputs. Each river catchment can be divided into a number of sub-

catchments and a contributing area approach used in the soil routing routine when the 

model is run in semi-distributed mode.   

 

The structure of the HBV model is based on parsimony.  In the model there are three 

reservoirs: oil moisture, upper groundwater and lower groundwater.  Within HBV are 

process parameters which do not necessarily have a physical correspondence within a 

catchment.  Reasonable ranges for the parameter values are first estimated and then 

calculated through calibration. The only physical features to be specified within the model 

are mean catchment elevation and elevation of precipitation and temperature gauges.  

 

4.5 HBV-Light Model 

HBV-Light (Seibert, 2005) is a more recent version of the HBV model.  HBV-Light 

Version 2 employed in this project corresponds to the SMHI version 6 (Bergstrom, 1992).   

There are two modifications to the original version of the model.  A “warming up” period 

has been included in HBV-Light and the routing parameter MAXBAS can now incorporate 

non-integer values (Seibert, 2005).  A further advantage of the HBV-Light model is that 

Monte-Carlo simulations can be performed to take account of parameter uncertainty and 

equifinality of model output using random numbers from a uniform distribution within the 

set ranges for each parameter.   This model has also been successfully employed in several 

Irish studies evaluating the effects of climate change on river catchments (e.g., Wang et al., 

2006: Steele-Dunne et al., 2008).  

 

In this project the HBV-Light model is run in lumped mode. The structure of the model is 

shown below (see Figure 4.4). The HBV-light model consists of routines for snow 

accumulation and melt, soil moisture accounting, runoff response and river routing. In the 

snow routine, precipitation falls as snow when the temperature falls below a threshold value 

(TT). The snow routine consists of three parameters (TT, SFCF, and CWH) and can be 

distributed depending on whether different elevation and vegetation zones are specified 

within the model. 
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Figure 4.4 Simplified schematic of the HBV-Light model structure.  After Seibert (2005) 

 
 

  The schematic is shown without the snow routine as this component of the model is rarely 

activated in Ireland where air and soil temperatures seldom fall below the threshold where 

snow is common.  Furthermore, snowfalls in winter rarely amount to more than 20 to 30 

mm and do not last long except in upland areas (Keane and Sheridan, 2004).  The three 

sub-routines in the HBV-Light model are described below.  

4.5.1 Soil Moisture Routine 

Parameters: The soil moisture accounting routine consists of a soil box (SM) and is 

controlled by three free parameters: FC, LP and BETA.    

 

Soil Moisture Routine Parameters 

FC: maximum soil moisture storage 

LP: threshold value of soil moisture above which actual ET equals potential ET 

BETA: determines relative contribution to runoff from rain or snowmelt 
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Rainfall and snowmelt (P) are divided into water filling the soil box and groundwater 

recharge depending on the relation between the water content of the soil box (SM [mm]) 

and its maximum value (FC [mm]) (see Figure 4.5). It should be noted here that FC is a 

model parameter and is not necessarily equal to “field capacity” values. Actual evaporation 

from the soil box equals potential evaporation if SM/FC is above a threshold LP.  BETA 

determines the relative contribution to runoff from rainfall or snowmelt.  Bergström (1976) 

acknowledges that the simplicity of this simple linear reservoir means that it is incapable of 

representing the great heterogeneity in the soils of most catchments and that the response 

will be very abrupt if the soil moisture exceeds the parameter FC.  Therefore, in most 

applications of HBV the catchment is divided into a number of soil zones in the model, and 

a distribution of FC is assumed.  However, both Braun and Renner 1992) and Uhlenbrook 

et al. (1999) tested the HBV model with the soil routine and response function fully lumped 

(although the snow routine was distributed into different elevation zones) and got 

satisfactory results comparing model output to observed data. Nonetheless, Uhlenbrook et 

al. (1999) achieved better model simulation results with increased distribution of the sub-

routines.  In this project each model is employed fully lumped, in order to compare like 

with like.   

  

Figure 4.5 Contributions from precipitation to soil moisture storage and to upper groundwater store 

(Seibert, 2005) 

 

4.5.2 Runoff Response Function 

This function transforms excess water from the soil moisture routine into runoff for the 

catchment.  It distributes generated runoff in time, so that quick and slow components of 
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the recession are obtained (Harlin, 1991).  The runoff response routine consists of two 

stores: an upper groundwater reservoir (SUZ) and a lower one (SLZ). Groundwater 

recharge is added to the upper groundwater reservoir (SUZ [mm]). PERC [mm d-1] defines 

the maximum percolation rate from the upper to the lower groundwater tank (SLZ [mm]).   

The lower groundwater reservoir is a simple linear reservoir representing contributions to 

baseflow.  This reservoir is filled by percolation (PERC) from the upper box and K2 is the 

recession coefficient.  The reservoir also includes the effects of precipitation and 

evaporation over lakes in the catchment.  

 

Runoff Response Function Parameters 

UZL: threshold separating Q0 and Q1 flow 

PERC: percolation from upper (SUZ) to lower (SLZ) groundwater box. 

K0: recession coefficient upper groundwater storage (SUZ) 

K1: recession coefficient upper groundwater storage (SUZ) 

K2: recession coefficient lower groundwater storage (SLZ) 

 

The upper reservoir starts to fill if soil moisture exceeds percolation capacity (PERC).  

Storage in the upper reservoir (SUZ) is depleted by two recession coefficients K0 and K1, 

depending on whether SUZ is above a threshold value, UZL [mm], or not.  This reservoir 

models the response to flood periods.  Peak flow (Q0) activates the three recession 

coefficients (K0, K1 and K2) if the threshold parameters PERC and UZL are exceeded.  

Intermediate flow (Q1) activates K1 and K2 if PERC is exceeded.  Baseflow (Q2) activates 

only the K2 recession coefficient. 

4.5.3 Routing routine 

The contributions from the upper and lower reservoir are added together to compute runoff. 

The latter is then transformed by a triangular weighting function defined by the parameter 

MAXBAS to give simulated runoff [mm d-1].  This parameter is employed to account for 

the dampening of the flood pulse in the river before reaching the catchment outlet (Harlin, 

1991). 

 

Routing Routine Parameter 

MAXBAS: determines the base in an equilateral triangular weighting function 



 59 

4.6 Comparison of HYSIM and HBV-Light Model Structures 

 

The structures of HBV-Light and HYSIM will be compared under: 

1. Soil moisture accounting routine 

2. Generation of runoff and transformation of the hydrograph (Bergström, 1976). 

4.6.1 Soil Moisture Routine of the HBV-Light Model 

 In both HBV-Light and HYSIM the soil moisture accounting routine is the part of the 

model which determines the main contribution to runoff from precipitation. However, each 

model simulates the movement of moisture through the soil layers very differently. As the 

philosophy underlying the HBV-Light model is parsimony, the soil moisture accounting 

procedure was developed from greatly simplified assumptions.  Bergström (1976, p.58) 

adds that factors governing the retention and transport of moisture in heterogeneous soil 

columns are so complex that “striving for a physically correct representation of the 

processes in the soil moisture zone would lead to a very complex model”. 

 

 

Figure 4.6 Soil moisture accounting routine in HBV-Light 

 

 In HBV-Light the soil moisture routine includes all losses, including interception.  

Consequently, it is more an index of catchment wetness than a detailed description of the 

soil environment (Bergström, 1976). Surface runoff is not explicitly simulated within the 

model, as the water is controlled by conditions in the soil moisture zone before any runoff 

can be generated (Bergström, 1976). The soil moisture routine consists of just one linear 

reservoir (SM) and three free parameters (see Figure 4.6).  The soil reservoir has to be filled 

to a certain level (FC) before any moisture can permeate through to the groundwater zone. 

The parameter FC therefore represents the maximum available moisture in the soil zone.  

LP is a parameter representing the fraction of FC above which actual evapo-transpiration 
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(AET) equals potential evapo-transpiration (PET). BETA is a parameter that determines 

relative contribution to runoff from rain or snowmelt. Inter-flow runoff is not simulated 

within the soil moisture routine.  With just one reservoir and three free parameters, the soil 

moisture routine in HBV-Light is thus extremely simplified. 

4.6.2 Soil moisture routine in HYSIM 

In contrast to the philosophy of parsimony underlying the HBV model, the development 

philosophy of HYSIM is based on a physically realistic interpretation of the catchment. 

Consequently, its structure is more complex than that of HBV-Light with six reservoirs 

(interception; upper soil; lower soil; transitional groundwater; groundwater) in comparison 

to three in HBV-Light (see Figure 4.7). Before precipitation can reach the soil moisture 

reservoirs the interception store is first filled, then any excess is diverted to minor channel 

storage, representing runoff from the impermeable proportion of the catchment. There are 

fixed parameters controlling interception storage and the impermeable proportion of the 

catchment.   

 

 

Figure 4.7 Soil moisture routine in HYSIM 

 

The soil moisture routine is an extremely important component of HYSIM. It consists of 

two finite reservoirs: the upper soil reservoir and the lower soil reservoirs which correspond 

to the A and B soil horizons respectively.   That every effort is made to give HYSIM a 

physically realistic basis is also reflected in the choice of soil parameters and the means of 

their estimation (see Table 4.1). Three parameters determine the rate of moisture movement 

through these layers: pore size distribution index (PSDI), bubbling pressure and saturated 

permeability.  PSDI is one of the most important parameters in the model and controls the 

way a soil responds to moisture by virtue of its effective permeability and capillary suction 
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(Manley, 1978). The value of PSDI is dependent on predominant soil texture of the 

catchment.  PSDI also determines the values for bubbling pressure and porosity. Bubbling 

pressure is analogous to the negative pressure at which bubbles first appear in a porous 

medium during the dewatering process and is related mathematically to capillary suction. 

Its value was derived from field experiments (Manley, 1976).    Thus, every effort is made 

to give these soil parameters a value which is physically relevant in the catchment being 

modelled.  The methodology for estimating parameter values will be explained in depth in 

the next chapter. 

 

The next four parameters control the rate of moisture movement between the soil horizons 

and from the soil layers to groundwater.  Saturated permeability at the top of the upper 

horizon controls the rate of infiltration and overland flow, its value being estimated from 

knowledge of soil type.  Saturated permeability - horizon boundary and saturated 

permeability - base lower horizon are two important parameters which control the rate of 

moisture movement between the two soil reservoirs and percolation to groundwater from 

 
 

Parameter Function 

Pore Size distribution Index General 

Bubbling pressure General 

Saturated permeability – top upper horizon Infiltration and overland flow 

Saturated permeability – horizon boundary Inter-horizon percolation 

Saturated permeability base lower horizon Percolation to groundwater 

Interflow runoff from upper horizon at saturation Interflow from upper horizon 

Interflow runoff from lower horizon at saturation Interflow from lower horizon 

Soil Rooting Depth Determines capacity of the 
upper and lower soil storages 

 

Table 4.1 Principle soil parameters and their function within HYSIM 

 
the lower soil reservoir.  The last two parameters (interflow-upper horizon; interflow-lower 

horizon) control the lateral runoff from the two soil horizons. Estimation of the soil 

parameters requires knowledge of catchment soil type, texture and land-use. In contrast, in 

HBV-Light surface runoff and interflow are not explicitly modelled within the soil moisture 

routine. Furthermore, there no attempt at either defining specific soil horizons or modelling 

moisture transfers between horizons or to groundwater in terms of parameters.  
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4.7 Runoff Generation in HBV-Light 

 In both HBV-Light and HYSIM there are two groundwater reservoirs.  In HBV-Light the 

runoff response function is the model routine which transforms excess water from the soil 

moisture zone to runoff, whereas in HYSIM runoff is simulated from all reservoirs in the 

model.  It also includes the effect of direct precipitation and evaporation from lakes, 

wetlands and tributaries within the catchment, unlike HYSIM where evapo-transpiration 

depletes only the interception and the soil moisture reservoirs.    Excess water enters the 

upper groundwater reservoir.  It either leaves as runoff (through two outlets controlled by 

two parameters K0 and K1 which represent the quick runoff component of the hydrograph) 

or percolates down at a constant rate (PERC) to the lower groundwater reservoir where 

moisture depletion represents the slow, baseflow component of the hydrograph (K2). The 

majority of parameters in HBV-Light are contained within this sub-routine.  The generated 

runoff is then distributed on the following days with the parameter MAXBAS.   

4.7.1 Runoff Generation in HYSIM 

 In HYSIM both groundwater reservoirs (transitional groundwater and groundwater) are 

infinite linear reservoirs. The parameters (groundwater recession; ratio groundwater to 

surface catchment; proportion of catchment with no groundwater; transitional recession; 

proportion – transitional) that control movement of groundwater are either estimated from 

aquifer maps or from studying precipitation time-series from within the catchment.  Before 

total runoff is calculated it passes through the last reservoir in the model which represents 

minor channel storage. Runoff is then routed through the flow routing sub-routine which is 

described in the HYSIM through a simplified form of the St. Venant equations known as 

the kinematic method.  Although this is more an approximation of a fully dynamic wave 

description than the St. Venant equations the sub-routine endeavours to describe channel 

flow realistically (Butts et al., 2004). Thus, the groundwater and flow routing sub-routine in 

HYSIM also adheres to a physically realistic philosophy.   

4.8 Conclusion 

 

In this chapter the two rainfall-runoff models being employed in the project have been 

introduced.  The structure of both HYSIM and HBV-Light has been outlined and a 

comparison has been made of two sub-routines of the models (soil moisture routine and the 

routine for runoff generation).  Although both models have similarities in that they are both 
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lumped and both consist of a series of stores, it is obvious that structure of HYSIM is a 

reflection of the physically realistic philosophy which underlies the development of the 

model. This is in contrast to the structure of HBV-Light which is based on parsimony.  This 

contrast in the philosophy of model development and model structure becomes more 

apparent when the methodology for the parameterisation of each model is described.  This 

will be the focus of chapter 5.  
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5 Chapter 5: Parameterisation of the Rainfall-Runoff Models 

 

5.1 Introduction 

 

This chapter will focus on the parameterisation of the both HYSIM and HBV-Light.  In the 

previous chapter the differences in the philosophy and structure of both models was 

explored.  These differences will be highlighted again when the different methodologies 

involved in parameterising the models are described. The methodology for parameterising 

HYSIM will be outlined in the first section of the chapter. As HYSIM is a physically based 

model, most of its parameters are evaluated from physical characteristics of the Suir 

catchment.  The final section of this chapter will describe the parameterisation of the HBV-

Light model.  HBV-Light is a simpler model whose parameters cannot be obtained from 

point measurements within the Suir catchment. Rather, the same parameter ranges can be 

applied to different catchments, and unique values for each parameter (relevant to the 

catchment) obtained during calibration.  

 

5.2 Calculation of the HYSIM Parameters  

 

HYSIM is a lumped rainfall-runoff model with 8 hydraulics parameters and 22 hydrology 

parameters.  Of these, 4 are process parameters which are estimated during calibration.  The 

other parameters must be calculated from the physical characteristics of the catchment.  

This section describes the methodology employed in calculating the hydraulic and 

hydrological parameters of HYSIM.  In Manley (2003) parameters are divided into 

hydraulic, basic hydrology parameters and advanced hydrology parameters (see Table 5.1 

and Table 5.2). In this thesis parameters are divided into soil parameters, land use and 

vegetation parameters, groundwater parameters and hydraulic parameters.  In order to 

calculate the physical parameters for HYSIM, the EPA’s 20m resolution Digital Elevation 

Model (DEM) was employed.  This is supplied in sheet format with each DEM raster file 

representing one hydrometric area designated by the EPA.  The Suir Catchment is 

represented in Sheet number 16 from the South Eastern River Basin District (SERBD).  In 

order to calculate the hydrological and hydraulic parameters for the HYSIM model, this 

DEM was employed in conjunction with a Geographical Information System (GIS), 
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ArcMap version 9.2 which is a component of the Environmental Systems Research 

Institute’s (ESRI) ArcGIS system.  The advantage of GIS is that the map and its associated 

database are separated in a windows environment and are available in a variety of spatial 

resolutions making local area mapping of different aspects (e.g. land use, aquifer potential, 

soil classes, bedrock geology) of a specific location extremely versatile.  The database and 

map can also be updated by the user thus permitting visualisation of user defined layers and 

shapefiles.  

5.2.1 Delineation of the Suir Catchment and Hydraulic Parameters 

The Suir catchment was delineated as far as Clonmel, using  the ArcMap 9.2  Hydrology 

extension in the Spatial Analyst tool within ArcToolbox (ESRI). The grid projection for all 

raster files and shapefiles employed in this project is the Irish National Grid TM65 co-

ordinate system (see Figure 5.1).  Please see Appendix 2 for the steps involved in 

delineating the Suir Catchment.  

 

 

 

Figure 5.1 Delineation of the Suir catchment to Clonmel 
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In the sensitivity analysis of the HYSIM parameters undertaken by Murphy (2006) the 

hydraulic parameters (channel top width; channel base width; channel depth; channel 

roughness; reach gradient; floodplain width; flood plain roughness; reach length) were 

found to be insensitive when long term daily time-step modelling was undertaken. Manley 

(2003) also highlights the fact that the role of hydraulics in small catchments with daily 

data is negligible and the significance of the parameters is small.  However, catchment area 

was found to be sensitive.  The hydraulic parameters were estimated using the catchment 

characteristics calculated from the DEM and the Hydrology extension in ArcMap 9.2.   

5.3 HYSIM Hydrology Parameters 

 

5.3.1 Soil Parameters 

 Of the hydrology parameters, the soil parameters are some of the most sensitive and 

important in the model.  Following after the methodology of Murphy (2006) the General 

Soil Map of Ireland was employed to estimate the soil parameters (Gardiner and Radford, 

1980). The main soil types within the Suir catchment have already been described in 

Section 3.2.2. The next task was to assess the different soil associations within the 

catchment. Gardiner and Radford (1980) provide a detailed description of 44 soil 

associations present in Ireland, formed from the great soil groups such as brown podzolics, 

acid brown earths, gleys and blanket peats. Soil associations are cartographic units 

consisting of two or more soils (usually from the same parent material) that are related to a 

specific landscape type (Gardiner and Radford, 1980). The important component of soil for 

parameterisation purposes in HYSIM is texture.  Soil texture refers to the proportion of 

various sized particles such as sand, silt and clay which make up the upper layers of the 

soil.   Texture influences such soil properties as infiltration, water holding capacity, and soil 

porosity.   

