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Abstract—We define the “reordering channel” which approxi-
mates packet communication over multipath networks. We con-
sider deterministic packet arrivals with finite horizon decoding
of individual packets and analyze the error probability for a two
stage coding scheme.

I. INTRODUCTION

We define a class of channels that we call the “reordering

channel”, and consider packet communication over channels

belonging to this class. In this channel, time is slotted and

with probability pj , a packet sent at timeslot i arrives before

slot i+ j at the receiver. The delay of each packet is assumed

to be independent. Thus, in this channel, packets could be

received in an order which differs from the order of arrival

of the packets at the sender. We define this channel with

the objective of approximating packet communication over

multipath networks. A special case that we will consider

closely is when pj is constant for all j, namely the channel is

an erasure channel.

We assume that packets arrive at rate λ at the sender.

Each packet has a deadline of n slots, by which time it

must be decoded at the receiver. Such a constraint is natural

in applications such as video streaming. Figure 1 illustrates

the problem setup. A packet is in error if the receiver fails
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Fig. 1. Problem Setup

to decode the packet by the deadline. We are interested in

encoding packets with the objective of minimizing the fraction

of packets in error (the error probability). To this end, we

propose a two-stage coding scheme and analyze how the error

probability trades off with the decoding deadline n for our

scheme.

We emphasize here that traditional block codes are ill-suited

for the problem due to the per-packet deadline constraints.

The reason is that block coding is done on large chunks

of packets, thus there is a delay incurred in buffering the

required number of packets before encoding as well as in

waiting for the requisite number of packets before decoding.

The solution lies in constructing streaming causal codes which

prioritize the delivery of earlier data packets. Such codes have

been proposed and analyzed in [1] and [2] in the context

of packet erasure channels and discrete memoryless channels

respectively. Our main contribution is our proposed coding

scheme, that we analyze for the class of reordering channels.

We derive bounds to the exponent of error probability of our

coding scheme as a function of the decoding deadline n.

The paper is organized as follows: In Section II, we describe

the coding scheme and setup the optimization problem corre-

sponding to the scheme. In Section III, we analyze the error

probability when the arrivals are deterministic. In Section IV,

we show simulation results for the error probability versus the

decoding delay n for the reordering channel as well as the

erasure channel. Apart from validating the bounds, we also

show how our scheme compares with a causal Fountain coding

scheme, and demonstrate the benefit of using our scheme.

II. CODING SCHEME AND SUM LOG UTILITY

The encoding has two stages: The first stage is the encoding

of the individual packets using a standard generator matrix

code such as a Reed-Solomon code or a Fountain code. If

each data packet has N bits, we will assume that the code is

such that the packet can be reconstructed from any N encoded

bits. The second stage allocates the content of the encoded

packets of the first stage across the transmitted packets. This

is illustrated in Figure 2 for the case when n = 3 and λ = 1
(packets arrive in every timeslot). In this example, the bits

in packet C(1) are allocated over three consecutive timeslots

since there is no point allocating the bits to packets that are

sent later than the decoding deadline. In general, the content

of the encoded packet C(i) is allocated across packets sent

in the time intervals [i, i + n − 1]. The allocation is done

under a constraint on the size of transmitted packets. In our

example, the constraint is that C(i)1+C(i−1)2+C(i−2)3 is

constant across i. The optimal allocation is one that minimizes

P (1) P (2) P (3)

C(1) C(2) C(3)

C12C11 C13C21 C31 C22

1 2 3Time

Fig. 2. Two stage encoding: P (1) is encoded to C(1), the contents of which
are allocated across subpackets C(1)1, C(1)2, C(1)3 across 3 timeslots.

the sum log of error probabilities across time slots. In the

case of deterministic arrivals, we will see that this objective

is equivalent to the error probability. Let Ni(j) represent the

number of encoded bits of data packet i (i.e., bits of C(i))
in the packet sent at time j. We expect that a good code will
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allocate the encoded bits so that Ni(i) ≥ Ni(i + 1) · · · ≥
Ni(i + n − 1). This is because packets sent earlier have a

greater chance of arrival within the deadline. The objective

we minimize is given by

∑
i∈A

log Pr
( i+n−1∑

l=i

Ni(l)δi,l < N
)

(1)

where A ⊆ Z denotes the set of the slot indexes where a data

packet arrives and δi,l is the indicator of the packet sent at time

l reaching by the (deadline) time n + i. The Pr(δi,l = 1) =
pi+n−l, however for ease of notation we will define pi,l �
Pr(δi,l = 1). Note the summation inside the probability term

is over packets sent in the interval [i, i + n− 1]. The implicit

assumption is that the packet sent at time i+n does not reach

by time i + n, thus p0 = 0. The probability expression in (1),

being combinatorial, is difficult to evaluate and we therefore

upper bound the objective (using the Chernoff bound) as

min
θ≥0

∑
i∈A

log E[e−θi(
Pi+n−1

l=i Ni(l)δi,l−N)]

where θ denotes the vector of θi’s. In the following, we

determine the allocation {Ni(j)}i that minimizes the bound

to the error probability. The objective is simplified as

min
θ≥0

∑
i∈A

log E[e−θi(
Pi+n−1

l=i Ni(l)δi,l−N)]

