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Abstract—We study packet streaming over an erasure channel
with delayed feedback. We consider the lag in playback between
the sender and the receiver as the performance criterion and
propose and analyze schemes to minimize the lag. We show that
at lower delays in feedback, purely retransmission based schemes
are better than random linear coding schemes and also analyze
the tradeoff of the lag with the delay in feedback.

I. INTRODUCTION

Real-time data streaming applications are characterized by

low delay and in-order delivery requirements. Feedback can be

crucially used in such applications to encode the data packets

in a manner so as to prioritize the decoding of the earlier

data packets without losing efficiency (capacity) of communi-

cation. While feedback will not increase the capacity, it can

dramatically increase the error exponent yielding the same

performance as in the non-feedback case with much smaller

block-lengths, i.e., effectively lower delays. Furthermore, in an

online setting, the coding must also be adaptable to variability

in the arrival of packets. Most of the literature [1],[2],[3],[4]

has focused on packet communication over channels in single

as well as multiuser settings, assuming that feedback on

transmission is available at the sender without any delay.

Moreover, such studies have emphasized “queue management”

at the sender with the objective of reducing the average delay

suffered by a packet in reaching the receiver.

In this paper, we consider delayed feedback. Moreover, in

contrast to average packet delay, we focus on the average lag,

which captures the number of packets by which playback at

the receiver lags the playback at the sender. Thus, the emphasis

is not on the number of packets delivered, but on the number

of packets delivered in-order. This metric better reflects the

performance of coding schemes for streaming applications. We

study a natural purely retransmission based scheme as well

as a random linear coding based scheme for point to point

communication over a packet erasure channel with Bernoulli

packet arrivals and study the performance of these schemes

as a function of the delay in feedback. Our main aim is to

demonstrate that in terms of the average packet lag, packet

retransmission schemes can be bettered by coding schemes

when the feedback delay is not very small. The next section

describes the problem in greater detail.

II. PROBLEM SETUP

We consider communication over a slotted packet erasure

channel (refer Figure 1), where in each slot a packet sent from

the transmitter has an independent probability p of erasure. If

Arrival (λ)
Sender Packet

Drop (p) Receiver

Feedback

Fig. 1. Problem Setup

the packet is not erased, it is received perfectly by the receiver

after a fixed delay of Df slots. We assume that the receiver

regularly feedbacks information on the packets received, back

to the transmitter. We assume this feedback is received, again

after a fixed delay Db, by the sender. Thus, the feedback at

time i indicates whether packet transmitted at time i − D
was successfully received, where D is the sum of the packet

transmission time Df and the feedback time Db. We assume

that the feedback is erasure free and available at every time

slot. Figure 2 illustrates what is known at the sender at time

slot i.

Information packets arrive at the sender independently in

every time slot according to a Bernoulli(λ) process. The sender

wishes to stream incoming information packets in such a way

that the lag at the receiver is minimized. The lag refers to the

difference in the total number of packets that have arrived at

the transmitter and the number of contiguous packets starting

from the first packet that have been received at the decoder.

As defined, the lag is composed of two terms, packets queued

at the transmitter that are yet to be transmitted and packets

within the re-ordering buffer (also called play-out buffer) at the

receiver that await older packets for playback. The information

that is available at the sender is the feedback from the receiver.

Based on the feedback, the sender decides what packet to

transmit. Depending on whether or not the sender encodes

the information, there are two classes of schemes:

1) Retransmission based schemes: The sender only retrans-

mits original packets when the feedback says that a

packet was erased; and

2) Coding based schemes: Information about a packet is

encoded in a stream of packets. The coding scheme we

study is one where the packet sent is a random linear

combination of information packets arrived so far at the

sender which have not been decoded by the reciever.

Feedback is used to determine the latter information.

Thinking of each packet as a symbol, the former scheme is

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

1793978-1-4244-7892-7/10/$26.00 ©2010 IEEE ISIT 2010



Delivery unknownDelivery known

i− 1i−D0

Fig. 2. At time i, the sender knows delivery status of packets till time i−D.

repetition coding while the latter is parity-check-based coding

which, in general, encompasses the former.

The advantage of one scheme over the other becomes

evident when one consider extremes of delay in the feedback.