 

In ArcMap 9.2, a map of the Suir catchment soil associations was created in order to 

calculate the percentage occurrence of the different soil associations, from which soil 

texture can be derived.   The soil associations with highest percentage occurrence were 

association 34 with 34.39% coverage, association 31 with 12.36% coverage, association 21 

with 9.73% and association 1 with 8.06%.  Together these associations comprise 65.54% of 

the catchment area (see Figure 5.2).    
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HYSIM Basic Hydrology Parameters 

 

 

Name 

 

Description Method of Calculation 

Interception Storage First store to be filled by incoming rain 
and depleted by PET 

Standard value for vegetation type 

Impermeable Proportion Proportion of catchment considered  
impermeable 

Standard values: predominantly rural 

0,02; predominantly urban 0.2 

Time to Peak (hours) Controls simulation of minor channels 
within catchment 

Equation given by: Tp=2.8(L/√S)
0.47

 

(Manley, 2003) 

Rooting Depth (mm) Rooting depth of vegetation 500 - 1000mm for arable land/crops up to 

5000mm for woodland 

Pore Size Distribution Index Controls way in which soils respond to  
moisture 

Values vary depending on soil texture  

class 

Saturated permeability at the horizon  

boundary (mm/hour) 

 

Controls rate at which moisture moves  
between A and B horizons 

Calibrated 

Saturated permeability at base of lower 

horizon (mm/hour) 

 

Controls rate at which moisture leaves the 
soil layers 

Calibrated 

Interflow runoff from upper horizon at  

saturation (mm/hour) 

 

Controls lateral run-off from upper soil 
horizon 

Calibrated 

Interflow runoff from lower horizon 

at saturation (mm/hour) 

 

Controls direct run-off from lower soil 
horizon 

Calibrated 

Groundwater Recession (per month) 
 

Assessed by studying periods in a dry 
summer when little rain has fallen 

Equation given by (q2/q1) 
(1/m)

 

(Manley, 2003) 
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HYSIM Basic Hydrology Parameters (Continued) 

Precipitation Correction Factor Allows for fact that catchment rain gauges 
may over or under-estimate precipitation 

Standard value 1.04 

Can be calibrated to achieve water  

balance 

PET correction factor Allows for the fact that PET values may 
notbe accurate 

Can be calibrated to achieve water  

balance 

Catchment Area (km
2
) Area of catchment in Km2 Calculated using Catchment maps 

 

Table 5.1 HYSIM basic hydrology parameters 
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 HYSIM Advanced Hydrology  

Parameters 

 

Name Description Method of Calculation 

Saturated permeability at the top of the  

upper horizon 

Rate at which water enters top of upper soil 
horizon 

Standard value 1000mm/hr 

Proportion of moisture storage in upper 

horizon 

Proportion of available soil moisture in upper 
horizon 

Standard value 0.3 

Ratio of groundwater to surface 

catchment 
Ratio of groundwater to surface catchment Estimated from aquifer maps 

Proportion of catchment with no 

groundwater 
Proportion of catchment without groundwater Estimated form aquifer maps 

Riparian Proportion 

Allows for fact that ET occurs in marshy 
riparian area adjacent to river channels at 
the potential rate 
 

Standard value 0.02 

Porosity 
Value for porosity of soil - calculated from 
soil texture class 

Calculated from soil texture class 

Bubbling pressure Represents capillary suction as soil is drying  Calculated from soil texture class 

Transitional Recession (per month) 
Represents recession constant for transitional 
groundwater  

Value taken from Murphy (2006) 

Proportional Transitional 
Represents delayed response of groundwater 
entering channels 

Value taken from Murphy (2006) 

Interception Factor Weighting for ET from interception storage 
Values 1.1 for grassland up to 1.5 for 

woodland 

 

Table 5.2 HYSIM advanced hydrology parameters
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Figure 5.2 Soil associations in the Suir catchment 

 

5.3.2 Soil Association Descriptions 

 
Association 34 - Minimal Grey Brown Podzolics 70%, Gleys 20%, Brown Earths 10% 

Association 34 Depth(cm) % Sand % Silt % Clay % Coverage 

Horizon A 0 - 37 46.5 34 19.5 34.39 

Horizon B 37 - 100 40 33 27  

 

Association 31 - Minimal Grey Brown Polzolics 80%, Gleys 10%, Brown Earths 5%, 

Basin Peats 5% 

Association 31 Depth(cm) % Sand % Silt % Clay % Coverage 

Horizon A 0 - 20 42.5 39.5 18 12.36 

Horizon B 20 - 40 43 32 25  

 

Association 21 - Gleys 75%, Peaty Gleys 25% 

Association 21 Depth(cm) % Sand % Silt % Clay % Coverage 

Horizon A 0 - 35 43 33 24 9.73 

Horzon B 35 - 81 44.5 33 22.5  
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Association 1 – Peaty Podzols 75%, Lithosols 15%, Blanket Peats 10% 

Association 1 Depth(cm) % Sand % Silt % Clay % Coverage 

Horizon O 25 - 0 60 38 2 8.06 

Horzon A 0 - 10 67 24 9  

 

Figure 5.3 Predominant soil associations of the Suir catchment (Gardiner and Radford, 1980) 

 
The predominant soil associations of the Suir catchment are detailed in Figure 5.3 above.  

The next step in identifying the predominant soil texture of the catchment was to relate the 

different percentages of sand, silt and clay in each association with the main soil texture 

classes.  Ternary diagrams have been developed that specify the main soil texture classes in 

graphic form.  The United States Department of Agriculture (USDA) ternary diagram was 

employed to calculate the dominant soil texture by plotting the percentages of sand, silt and 

clay to obtain the soil texture class, as Gardiner and Radford (1980) used the same system 

in determining soil textures (Figure 5.4). The diagram is triangular with percentages of 

clay, silt and sand ranging from 0 to 100%.  Once the percentage of each is known, the 

overall texture of the soil can be read off the ternary diagram.   

 

 

Figure 5.4 U.S.D.A. Ternary Diagram showing the percentages of sand, silt and clay in the basic soil 

texture classes 
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Soil textures can be estimated for the different soil associations in the Suir catchment by 

using the different percentages of sand, silt and clay present to define the basic soil texture 

of each association.  The dominant soil texture class of the Suir catchment is loam 

comprising approximately 74% of the area total (see Table 5.3). A further 9% is comprised 

of sandy loam.  Table 5.4 provides values for three soil parameters once soil texture class 

has been established namely Pore Size Distribution Index (PSDI), Bubbling Pressure, and 

Porosity (Manley, 2003). Pore Size Distribution Index is one of the most important 

parameters as it controls the way soils respond to moisture and to dewatering (Manley, 

1978).  Its value also determines the values for Bubbling Pressure and Porosity.  Bubbling 

Pressure is another important soil parameter which represents capillary suction at the point 

that bubbles appear in the soil when it is being de-watered under increasingly negative 

pressure (Manley, 1978).   

 

Association Texture Area Km
2
 % Total 

19 Clay Loam 12.86 0.60 

39 Clay Loam 22.92 1.07 

6 Loam 88.29 4.12 

9 Loam 138.13 6.44 

14 Loam 14.40 0.67 

15 Loam 102.14 4.77 

18 Loam 28.18 1.31 

21 Loam 208.59 9.73 

31 Loam 265.00 12.36 

34 Loam 737.13 34.39 

5 Peat 30.21 1.41 

44 Peat 115.23 5.38 

4 Peaty Clay  29.37 1.37 

7 Peaty Clay Loam 1.97 0.09 

1 Sandy Loam 172.79 8.06 

30 Sandy Loam 27.40 1.28 

43 Silty Clay Loam 148.93 6.95 

Total   2143.54 100.00 

 

Table 5.3 Soil associations of the Suir catchment, their associated texture and percentage of the total  

catchment area occupied by each 
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Soil Texture PSDI 
Bubbling 

Pressure (mm) 

Permeability 

mm/hr 
Porosity 

Peat .50 100 500 .70 

Sand .25 120 630 .40 

Loamy Sand .23 90 560 .41 

Sandy Loam .20 220 125 .44 

Silt Loam .19 80 26 .49 

Loam .18 500 25 .45 

Sandy Clay Loam .14 300 23 .42 

Silty Clay Loam .13 360 6 .48 

Clay Loam .12 630 9 .48 

Sandy Clay .10 150 8 .43 

Silty Clay .10 490 4 .49 

Clay .09 410 4 .48 

 

Table 5.4 Values of PSDI, Bubbling Pressure and Porosity (Manley 2003) 

 

5.3.3 Land Use Parameters 

 

Section 3.2.3 has already described the methodology for deriving land use types for the Suir 

catchment using the CORINE database. As was already noted, pasture is by far the most 

common land use type in the Suir catchment accounting for 70% approximately of the total 

land area delineated as far as Clonmel. Please note that the values for land use in Section 

3.2.3 may be slightly different to those in the table below as the values in that section were 

calculated for the catchment as a whole, not the catchment delineated to the outlet in 

Clonmel.   

 

Table 5.5 shows the percentage of different land use types in the Suir catchment.  As 

HYSIM is a lumped conceptual model which treats the catchment as a single unit, pasture 

was used to calculate the soil rooting depth.  The HYSIM manual gives a typical value for 

grass/pasture of 700 mm – 800 mm in contrast to woodland which can have a value up to 

5000 mm.  As forestry and transitional woodland comprises approximately 9% of the 

catchment area the rooting depths were weighted accordingly to give an average rooting 

depth for the catchment of 1200mm. Soil Rooting Depth is an important parameter as it 

controls the amount of moisture in the upper and lower soil stores. 
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CODE3 Description Area Km2 Percentage 

121 Industrial/Commercial 0.36 0.02 

512 Water bodies 0.61 0.03 

124 Airports 0.81 0.04 

511 Stream courses 0.90 0.04 

111 Continuous Urban 1.23 0.06 

142 Sport and Leisure 1.75 0.08 

411 Inland Marshes 2.05 0.10 

131 Mining 2.26 0.11 

311 Broad Leafed Forest 4.79 0.22 

112 Discontinuous Urban 8.10 0.38 

242 Complex Cultivation 21.53 1.00 

321 Natural Grassland 25.57 1.19 

324 Transitional woodland 35.49 1.66 

243 Agri/Natural Vegetation 48.53 2.26 

322 Moors/heathland 91.45 4.27 

412 Peat Bogs 116.28 5.42 

211 Non-irrigated arable land 122.41 5.71 

312 Coniferous Forest 151.23 7.06 

231 Pasture 1508.23 70.36 

  TOTAL 2143.56 100.00 

 

Table 5.5 Land use types and percentage area in the Suir catchment 

 

5.3.4 Groundwater Parameters 

The Groundwater Recession rate is calculated by studying periods during a dry summer 

when little or no rain has fallen.  The formula for calculating the value is supplied by 

Manley (2003): 

 

(q2/q1) (1/m)  

 

where q1 is the discharge at the start of the dry spell, q2 is the discharge at the end of the 

dry spell and m is the time period in months. Precipitation data from several raingauges 

within the Suir catchment were obtained from Met Eireann.  The data from Knockderry 

Reservoir was used to calculate the groundwater recession rate as this raingauge has the 

highest quality data within the catchment at 99% satisfactory rating.  The summer of 1976 

was chosen to calculate the rate as this was the driest summer during the baseline climate 

period (1961 to 1990) (see Figure 5.5).  
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Figure 5.5 Knockaderry Reservoir summer precipitation 1961 – 1990 

 
Flow amounts in the Suir catchment on 31st May 1976 (29.54m3/sec) (beginning of dry 

period) and 1st September 1976 (6.41m3/sec) (end of dry period) were applied to the 

formula giving the following result:  

 

(6.41/29.54)^0.33 = .61 
 
The aquifer potential of the Suir catchment has already been described in Section 3.2.4.  

There are many locally and regionally important aquifers in the Suir catchment, owing to 

highly permeable subsoils and the percentage of land underlain by karstic bedrock 

formations. The GSI aquifer map was used to calculate the Ratio of Groundwater to 

Surface Catchment parameter. As HYSIM is a lumped model areas with good aquifer 

potential were assigned groundwater and areas with poor aquifer potential were assigned no 

groundwater. Regionally important aquifers account for 27.21% of aquifer types in the 

catchment, locally important aquifers comprise 62.44% of the catchment area and poor 

aquifers comprise 10.35% of the catchment area (see Figure 5.6).  The Ratio of 

Groundwater to Surface Catchment was given the value 0.9 and the proportion of the 

catchment with no groundwater was assigned a value of 0.1.  The values of the Transitional 

Recession parameter and the proportion of moisture leaving transitional groundwater that 

enters channels parameter (Proportion Transitional) were taken from Murphy (2006).   
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Figure 5.6 Percentage occurrence of aquifer types in the Suir catchment 

 

5.3.5 Time to Peak – Minor Channels 

Time to Peak – Minor Channels controls the response of minor channels within the 

catchment.  The equation which has been used in Manley (2003) to determine this 

parameter is from the UK flood Studies Report, as follows: 

 

Tp = 2.8(L/√S)0.47 

 

Where L is stream length in km, S is the stream slope in m/km and Tp is time to peak in 

hours.  The value of this parameter should be the average value obtained from 4 or 5 small 

contributing streams. Four tributaries of the Suir upstream from the outlet at Clonmel (the 

Aherlow, Multeen, Neir and Tar) were chosen to calculate this parameter (see Figure 5.7).  

 

The lengths of the tributaries were calculated using the attribute table in ArcMap 9.2.  The 

stream gradient from its headwaters to the confluence with the Suir was estimated using the 

Ordinance Survey Ireland (OSI) Discovery series 1:50,000 maps number 74 and 75.  Each 

time to peak was the calculated using the above formula.  The average Time to Peak value 

was 11.4 hours which was the value assigned to this parameter (Table 5.6).  
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Figure 5.7 Tributaries of the Suir used in calculating Time to Peak 

 

 
Name Length (km) Gradient (m) Slope (m/km) Time to Peak 

Aherlow 38.13 125 3.27 11.73 

Multeen 21.43 180 8.38 7.17 

Neir 16.84 120 7.12 16.74 

Tar 21.70 45 2.07 10.02 

 

 

Table 5.6 Values of the Time to Peak for each tributary 
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Parameter Suir  Values 

Channel top width (m) 40 

Channel base width (m) 37 

Channel depth (m) 1.5 

Channel roughness .015 

Reach gradient .001 

Flood plain width 140 

Flood plain roughness .035 

Reach length (m) 98000 

Interception storage* (mm) 2 

Impermeable proportion* .02 

Time-to-peak 11.4 

Pore size distribution Index .18 

Rooting depth 1200 

Groundwater recession (per month) .61 

Precipitation factor 1.4 

PET factor 1 

Catchment Area (km2) 2173 

Permeability – top upper horizon* (mm/hour) 1000 

Proportion upper horizon .3 

Ratio groundwater to surface catchment .9 

Proportion of catchment no groundwater .1 

Riparian proportion* .02 

Porosity .45 

Bubbling Pressure 500 

Transitional recession (per month) .9 

Proportional transitional .7 

 
 

Table 5.7 Values of physical parameters calculated for the Suir catchment.  Parameters highlighted 

with asterisk were given default values recommended by Manley (2003) 

 
The final values for the physical parameters of the HYSIM model of the Suir catchment are 

above.  Four parameters were given the default values recommended by Manley (2003).   
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5.4 Parameterisation of HBV-Light 

 

Unlike HYSIM which has physically based parameters, the parameters in HBV-Light are 

process parameters which must be calibrated. Indeed, Bergstrom (1991, p.126) cautions 

that “physical interpretation of the parameters of a conceptual model are…normally very 

vague and should be regarded with sound scepticism”.  There is no “best” method for 

estimating parameter values in HBV-Light. Indeed, previous research used a variety of 

different methods to estimate parameter values for HBV and HBV-Light.  Mein and Brown 

(1978) performed a sensitivity analysis to calculate parameter values. Harlin and Kung 

(1992) estimated reasonable ranges of parameter values by selecting the minimum and 

maximum values of each parameter from eight autonomous calibrations of two study 

catchments. Seibert (1999) used 300,000 Monte Carlo runs to estimate parameter values 

based on three different objective function scores.  Booij (2005) used the experience of 

previous researchers to identify reasonable ranges for the parameters. A literature review 

was also undertaken in this project to estimate the parameter ranges (Booij, 2005; Harlin 

and Kung, 1992; Seibert, 1997, 1999; Steele-Dunne et al., 2008; Uhlenbrook et al., 1999) 

(see Table 5.8). After consideration, the parameter ranges in Seibert (1999) were adopted as 

the same ranges were employed successfully in Steele-Dunne et al. (2008) to calibrate 

HBV-Light (see Table 5.9). 