= min
θ≥0

∑
i∈A

(
θiN + log E[e−θi

Pi+n−1
l=i Ni(l)δi,l ]

)

(a)
= min

θ≥0

∑
i∈A

(
θiN +

i+n−1∑
l=i

log E[e−θiNi(l)δi,l ]
)

= min
θ≥0

∑
i∈A

(
θiN +

i+n−1∑
l=i

log(1− pi,l + pi,le
−θiNi(l))

)

(2)

The equality (a) follows from the independence of the event of

the sent packet at time l arriving by time i + n. The objective

has to be minimized with respect to the θi’s and the allocations

Ni(j) subject to the constraint on the size of the sent packet,∑
i∈A∩{j−(n−1),...,j}Ni(j) = N/R. It is assumed that 1/R is

the ratio of the size of a transmitted packet to a data packet.

There are also non-negativity constraints θi ≥ 0 and Ni(j) ≥
0. The Lagrangian for the optimization problem is

∑
i∈A

(
θiN +

i+n−1∑
l=i

log(1− pi,l + pi,le
−θiNi(l))

)

+
∑
l∈Z

γl

( ∑
i∈A∩{l−(n−1),...,l}

Ni(l)−N/R
)

−
∑

i∈A,l∈Z

λi,lNi(l)−
∑
i∈A

μiθi.

The KKT conditions are given by

N −
i+n−1∑

l=i

pi,lNi(l)e−θiNi(l)

1− pi,l + pi,le−θiNi(l)
− μi = 0 ∀i ∈ A

(3)

pi,lθie
−θiNi(l)

1− pi,l + pi,le−θiNi(l)
− γl + λi,l = 0 ∀i ∈ A, l ∈ Z

(4)

γl(
∑

i∈A∩{l−(n−1),...,l}
Ni(l)−N/R) = 0 ∀l ∈ Z

(5)

λi,lNi(l) = 0 ∀i ∈ A, l ∈ Z

(6)

μiθi = 0 ∀i ∈ A
(7)

The equations (3) and (4) correspond to differentiating the

Lagrangian with respect to respectively, θi and Ni(l), while

the remaining conditions are the complementary slackness

conditions. Since the objective is convex in θi and Ni(l), the

KKT conditions are both sufficient and necessary conditions

for optimality. From (4), we have Ni(l) as a function of γl, θi

given by

Ni(l) = max
[
0,−ηi,l

γl
log

ηi,l

(1− ηi,l)
(1− pi,l)

pi,l

]
(8)

where ηi,l = γl/θi. From (3) and (5), we have that the

parameters γl, θi are such that they satisfy

i+n−1∑
l=i

ηi,l max
[
0,−ηi,l

γl
log

ηi,l

(1− ηi,l)
(1− pi,l)

pi,l

]
= N ∀i ∈ A

(9)

and
∑

i∈A∩{l−(n−1),...,l}
R max

[
0,−ηi,l

γl
log

ηi,l

(1− ηi,l)
(1− pi,l)

pi,l

]

(10)

= N ∀l ∈ Z

III. DETERMINISTIC ARRIVALS

We consider deterministic arrivals of data packets. In Sub-

sections III-A, III-B and III-C, respectively, we consider the

saturated (data packet every slot) case, the periodic (a data

packet every r slots) case and the general (data packets with

an arbitrary repetitive pattern) case.

A. Saturated arrivals

Assuming that a new data packet arrives in every slot and

under the stationarity assumption that pi,l = pi+n−l ∀i, l
equations (9) and (10) can be written as

n−1∑
j=0

ηi,i+j max
[
0,−ηi,i+j

γi+j
log

ηi,i+j

(1− ηi,i+j)
(1− pn−j)

pn−j

]
= N

∀i ∈ A
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and

n−1∑
j=0

R max
[
0,−ηl−j,l

γl
log

ηl−j,l

(1− ηl−j,l)
(1− pn−j)

pn−j

]
= N

∀l ∈ Z

From inspection, a solution (which is unique due to the

convexity of the optimisation) to the above set of equations is

ηi,l = R (11)

and

γl =
R

N

n∑
j=1

max
[
0,−R log

R

(1−R)
(1− pj)

pj

]
(12)

For this solution to be non-trivial, R < maxj=1,...,n pj (to

ensure γl > 0). The optimal allocation is given by (8). From

(11), it holds that Ni(l) > 0 only if pi+n−l > R. The

following theorem provides a bound to the error probability

Pe

Theorem 1. For saturated arrivals,

Pe ≤ e
−P

j∈[1,n]:pj>R R log R
pj

+(1−R) log 1−R
1−pj .

Proof: Each term of the sum log of the error probabilities

in (1) is the same. Plugging the value of ηi,l and γl back into

the objective (2) gives the bound to the error probability.