If the feedback is instantaneous (D = 1), then the retrans-

mission based scheme (in this case, a “retransmit-packet-

until-successful” scheme) has a lesser lag as compared to the

coding scheme. If the feedback is non-existent (infinite delay),

then the coding scheme has lesser lag as compared to the

retransmission based scheme.

The organization of the rest of the paper is as follows:

We consider a particular retransmission based scheme called

“Max-strat” and study the tradeoff between the lag and the

delay in feedback D for this strategy (Section III). In particu-

lar, we show that average lag is bounded as O(D2) whenever

λ < 1− p, where 1− p is the capacity of the erasure channel.

We also study a causal random linear coding scheme and

analytically express the average lag (Section IV). In Section V,

we compare the performance of the schemes from simulations

and conclude.

III. MAX-STRAT

Let A(i) and Z(i) denote, respectively, the indicator of an

arrival of a new packet at the transmitter at time i and the

indicator of the channel being OFF (or the erasure of a packet,

if sent) at time i. A(i) and Z(i) are distributed, respectively,

as i.i.d Bernoulli(λ) and Bernoulli(p) random variables. Let

C(i) =
∑i

j=0 A(j) denote the cumulative number of arrivals

until i. If a packet arrives at time i, it is assigned the number

C(i). Let βi denote the number of the packet transmitted in

slot i. We assume that a packet arrival at time i as well as

the feedback on the transmission of packet βi−D (sent at time

i − D) arrives at the beginning of slot i. Time starts from 0
onwards and we let A(i) = Z(i) = βi = 0 for i < 0. We now

define the scheme Max-strat. The sender decides the packet

βi to be sent in slot i as

βi =

⎧⎪⎪⎨
⎪⎪⎩

βi−D Z(i−D) = 1
max{βi−1, . . . , βi−D}+ 1 if Z(i−D) = 0, C(i) >

max{βi−1, . . . , βi−D}
max{βi−1, . . . , βi−D+1} else

(1)

The scheme is explained as follows: If packet βi−D is

erased, it is resent. Otherwise if there is a fresh packet

(indicated by C(i) > max{βi−1, . . . , βi−D}), it is sent, and if

not, then the sender sends the most recent packet from among

the past D − 1 packets. The latter case is the reason why we

name the scheme “Max-strat”. Note that packets in transit,

{βi−1, . . . , βi−D}, can be received correctly, so an intelligent

choice needs to be made so that capacity is not sacrificed. One

could alternatively propose a different scheme such as Min-

strat where the sender sends the oldest packet in the transit

window, or Div-strat where the sender selects a packet that

has been retransmitted the least number times. We discuss this

in Section V.

Let d(i) denote the maximum number of contiguous packets

that are decoded by the receiver at time i starting from the

first packet. In other words, d(i) is such that the receiver can

decode packets 1, . . . , d(i), but cannot decode packet d(i)+1.

The lag at time i is denoted by L(i) and is given by L(i) =
C(i)−d(i). The time-averaged lag (alt. expected lag) is defined

as

L̄ = lim
i→∞

1

i

i∑
j=0

L(j) = lim
i→∞

1

i

i∑
j=0

(
C(j)− d(j)

)
. (2)

Our objective is to express L̄ as a function of D.
Case D = 1: Feedback is received at the beginning of

the next slot. All strategies are the same here, namely to

retransmit the packet until successful. The expected lag is just

the expected queue length of a FIFO Geom/Geom/1 queue

with a rate λ of arrivals and service rate of μ � 1− p and is

given by [1], L̄ = λ(1−μ)
μ−λ , when λ < 1− p. If λ > 1− p, the

average lag is unbounded.

Case D > 1: We prove the following theorem.

Theorem 1. The time-averaged lag of Max-strat for a given
feedback delay of D is bounded as

L̄ ≤ λ(1− μ)

μ− λ
+

D

p

p
1
D

(1− p
1
D )

+ 1 (3)

Proof: The lag is bound as

L(i) = C(i)− d(i)
(a)

≤ C(i)− (min{βi, . . . , βi−D+1} − 1)

= C(i)−max{βi, . . . , βi−D+1}+max{βi, . . . , βi−D+1}
− (min{βi, . . . , βi−D+1} − 1)

(b)
= Q(i) + E(i)

The inequality (a) follows since the oldest backlogged packet

d(i) + 1 ∈ {βi, . . . , βi−D+1}. The last equality follows from

defining the queue length Q(i) at time i to be

Q(i) = C(i)−max{βi, . . . , βi−D+1} (4)

and the quantity E(i) to be

E(i) = max{βi, . . . , βi−D+1} −min{βi, . . . , βi−D+1}+ 1.
(5)

The quantity E(i) is an excess over and above the

queue length Q(i), which contributes to the lag. It

includes all the packets which lie in the interval

[min{βi, . . . , βi−D+1},max{βi, . . . , βi−D+1}]. For ease

of notation, we define Max(i) � max{βi, . . . , βi−D+1} and
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Min(i) � min{βi, . . . , βi−D+1}.