 

Reference FC 

mm 

LP 

- 

BETA 

- 

K0 

d
-1

 

UZL 

mm 

K1 

d
-1

 

K2 

d
-1

 

PERC 

mm d
-1

 

MAXBAS 

d 

Harlin & 
Kung 1992 

50-274 0.73-1.0 1.0-5.9 
0.197-
0.450 

12 - 44 
0.093-
0.180 

0.0008-
0.05 

0.90-
2.10 

1 - 2 

Siebert 
1997 

50-500 0.3-1.0 1 - 6 
0.05-
0.5 

0 - 100 
0.01-
0.3 

0.001-
0.1 

0 - 6 1 - 5 

Siebert 
1999 

50-500 0.3-1.0 1 - 6 - - 
0.01-
0.4 

0.001-
0.15 

0 - 3 1 - 7 

Steele- 
Dunne et 

al. 2008 
50-500 0.3-1.0 1 – 6 

0.05-
0.5 

0 – 100 
0.01-
0.4 

0.001-
0.15 

0 – 3 1 - 7 

Uhlenbrook 
et. al. 1999 

100-
550 

0.3-1.0 1 -5 0.1-0.5 0 - 70 
0.01 – 

0.2 
0.00005- 

0.1 
0-4 1 - 2.5 

 

Table 5.8 Parameter ranges used by other researchers for calibrating HBV and HBV-Light 
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Parameter Definition Units Max Min 

Soil and ET Routine 

FC Maximum Soil Moisture mm 50 500 

LP Fraction of LP above which Etact equals PET - 0.3 1 

BETA Shape co-efficient - 1 6 

Groundwater and response routine 

K0 Recession co-efficient (upper reservoir) d-1 0.05 0.5 

K1 Recession co-efficient (upper reservoir) d-1 0.01 0.3 

K2 Recession co-efficient (lower reservoir) d-1 0.001 0.1 

UZL Threshold for K0 outflow mm 0.0 100 

PERC Maximum flow from upper to lower groundwater 
box 

mm d-1 0 6 

MAXBAS Length of triangular weighting function in routing 
routine 

d 1 5 

 

Table 5.9 Reasonable ranges employed for calibration of the parameters in HBV-Light 

 

5.5 Conclusion 

 
Although HYSIM and HBV-Light are both lumped rainfall-runoff models, the 

methodology for parameterising each model differs significantly.  HYSIM is a more 

complex model and most of its parameters are estimated from physical catchment 

characteristics.  All but four of the parameters in HYSIM are fixed values. The 

parameterisation of HYSIM also takes account of the unique characteristics of the 

catchment being modelled, albeit on a lumped scale.  HBV-Light is a simpler model with 

process parameters. Reasonable ranges for parameter values were estimated based on the 

experience of other researchers.  The method for parameterising HBV-Light also reflects 

the generic nature of conceptual rainfall-runoff models, which can be applied successfully 

to streamflow simulations in many catchments with unique characteristics.  Although 

HBV-Light has fewer dimensions on its response surface than HYSIM, the parameter 

ranges allow for great interaction during calibration.  The next chapter will focus on 

calibration and validation of both models.    
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6 Chapter 6: Calibration and Validation of the Rainfall-Runoff Models 

 

6.1 Introduction 

 

This chapter focuses on the methodology for calibrating and validating both HYSIM and 

HBV-Light, using a split sample procedure.  A description of a traditional calibration 

follows, as historically modellers have focused on finding an optimal parameter set through 

calibration. However, in order to take account of model structural uncertainty and 

equifinality of parameter sets the Generalised Likelihood Uncertainty Estimation (GLUE) 

method will be employed for calibration (Beven and Binley, 1992). The methodology for 

calibrating and validating both models will then be outlined.   

6.2 Model Calibration 

 

Calibration is the process of adjusting model parameters to obtain as good a fit as possible 

between observed and modelled flow.  Calibration can be undertaken manually or with the 

aid of an optimisation algorithm.  Manual calibration is a trial and error process whereby 

the hydrologist continually adjusts the parameters to fit observed flow data, taking account 

of the fact that the adjusted parameters should realistically reflect the main processes 

affecting runoff in the catchment. The limitations of manual calibration include the large 

amount of subjectivity involved, the length of the process and the fact that it is not possible 

to objectively analyse parameter uncertainty (Wagener, 2003). Furthermore, there may be 

few people highly experienced in manual calibration (Sorooshian and Gupta, 1995). 

Therefore, automatic calibration schemes have been developed.   

 

The traditional purpose of calibration is to find the parameter combination that optimises 

the value of a particular objective function (e.g., Duan et al., 1992; Lindström, 1997). 

Sorooshian and Gupta (1995, p.27) outline the procedure of parameter optimisation during 

calibration. Key decisions required for automatic calibration include choice of:  

1. Objective function 

2. Optimisation algorithm 

3. Termination criteria 

4. Calibration data 
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6.2.1 Objective Function 

An objective function is an equation used to measure the performance a hydrological model 

in simulating catchment behaviour.  In the case of rainfall-runoff models, it provides a 

quantitative indicator of the success of the model at simulating observed flow. There are 

many such measures such as absolute error, relative error and regression techniques.  

Evaluation measurements also provide a means of distinguishing between the performances 

of different models (Wagener, 2003).  However, a universal measurement metric has yet to 

be found, as all such evaluation equations are biased towards one part of the hydrograph 

(Dawson et al., 2007). This means that parameter sets deemed acceptable by one 

performance measurement cannot represent both the high and low flow behaviour of the 

catchment system (Wagener, 2003 p.3376). For this reason, it is better to quantify a 

model’s success at simulating flow using several evaluation measures (Dawson et al., 

2007).  

6.2.2 Optimisation Algorithm  

An optimisation algorithm is a mathematical procedure which searches the model space 

(response surface) for the parameter combination which optimises the value of the objective 

function (Sorooshian and Gupta, 1995).  There are a plethora of optimisation algorithms 

now available for calibration from local search algorithms (e.g. the Rosenbrock method 

used in HYSIM) to global and multi-start search methods such as the genetic algorithm 

used for calibration in HBV-Light. In local search methods the starting place of the 

algorithm within the response surface influences where the search ends. Genetic algorithms 

are based on the concept of biological evolution and involve creating a population 

(different parameter sets) and evolving that population over several iterations until the 

performance is optimised according to the evaluation measure (Beven, 2000).   

 

There is no guarantee that an optimisation algorithm, however sophisticated, will find the 

global optimal parameter set.  Conceptual rainfall-runoff models tend to be highly non-

linear with parameter interactions complicating the search for the optimal set.  The optimal 

parameter set is also contingent on the calibration period, and different calibration periods 

may lead to multiple optimal parameter sets (e.g., Beven, 1993; Wilby, 2005). The optimal 

set is also contingent on the objective function employed in calibration (Wagener, 2003). 

Over-parameterisation is also an issue the response surface of the model may be extremely 
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complex, further complicating the search for the optimal set. It is obvious that HBV-Light 

with 9 parameters has a much simpler parameter response surface than HYSIM with 30 

parameters.  Duan et al. (1992) identified multiple optimal sets within a conceptual rainfall-

runoff model response surface.  Even if the global optimal set is found, there is a high 

possibility that this optimal parameter combination is contingent on the calibration data, the 

model structure, the objective function and the optimisation algorithm employed (Beven, 

2009).  Indeed, there may be many parameter combinations within the response surface 

which simulate observed flow equally well (Sorooshian an Gupta, 1995; Beven, 2000; 

2009).   In this project, parameter uncertainty will be accounted for by applying the GLUE 

methodology (which allows for equifinality of parameter sets and models) in calibrating 

and validating the models.   

6.2.3 Termination Criteria 

One means by which the search algorithm ceases the search is when changing the 

parameter combination does not improve the value of the objective function (parameter 

convergence).  However, this does not mean that the search algorithm has found the global 

optimal set.  There are several other methods of determining when a search should be 

terminated, however Sorooshian and Gupta (1995) note that parameter convergence is the 

technique most suitable for calibration of hydrological models.  

6.2.4 Calibration Data  

Sorooshian and Gupta (1995) stress the importance of variability within calibration data in 

training the hydrological model (otherwise, certain processes within the model may not be 

activated).  For example, if calibration data are employed from a relatively dry period, 

parameters controlling overland flow processes and percolation to groundwater may not be 

activated, leading to insensitive parameters and poor model response (Sorooshian and 

Gupta, 1995).  Choosing data from calibration periods with hydrological variability will 

lead to more informed responses.  

 

The above methodology has traditionally been employed to search for the optimal 

parameter set within a single hydrological model.  However, in this project  the concept of 

equifinality is accepted as a viable hypothesis for the calibration and validation of the 

rainfall-runoff models (e.g. Cameron et al., 2000; Duan et al., 1992; Murphy and Charlton, 

2008; Wilby and Harris, 2006) (see Section 2.7.4). 
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6.3 The GLUE Procedure 

 

Section 2.7.6 outlines the decisions to be taken in the GLUE methodology which explicitly 

takes equifinality of parameter sets into account in model calibration.  Beven and Binley 

(1992) outline the GLUE procedure in a number of steps. They are:  

 

1. The definition of a likelihood measure selected to determine model performance. 

2. A definition of a suitable range of values for each parameter. 

3. The use of Monte Carlo Random Sampling to sample a large number of parameter 

sets from a given distribution.  

4. The selection of a pre-defined threshold to determine behavioural or non-

behavioural parameter sets. 

5. The generation of results for all behavioural sets and employment of  these to 

determine weighted mean discharge and simulation probability bounds if using the 

model for prediction purposes (Melching, 1995). 

 

In this project logical reasons have already been given for the choice of rainfall-runoff 

models.  HYSIM is a physically based model while the structure of HBV-Light is based on 

parsimony. Furthermore, the methodology involved in selecting relevant parameter values 

(HYSIM physical parameters) and parameter ranges (HBV-Light) has been outlined in the 

previous chapter. The sampling strategy used is the Monte Carlo method. The Nash-

Sutcliffe dimensionless efficiency criterion (NS) is employed as the likelihood 

measurement as it is the only evaluation metric common to both models (Nash and 

Sutcliffe, 1970).  However, other likelihood measures will also be employed to evaluate 

further the performance of the models during calibration and validation. These are: Mean 

Actual Error (MAE); Root Mean Square Error (RMSE); Percent Bias (PBIAS) and the 

Coefficient of Determination (R2).  

6.4 Calibration of the Rainfall-Runoff Models 

6.4.1 Calibration data employed in the project 

Records of daily mean flow at Clonmel (Station No.16011) on the River Suir from 1961 to 

2000 were obtained from the Office of Public Works Hydro-Data website 

(www.opw.ie/hydro).  Daily records of precipitation and potential evapo-transpiration 
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(PET) were obtained from Met Eireann for the Kilkenny Synoptic station from 1961 to 

2000 and employed as input to the models for the calibration period (1963 to 1990) and the 

validation period (1991 to 2000). Kilkenny is the nearest synoptic station to the Suir 

catchment. Additionally, the statistically downscaled future data was generated only for the 

Irish synoptic stations.  Therefore, the empirical temperature, precipitation and PET 

recorded at this station were also used as input to the models for calibration and validation. 

Although this introduces input data uncertainty (i.e., all input data employed was recorded 

outside the Suir catchment) it will not be evaluated in this project as the focus is on 

evaluating model structural uncertainty and parameter uncertainty.   

 

An initial spin-up period of 1961 to 1963 was employed to allow adjustment to initial and 

boundary conditions, then the models were calibrated from 1963 to 1990. This time period 

was chosen by the World Meteorological Organisation as the baseline period in comparing 

future climate change as it includes both dry periods (the 1970s), wet periods (the 1980s) 

and natural climate variability which dominates any climate change signal.  The records of 

this period are also of a high quantity and quality compared to other historical periods 

(Prudhomme et al., 2003). 

 

6.4.2 The Nash-Sutcliffe Criterion of Efficiency 

  The Nash Sutcliffe dimensionless efficiency criteria (NS) was employed as the likelihood 

measurement for calibration of the parameter sets in both HYSIM and HBV-light, as it is 

the only evaluation measurement common to both models. NS is given by the equation:  
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 where Qo is the observed discharge, Qm is the modelled discharge and t

oQ  is the discharge 

at time t.   The score for a perfect fit between observed and modelled flow according to the 

NS criterion is 1.  As NS is sensitive to differences between observed modelled means and 

variances it is an improvement over the coefficient of determination (Legates and McCabe, 

1999). Nevertheless, it is biased towards higher flows because the largest residuals tend to 

be found near the hydrograph peaks, and as the errors are squared greater weight is given to 
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prediction of the peaks of the hydrograph rather than low flows (Legates and McCabe, 

1999; Krause et al., 2005). 

6.4.3 Calibration of the HYSIM Process Parameters 

Within HYSIM there are four process parameters (saturated permeability horizon 

boundary; saturated permeability base lower horizon; interflow runoff upper horizon; 

interflow runoff from lower horizon).  Initial value ranges for each process parameter were 

based on the ranges given in Manley (2003) and are contained in Table 6.1. 

 

Process Parameter Value Range 

Saturated permeability – base lower horizon 1.00 mm/hr – 100.0 mm/hr 

Saturated permeability – horizon boundary 5.00 mm/hr – 200.0 mm/hr 

Interflow runoff – upper horizon 1.00 mm/hr – 100.0 mm/hr 

Interflow runoff – lower horizon 1.00 mm/hr – 100.0 mm.hr 
 

Table 6.1 Initial value ranges for the four process parameters in HYSIM 

 
HYSIM was calibrated using Monte Carlo sampling to generate 10,000 random parameter 

combinations. Only parameter sets with a score of 0.7 or higher were deemed behavioural.  

The run yielded 2452 parameter sets of 0.7 or higher.  Of these, the top 500 sets were 

retained (NS values 0.75 - 0.769) and employed to validate the model. Scatter plots of each 

parameter were produced to evaluate parameter definition (Figure 6.1). A parameter may 

vary in definition according to the calibration period and the characteristics of the 

catchment being modelled (Wilby, 2005; Uhlenbrook et al., 1999).  The only poorly 

defined parameter was permeability – horizon boundary. The other parameters were more 

or less well defined.  However, all the parameters had good NS values scattered through 

the parameter space.  The mean, median, maximum and minimum values of the four 

process parameters in the calibration parameter sets are presented in Table 6.2.   

 

  SP BHL SP HB I U I L 

Mean 60.13 131.51 23.55 43.58 

Median 61.91 139.44 22.27 43.19 

Min 3.59 8.74 2.31 1.934 

Max 100.44 204.93 52.42 87.81 

 

Table 6.2 Mean, median, maximum and minimum values for the behavioural parameters 
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Figure 6.1 Scatter plots of the four process parameters in HYSIM showing parameter identifiability 

 

What is notable in the above values is that interflow - upper horizon (IU) has particularly 

low mean and median values, given the initial value range (1 – 100mm/hour) and its 

highest value within the behavioural parameter sets is slightly higher than the median of the 

initial value range.  Conversely, the mean and median values of interflow – lower horizon 

(IL) lie towards the middle of the value range.  This may be reflective of the permeable 

nature of the Suir catchment, which is baseflow dominated.  This observation is reinforced 

by higher values for the two other process parameters (saturated permeability - base lower 

horizon and saturated permeability - horizon boundary).  Indeed, the maximum values of 

these two parameters within the calibration parameter sets are at the highest end of the 

initial value range.   Furthermore, for each of these parameters the mean and median values 

within the behavioural sets are within the top 40% of the initial parameter value ranges.    

6.4.4 Calibrating HBV Light 

In the HBV-Light model the parameter space was preliminarily sampled by 10,000  Monte-

Carlo runs specifying the threshold NS efficiency value of 0.7. Each of the parameters was 

sampled from within reasonable ranges (defined from the literature review) using a uniform 

distribution.    However, no parameter sets with an NS value of 0.7 or over were generated. 
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The threshold for NS was then lowered to 0.6, and a further 10,000 Monte Carlo runs were 

generated, which resulted in 683 parameter sets of value 0.6 or over. Individual parameters 

were then plotted against NS values and a visual inspection of the spread of each parameter 

was made (see Appendix 3).   

 

After the visual inspection, value ranges for the well defined parameters were constrained 

in order to generate more parameter sets with a high NS value (see Table 6.3).  Based on 

the visual inspection, the value ranges of FC, LP, BETA, MAXBAS, K1 and K2 were 

constrained, whilst the values of the poorly defined parameters UZL, PERC and K0 (with 

acceptable values spread throughout the parameter space) were left unchanged.   

 
Parameter Original Value Range Constrained Value Range 

FC 50 – 500 50 - 175 

LP 0.3 – 1.0 0.7 -1.0 

BETA 1.0 – 6.0 1.0 – 3.0 

K1 0.01 – 0.4 0.1 – 0.25 

K2 0.001 – 0.15 0.02 – 0.10 

MAXBAS 1 – 7 2 - 4 

 

Table 6.3 Constrained value ranges for well-identified parameters in HBV-Light 

 
A further 500,000 Monte Carlo samples were generated. What is notable is the much higher 

amount of Monte Carlo runs required to generate behavioural parameter sets compared to 

HYSIM. The run yielded 530 sets with an acceptable NS score, which ranged from 0.7 to 

0.7112.  The top 500 parameters were used to calibrate and validate HBV-Light. Figure 6.2 

shows the scatter plots of the individual parameters.  Well defined parameters include FC, 

LP, BETA, K2 and MAXBAS.  Identifiability of specific parameters depends on factors 

such as catchment characteristics and calibration period and it is difficult to know 

beforehand if a specific parameter will be well or badly defined (e.g., Siebert, 1997a; 

Uhlenbrook et al., 1999)   In this project, the three soil routine parameters (FC, LP and 

BETA) are particularly well defined ( Figure 6.2).  
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Figure 6.2 Scatter plots for each HBV-Light parameter 

 
Steele-Dunne et al. (2008) calibrated and validated the HBV-Light model for 10 

catchments within Ireland, including the Suir catchment.  In that study lower values of the 

recession coefficients (K0, K1 and K2) are associated with larger catchments (such as the 

Suir) with more damped hydrographs (Steele-Dunne et al., 2008). A similar observation 

can be made in this project (see Table 6.4). It is also notable that the mean and median 

values of PERC are towards the higher end of the parameter range (0 – 3).  High values of 

this parameter imply that there is more flow to the lower groundwater box (Steele-Dunne et 

al., 2008).   

 

 FC LP BETA PERC UZL K0 K1 K2 MAXBAS 

Mean 97.532 0.967 1.256 2.201 63.049 0.251 0.176 0.0561 2.81 

Median 98.456 0.973 1.217 2.22 64.65 0.238 0.174 0.0549 2.807 

Max 139.38 0.999 1.801 2.996 99.969 0.498 0.253 0.096 3.674 

Min 56.878 0.854 1.002 1.054 0.752 0.05 0.114 0.026 2.034 

 

Table 6.4 Mean, median, maximum and minimum values for the process parameters 

 

6.5 Comparison of the models during calibration 

 

 shows the maximum, mean and minimum NS values of the behavioural calibration 

parameter sets of HYSIM and HBV-Light.  HYSIM performs better than HBV-Light 

during calibration. However, the NS values of both models are within a comparable range.  
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Calibration NS Values 

  Maximum Mean Minimum 

HYSIM 0.769 0.755 0.750 

HBV-Light 0.711 0.702 0.700 

 

Table 6.5 Maximum, mean and minimum NS values for both models during calibration 

 

6.5.1 Other evaluation metrics used in calibration 

Measuring the performance of a model against one evaluation metric can give misleading 

results about the ability of the model to simulate observed flow (Dawson et al., 2007). 

Therefore, other evaluation metrics were chosen in order to test the robustness of  model 

skill during calibration. Firstly, two time series were created which consisted of the median 

daily values from the 500 behavioural parameter iterations derived from the calibration of 

both HYSIM and HBV-Light. The Hydrotest website (www.hydrotest.org.uk) has 20 

different evaluation metrics for measuring model performance against observed flow.  

Evaluation metrics of absolute error and relative error were included as absolute error 

metrics do not necessarily give an indication of the importance of a model error (Dawson et 

al., 2007).  The metrics chosen were Mean Actual Error (MAE), Root Mean Square Error 

(RMSE), Percent Bias (PBIAS) and the Coefficient of Determination (R2).   A brief 

description of each evaluation measurement follows. 
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The coefficient of determination (R2) is given by the above equation, where O are observed 

and P are predicted values. This coefficient describes the proportion of the variance in the 

observed time series that can be explained by the model. R2 is limited as an evaluation 

measurement as only linear relationships between the variables of the modelled and  

observed flow are evaluated.  Furthermore, correlation measures are more sensitive to 

outliers than to observed variations which lie near the mean (Legates and Davis, 1997; 

Dawson et al., 2007).   
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Mean actual error (MAE) records in real units the overall level of agreement between 

observed (Qi) and simulated (
i

Q
∧

) flow.  It is a non-negative metric which is unbounded and 

a perfect simulation would be zero.  All deviations from the observed values are evaluated 

equally, so this metric is not biased towards high or low flows.  The MAE score is 

dependent on the length of the time series.  
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Root mean square error (RMSE) is a non-negative evaluation measurement which has no 

upper bounds and a perfect score is zero.  In RMSE, Qi is the observed value and  
i

Q
∧

 is the 

simulated value. Because it is computed using squared differences it is biased towards 

higher flows, like the NS criterion of efficiency.  The RMSE score is also dependent on the 

length of the time series. 
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Percent bias (PBIAS) records the level of overall agreement between observed and 

simulated flow as a ratio.  This evaluation measure is unbounded and a perfect score is 

zero.  Like RMSE the score is dependent on the length of the data series. Studies using 

PBIAS as an evaluation measurement include Yu and Yang (2000) and Murphy (2006).  

PBIAS is a relative measure of the overall water balance of a model.  However, a low score 

does not necessarily indicate a behavioural model, as positive and negative errors can 

cancel each other out (Dawson et al., 2007).  Table 6.6 shows the value of the different 

metrics for the median value time series from the behavioural iterations of both models.  
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Calibration 1963/01/01 - 1990/12/31 

 MAE RMSE PBIAS R2 

HYSIM 12.672 19.481 -0.006 0.752 

HBV-Light 14.106 21.091 0.1984 0.776 

 

Table 6.6 Scores for the different evaluation metrics for HYSIM and HBV-Light 

 
While noting that the median time series values are biased towards NS as it was the only 

evaluation measurement employed for calibration, the evaluation metric values in Table 6.6 

nevertheless gives an indication of the performance of both models with regard to other 

evaluation measures.  Again, HYSIM scores better.  Nonetheless, both models’ scores are 

within a small range.  

6.5.2 Comparison of the Models’ Simulations in a single Year 

The year with the highest flow volume within the calibration time series (1982) was 

selected in order to examine the performance of each model against the observed flow 

record (see Figure 6.3).   
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Figure 6.3 Yearly flow volume during the calibration period 

 
The NS values were computed for each model’s behavioural iterations for 1982.  HYSIM 

had a NS range over the 500 parameter sets from 0.683 – 0.705.  This is considerably lower 

than the range for the calibration time series (0.75 – 0.769). HBV-Light had lower NS 

values over its parameter sets of 0.588 - 0.627. These values would not have been 
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acceptable as calibration NS scores. Thus, behavioural parameter sets are not always 

transferable within sub-periods of the calibration time series (Wilby, 2005).   

 

The behavioural parameter sets for both models were then analysed along with observed 

flow (see Figure 6.4 and Figure 6.5).  A visual inspection shows that HYSIM tends to over-

predict low flows while HBV-Light tends to under-predict.  It is notable too that HYSIM 

displays a narrower range of uncertainty for autumn and winter flows compared to HBV-

Light.  Furthermore, HYSIM over-predicts the highest yearly flow compared to HBV-

Light. 

 

Figure 6.4 HBV-Light behavioural iterations for 1982 plotted against observed flow 
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Figure 6.5 HYSIM behavioural iterations for 1982 plotted against observed flow 

 

6.6 Validation of the Rainfall-Runoff Models 

 

It is good modelling practice to evaluate the chosen parameter sets as good representations 

of catchment behaviour using an independent validation time period.  The period from 1st 

January 1991 to 31st May 1991 was chosen as a spin-up period and then the 500 

behavioural parameter iterations from both models were evaluated against observed flow 

from 1st June 1991 until 31st December 2000 using NS. The robustness of the models can 

also be measured by the increase or decrease in average performance over the validation 

period (Perrin et al., 2001).  

 

Validation NS Values 

 Maximum Mean Minimum 

HYSIM 0.785 0.767 0.760 

HBV-Light 0.750 0.742 0.734 

 

Table 6.7 Maximum, mean and minimum NS values for the validation period 

 

Table 6.7 shows the maximum, mean and minimum NS values for the validation period.  

Both models display higher NS values during this time period in contrast to the calibration 
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period, which may be due to the shorter time period employed. However, it is also an 

indication of the robustness of both models as reliable simulators of catchment behaviour 

(Perrin et al, 2001). The other evaluation metrics employed for the calibration period were 

also computed for the validation period, using the modelled time series  from the parameter 

sets with the median NS score (see Table 6.8).  

 

Validation 1991/06/01 - 2000/12/31 

 MAE RMSE PBIAS R2 

HYSIM 12.371 20.278 -0.016 0.78 

HBV-Light 14.377 21.7 0.185 0.805 

 

Table 6.8 Values for MAE, RMSE, PBIAS and R2 for the validation period 

 
Again, as the parameter sets were chosen as behavioural using only NS, this will bias the 

scores of the other evaluation metrics. What is notable here is that although HYSIM has 

better scores over MAE, RMSE and PBIAS, HBV-Light scores higher on R2.  Thus, 

although HYSIM’s evaluation scores are generally better for the evaluation metrics chosen, 

both models’ scores are again within a comparable range.   

6.6.1 Comparison of model skill in three different years of the validation period 

The three years with the highest flow volume in the validation period (1993, 1994, and 

1996) were chosen in order to test the skill of both models in simulating observed flow (see 

Figure 6.6). Each of the behavioural parameter sets were plotted against the observed flow 

series (Figure 6.7, Figure 6.8 and Figure 6.9).  HYSIM exhibits similar behaviour to its 

performance in the wettest year of the calibration time period (1982). It over-predicts both 

low flow and the hydrograph peaks in comparison to HBV-Light. 

 

The uncertainty range of the behavioural parameter sets is also narrower in the 

autumn/winter period in HYSIM.  The NS values were also computed for each of the 

behavioural parameter sets for three years.  Although NS is biased towards higher flows, 

there is considerable flow variability even within wet years.  Wider difference in skill 

measures in 1993 (0.757 -0.808 for HYSIM; 0.642 – 0.707 for HBV-Light) may be 

reflective of the fact that HYSIM simulates the winter flood peaks better than HBV-Light 

(Figure 6.7). 
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Figure 6.6 Yearly flow volume during the validation period. Years with highest flow volume (1993, 1994 

and 1996) are highlighted 

 
 Both models have lower scores in 1994, possibly because the flood peaks in the first three 

months of the year are not well simulated by either model (although again HYSIM scores 

better than HBV-Light) (Table 6.10). However, the highest NS scores are exhibited in 

1996, with HBV-Light showing higher skill than HYSIM.  Visual inspections of the 

diagrams show that both models simulate the flood peaks particularly well (Figure 6.9).  

These different ranges for NS again show that the behavioural parameter sets from the 

calibration period are not necessarily transferable within shorter periods of either the 

calibration or validation time series (Wilby, 2005). 

 
 

NS Value Range  

  Maximum Minimum 

HYSIM 0.808 0.757 
1993 

HBV-Light 0.707 0.642 

HYSIM 0.701 0.643 
1994 

HBV-Light 0.679 0.62 

HYSIM 0.831 0.797 
1996 

HBV-Light 0.846 0.828 

 

Table 6.9 NS Values for the three highest flow years in the validation period
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Figure 6.7 500 behavioural parameter iterations for HYSIM and HBV-Light for 1993 plotted against  

observed flow 
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Figure 6.8 500 behavioural parameter iterations for HYSIM and HBV-Light for 1994 plotted against  

observed flow      
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Figure 6.9 500 behavioural parameter iterations for HYSIM and HBV-Light for 1996 plotted against  

observed flow 
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6.7 Simulation of annual maximum flow for the validation period 
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Figure 6.10 Models’ simulations of the highest flow event in 2000 

 
This project will analyse changes to flood magnitude/frequency relationships within the 

Suir catchment due to climate change.  Therefore, the maximum observed flow from each 

year in the validation time period was selected and the models’ skill at simulating the 

yearly highest flow event was measured using different evaluation metrics.  NS and RMSE 

were omitted from this exercise as these metrics are more suitable for the evaluation of 

continuous hydrographs.  Another metric, peak difference (PDIFF) was included.  

 

PDIFF = max )( iQ  - max )(
i

Q
∧

 

This is a signed metric with no upper limit and for a perfect model the score would be zero.  

It records in actual units how the highest simulated value in the modelled data set matches 

the recorded value in the observed set.  As a signed metric it is positive if the model under-

estimates observed flow and negative if the model over-estimates observed flow. PDIFF is 

particularly suitable for single flow events (Dawson et al., 2007).  

 

The observed daily flow data from the two months on either side of the flow event was 

selected in order to generate reasonable values for the different metrics.  This was 

compared to the corresponding time series of median parameter values for both HYSIM 
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and HBV-Light.  Scatter plots were created of  the year 2000 flow event using the observed 

flow as the independent variable (x) and the modelled flow as the dependent variable (y) 

with the intersect line shown on each graph (see Figure 6.11).  The maximum flow event 

for the year 2000 was also the highest flow event for the 40 year time period from 1961 to 

2000. 
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Figure 6.11 Scatter plots showing R2 values for the highest flow event in 2000 

 
Table 6.10 below details the results for the different metrics chosen to evaluate the annual 

maximum flood events for each year of the validation period.  The figures highlighted in 

grey are the best scores for the given metric in a particular year.   There are only two years 

when one model consistently scores better than the other; 1994 (HYSIM) and 1998 (HBV-

Light). The models’ scores for PDIFF and MAE vary more than for PBIAS and R2, where 

they are within comparable ranges. Otherwise it is difficult to evaluate from the scores 
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which model is better at simulating these events, as there is no discernable pattern in the 

performance of the models.   HYSIM has 70% of the top scores for PDIFF, and 60% of the 

top scores in MAE. However, both models have an equal amount of highest scores for 

PBIAS and HBV-Light has 60% of the top scores according to the R2 metric.  Although 

HYSIM does score higher according to two of the evaluation measurements no model is a 

clear “winner” in terms of the metrics chosen and both models’ scores are again within 

comparable ranges.   

   

Year Date Max Flow Model Evaluation Metric 

  PDIFF MAE PBIAS R2 

HYSIM 43.22 16.29 -0.118 0.56 
1991 25/11/1991 

HBV-Light 52.12 17.14 -0.101 0.544 

HYSIM -30.88 6.6 -0.041 0.8974 
1992 13/09/1992 

HBV-Light 7.01 7.12 -0.105 0.888 

HYSIM 56.73 24.10 0.089 0.781 
1993 17/12/1993 

HBV-Light 83.14 29.67 0.219 0.841 

HYSIM 56.73 26.68 0.173 0.651 
1994 16/01/1994 

HBV-Light 74.01 34.88 0.238 0.612 

HYSIM 157.5 25.77 0.221 0.819 
1995 03/11/1995 

HBV-Light 170.4 33.31 0.303 0.826 

HYSIM 4.54 25.27 -0.092 0.742 
1996 07/01/1996 

HBV-Light 17.3 16.70 -0.089 0.858 

HYSIM -3.52 11.15 -0.219 0.863 
1997 06/08/1997 

HBV-Light 41.44 10.39 -0.117 0.9 

HYSIM -83.4 22.33 -0.219 0.863 
1998 30/12/1998 

HBV-Light -28.46 16.66 -0.117 0.9 

HYSIM -71.13 12.55 -0.075 0.893 
1999 26/12/1999 

HBV-Light -25.84 13.07 0.105 0.851 

HYSIM 34.74 -15.62 -0.157 0.847 
2000 06/11/2000 

HBV-Light 87.72 -2.759 -0.028 0.886 

 

Table 6.10 The values of the different evaluation metrics for single-event analysis in the validation 

period 

 

6.8 Conclusion 

 

Both HYSIM and HBV-Light were calibrated and validated taking into account equifinality 

of parameter sets and models by employing the GLUE methodology.  Monte Carlo random 

sampling was used to generate random parameter sets and the NS dimensionless criterion 

of efficiency was used as the likelihood measure in GLUE.  However, while 10,000 Monte 
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Carlo runs produced over 500 behavioural parameter sets in HYSIM, 500,000 Monte Carlo 

runs were required to produce a similar amount of behavioural sets in HBV-Light.  Both 

models proved robust simulators of catchment behaviour through their improved 

performance during the validation period (Perrin et al., 2001). While HYSIM had higher 

NS scores for both the calibration and validation periods, the scores of both models were 

within a comparative range.  This finding was strengthened when the models’ skill was 

tested against other evaluation metrics.  HBV-light had slightly lower NS scores than 

HYSIM when the model simulations were compared to observed flow for one year of the 

calibration period and also had lower scores for two of the three years selected in the 

validation period.  However, in the simulation of single peak flow events in the validation 

period, neither model consistently scored higher than the other on the evaluation metrics 

employed. Both models had comparable scores.  Thus, both models simulated observed 

flow robustly and with in a comparable range (according to the evaluation metrics chosen) 

in both the calibration and validation periods. This finding will be taken into consideration 

in chapter 7, when the models’ performances will be compared when evaluating how much 

uncertainty is due to model structural error, in comparison to GCM uncertainty and 

scenario uncertainty. 
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7 Chapter 7 – Future Simulations of Catchment Hydrology 

 

7.1 Introduction 

 

In chapter 3 there was an overview of the statistically downscaled data employed in this 

project.  After successfully calibrating and validating HYSIM and HBV in chapter 6, this 

chapter will focus on future simulations of catchment hydrology.  The results presented are 

based on the output of three GCMs (HadCM3, CCCM and CSIRO) and two emissions 

scenarios (A2 and B2). The model output will also be evaluated over two future time slices; 

2040 to 2069 (2050s) and 2070 to 2099 (2080s).  The impact of GCM uncertainty and 

scenario uncertainty will be analysed by employing the highest-scoring behavioural 

parameter set from the validation period.  Model structural uncertainty will be evaluated by 

employing 500 iterations arising from the behavioural parameter sets identified in 

validation and the six combinations of GCMs and emissions scenarios.  The amount of 

uncertainty derived from GCM, emission scenario and model structure will be compared 

over the two future time periods for both models so that the contribution of each to impact 

uncertainty can be analysed.   

 

7.2 Modelling of the Future Flow Simulations 

 

Both HYSIM and HBV-Light were forced with the statistically downscaled future data.  PE 

and precipitation from the control period (1961 to 1990) and the six future scenarios 

(HADCM3 A2; HADCM3 B2; CCCM A2; CCCM B2; CSIRO A2 and CSIRO B2) 

together with the 500 behavioural parameter sets from validation were used as input to 

HYSIM. This resulted in 500 one hundred and thirty year time series of streamflow for 

each different scenario which were then split into the control time period time slice and two   

different 30-year future time slices; 2040 to 2069 (2050s)  and 2070 to 2099 (2080s).  Thus, 

for each future time slice a total of 3,000 different model runs were produced (500 runs x 6 

scenarios). The same methodology was used to force HBV-Light with the future data using 

temperature, PE and precipitation from the statistically downscaled data as input to the 

model.  All data output from HBV-Light is produced in runoff (mm/km2 of the catchment 

area).  This was converted to cumecs (m3/sec) using the R Statistical Programme (2010) in 
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order to standardise the values with the simulations from HYSIM.  The formula used was 

n*2173000000/86400/1000 (n*Catchment area in metres/number of seconds per day/1000). 

The daily mean flow regime for the Suir catchment was calculated using the observed 

streamflow data for the baseline period.  This was compared to the daily mean flows for the 

control simulations in order to detect biases in the flow regime due to the GCM and 

hydrological model employed.  The graphs below (Figure 7.1) compare the observed daily 

mean flow to the control daily mean flow for HADCM3, CCCM and CSIRO using the 

validation parameter set with the highest NS value in both models.  
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Figure 7.1 Observed daily mean flow compared with control values for the three GCMs 
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In the HYSIM simulations, CSIRO has the wettest flow regime, and there are slightly 

higher values for April, June and July than in the observed flow regime.  Particularly 

noteworthy are the simulated values for November, where all GCMs record higher flows 

than the observed, up to 133% of observed flow in the case of HADCM3.  The reverse is 

the case regarding January values, where all GCMs record lower flow than the observed 

mean flow value, with CCCM recording 80% of observed flow values. CCCM has the 

driest flow regime of the control GCM simulations in HYSIM.   