We will now show the following: The first term in the R.H.S

of the bound (3) is a bound on the time averaged Q(i)’s while

the remaining terms are a bound on the time averaged E(i)’s.

We first focus on Q(i), which evolves as

Q(i+ 1) = Q(i) + C(i+ 1)− C(i)− (
Max(i+ 1)−Max(i)

)
(a)
= Q(i) +A(i+ 1)− 1C(i+1)>Max(i)

(
1− Z(i−D + 1)

)
(b)
= Q(i) +A(i+ 1)− 1C(i+1)>C(i)−Q(i)

(
1− Z(i−D + 1)

)
= Q(i) +A(i+ 1)− 1Q(i)+A(i+1)>0

(
1− Z(i−D + 1)

)
= [Q(i) +A(i+ 1) + Z(i−D + 1)− 1]+

The equality (a) follows from the choice of βi+1 (Refer (1)).

The equality (b) follows from the definition of Q(i) (see (4)).

Thus, the change in the queue length is due to two factors,

increase due to the fresh arrival, A(i+1), and decrease if there

was no erasure of the packet sent at time (i+1−D). Observe

that Q(i) is stochastically equivalent to Q̃(i) satisfying the

recursion

Q̃(i+ 1) = [Q̃(i) +A(i+ 1) + Z(i+ 1)− 1]+ (6)

The above follows since the sequence {Z(i)} is i.i.d. Note this

is just the recursion for the standard FIFO Geom/Geom/1
queue for the case D = 1. It therefore holds that

lim
i→∞

1

i

i∑
j=0

Q(j) =
λ(1− μ)

μ− λ
. (7)

We now focus on the sequence {E(i)}:
E(i) = Max(i)−Min(i) + 1 � V (i) + 1 (8)

where we define V (i) � Max(i) −Min(i). In the following,

we focus on the evolution of V (i). Consider the window of

packets (βi, . . . , βi−D+1). We define a corresponding window

of lags (xi, . . . , xi−D+1) where each xj � Max(i) − βj .

Note, V (i) is the maximum element in the window of

lags (xi, . . . , xi−D+1). From (1), this window evolves as

(xi, . . . , xi−D+1) =⎧⎪⎪⎨
⎪⎪⎩

(xi−D, xi−1, . . . , xi−D+1) Z(i−D) = 1
(0, xi−1 + 1, . . . , xi−D+1 + 1) Z(i−D) = 0 and

C(i) > Max(i− 1)
(0, xi−1, . . . , xi−D+1) else

(9)

We will now show that the window (xi, . . . , xi−D+1) has a

stationary distribution, and bound the the expectation of V (i)
with respect to this distribution. This will give us a bound

on the time averaged V (j)’s, i.e., limi→∞ 1
i

∑i
j=0 V (j). We

introduce some notation connected to Markov chains from [5].

For two states x, y, let ρxy = Prx(Ty <∞), where the R.H.S

denotes the probability that the first time to visit the state y
starting from x is finite. Let S be the vectors y ∈ Z

d which can

be reached from the state x0 = (0, 1, . . . , D− 1). We say that

the state y is reachable from x if ρxy > 0. The state x is said

to be recurrent if ρxx = 1 and positive recurrent if ExTx <∞,

where ExTx denotes the expected time of first return to state

x starting from x. We prove the following statements:

1) The state x0 is positive recurrent, i.e., Ex0Tx0 <∞; and

2) The Markov chain is irreducible on the set S.

Lemma 2. Ex0
Tx0

<∞.

Proof: We have

Ex0Tx0 =

∞∑
j=1

Prx0(Tx0 ≥ j)
(a)

≤
∞∑
j=1

(
1− (λp̄)D

)� j
D � <∞

The reason for (a) is the following: Divide the j timeslots

into j/D chunks of length D. Suppose there is an arrival in

each slot of a chunk and successful transmission in each slot

of the previous chunk, this implies a fresh packet is sent in

each slot and that we reach state x0 at the end of the chunk.