 
Overall, HBV-Light underestimates winter flow and simulates a drier yearly flow regime 

for all GCMs.  Particularly low values are simulated in winter (DJF) compared to the 

observed monthly mean flow.  Simulated values for December range from 73 – 83% of 

observed daily mean flow, compared with 68% - 77% in January and 66% to 78% in 

February. Only in November do simulated values exceed observed ones.  The highest 

November value (HADCM3) is 115% of observed flow, which is significantly lower than 

corresponding value simulated by HYSIM.  Both models simulate a greater inter-GCM 

value range in February, March and April with smaller ranges for the rest of the year.  

Furthermore, in both models, CCCM has the driest flow regime and CSIRO the wettest.    

 

7.3 Uncertainty in Future Streamflow due to different GCMs 

 

Uncertainty in future simulations of streamflow derived from the different GCMs employed 

in the project was evaluated by using the highest scoring validation parameter sets 

(according to NS) in both HYSIM and HBV-Light and analysing the output of the A2 

scenario for each GCM for the 2050s and 2080s.   

7.3.1 Uncertainty in Streamflow in the 2050s 

What is most notable on a visual inspection of the graphs is that the percentage change in 

monthly streamflow is more extreme for HBV-Light than for HYSIM with a more 

pronounced direction of change (see Figure 7.2).  The ranges of uncertainty for each month 

are also greater in HBV-Light.  For the 2050s in January, HBV-Light models an increase of 

up to 40% in monthly streamflow with CSIRO A2.  This compares to a 20% increase for 

CSIRO A2 in HYSIM.  This may be due to the more complex soil moisture routine in 

HYSIM and the fact that the model includes a parameter for capillary suction (bubbling 

pressure), thus preserving more moisture in the soil layers even during dewatering of the 
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soil. The soil moisture routine in HBV-Light is much simpler when it is run in fully-lumped 

mode, and the response of the routine may be  

 

 

     HBV-Light              HYSIM 

 

 

Figure 7.2 Uncertainty in streamflow due to choice of GCM for the 2050s (top) and the 2080s (bottom) 

using the best validation parameter set in both models 

 

too abrupt once storage is filled to FC, as any excess moisture will be routed to the runoff 

response routine to become simulated streamflow (Bergström, 1976).  In contrast, HYSIM 

has three stores in its soil moisture routine with the soil parameters being some of the most 

important in the model.  Bubbling pressure, in particular, simulates capillary suction as the 

soil is being dewatered and more moisture will be held in the soil layers.  Nevertheless, 

both models proved robust simulators of observed flow during validation and both 
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therefore are equally plausible for employment as impact models in modelling future 

streamflow.  

 

In both models in the 2050s, the direction of the uncertainty is not clear in January, where 

HADCM3 simulates very little change in streamflow.  The output of both models shows an 

increase in streamflow in both February and March, however the change is more 

conservative in HYSIM (up to 22% (Feb) and 16% (Mar)) in contrast to a 35% and 21% 

maximum difference for the same months in HYB-Light.  In HYSIM the direction of GCM 

uncertainty is unclear for the rest of the spring months (April, May) and for the summer 

months.  Indeed, for the summer months in the 2050s, GCM uncertainty is very small and 

does not vary much from the control period values ranging from -5% to 2.7% (June), minus 

6% to 2% (Jull) and -4% to 2.7% in August.   In contrast, the range of uncertainty for the 

summer months is greater in HBV-Light and the direction of change is more definite with 

considerable reduction in daily streamflow compared to the control period.  The ranges are 

-7% to -25% (June); -9 to -25% (July);  -16% to -35% difference in streamflow by August.   

 

HBV-Light records the biggest percentage change in monthly streamflow in September of 

the 2050s, where streamflow is only 58% of the control period value according to CSIRO 

A2.  Notably, CSIRO A2 modelled the largest percentage decrease in summer and autumn 

precipitation in the 2050s (Figure 7.2). HADCM3 A2 and CCCM A2 have more 

conservative figures modelling 76% and 81% of control period values.  Such a difference in 

streamflow could potentially have large consequences for water abstraction activities in the 

Suir and for fluvial ecology, if realised.  Conversely, the largest reduction in streamflow in 

HYSIM occurs in October and November, with a 28% reduction in October (CSIRO A2) 

and a slight recovery in streamflow in November to -24% of control values.  HBV-Light 

has November streamflow values much nearer the control ones (-6% to -3%).  As A2 has 

medium-high emissions and is therefore a dry scenario, this is reflected in the output of the 

models. Under such a scenario, more precipitation will be required by the autumn wetting-

up period in order to replenish drier soils and hence groundwater and streamflow (Wilby, 

2005). However, there is a lack of agreement in the models as to which month has the 

greatest reduction in streamflow. Reasons for this may be the different soil moisture 

routines of the models.  The key point is that is the structure of the rainfall-runoff models 

that determines the range of uncertainty. 
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7.3.2 Uncertainty in Streamflow in the 2080s 

By the 2080s, the output of both models shows more pronounced trends in autumn and 

winter streamflow with greater increases and reductions than in the 2050s.  The output of 

HBV-Light is again more extreme than that of HYSIM.   In December, HBV-Light models 

an increase in streamflow ranging from 4% to 20%.  In HYSIM the direction of change is 

less certain, with streamflow changes between -3% and 13%.  The largest increase in 

December flow in both models is from CSIRO A2. There are increases in streamflow in 

January ranging from 16% to 44% in HBV-Light where CSIRO records the greatest 

increase and a similar increase in February, although inter-GCM uncertainty is smaller with 

20% - 44% difference and CCCM A2 showing the greatest increase in this month.   There 

is a similar pattern in HYSIM although increases are on a more conservative scale of 7% to 

28% increase in January.  In HYSIM the largest increase in monthly streamflow in the 

2080s is in February, with a range between 11% and 34%.   

 

The direction of change in streamflow is more uncertain in the spring months in both 

models. March streamflow in HYSIM ranges from -2% to 10% increase (HADCM3 A2).  

April streamflow levels show a reduction across all GCMs in contrast to the 2050s. 

However, the change is relatively modest in comparison to the control period values and 

ranges from 0% to 10% (CCCM A2).  However, in HYSIM in the 2080s May shows the 

greatest inter-GCM uncertainty with streamflow change ranging from -19% according to 

CCCM A2 to 19% increase in streamflow (CSIRO A2) with HADCM3 A2 showing little 

change in comparison to the control period value.  In HBV-Light, percentage change in 

streamflow in March ranges from 6% to 18% and in April the changes are similar to those 

in HYSIM varying between -6% and 2%.  Like HYSIM, inter-GCM uncertainty is large in 

May and the direction is also uncertain, ranging between 13% (CSIRO A2) and -26% 

(CCCM A2).   

 

There is a marked difference between the models in streamflow change for the summer 

months.  Streamflow changes in HYSIM are closer to the control period values, with 

differences ranging from -20% to 3% in June, -14% to -3% in July and -12% to -3% in 

August.  CCCM A2 is the driest GCM and CSIRO A2 the wettest.  In contrast, the 

reductions in summer streamflow are much greater in HBV-Light.  Inter-GCM uncertainty 

is greatest in June (1% to -34%) with greatest reductions from CCCM A2.  However, 
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reductions in streamflow are particularly marked in July and August with ranges from -19% 

to -36% (July) while in August, streamflow is between 55% and 78% (-22% to -45%) of 

the control period values. It is also notable that the greatest reductions in streamflow in July 

and August are from HADCM3 A2, reflecting GCM output. Reductions such as these could 

have serious implications for fluvial  ecology.   

 

In HBV-Light, reductions in streamflow are not as great for the remainder of the autumn 

period as September. October shows a recovery in streamflow with a small inter-GCM 

range between -33% and -28%.  The inter-GCM range in November is greater (-28% to -

15%) with CCCM showing the greatest reduction in streamflow.  There is a marked 

reduction in autumn streamflow in HYSIM compared to the 2050s, with a notable 

agreement between GCMs in September (-18% to -23%).  The biggest reductions in 

monthly streamflow are again recorded in October (similarly to the 2050s) although inter-

GCM uncertainty is more marked with reductions ranging from -24% (CSIRO A2) to -42% 

(HADCM3 A2). This finding concurs with that of Murphy and Charlton (2008) where 

reductions in monthly streamflow were greatest in October.  The reduction in streamflow 

compared to the control values is almost as great in November, however there is more 

agreement between GCMs with a range between  -40% (CCCM A2) and -28% (HADCM3 

A2).  In both models December shows a distinct recovery in streamflow. 

 

While there are similarities in the changing patterns of streamflow in the 2080s, HBV-light 

models more extreme changes in winter and summer streamflow.  However, autumn 

changes in streamflow are more pronounced in HYSIM, as can be seen from Figure 7.3. 

The reduction in streamflow between August and November is more pronounced than in 

HBV-Light.  This may be due to HYSIM retaining more moisture in the soil stores (i.e., 

more soil rewetting) before excess moisture can replenish either groundwater or 

streamflow.  Conversely, in the summer months the retention of moisture in the soil stores 

may keep replenishing groundwater (and streamflow) thus enabling differences in 

streamflow values to be more conservative than HBV-Light. However, by autumn soil 

moisture may reach critically low values.  The parameter “bubbling pressure” may become 

more influential in the model and conserve more moisture in the soil stores rather than 

release moisture to replenish the groundwater store and thus streamflow.   
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Figure 7.3 Percentage change in streamflow by the 2080s for HBV-Light (top) and HYSIM (bottom) 

using the A2 emissions scenario and the best validation parameter sets in both models 

 

Conversely, the simpler structure of HBV-Light may be the reason why the model responds 

quicker to increases or decreases in precipitation.  This highlights the importance of taking 

model structural uncertainty into account and to understand the reasons for differences in 

model output. 

7.4 Uncertainty in Future Streamflow due to different Emissions scenarios 

 

Like GCM uncertainty, uncertainty due to emissions scenarios was evaluated by employing 

the best validation parameter sets in both HYSIM and HBV-Light and the HADCM3 A2 
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and B2 scenario. One limitation of this project is that only 2 emissions scenarios are 

employed; A2 (medium-high) and B2 (medium-low). More extreme scenarios are omitted.  

However, these scenarios were the ones recommended for use in the IPCC TAR 

(Nakicenovic et al., 2000). The HADCM3 GCM has been employed for this experiment 

and the next one because it originates from the Hadley Centre in the UK, where 

climatological conditions are closer to Irish ones than those of either Australia or Canada 

(where CSIRO and CCCM GCMs originate).  A somewhat counter-intuitive observation is 

that in the 2050s greater decreases in streamflow are suggested by the B2 scenario (with 

medium-low emissions and a decreased rise in temperature compared to the A2 scenario 

with medium-high emissions) for the summer months (JJA) in both models (see Figure 

7.4).  

              HBV – Light           HYSIM 

 

 

Figure 7.4 Uncertainty due to emission scenario for the 2050s (top) and the 2080s (bottom) using the 

HADCM3 A2 and B2 scenarios and the best validation parameter set in both models 
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This trend continues into the autumn (September, October) however by November the 

highest increase in streamflow is suggested by the B2 scenario, as would be expected.  

 

For both models in January of the 2050s, the B2 scenario suggests the largest increase in 

streamflow with very similar ranges between emissions scenarios (1% to 7% in HYSIM; 

2% to 8% in HBV-Light). The inter-emission scenario uncertainty range is greater in HBV-

Light than in HYSIM across most months in the 2050s.  Decreases in streamflow follow 

similar patterns to those highlighted in Section 7.3 (uncertainties in streamflow due to 

choice of GCMs) with HBV-Light streamflow decreasing markedly in the summer season 

in contrast to HYSIM, where small inter-emission scenario ranges are very close to control 

period values.  In August, there is very little inter-emission scenario uncertainty. However, 

model structural differences assert themselves with HYSIM suggesting a small reduction in 

streamflow (-4% to -5%) while there is a reduction in streamflow between -16% and -18% 

suggested in HBV-Light.  Model structural uncertainty also accounts for the large reduction 

in monthly streamflow (-24%) in September in HBV-Light (where there is notable inter-

emission scenario agreement in reductions). In contrast, October is the month with the 

largest reduction in streamflow in HYSIM.  In November, both models show the largest 

amount of inter-emission scenario uncertainty, however, ranges are different (-12% to 1% 

in HYSIM; -6% to 10% in HBV-Light).   

 

By the 2080s the emission scenario pattern in both models is more intuitive, with A2 being 

the driest scenario for most months, apart from January and February. This is again 

reflective of GCM output. The direction of change is also more extreme than in the 2050s 

with HBV-Light modelling the largest increase in streamflow in February according to A2 

(44% increase). Percentage changes in streamflow in HYSIM are more constrained.  Again 

model structural uncertainty asserts its presence as the output of HBV-Light shows notable 

reductions in streamflow throughout the summer months and early autumn before a slight 

recovery by October. These reductions are more extreme than in the 2050s with inter-

emission scenario uncertainty also being larger (-24% to 36% in July; -26% to -44% in 

August; -26% to -43% in September).  In contrast, in HYSIM summer streamflow 

differences are close to control period values until autumn when there is a marked 

streamflow reduction in September, with the biggest reduction in streamflow again 

happening in October.  However, the inter-emission scenario uncertainty range is not as 
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great as in HBV-Light with reductions between -15% and -23% in September and -29% 

and -42% in October.   

 

The reductions in November show similar patterns to the 2050s with HBV-Light 

suggesting a lower reduction in streamflow compared to control period values (-5% to -

16%) than HYSIM (-11% to -29%). There is inter-emission scenario agreement in 

streamflow changes in December with HBV-Light modelling a 9% to 10% increase in 

streamflow over control period values compared to 5% to 6% increase in streamflow in 

HYSIM.  In these experiments it is difficult to separate GCM and emission scenario 

uncertainty from the uncertainty due to model structure and equifinality of parameter sets, 

as the latter two influence both GCM uncertainty and emission scenario uncertainty, with 

output of each model showing a distinct pattern that is unique (Butts et al., 2004).  For 

example, in general HBV-Light models more extreme increases and reductions in 

streamflow over the year than HYSIM. This is a function of the structure and parameters of 

the model, which interact in a unique way with GCM and emission scenario data input.   

7.5 Uncertainty in future streamflow due to Equifinality of Parameter Sets 

 

Uncertainty in future streamflow due equifinality of parameter sets was evaluated  by 

employing the HADCM3 A2 output for the 2050s and 2080s and calculating the maximum, 

mean and minimum values of the 500 behavioural parameter iterations for each month of 

the respective time slices.  This methodology was used for each model (see Figure 7.5).  

Model output shows similar patterns to uncertainty due to emission scenario, with some 

distinct patterns.  Once again, HBV-Light models more extreme percentage changes in 

streamflow over both time slices than does HYSIM.  However, generally there are smaller 

ranges of uncertainty each month due to equifinality of parameter sets than either GCM  or 

emission scenario uncertainty.  Indeed, the month with the greatest range of uncertainty in 

the 2050s according to HBV-Light is May with a difference of 12% (-12% to -24%). In the 

same time slice, September has the greatest range of inter-parameter uncertainty according 

to HYSIM (-10% to -19%).  This contrasts with the total percentage change in streamflow 

for some months, (notably February and August in HBV-Light) which by the 2080s is 

comparable with, or greater than, GCM uncertainty.    
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    HBV-Light              HYSIM 

 
 

Figure 7.5 Uncertainty due to equifinality of parameter sets for the 2050s (top) and the 2080s (bottom) 

using the HADCM3 A2 scenario 

 
Both models display similar patterns of change in the 2050s with very little percentage 

change in streamflow modelled in either January or December.  By February and March 

increases in streamflow are displayed by both models with HBV-Light modelling a greater 

increase (28% in March) than HYSIM, which displays similar increases for both February 

and March (20% and 19% respectively).  In both models, there is a reduction in streamflow 

in May, which is more marked in HBV-Light than in HYSIM (a maximum of -24% in 

HBV-Light; -15% in HYSIM).  Model structural uncertainty asserts itself again as 

reductions in streamflow in June and July are not as marked in HYSIM as in HBV-Light 

and differ very little from control values.  Furthermore, the greatest reductions in 

streamflow occur in September in HBV-Light (-28%) and October in HYSIM (-22%).  

Streamflow amounts recover to near control values by December in both models.   
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In the 2080s increases and decreases in streamflow are more marked with the greatest range 

of uncertainty occurring in the summer in HBV-Light and in the autumn in HYSIM.  In 

both models streamflow increases are greatest in February (maximum of 48% in HBV-

Light and 39% in HYSIM).  This compares with the increase in February streamflow due to 

GCM uncertainty (44% for HBV-Light; 35% for HYSIM). This makes the equifinality of 

parameter sets the source of the most extreme percentage change in  monthly streamflow by 

the 2080s.  Once again model structural uncertainty adds a familiar pattern to the monthly 

differences in mean flow as there are significant reductions in streamflow in July, August 

and September in HBV-Light (-49%, -54% and -48% respectively).  Indeed, the total 

reduction in August streamflow in the 2080s due to equifinality of parameter sets is greater 

than the reduction due to GCM uncertainty (-44%) or emission scenario uncertainty (-

44%).  In contrast, the reduction in streamflow becomes significant in September in 

HYSIM (-32%) and again the greatest reduction in streamflow happens in October (-48%).   

7.6 Uncertainty in future streamflow from GCMs, Emissions scenarios and 

Equifinality of Parameter Sets and Model Structure 

 

Figure 7.6 below shows the combined uncertainty in future streamflow from all sources 

(GCMs, emissions scenarios, model structure and equifinality of parameter sets) and both 

models for the 2050s and 2080s.  What is noticeable about the plots is that although the 

direction of the percentage change increases in the 2080s compared with the 2050s, the 

median of each box plot lies close to 0% change relative to the control data.  In the 2050s 

only in the winter months  does the median percentage difference lie above 10% increase in 

streamflow.  By late summer (August) and the autumn season (September, October) median 

percentage difference lies between 10% and 20% for streamflow reductions. Although 

October has the lowest median value of the data, the range of uncertainty is much less than 

September where the outliers (representing the 5th and 95th percentiles) suggest much 

greater range in percentage change  in streamflow (from 5% to -45% approx.).  For the rest 

of the year namely spring, early summer and late autumn (April, May; June, July and 

November) median values for percentage change in streamflow lie between 0% and 10%.  

It can be argued that HBV-Light contributes more to the extremes of the box plots while 

HYSIM has a constraining effect on the spread of the data in each box plot.  It can be also 

argued that this range is within that of natural climate variability.  However, if streamflow 

in February of a given year in the future time slices was 20% higher than normal (due to 
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climate variability) and climate change added another 20% increase in streamflow to that 

total, the consequences in terms of flooding could be very serious.  

 

By the 2080s the value of the median percentage difference has generally become more 

extreme than the 2050s, although for three months (January, March, May and December) 

the median has decreased relative to the 2050s, which may reflect the drying projected to 

occur in the 2080s relative to the 2050s. Only in February and October do the median 

values exceed the 20% difference in streamflow.  The month with the greatest range of 

uncertainty is May, although its median lies very close to control values.  The direction of 

change is also uncertain for May and June. However, the outliers (representing the 5th and 

95th percentile) suggest large ranges of uncertainty (3% to -50% approximately) for August 

and September. Once again the data is more tightly constrained for October, the month with 

the greatest median reduction in streamflow, with 90% of the data suggesting reductions 

between -20% and -40%.   
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Figure 7.6 Combined output of both models, GCMs, emissions scenarios and behavioural parameter 

sets  for the 2050s and 2080s. The outliers represent the 5
th

 and 95
th

 percentiles of the data 

 

Although the main theme of this thesis is an analysis of uncertainty at the local stage of a 

climate impact assessment, it is pertinent to discuss the possible impact of changes to 

streamflow detailed in the diagrams above.  The outliers representing the extremes of the 

percentage changes in monthly streamflow suggest a major intensification in streamflow 

patterns in both time slices. Increases to January and February streamflow range up to 

~40% in the 2050s and up to ~50% in the 2080s.  Increases this large have worrying 

implications for Clonmel, a town already prone to flooding.  The new flood defences 

planned for the town will be built withstand a 100-year flood event of 500m3/sec with an 

option of protecting against a flood event 20% larger (600m3/sec) (O’Domhnaill, 2010 

personal communication).  The data contained above suggest that this is a prudent 

adaptation decision.  Furthermore, it highlights the importance of data measurement and 

analysis which will be vital to inform adjustments to flood adaptation options  in a rapidly 

changing climate. Modelling may be a useful adjunct to data measurement, but cannot 

replace it (Silberstein, 2006). The above diagrams also highlight the importance of 

including all sources of uncertainty in a future analysis of climate change.  While it is 

necessary to perform a sensitivity analysis on individual uncertainty sources, only by 
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combining all output does one gain a comprehensive understanding of the total uncertainty 

range, which is important if such analyses inform climate impact adaptation plans or policy 

frameworks.  

 

7.7 Absolute Changes in Streamflow Discharge 

 

This chapter has focused on percentage changes to monthly streamflow due to different 

future climate scenarios. However, it is important to reiterate that during the control period 

HYSIM simulated a wetter flow regime than HBV-Light (see Figure 7.1).   
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Figure 7.7 Absolute changes in streamflow for the 2050s (top) and the 2080s (bottom) using the 

HADCM3 A2 scenario 
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This fact is reinforced by the diagram above (Figure 7.7), which details absolute changes to  

streamflow  (in m3/Sec) in the monthly flow regime for 2050s and 2080s for the HADCM3 

A2 scenario, employing the 500 validation parameter sets for both models (in the X axis, 2, 

4, 6 represent February, April, June etc.).  The black dotted line represents the mean value 

of the control period simulations for HADCM3 A2.  By the 2080s, (for HADCM3 A2) 

HYSIM models a significantly wetter monthly flow regime than HBV-Light, particularly 

for January and February, which is the main season for flooding in Ireland. This change in 

streamflow will be further explored in Chapter 8, which will evaluate changes to flood 

magnitude and frequency due to climate change.   

7.8 Conclusions 

 

This chapter has evaluated changes to catchment hydrology due to climate change for two 

future climate scenarios using the output from three GCMs.  Uncertainty due to choice of 

GCM, emission scenario and equifinality of parameter sets were evaluated separately, with 

GCM uncertainty being the greatest source of uncertainty in the 2050s and the 2080s, 

followed by equifinality of parameter sets and finally emission scenario uncertainty.  Model 

structural differences asserted themselves through the distinct pattern of percentage change 

in monthly streamflow, which is evident in both the 2050s and the 2080s.  However, by the 

2080s in HBV-Light, uncertainty due to equifinality of parameter sets was responsible for 

the largest percentage difference in streamflow for February and August (although the 

range of uncertainty on a monthly basis was greatest due to inter-GCM differences).  

 

The output of HBV-Light shows more extreme percentage changes than HYSIM, which 

models more conservative percentage differences in streamflow until the autumn period, 

when there are marked reductions in flow. The differing soil moisture routines in the 

models (HBV-Light’s more simple routine; HYSIM’s more complex routine) may account 

for this distinct pattern. Indeed, some of the reductions in streamflow during the summer 

and autumn seasons may have major implications for fluvial ecology, if realised.    

However, when all sources of uncertainty and the output of both models are combined it 

can be argued that the median percentage changes each month do not differ much from 

natural climate variability.    In terms of absolute changes to the streamflow regime, 

HYSIM models a wetter regime than HBV-Light (at least for the HADCM3 A2 scenario).  
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This change to absolute streamflow volume will be the focus of Chapter 8, when possible 

changes to flood magnitude and frequency will be evaluated.   

 

To date, little research has been conducted in Ireland which examines the effect of local 

impact model uncertainty in climate impact assessments. Most recent studies have 

employed either HYSIM (Charlton et al., 2006; Murphy and Charlton, 2008) or the HBV 

model (e.g., Semmler et al., 2006; Wang et al., 2006; Steele-Dunne et al., 2008) to evaluate 

possible future changes to both average catchment runoff and extreme flow.  Vrugt and 

Robinson (2007, p.1, italics mine) observe that “…predictive uncertainty analyses are 

typically carried out using a single conceptual mathematical model of the hydrologic 

system, rejecting a priori valid alternative plausible models and possibly underestimating 

uncertainty in the model itself”. Moreover, in two important reports recently published 

(Ireland in a Warmer World, Scientific Predictions of the Irish Climate in the 21st Century 

(C4I) and Climate Change in Ireland; Refining the Impacts for Ireland (EPA)) only one 

impact model was employed in each report to evaluate changes to hydrology in Ireland due 

to climate change (HBV-Light in the former; HYSIM in the latter). The output of both 

models indicated that an increase in seasonality of streamflow will occur under climate 

change in Ireland.  

 

In the aforementioned studies both HYSIM and the HBV model have proved to be 

plausible representations of the hydrological behaviour of several important Irish 

catchments.  In these studies equifinality of parameter sets was evaluated and an ensemble 

of GCMs and emissions scenarios were also included, in order to represent uncertainty 

stemming for these sources in a more comprehensive way. It can be argued that equifinality 

of model structures is as important a source of uncertainty in a climate impact assessment 

as equifinality of parameter sets, GCMs or emissions scenarios (e.g., Perrin et al., 2001; 

Højberg and Refsgaard, 2005; Wilby, 2005).  It therefore stands to reason that this source 

of uncertainty should be included in further climate impact assessment research by 

employing an ensemble of impact models (e.g., Ajami et al., 2007; Georgakakos et al., 

2004; Vrugt and Robinson, 2007).   
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8 Chapter 8 – Impact of Climate Change on Flood 

Magnitude/Frequency 

 

8.1 Introduction 

 
Chapter 7 focused on possible changes to the flow regime of the Suir catchment due to 

climate change and the uncertainty that arises due to different impact models.  In this 

chapter the focus will shift to the analysis of possible changes to one extreme event in a 

fluvial regime: flooding.  Specifically, possible changes to flood magnitude and frequency 

will be evaluated in terms of the uncertainty arising from GCMs, emissions scenarios and 

the impact models. A trend analysis will also be carried out in order to test the data record 

for trends in the annual maximum series (AMS). One of the underlying assumptions in 

evaluating possible changes to flood magnitude and frequency is that land use remains 

constant for the period of analysis and there are no changes to the fluvial system due to 

human intervention, as these changes may effect flood magnitude and frequency.  Changes 

to fluvial flood magnitude and frequency can have important consequences for human 

welfare, structural integrity and economic activities around rivers. 

 

 There is growing evidence that, due to climate change, the global hydrological cycle is 

intensifying leading to an increase in extreme hydrological events (Huntington, 2006) and 

flooding (Milly et al., 2002).  Robson (2002) noted that although there were trends in high 

flows in the last 30 to 50 years in the UK, this could reasonably be attributed to climate 

variability.  Furthermore, there were no appreciable trends detected in longer series of flood 

data (80 to 120 years).  Nevertheless, Kiely (1999), in a study of streamflow in four rivers 

in Ireland (Boyne, Brosna, Blackwater, Erne) noted that an enhanced cycle of both 

precipitation and streamflow had occurred from the mid-1970s which was correlated to an 

increase in the NAOI.  Climate variability can have a major influence on streamflow.  

Moreover, because there is large inter-annual variability of streamflow in Ireland, climate 

change trends may not be detectable for a number of years.  Harrigan (2010) has 

demonstrated that detection of climate change within Irish streamflow records may not be 

possible in the first half of the present century.  However, a trend that is not yet statistically 

significant may still have important effects on water resources (Ziegler et al., 2006).  
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8.2 Trend analysis 

 

8.2.1 Data used in the Trend Analysis 

 
Daily mean flow data from the gauging station at Clonmel (station no.16011) from 1 

November 1953 to 27 August 2008 were obtained from the OPW Hydro-Data website.  An 

exploratory data analysis showed that the data from 1954 to 2004 was of acceptable quality 

for use in constructing the Suir AMS.  The importance of good quality data in any 

modelling exercise cannot be overemphasised.  No matter how good a model, it cannot 

compensate for poor quality input data (Beven, 2000, 2007, 2008; Kundzewicz and 

Robson, 2004).  Indeed, although no dataset is perfect (there may be measurement errors, 

instrument malfunction, errors in data conversion, typographical errors etc.), it is fair to 

assume that the errors lie mostly with the model and not with the data (Beven, 2000).  In 

the forthcoming Flood Studies Update report (OPW, 20l0) the gauging station at Clonmel 

is one of 45 hydrometric stations to be given an A1 (high quality) rating.   

8.2.2 Testing for Trends in the Suir Annual Maximum Series  

 
Testing for trend is difficult and often depends on the time series over which the tests are 

conducted. Furthermore, what appears to be a trend or step jump in a data series may be 

part of climate variability in a longer record (Robson, 2002). It is important to consider the 

role of climate variability in causing apparent trend and fluctuations in precipitation and 

streamflow.  Indeed, Kundzewicz and Robson (2004) emphasise that climate variability 

may cause apparent trend where none exists and therefore a record of at least 50 years is 

necessary for climate change detection.  It is also important to assess any man-made 

changes within the catchment that may cause fluctuations in streamflow such as arterial 

drainage, construction of dams, land use change and urbanisation. 

 

 In order to derive the AMS the data from 1953 to 2005 were divided into hydrometric 

years (1 October – 30 September).  The AMS was then calculated from the hydrometric 

years (Figure 8.1).  The Peaks-over-threshold (POT) method is another means of evaluating 

trend. The reasoning behind use of POT is that parameters for extreme value distributions 

be estimated more accurately and it also gives additional information about the upper tails 

of the distribution (Katz et al., 2002).  However, it is vital to choose a suitable threshold for 
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estimation of POT.  Too low a threshold may include unnecessary data and too high a 

threshold may omit important values from the calculation. Moreover, autocorrelation and 

seasonal dependence is often demonstrated between different flood peaks (violating the rule 

of independence) and techniques such as declustering must be applied (Katz et al., 2002). 

This project followed the methodology employed in the Flood Estimation Handbook (1999) 

and used the AMS for trend analysis (Robson and Reed, 1999).   A visual inspection of the 

50 year AMS time series shows that the 1950s and 1980s were wet decades while the 

decade from 1970 to 1980 was a drier one.   
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Figure 8.1 Suir AMS from 1953 to 2004 

 
It is important to choose the relevant tests for trend in a hydrological data series and to 

carry out more than one test (Kundzewicz and Robson, 2004). Hydrological data display 

non-normality; they tend to be strongly skewed and show dependence. Although linear 

regression is often used to test for a trend in AMS, it is not a robust test for hydrological 

data as the underlying assumption is that the data are normally distributed.    Parametric 

tests are generally more powerful than non-parametric tests but they also make an 

assumption about the characteristics of the underlying distribution such as normality.  In 

distribution free (non-parametric) tests no assumption is made about the shape of the 

underlying statistical distribution. These tests are more suitable for use with hydrological 

data.   
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Resampling methods such as permutation and bootstrapping are also suitable for use with 

hydrological data, as they make minimal assumptions and are relatively robust (Robson, 

2002).  These methods involve re-ordering the original time series many times without 

replacement (permutation) or with replacement (bootstrapping) and testing for trend at each 

new combination.  After many combinations (in this project 1000) the original test statistic 

is compared to the regenerated test statistic values.  If the original test statistic is different 

to the newly generated values, it is reasonable to assume that the order of the original 

values was significant and that a trend exists.  Permutation is a more powerful test than 

bootstrapping, but it is also a less flexible test so bootstrapping is often the preferred 

resampling method.   

 

In testing for trend, it is important to be aware of two confounding errors: either falsely 

detecting a trend where none exists (Type I), or not detecting a real trend because of 

stochastic variations (Type II). Type I errors are addressed by pre-defining the confidence 

level α.  In this project α is set at the 0.1, 0.05 and 0.01 levels. The power of the statistical 

tests, the length of the record and the trend magnitude are some factors that influence Type 

II errors.  In order to carry out the analysis, the Trend software package from the University 

of Melbourne was employed (Chiew et al., 2005).   It provides several tests for use with 

AMS and includes resampling analysis (bootstrapping) for estimating the significance 

level.  The TREND user manual recommends 1000 resamples for robust significance level 

testing (Chiew et al., 2005).  In this project only tests suitable for detecting a monotonic 

trend were employed. The Mann-Kendall and Spearman’s Rho non-parametric tests from 

trend have been widely used in hydrological studies (e.g., Wilby, 2006: Yue et al., 2002; 

Ziegler et al., 2006). Although Linear Regression is not always a suitable test for trend, 

using 1000 resamples adds to the robustness of the test statistic.  The Rank Difference non-

parametric test was also included in the trend analysis in order to test for randomness in the 

AMS data series.    

 

Tests for Trend 

Mann-Kendall (non-parametric test for trend) 

Spearman’s Rho (non-parametric test for trend) 

Linear Regression (parametric test for trend) 
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Tests for Randomness 

Rank Difference (non-parametric test for randomness) 

 

The null hypothesis in the trend analysis (H0) is that there is no trend or change in the mean 

of the AMS over time.  Each test produces results at the 0.1, 0.05 and 0.01 significance 

levels.  Test equations are available in the TREND manual (Chiew et al., 2005).   Table 8.1 

gives the trend test results.  No significant trends were detected in the tests undertaken.  

However, while there is no statistically significant trend, nonetheless a trend is detectable 

from a visual inspection of the time series and from the test results (e.g., Mann-Kendall 

positive test value means that there is an increasing trend).  Wilby (2006, p.4, italics given) 

emphasises that “a distinction should be made between practical and statistical significance 

of changes”.  Statistically unimportant trends may still have a major effect on streamflow 

and, by taking an anticipatory approach to adaptation decisions (rather than waiting for 

definite proof of the effects of climate change), vulnerable populations can be protected 

(Ziegler et al., 2006). 

 

Description Test statistic Critical values Critical values Result 

    (Statistical table) (Resampling)   

    α=0.1 α=0.05 α=0.01 α=0.1 α=0.05 α=0.01   

Mann-Kendall 0.892 1.645 1.96 2.576 1.712 2.028 2.683 NS 

Spearman's Rho 0.781 1.645 1.96 2.576 1.652 1.964 2.49 NS 

Linear regression 0.889 1.68 2.01 2.68 1.755 2.231 2.822 NS 

Rank Difference -0.234 1.645 1.96 2.576 1.677 1.989 2.769 NS 

 

Table 8.1Trend tests and results 

 

8.3 Changes in the 95
th

 flow percentile 

 
The future data series were analysed in order to evaluate changes in the 95th flow percentile 

(Q5). The 95th percentile of annual flow is an important statistic in an annual flow series; it 

represents the flow that is exceeded 5% of the time. Other important percentiles are the 50th 

(Q50, flow that is exceeded 50% of the time) and the 5th percentile (Q95, the flow that is 

exceeded 95% of the time).  Firstly the data were analysed to detect percentage difference 

in Q5 flow using flow data from the best validation parameter set for both HBV-Light and 

HYSIM. The output of all the GCMs and emissions scenarios for the 2050s and the 2080s 

were compared with the control period using the best validation parameter sets in both 
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models (see Figure 8.2).  What is most notable in Figure 8.2 is the large uncertainty range 

in percentage change in Q5 flow in HBV-Light (1% to 31.23%) in contrast to HYSIM (-

0.32 to 9.23%), where the range is much more constrained. 
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Figure 8.2 Percentage change to Q5 for the 2050s and 2080s for all GCMs and Emissions scenarios 

using the output of the best validation parameter sets in both HBV-Light and HYSIM 

 

In the 2050s the direction of change in Q5 ranges from 1.23% (HADCM3 A2) to 31.23% 

(CSIRO A2).   In contrast, percentage change in HYSIM ranges from -0.32% in HADCM3 

A2 to 9.23% in CSIRO B2.  Furthermore, while there is very little difference in the output 

of the HADCM3 and CCCM A2 and B2 scenarios in the 2050s (for both models) in HBV-
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Light the range of difference between output of the CSIRO A2 and B2 scenarios is 

especially marked, with a 17% difference between the scenarios.  In HYSIM the 

uncertainty range for all GCMs and scenarios is much smaller.  This highlights again the 

unique way in which each model structure interacts with similar input data.  