The probability of this event for every chunk is independently

(λp̄)D. Thus, the event {Tx0 ≥ j} implies that for each chunk

the aforementioned event does not occur.

Lemma 3. The Markov chain is irreducible on the set S.

Proof: We have to show that ρxy > 0 for any x, y ∈ S.

This is true, by definition, if x = x0. Furthermore, it holds

that if x0 is recurrent and ρx0y > 0, then ρyx0 = 1 [5]. For

x �= x0, y �= x0, it holds that ρxy ≥ ρxx0ρx0y > 0.

From the above two lemmas [5], the following holds.

Lemma 4. The Markov chain defined by (9) has a unique
stationary distribution.

Let π denote the stationary distribution. Let Sl ⊆ S denote

the subset of states where V (s) ≥ l. We bound
∑

s∈Sl
π(s)

as follows:∑
s∈Sl

π(s)
(a)
=

∑
s̃∈S

π(s̃)Prls̃(Sl)
(b)

≤
∑
s̃∈S

π(s̃)Dp�
l
D �

≤
∑
s̃∈S

π(s̃)
D

p
p

l
D =

D

p
p

l
D

In (a), the quantity Prls̃(Sl) denotes the probability of hitting a

state in Sl in l steps starting from the state s̃. We explain the

bound on this probability in step (b). Hitting a state s ∈ Sl

implies that sj ≥ l for some j ∈ 0, . . . , D−1. Without loss of

generality let Z(0), . . . Z(l−1) denote the indicator sequence

of channel erasures over the l steps. It follows that for some

k, Z(k + iD) = 1 for all i s.t. 0 ≤ k + iD ≤ l − 1. Indeed,

from (9), the lag at any time can exceed l only if the oldest

packet is re-sent over the past l time slots, i.e., the packet

suffers erasure at least � l
D 	 times. It therefore follows that

Prls̃(Sl) ≤ Pr(∪k{∀i s.t. 0 ≤ k + iD ≤ l − 1 : Z(k + iD) = 1})

≤
D−1∑
k=0

Pr{∀i s.t. 0 ≤ k + iD ≤ l − 1 : Z(k + iD) = 1}

= Dp�
l
D �.
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From the bound on π(Sl), it now follows that

EV (i) =

∞∑
l=1

π(Sl) ≤
∞∑
l=1

D

p
p

l
D =

D

p

p
1
D

(1− p
1
D )

From the above relation and from (8), it follows that

lim
i→∞

1

i

i∑
j=0

E(j) ≤ D

p

p
1
D

(1− p
1
D )

+ 1 (10)

Theorem 1 now follows from (7) and (10).

Remark 5. The average lag is bounded if λ < 1 − p. The
dependence of the bound (3) is O(D2) as D gets large.

IV. ONLINE CODING

The performance of retransmission based schemes deteri-

orates with increasing delay in feedback (see Fig. 5). This

motivates examining coding-based schemes. The particular

scheme we consider is the “Drop-when-decoded” scheme

proposed in [1]. The packet sent at any time is a linear

combination of all packets that are currently in the queue,

i.e., packets which have not been decoded by the receiver.

Feedback is used to obtain this latter information. The coded

packet is formed by computing a random linear combination of

all packets currently in the queue. If the field size is large, the

sent packet is (with high probability) linearly independent to

the previously sent packets. We therefore ignore the probability

that the coded packet is not innovative. At the receiver, the

packets in queue at the sender are unknowns, and each received

linear combination is an equation in these unknowns. Decod-

ing is possible whenever the number of linearly independent

equations is equal to the number of unknowns.