 

In the 2080s, there is a similar range of uncertainty in percentage changes to Q5 in HYSIM. 

Nonetheless, the direction of change is more uncertain, with values ranging from -4.41% in 

CCCM A2 to 6.92% in CSIRO B2.  This contrasts markedly with the output of HBV-Light, 

where the direction of change is more certain with a slightly lower range of uncertainty 

compared to the 2050s (25.13% difference between CCCM A2 (4.15% change) and CSIRO 

B2(29.28% change)).  Once again, in HBV-Light there is a marked range of uncertainty 

between the CSIRO A2 and B2 scenarios, although the range is such smaller for the other 

GCMs.  Also in contrast to the 2050s output where HADCM3 A2 and B2 scenarios showed 

the smallest change in Q5 values (in both models, very similar to control period values) in 

the 2080s CCCM A2 and B2 scenarios provide the smallest difference in Q5 values.   

 

8.3.1 Changes in the 95
th

 percentile values due to equifinality of parameter sets 

In order to evaluate changes to Q5 due to equifinality of parameter sets, the minimum, 

maximum and mean values of Q5 for the 500 behavioural parameter sets in both models 

were calculated and analysed by employing each GCM A2 scenario. The diagrams below 

(Figure 8.3 and Figure 8.4) show Q5 values from the control period through the 2050s and 

the 2080s.   

 

As can be seen in the diagram below, in the control period, HYSIM models the highest 

values in Q5 for all GCMs. Indeed, there is very little overlap in the values simulated by the 

two models.  What is also notable is that the range of values is greater in HYSIM than in 

HBV-Light, possibly reflecting the greater spread of NS values in the calibration 

behavioural parameter sets (0.769 – 0.750) compared with HBV-Light (0.711-0.700). 
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Figure 8.3 Q5 flow values taking into account equifinality of parameter sets for the control period (top) 

and the 2050s (bottom).  HYSIM is represented  by the green bars and HBV-Light by the blue bars. 

The symbols represent the mean of the Q5 values and the error bars represent the maximum and 

minimum values 

 

1961 - 1990

GCMs
CCCM CSIRO HADCM3

M
3
/S

e
c

70

80

90

100

110

120

130

140

70

80

90

100

110

120

130

140

A2 Scenario 2050s

GCM

CCCM CSIRO HADCM3

M
3
/S

e
c

80

90

100

110

120

130

140

150

80

90

100

110

120

130

140

150



 131 

  However, by the 2050s HBV-light models higher values for Q5 for the CSIRO A2 

scenario and the spread of the values is greater than for either CCCM or HADCM3 where 

the values are more constrained (-0.7% t0 6.76%).  Another notable feature is how much 

the absolute minimum value of  the CCCM A2 and CSIRO A2 scenarios have increased 

with respect to the control period values (from 80m3/sec to 92m3/sec for CCCM and from 

approx. 93m3/sec to 111m3/sec for CSIRO). In contrast, GCM output in HYSIM varies 

relatively little compared with the control period.   
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Figure 8.4 Q5 flow values for the 2080s taking into account equifinality of parameter sets 

 

By the 2080s, HYSIM models higher mean and maximum values for all the GCMs than 

HBV-light, similarly to the control period.  What is most notable about the Q5 values in the 

2080s is how much CCCM A2 values have decreased in both models compared with the 

2050s, while HADCM3 values have risen.  CSIRO values are quite similar to those of the 

control period and in HYSIM they have decreased slightly compared to the control period 

values. Although CSIRO values have risen for both HBV-Light and HYSIM compared to 

the control period they too have decreased compared with the 2050s.  Only HADCM3 A2 

absolute values have risen compared to the control period and the 2050s with the minimum 

value (102 m3/sec in HBV-Light) rising more than the maximum one (124 m3/sec in 

HYSIM).  In all this analysis the minimum values of Q5 have risen more than the 

maximum values. 
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Figure 8.5 shows the total uncertainty of Q5 flow for the 2050s and 2080s using the 

combined output of all GCMs, emissions scenarios and behavioural parameter sets for both 

HYSIM and HBV-Light. The decrease in minimum values of Q5 in the 2080s relative to 

the 2050s is possibly due to the drier GCM output, particularly CCCM. The range of 

uncertainty is quite large (though differences in the uncertainty range for both time periods 

are small) from approx 90m3/sec to 140m3/sec in the 2050s and from approx. 83m3/sec to 

142m3/sec in the 2080s. A difference of 50m3/sec in Q5 flow could effect the fluvial flow 

regime and present problems for water managers and engineers planning flood defences.  

  

It is difficult to identify a model that consistently models higher Q5 values, because all 

model output is a combination of model structure and parameter sets interacting in a 

distinct manner with the different GCMs and emissions scenarios. Table 8.2 shows the 

percentage difference in Q5 values for each model compared with the control period.  

HBV-Light models much greater changes to Q5 values than HYSIM, which has more 

constrained values.  Nonetheless, HYSIM modelled greater absolute values for all scenarios 

analysed during the control period and also modelled consistently higher values for the 

scenarios analysed during the two future periods, apart from CSIRO A2 in the 2050s.  This 

highlights how important it is to include local impact model uncertainty analysis in a 

climate impact assessment (Pappenberger and Beven, 2006).  It also highlights that because 

these different components of uncertainty are so interlinked, a global analysis of 

uncertainty should be undertaken in addition to individual sensitivity analyses of 

uncertainty due to GCMs, emissions scenarios, equifinality of parameter sets and model 

structure.   
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Uncertainty in Q5 flow for 2050s and 2080s
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Figure 8.5 Total uncertainty in Q5 flow for the 2050s and 2080s using the combined output of both 

models 

 
 

 
GCM  Value HBV-Light HYSIM 

CCCM  

Min 

Mean 

Max 

13.91 
14.74 
16.04 

5.81 
6.76 
6.40 

CSIRO  

Min 

Mean 

Max 

25.16 
28.98 
31.33 

4.97 
5.68 
5.84 

2050s 

HADCM3  

Min 

Mean 

Max 

1.34 
1.40 
2.03 

-0.38 
-0.50 
-0.70 

CCCM  
Min 

Mean 

Max 

3.94 
4.40 
4.72 

-3.92 
-4.19 
-4.23 

CSIRO  

Min 

Mean 

Max 

14.63 
16.00 
17.36 

6.92 
8.01 
8.21 

2080s 

HADCM3  

Min 

Mean 

Max 

9.76 
10.16 
10.92 

3.99 
4.70 
4.71 

 

Table 8.2 Percentage change in Q5 values due to equifinality of parameter sets for the 2050s and 2080s 
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8.4 Extreme Value Analysis 

 

Extreme value analysis is a branch of statistical analysis which focuses of the behaviour of 

data in the tails of a distribution.  In the case of floods, it is the data contained in the upper 

tails that are of interest.  These data are much rarer (and therefore more uncertain) than 

other data in the distribution and a specific class of statistical model has been developed for 

analysis of extreme data and by which extrapolation is possible.  There are a number of 

such models (extreme value distributions), for example the Gumbel distribution, the 

Generalised Extreme Value (GEV) distribution and the Generalised Logistic distribution.  

Each of these models allows for distinct behaviour in the tails of the distribution. In this 

project, the extreme value distribution selected for estimation of changes in flood 

magnitude and frequency is the Generalised Logistic distribution (GL) which is 

recommended in the Flood Estimation Handbook (Robson and Reed, 1999).  The reason for 

this is that the GL distribution is unbounded above.   

 

Before proceeding further, it is pertinent to consider one caveat in the methodology of 

evaluating flood magnitude/frequency relationships.  Underlying all such analyses is the 

assumption of stationarity within a flood series data set i.e. that the sample of values is 

reflective of an underlying population with a stable mean and variance. However, an 

intrinsic characteristic of all natural systems is variability, both spatially and temporally 

(e.g., Clarke, 2007; Milly et al., 2008).  The influence of climate change will add yet more 

variability to the behaviour of natural systems. The assumption of stationarity is at odds 

with the behaviour of natural systems, where variability is an inherent feature.  This will 

pose challenges for the discipline of statistics. Indeed, Milly et al. (2008, p574) recommend 

that “hydrologists, engineers and managers (both current and future) will require extensive 

training in non-stationarity and uncertainty”.  

8.4.1 The Generalised Logistic Distribution 

The GL distribution is being employed in this project to evaluate flood 

magnitude/frequency relationship as it is the one recommended in the Flood Estimation 

Handbook (Robson and Reed, 1999). Although the GEV distribution is another plausible 

distribution to use for flood frequency estimation, the GL distribution results in fewer 

growth curves that are bounded above.  The formula for the GL distribution is given as:  
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where ξ is the location parameter, α is the scale parameter and κ is the shape parameter.  F 

is the non-exceedence probability.  The range of values for the GL distribution is:  
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The GL is bounded above for κ > 0, and bounded below for κ< 0. QMED (the median 

annual maximum flood or index flood) is the flood which occurs once every two years at a 

given site  and is the value of a distribution for which F = 0.5 (i.e. the median value, there is 

equal chance of observing a value above or below the median). If F = 0.5 is substituted into 

the GL distribution equation then, QMED = ξ (Robson and Reed, 1999).   The GL growth 

curve is obtained from the flood frequency curve by substituting x = Q/QMED = Q/ξ into 

the GL equation: 
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where β = α/ξ. The growth curve can also be written in terms of the return period T:  
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8.4.2 L-Moments for Flood frequency Analysis 

A theoretical distribution (population) is defined in terms of its moments (mean, variance, 

skewness and kurtosis). The moments of a sample can then be derived and a distribution 

fitted so that the sample moments are equated to those of the underlying population. The 

method of moments uses the above technique but works best for normally distributed data.    

Since flood data are not normally distributed, ordinary moments are not a robust method of 



 136 

describing the parameters of the sample distribution.  L-moments are a more robust method 

(Hosking and Wallace, 1997).  

 

L-moments developed from probability weighted moments (Greenwood et al., 1979).  

Another statistical model used for flood frequency analysis is based on maximum 

likelihood estimation (MLE) which can incorporate the presence of covariates such as the 

NAO cycle.  However, the computational simplicity of L-moments and their robustness of 

use with small samples make them particularly suitable for flood frequency estimation 

(Katz et al., 2002). L-moments are derived from linear combinations of the data.  The L-

moment ratios used for obtaining flood growth curves are L-CV, L-skewness and L-

kurtosis. They are derived by scaling the L-moments by either L-mean or L-scale.  Sample 

L-moments are calculated for use in flood growth curves and are then equated to the 

population L-moments.  The probability weighted moment estimator equations are as 

follows:  
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where n is the sample size and x(j) is the j
th

 element of a sample of size n sorted into 

ascending order.  The sample L-moments are then calculated by: 
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From these the L-moment ratios are obtained.  The L-moment ratios are dimensionless and 

scale-independent and are employed in the construction of a flood growth curve (Robson 

and Reed, 1999): 

L-CV (t2 = l2/l1) 

L-skewness (t3 = l3/l2) 

L-kurtosis (t4 = 14/l2) 

8.4.3 Growth curve estimation 

 
The parameters κ and β are calculated from the sample L-moments ratios, t2 amd t3 as 

κ= -t3: 
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Once the growth curve parameters are calculated, the growth curve and flood frequency 

curves can then be produced. Figure 8.6 and Figure 8.7 below show the flood frequency 

curves and growth curves for the Suir catchment calculated using the AMS from 1953 to 

2004. The flood frequency curve is QMED times the growth curve (Robson and Reed, 

1999).   
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Figure 8.6 Growth curve for the Suir catchment estimated from AMS 1961 to 1990 
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Figure 8.7 Flood frequency curve for Suir catchment estimated using AMS from  1961 to 1990 

 

8.5 Results of the Extreme Value Analysis 

8.5.1 Changes in Flood Magnitudes 

In this project, four different magnitudes of floods (in m3/sec) have been selected for 

analysis; Q2, Q10, Q25 and Q50. Q2 is the flood event which occurs on average every two 

years and Q50 the flood event which occurs on average once every 50 years. Analysis of 

extreme events such as floods is subject to very large uncertainties (even in a stable 

climate).  Indeed, statistical experiments suggest that 1,000 years of data would be 

necessary to estimate the magnitude of the 1 in 100 year flood event with small uncertainty 

(Beven, 2009).   In this project analysis of flood magnitudes will be limited to no more than 

the 1 in 50 year event (Reynard et al., 2004).  

  

Another issue that must be addressed is the assumption of stationarity.  Climate change will 

introduce non-stationarity into an AMS for the future time slices being employed in this 

project (2050s and 2080s). However, Prudhomme et al., (2003, p.5), suggest that “it is 

possible to assume stationarity around the time horizon of interest, for example the 2050s, 

i.e. to assume that the samples of data used to assess the flood regime…were measured in a 

stationary climate (current or changed)”.  This assumption will also be employed in this 

project.   
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The results of the extreme value analysis were analysed similarly to the changes in 

catchment hydrology.  However, the different sources of uncertainty were also analysed in 

a cumulative fashion. In order to evaluate the uncertainty due to the GCMs, the output of 

the best validation parameter set in both models was employed together with the A2 

scenario.  In order to evaluate the ranges of uncertainty due to the emissions scenarios, the 

best validation parameter sets were employed with both the A2 and B2 scenarios for each 

single GCM.  Finally, a combination of all sources of uncertainty was evaluated by 

calculating the minimum, maximum and median values for all the 500 behavioural 

validation parameter sets, GCMs and emissions scenarios for both HYSIM and HBV-Light. 

Appendix  5 contains an analysis  of single sources of uncertainty (GCMs, emissions 

scenarios and equifinality of parameter sets) in influencing changes to flood magnitude 

volumes.   

 

With regard to GCM uncertainty, HYSIM models greater absolute values for each flow 

magnitude during the control period (Figure 8.8). The uncertainty ranges are also very 

small for both models. However, there is a difference of approximately 100m3/sec in flows, 

particularly for the larger magnitude events.  Q50 values for HBV-Light range from 

176m3/sec to 200m3/sec whereas in HYSIM the Q50 values range from 249m3/sec to 

200m3/sec. When all the output data is combined, HYSIM also models greater absolute 

minimum, median and maximum values for all the selected flood magnitude and a greater 

range of uncertainty. Furthermore, the uncertainty ranges for both models are also greater 

particularly for the higher flood magnitudes (Q25 and Q50) (see Table 8.3). 

 

 Control  Q2 Q10 Q25 Q50 

min 115.2 141.6 152.9 161 

median 135.4 167.6 183.4 195.6 HBV-Light 

max 157 204.8 234.2 263.5 

min 146.5 193.4 212.5 227 

median 172.3 229.6 261.8 288.6 HYSIM 

max 190.7 270 327.8 382.8 

 

Table 8.3 Minimum, median and maximum values from the combination of all modelled output for 

HBV-Light and HYSIM for the control period. 
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By the 2050s (Figure 8.9) the range of uncertainty due to choice of GCM for each 

magnitude of flood is greater in HBV-Light with the CSIRO A2 scenario showing the 

highest values in each of the selected floods.  Conversely, in HYSIM CSIRO A2 has the 

lowest values of the three GCMs, with HADCM3 having the highest values.  This again 

highlights the uncertainties due to model structure and how difficult it can be to completely 

separate model structural uncertainty from parameter, emission scenario and GCM 

uncertainty.  When the uncertainties due to emissions scenarios are analysed, again HBV-

Light has greater ranges of uncertainty for each magnitude of flood and also greater 

absolute values than HYSIM.     

 

         Control 

        

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.8 Uncertainty due to GCMs (top row) and all sources of uncertainty combined (bottom row) 

for the control period 
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   2050s 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.9 Uncertainty due to GCMs, (top row) emission scenario (middle row) and all sources of 

uncertainty combined (bottom row) for the 2050s 
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       2080s 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.10 Uncertainty due to GCMs, (top row) emission scenario (middle row) and all sources of 

uncertainty combined (bottom row) for the 2080s 
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Also in HBV-Light, there is very little uncertainty between all the scenarios apart from 

CSIRO A2, which has the  maximum value for all flood magnitudes with a significant 

range between its value and the values for the other scenarios (Q25, 219m3/sec for CCCM 

B2 to 360m3/sec for CSIRO A2).   

 

In the 2080s, (in HBV-Light) the CSIRO B2 scenario has much higher values than the rest 

of the scenarios. This anomaly highlights the importance of model structural uncertainty in 

a climate impact assessment (Figure 8.10).  The structure of HBV-Light may interact with 

the CSIRO data in this way because of the very quick flow of moisture through the soil 

moisture routine.  In contrast, in HYSIM there is a more even spread between the values of 

the different emissions scenarios, even though the uncertainty range is smaller than in 

HBV-Light.  When all sources of uncertainty are combined (GCM, emission scenario, 

model structural uncertainty and parameter uncertainty) HBV-Light has both greater ranges 

of uncertainty for each magnitude of flood and also higher absolute values than HYSIM, 

until the largest flood (Q50) when HYSIM records a greater absolute value (Table 8.4). 

Furthermore, in HYSIM the minimum and median values for each flood are greater than in 

HBV-Light. Only the maximum values are greater in HBV-Light, until Q50, when HYSIM 

records a greater value.  Thus, depending on the severity of the flood, the contribution of 

different sources of uncertainty is also different.  

 

2050s  Q2 Q10 Q25 Q50 

min 129.4 164.1 184.0 195.0 

median 149.1 194.7 223.4 248.1 HBV-Light 

max 280.9 350.7 385.4 411.8 

min 154.7 193.2 207.4 217.9 

median 183.1 254.2 303.3 348.2 HYSIM 

max 206.9 296.7 373.9 457.0 

Table 8.4 Minimum, median and maximum values from the combination of all modelled output for the 

2050s 

 
By the 2080s uncertainty due to GCMs is greater than the 2050s in HYSIM, but less than 

the 2050s in HBV-Light (e.g., Q25: 177m3/sec to 241m3/sec (HBV-Light) 225m3/sec to 

341m3/sec (HYSIM)).  The HADCM3 A2 scenario has the highest values for all the floods 

in both models.  Indeed, in HYSIM, the output of HADCM3 A2 has consistently shown the 

highest values for all the flood magnitudes for each period in the analysis.  Conversely, 
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while HADCM3 A2 has also output the highest values for the control period and the 2080s 

in HBV-Light, CSIRO A2 has the highest values in the 2050s.  When scenario uncertainty 

is analysed, HBV-Light has great ranges of uncertainty for all flood magnitudes. Moreover, 

like the 2050s, one GCM (CSIRO B2) has much greater values than the other scenarios. 