We reuse some notation from the previous section, namely,

A(i) is the indicator of packet arrival at the transmitter at time

i and Z(i) is the indicator of the event that the channel is OFF

in time-slot i. We introduce variable S(i) = 1 − Z(i) which

is an indicator that the channel is ON in time i. We define the

following Markov Chain on Z
2 with the state space described

by variables (L,R). (L(0), R(0)) = (0, 0) and successive

transitions are governed by: (L(i+ 1), R(i+ 1)) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(L(i), R(i)) A(i+ 1) = 0, S(i+ 1) = 0
(L(i) + 1, R(i)) A(i+ 1) = 1, S(i+ 1) = 0
(L(i), R(i) + 1) A(i+ 1) = 0, S(i+ 1) = 1,

L(i)−R(i) > 1
(0, 0) A(i+ 1) = 0, S(i+ 1) = 1,

L(i)−R(i) = 0, 1
(L(i) + 1, R(i) + 1) A(i+ 1) = 1, S(i+ 1) = 1,

(L(i), R(i) �= (0, 0))
(0, 0) A(i+ 1) = 1, S(i+ 1) = 1,

(L(i), R(i) = (0, 0))
(11)

The chain is illustrated in Figure 3. The quantity L(i)
denotes the lag (the number of packets not decoded by the

receiver) at time i, while the quantity R(i) denotes the number

of received packets since the last time the receiver was able

L

R

L

R

Fig. 3. Transitions for L−R > 1 (left) and L−R = 1 (right)

to decode packets. The lag increases with every arrival until

R(i) = L(i), at which point (the receiver is able to decode) it

resets to 0 along with R(i). We also define the (more familiar)

Markov chain corresponding to the quantity L(i) − R(i). If

L(i)−R(i) = k, then L(i+ 1)−R(i+ 1) =⎧⎪⎪⎨
⎪⎪⎩

k A(i) = 0, S(i) = 0 or A(i) = 1, S(i) = 1
k + 1 A(i) = 1, S(i) = 0
k − 1 A(i) = 0, S(i) = 1, k > 1
0 A(i) = 0, S(i) = 1, k = 0

(12)

The chain is illustrated in Figure 4. Let N denote the first time

0 1 2

λp

λ̄p̄

λp̄ + λ̄p

Fig. 4. The L−R Markov Chain

to reach the state (0, 0) from the state (1, 0) for the Markov

chain (L,R) described by (11) (alternately first time to reach

state 0 from 1 for the Markov Chain L−R described by (12)

) and let C(N) denote the cumulative number of arrivals in

this interval. We have the following theorem.

Theorem 6.

L̄ =
E[NC(N)]− λ

2 (E[N
2] + E[N ])

E[N ] + 1
λp

(13)

where

E[N ] =
1

1− p− λ
, E[N2] =

1− λ2 − p2

(1− p− λ)3
, and

E[NC(N)] =
(1− p)(1− λ)(1− p+ λ)

(1− p− λ)3
(14)

Proof: We compute the time averaged lag as

L̄(i) =
1

i

i∑
j=0

L(j)
(a)
=

1

i

i∑
j=0

(min(i, N(j))− j)A(j)

(b)

≤ 1

i

i∑
j=0

(N(j)− j)A(j) (15)

In the above, N(j) = min{l ≥ j : (L(l), R(l)) = (0, 0)},
i.e., N(j) is the time slot after time j when the state (0, 0) is

first visited. The reason for the equality (a) is the following:

A packet that arrives at time j contributes to the lag over all

the future times that the packet is not decoded. This time is

the interval [j,N(j) − 1] (At time N(j), the state (0, 0) is
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reached and therefore the packet does not contribute to the

lag at time N(j)). It might be that N(j) exceeds the length

of time, i, under consideration. In this case the contribution

to the lag of the packet arriving at time j is i − j. The

inequality (b) follows by upperbounding min(i, N(j)) with

N(j). Let j1, j2 . . . represent the time slots corresponding to

the transition from (0, 0)→ (1, 0), i.e., (L(jl−1), R(jl−1)) =
(0, 0) and (L(jl), R(jl)) = (1, 0). We refer to the interval

[jl, jl+1) as an epoch. Let e(i) denote the number of epochs

in the interval [0, i]. In particular, the interval from [0, i] splits

as [0, j1) ∪ [j1, j2) · · · ∪ [je(i), i]. Thus it is assumed that

je(i) ≤ i < je(i)+1. It holds that

1

i

i∑
j=0

(N(j)− j)A(j)
(c)

≤ 1

i

e(i)∑
l=1

N(jl)∑
j=jl

(N(jl)− j)A(j)

(d)

≤
∑e(i)

l=1

∑N(jl)
j=jl

(N(jl)− j)A(j)∑e(i)−1
l=1 (jl+1 − jl)

(16)

The first inequality (c) holds since, in the numerator, we are

adding the lags induced by the packets potentially arriving in

the interval [i + 1, N(je(i))]. The inequality (d) holds since

we are undercounting i as the sum of the first e(i)− 1 epoch

times. We note that for each epoch [jl, jl+1), the sum lag in

the epoch given by
∑N(jl)

j=jl
(N(jl) − j)A(j) as well as the

duration of the epoch (jl+1 − jl) is i.i.d.