The value range for the other scenarios is much smaller.  For example, the Q25 values 

range from 177m3/sec (CCCM A2) to 228m3/sec (HADCM3 A2) and up to 376m3/sec for 

CSIRO B2.  In HYSIM, HADCM3 A2 values are the highest for all flood magnitudes 

analysed, while CSIRO B2 values are the lowest, together with CCCM A2).  Similarly to 

the 2050s, there is a more even spread in the uncertainty range of the different scenarios in 

HYSIM than in HBV-Light.   

 

2080s   Q2 Q10 Q25 Q50 

min 116.8 145.3 158.2 167.8 

median 151.0 194.1 224.2 249.9 HBV-Light 

max 272.6 360.5 408.9 448.1 

min 132.3 179.6 206.7 217.2 

median 179.1 234.4 269.1 301.4 HYSIM 

max 211.5 329.5 415.7 498.1 

 

Table 8.5 Minimum, median and maximum values of the different magnitude flood events from the 

combination of all modelled output for the 2080s 

 
When all sources of uncertainty are taken into account, HYSIM again has higher minimum 

and median values for all flood magnitudes analysed than HBV-Light (see Table 8.5).  

HBV-Light has higher maximum values for Q2 andQ10 however, HYSIM models higher 

maximum values for both Q25 and Q50.  Minimum and median values for all flood 

magnitudes are also higher in HYSIM than in HBV-Light. What is also notable when 

analysing the figures from the three periods is that for HYSIM the minimum values for all 

flood magnitudes are lower than the control period minimum values, while in HBV-Light 

the minimum values for the 2080s are only slightly higher than the control period values.  

This is reflective of the drying that some of the GCMs project to occur by the 2080s, 

particularly the CCCM A2 scenario.  The median values for all flood magnitudes analysed 

(in HYSIM) are higher than those of the control period but lower than those in the 2050s.  

In HBV-Light the median values are higher than the control period ones, and very similar 

to those of the 2050s.   
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Figure 8.11  Combined output of both models including all sources of uncertainty (GCMs, emissions 

scenarios, and all behavioural parameter sets) showing the uncertainty ranges in flood magnitude 

volumes. The outliers represent the 5
th

 and 95
th

 percentile values. 
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Figure 8.11 shows the combination of all data for both models.  The ranges of uncertainty 

have increased between the two future time slices, with the minimum and median values 

from all flood magnitudes analysed decreasing between the 2050s and the 2080s, which 

may be a reflection of the drying expected by that time period.  However, maximum values 

of all flood magnitudes have increased, apart from Q2 (the index flood).  The ranges of 

uncertainty are also greater for the higher magnitude events (Q25 and Q50), as is the 

increase in flow volume compared to the control period values. In view of these results,  the 

new flood defences that are being built in Clonmel to withstand a 100-year flood event of 

500m3/sec, with the possibility of increasing the defences to cope with a flood event 20% 

greater,  are prudent adaptation decisions.   

8.5.2 Changes to Flood Frequencies 

This analysis also includes analysing changes to flood frequencies compared with the 

control period.  The change in return period was analysed as the average value of the 

combined output of all GCMs, ES and behavioural parameter sets in both models.  Table 

8.6 illustrates the changes in return periods for the 2050s and the 2080s. Both models 

record very similar new return period values, particularly for the 2080s.  The 50-year return 

period in the 2050s is the only return value where the output of both models diverges 

significantly, with the new return period in HYSIM being larger than that of HBV-Light.  

Both models’ output shows decrease in return period values, with the 10-year event 

becoming a 5.5 year event (HBV-Light) or a 6.2 year event (HYSIM).  However, by the 

2080s the new return period values are very similar with the 10 year flood event becoming 

a 3.2 year event, the 25 year event becoming a 5.4 year event and the 50 year flood event 

becoming a 9 year event.  This is a robust finding.  Thus, the output of both models 

suggests intensification in flood magnitude/frequency relationships within the Suir 

catchment under climate change, with flood magnitudes increasing relative to the control 

period and the relevant frequencies decreasing.   

 

    T2 T10 T25 T50 

HBV-Light 1.6 5.5 12 20.4 
2050s 

HYSIM 1.5 6.2 14.4 30 

HBV-Light 1.3 3 5.4 9 
2080s 

HYSIM 1.3 3.2 5.4 8.5 

 

Table 8.6 Average changes in return periods for the 2050s and the 2080s 



 147 

8.6  Conclusion 

 
This chapter has focussed on the analysis of changes to extreme flow (Q5) and flood 

magnitude and frequency under climate change scenarios for the 2050s and the 2080s. In 

the analysis of changes to the 95th flow percentile, HBV-Light models much greater 

percentage changes than HYSIM for the 2080s.  Nevertheless, HYSIM models greater 

absolute changes in Q5 flow for both periods, apart from the CSIRO A2 scenario in the 

2050s when HBV-Light models greater values. Increasing magnitudes of flood events 

analysed are evident in the two future time slices with the greatest increases in flow volume 

occurring in the higher magnitude events. The output of both models also suggests that 

flood magnitude and frequency relationships will intensify under climate change, with the 

25 year flood event becoming a 5.4 year event by the 2080s and the 50 year flood event a 9 

year one during the same period. HYSIM also models greater absolute values for the 

highest magnitude event analysed (Q50).  

 

It is important to reiterate that natural climate variability was not analysed in this project.  If  

flow volumes modelled in this project for the 50-year event were added to high streamflow 

due to natural variability, the resulting flood would be even larger than those modelled 

above. Even though the new flood defences in Clonmel have the capability of protecting 

against a one in 100 flood event of 600 m3/sec, careful consideration may have to be given 

to revising that figure higher still.   
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9 Chapter 9 – Conclusions 

 

9.1 Introduction 

 
This research sought to build on previous Irish studies by employing two lumped 

conceptual rainfall-runoff models (HYSIM and HBV-Light) and analysing uncertainty in 

future changes to catchment hydrology and flood magnitude/frequency relationships due to 

model structural error and equifinality of parameter sets in addition to uncertainty due to 

GCMs and emissions scenarios. While uncertainty due to GCMs and emissions scenarios 

has been well documented, little research has been conducted into the uncertainty in climate 

change impact assessments derived from impact models. This thesis aimed at modelling 

changes to catchment hydrology that incorporate the uncertainty derived from three GCMs 

and two emissions scenarios as well as from the two impact models and compare ranges of 

uncertainty from the individual sources in order to evaluate which source contributed the 

greatest uncertainty to the total range.  Furthermore, the thesis aimed to evaluate changes to 

flood magnitude and frequency derived from the same sources of uncertainty.   

9.2 Project Assumptions and Limitations 

 
There are a number of assumptions and limitations associated with this project:  

 

� Only one type of downscaling was used in the project. Future climate impact 

assessments should include both statistically downscaled data and dynamically 

downscaled data in order to take into account uncertainty due to the downscaling 

methodology.   

 

� The use of only two emissions scenarios represents another limitation to the project.  

The use of medium high (A2) and medium-low (B2) emissions scenarios omits two 

other families of emissions scenarios (A1 and B1). The A1 family represents more 

“extreme” emissions.  However, the A2 and B2 scenarios are the ones 

recommended for use by the IPCC and cover 90% of the total emission scenario 

range (Nakicenovic et al., 2000).  
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� An important assumption of the project concerns the calibration of the two models. 

It is assumed that the calibration will be viable for the future time series.  Both 

models performed better during validation than calibration, which was a test of the 

robustness of both models as plausible representations of the hydrological 

behaviour of the catchment.  The 1990s were a warmer decade than the baseline 

climate period, which may indicate that the models will also perform well in a 

climate change situation.  

 

� Both rainfall-runoff models were lumped ones, which treat the catchment as a single 

unit, thereby operating on a crude scale. Semi-distributed or distributed models may 

be more representative of the complex and unique nature of each catchment by 

including variability of relevant catchment characteristics such as topography, soils, 

groundwater resources, etc.  However, all models are to some extent lumped 

(Wagener, 2003).   

 

� As only one case study catchment was included in the project, the versatility of the 

models could not be tested.  However, both models have proved plausible 

representations of the hydrologic behaviour of several important Irish catchments in 

previous research carried out in Ireland (e.g., Murphy and Charlton, 2008; Steele-

Dunne et al., 2008).  

 

� This thesis did not include and analysis of climate variability, even though it is 

acknowledged to be an intrinsic source of uncertainty (Kundzewicz and Robson, 

2004).  Further research could include a more comprehensive uncertainty analysis 

taking into account climate variability (both of present and future climates) (e.g., 

Minville et al., 2008; Prudhomme et al., 2003). 

9.3 Main Findings from the Project 

 
There are several interesting findings from this project: 

 

Although HYSIM is a physically realistic model and HBV-Light a parsimonious one, both 

models proved plausible representations of the hydrological regime of the Suir catchment 

during calibration and validation.  During validation in particular, the NS score for both 
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models improved, which is an indication of the robustness of the models in simulating 

observed streamflow (Perrin et al., 2001).   

  

In the analysis of single sources of uncertainty (GCMs; emissions scenarios; equifinality of 

parameter sets) GCM uncertainty also proved the greatest source of uncertainty during the 

2050s and the 2080s and showed the greatest range of uncertainty of all sources analysed.  

This supports the findings of other research (Bergström et al., 2000; Minville et al., 2008; 

Prudhomme et al., 2003; Wang et al., 2006; Wilby and Harris, 2006).  

 

Equifinality of parameter sets and model structural uncertainty were also significant 

sources of uncertainty, especially in the 2080s. The months with the greatest percentage 

difference in streamflow were February (increase of 48% in HBV-Light/39%  in HYSIM)  

and for HBV-Light August decreases in flow by the 2080s were -54% compared to control 

period values, while the month with the greatest decreases in flow according to HYSIM 

was October with a decrease of -48%.  Although low flows were not analysed in this 

project, decreases such as these could have serious implications for fluvial ecology and for 

human activities such as water abstraction.   

 

 Model structural uncertainty added a distinctive pattern to the output especially during the 

late summer and autumn.  In HBV-Light, September was generally the month with the 

largest decreases in flow, in contrast to HYSIM where the largest decreases in flow 

consistently occurred in October.  HBV-Light also modelled more extreme increases and 

decreases, while HYSIM modelled conservative changes to the flow regime.  This may 

occur because of the different soil moisture routines in the models.  HBV-Light’s simpler 

parsimonious routine may sensitise the model to increases in precipitation, in contrast to 

HYSIM, whose more physically realistic soil moisture routine allows a more conservative   

response. 

 

It can be argued that the monthly median percentage changes in the combined output of 

both models do not differ much from natural climate variability.  However, differences to 

streamflow suggested by the 95th percentile values are much more extreme.  In the 2050s, 

increases in January and February are suggested of ~40%, while by the 2080s the increases 

for both months are 45% to 50%. This could have very serious consequences for Clonmel, 
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where flooding is a relatively common occurrence.  If such percentage increases in 

streamflow were super-imposed on higher winter streamflow due to climate variability, the 

consequences could potentially be catastrophic.  

 

In the analysis of changes to the 95th flow percentile, HBV-Light modelled much greater 

percentage changes than HYSIM for the 2050s and the 2080s with a higher uncertainty 

range. Nonetheless, HYSIM consistently modelled greater absolute changes in Q5 flow for 

both future time slices, apart from the CSIRO A2 scenario in the 2050s.  Again the different 

soil moisture routines in the models could be responsible for the difference in responses. 

   

The output of both models suggests that flood magnitude and frequency relationships will 

intensify due to climate change.  A robust finding from the project is the notable agreement 

in new return period values in the 2080s with both models suggesting the 10 year flood 

event becoming a 3.2 year event; the 25 year event becoming a 5.4 year event and the 50 

year flood event becoming a 9 year event.  Based on these results, it is likely that the 1 in 

100 year event may also become a more regular occurrence.  This finding, if realised, could 

have major implications for adaptation decisions regarding flood defences in Clonmel. At 

present, all flood defences in Ireland are built to withstand the 1 in 100 year flood event.   

In the new OPW flood defences in Clonmel, the discharge volume of the 100-year event is 

set at 500m3/sec with the potential for adding a further 20% to the defences in response to 

climate change (O’Domhnaill, 2010 personal communication). In light of the results from 

this project (the maximum volume of the 50-year event in the 2050s is 457m3/sec 

increasing to a maximum value to 498m3/sec in the 2080s), such a precautionary, flexible 

approach is justified.  It is worth noting too that engineers and planners may have to revise 

the magnitudes of these events in light of climate change. 

 

Furthermore, as evidence comes to light of historical foods larger than any on current 

records, it becomes more important than ever to allow a degree of flexibility in flood 

adaptation decisions, as climate may be even more variable than previously thought.  It 

highlights the need for anticipatory adaptation decisions that are flexible and can be 

updated in light of new information regarding flooding.  It also highlights the fact that 

comprehensive uncertainty analyses for adaptation decisions (e.g., flood defences) should 

also include an analysis of the uncertainty in impact models.   
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It is also worth noting that, if climate change impact assessment continues to be a favoured 

method of translating future climate trends into local output for adaptation decisions, the 

envelope of quantifiable uncertainty is likely to grow larger for the foreseeable future.  

GCMs will grow more sophisticated to take account of new knowledge regarding the 

workings of the global climate system.  This will have a trickle-down affect through all 

further stages of a climate change impact assessment and will lead to yet more uncertainty 

at the local stage (Wilby and Dessai, 2010).  The scientific community should communicate 

the nature of such uncertainty to decision makers and be open to exploring other methods 

of adapting to climate change, for example exploratory modelling (Bankes, 1993).   

 

Finally, the need for high quality data measurement and analysis becomes more vital during 

times such as these with rapid changes to socio-economic activity, population and the 

global climate system.  As Silberstein (2006, p.1350) notes “modelling is an important 

accompaniment to measurement, but is no substitute for it; science requires observation, 

and without that we will cease to progress in understanding our environment, and therefore 

in managing it properly”.   
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Appendix 1 – SRES Emissions scenarios 
 
 

 
 
 

http://www.bom.gov.au/info/climate/change/gallery/images/74.gif 
 
 

In simple terms, the four storylines combine two sets of divergent tendencies: one set varying between strong 
economic values and strong environmental values, the other set between increasing globalization and 
increasing regionalization . The storylines are summarized as follows (Nakicenovic et al., 2000): 

• A1 storyline and scenario family: a future world of very rapid economic growth, global population 
that peaks in mid-century and declines thereafter, and rapid introduction of new and more efficient 
technologies.  

• A2 storyline and scenario family: a very heterogeneous world with continuously increasing global 
population and regionally oriented economic growth that is more fragmented and slower than in 
other storylines.  

• B1 storyline and scenario family: a convergent world with the same global population as in the A1 
storyline but with rapid changes in economic structures toward a service and information economy, 
with reductions in material intensity, and the introduction of clean and resource-efficient 
technologies.  

• B2 storyline and scenario family: a world in which the emphasis is on local solutions to economic, 
social, and environmental sustainability, with continuously increasing population (lower than A2) 
and intermediate economic development.  

 
http://sedac.ciesin.columbia.edu/ddc/sres/ 
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Appendix 2 

 

The Suir catchment was delineated in ArcMap 9.2 using the Hydrology extension in the 

Spatial Analyst tool within ArcToolbox (ESRI). The grid projection used for all raster files 

and shapefiles employed in this project was the Irish National Grid TM65 co-ordinate 

system.  There were a number of steps involved in delineating the Suir catchment. 

 

1. The first task was to fill in sink cells within the spatial DEM, by employing the 

“Fill” command.   Sink cells are areas of internal drainage within a grid and must be 

elevated in order that ArcGIS can delineate a drainage network that flows off the 

edge of the grid, otherwise the cells will attempt to drain into each other.    

2. After the sink cells had been filled, the BASIN extension tool was activated to 

delineate the Suir catchment outline.  

3. The flow accumulation tool was used in order to create a raster map of accumulated 

flow to each grid cell to determine where the landscape drains.   

4. The flow direction command was then executed in order to generate the drainage 

network by creating a raster of flow direction from each grid cell to its steepest 

downslope neighbouring cell. 

5. The flow accumulation tool was then employed which identifies cells of high flow 

accumulation. These linked cells form the basis of a stream network but may not 

accurately represent the river network as they may be found in areas underlain by 

lakes or wetlands.   

6. The raster calculator was then employed to create a stream network, formed from 

any cell with a flow accumulation grid value greater than 10,000.   

7. Finally a stream shapefile was created from the stream network raster using the 

stream- to- feature tool.   

8. The point shapefile representing the geographical location of Clonmel was then 

added to the other layers in the map project.  This was chosen as the watershed 

outlet point (rather than the catchment outlet at Waterford) as Clonmel is the 

location of the gauging station where all the Suir river flow data used in this 

projected was recorded.   
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9. The watershed tool was then employed to create a catchment raster, which was then 

converted to a shapefile.   

 

 
 

Flow direction Grid derived using ArcGIS 9.2 
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Appendix 3 
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Figure 1. Individual parameter ranges for all N 
 
 
 
 
 
 
 
 

Individual ranges for parameters with NS values of 0.6 and above for 10,000 Monte 

Carlo runs 
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Appendix 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Seasonal changes to flow for the 2050s (left) and the 2080s (right) from a combination 

of all GCMs and scenarios, using the best validation parameter sets in both models 
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Appendix 5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Analysis of changes to flood magnitude due to GCM uncertainty (top), emission 

scenario uncertainty (middle) and equifinality of parameter sets (bottom) for the 

2050s. 
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Appendix 5 (Continued) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Analysis of changes to flood magnitude due to GCM uncertainty (top), emission 

scenario uncertainty (middle) and equifinality of parameter sets (bottom) for the 

2080s. 
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