Consider the epoch duration term jl+1− jl. We compute its

expectation as

E[jl+1 − jl] = E[N(jl)− jl] + E[jl+1 −N(jl)]

= E[N ] + E[jl+1 −N(jl)]

We now compute the expected accumulated lag in the interval

[jl, jl+1), E[
∑N(jl)

j=jl
(N(jl) − j)A(j)]. For convenience, we

drop the dependence on l and assume jl = 0 in the following

computation.

E[
N∑
j=0

(N − j)A(j)] = E[N
N∑
j=0

A(j)−
∞∑
j=0

j1N≥jA(j)]

(a)
= E[NC(N)]−

∞∑
j=0

jE[A(j)]E[1N≥j ]

= E[NC(N)]− λ

2
(E[N2] + E[N ]).

The equality (a) follows from the independence of A(j) and

1N≥j and by defining C(N) to be the cumulative number of

arrivals in the epoch. Combining (15) and (16) and taking the

limit of L̄(i) as i→∞, we have

lim
i→∞

L̄(i) ≤ lim
i→∞

(∑e(i)
l=1

∑N(jl)
j=jl

(N(jl)− j)A(j)

e(i)

e(i)

e(i)− 1

× e(i)− 1∑e(i)−1
l=1 (jl+1 − jl)

)

=
E[NC(N)]− λ

2 (E[N
2] + E[N ])

E[N ] + 1
λp

(17)

where the last equality follows since e(i) → ∞ as i → ∞
due to the positive recurrence of the Markov Chain and

from limi→∞ xi/yi = limi→∞ xi/ limi→∞ yi if both yi and

limi→∞ yi is non-zero. Similarly one can prove the reverse

inequality (proof omitted for lack of space)

lim
i→∞

L̄(i) ≥ E[NC(N)]− λ
2 (E[N

2] + E[N ])

E[N ] + 1
λp

(18)

The statement of the theorem now follows from (17) and (18).

The proof of the analytical expressions (14) (omitted for lack

of space) follows from skip-free property of chain and noting

that the transition probabilities don’t depend on the state.

V. DISCUSSION

We had briefly mentioned alternatives to Max-strat, namely

Min-strat and Div-strat. The Figure (5) is a simulated plot

of the average lag as a function of delay for four strategies:

Div-strat, Max-strat and Min-strat and the online coding

scheme. Observe that when the delay in feedback is low,

Fig. 5. Average lag versus D for λ = 0.6, p = 0.3

retransmission schemes have lesser average lag than the coding

scheme. On the other hand, the performance of retransmission

schemes degrades with delay, and beyond a certain delay it is

more advantageous to use the coding scheme. The implicit

assumption here is that Df = 0, Db = D, i.e., all delay is

attributed to the reverse link. In Theorem 1, we have shown

that the dependence of the average lag on D for the Max-strat

strategy is no more than O(D2). We do not plot this bound

(3) in Fig. 5 as it is very loose for this case.
There are a number of open issues to be resolved. The

strategy Max-strat was analyzed for its relative amenability

to analysis. It would be of interest to analyze Div-strat

and indeed, to determine what is the optimal retransmission

strategy for this problem. Even for Max-strat, we believe that

the O(D2) upper bound is loose and could be sharpened, so

it is important to determine lower bounds to the average lag.

REFERENCES

[1] J. Sundararajan, D. Shah, M. Medard, “Feedback-based online network
coding”, submitted to IEEE Trans. Info. Theory, Apr 2009.

[2] A. Sahai, “Why delay and block length are not the same thing for channel
coding with feedback”, ITA, Invited paper, Feb 2006.

[3] R. N. Swamy and T. Javidi, “ Delay Analysis of Block Coding over
a Noisy Channel with Limited Feedback,” in Asilomar Conference on
Signals, Systems and Computers, 2008.

[4] B. Shrader and A. Ephremides, “On the queueing delay of a multicast
erasure channel,” in IEEE Information Theory Workshop, Oct. 2006.

[5] R. Durrett, Probability: Theory and Examples, 3rd Edition, Duxbury
press.

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

1797