Note that for the erasure channel where pj = p , the expo-

nent boils down to the standard Kullback-Leibler divergence

term nD(R||p). Note that D(x||y) denotes the divergence

between the binary distributions (x, 1− x) and (y, 1− y) and

is given by x log x
y +(1−x) log 1−x

1−y . Furthermore, the optimal

allocation is uniform, i.e., the contents of coded packet C(i)
are equally allocated among the n transmitted packets in the

interval [i, i + n− 1]

B. Periodic arrivals

Consider now the case of periodic data packet arrivals where

a new data packet arrives every r’th slot. Assume that the delay

horizon n is an integer multiple of r. Assuming the optimal

θi = θ and substituting pi,l = pi+n−l ∀i, l, equations (9) and

(10) become

n−1∑
j=0

γi+j

θ
max

[
0,−1

θ
log

γi+j/θ

(1− γi+j/θ)
(1− pn−j)

pn−j

]
(13)

= N ∀i ∈ A (14)

and
∑

j=q,r+q,2r+q,...,n−r+q

R max
[
0,−1

θ
log

γi+q/θ

(1− γi+q/θ)
.

.
(1− pn−j)

pn−j

]
= N ∀i ∈ A, q ∈ {0, .., r − 1} (15)

for coded packet l = i + q transmitted q slots after the i’th
information packet arrival with q ∈ {0, .., r−1}. Clearly from

(15), we see that the γl values have a periodic structure with

period r. Making use of this periodic structure we can rewrite

(13) as

r−1∑
q=0

γi+q

θ

∑
j=q,r+q,2r+q,..,n−r+q

max
[
0,−1

θ
log

γi+q/θ

(1− γi+q/θ)
.

.
(1− pn−j)

pn−j

]
= N

Substituting from (15), the above relation is just

r−1∑
q=0

γi+q

θ
= R

So we are done if we can find θ and ηi+q = γi+q/θ, q ∈
{0, .., r − 1} satisfying

r−1∑
q=0

ηi+q = R (16)

∑
j=q,r+q,2r+q,...,n−r+q

max
[
0,− log

ηi+q

(1− ηi+q)
(1− pn−j)

pn−j

]

= θN/R (17)

Note in the above, we have r+1 equations and r+1 unknowns.

We do not have an analytic closed form expression for θ, γq,

nevertheless, we can numerically solve equations (16) and (17)

and subsequently evaluate the bound to the error (see Section

IV).

However, we do have closed form expressions for the

erasure channel. It can be checked that if R/r < p, then the

optimal ηi+q = R
r and

θ = −nR

Nr
log

R
r

(1− R
r )

(1− p)
p

.

Again by substituting back in the objective, we can bound the

probability of error.

Theorem 2. For erasure channels and periodic arrivals,

Pe ≤ e−nD( R
r ||p).

As in the saturated case, the optimal allocation is uniform

over the n length window of transmitted packets.

C. General deterministic arrivals and the erasure channel

The previous subsection considered the case when the

arrival was once every r slots. We now consider arbitrary

arrival patterns which repeat after r slots. We also assume n
to be a multiple of r. For arbitrary repetitive arrival patterns,

the sum log utility is not equivalent to the error probability.

(discussed in Section V). However, the two quantities are

equivalent for the erasure channel. We will therefore focus

on the erasure channel. In what follows, we will not use the

determinism of the arrival pattern until the very last step. This

is done to keep the formulation as general as possible. We

therefore start off by assuming an arbitrary arrival pattern.
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Substituting pk = p ∀k, equations (9) and (10) become

i+n−1∑
l=i

ηi,l max
[
0,−ηi,l

γl
log

ηi,l

(1− ηi,l)
(1− p)

p

]
= N ∀i ∈ A

(18)

and
∑

i∈A∩{l−(n−1),...,l}
R max

[
0,−ηi,l

γl
log

ηi,l

(1− ηi,l)
(1− p)

p

]

= N ∀l ∈ Z (19)

We try for a solution with constant θi = θ. For a non-trivial

solution we require ηi,l < p. Equation (19) is then

−nl

θ
log

γl/θ

(1− γl/θ)
(1− p)

p
=

N

R
(20)

where nl is the number of information packets arrived in the

interval [l − n + 1, l]. Solving (20) for γl,

γl = θ

p
1−pe

−θ N
R

1
nl

1 + p
1−pe

−θ N
R

1
nl

(21)

It can be checked that ηi,l < p is consistent with (21). Now

substituting from (20) into (18) yields

i+n−1∑
l=i

γl

nl
= θR (22)

and substituting from (21) into (22),

i+n−1∑
l=i

1
nl

p
1−pe

−θ N
R

1
nl

1 + p
1−pe

−θ N
R

1
nl

= R (23)

If the above equation has a consistent solution for θ ∀l, then

we are done. For an arbitrary arrival pattern this will not be

the case as the sum (23) involves the random variable nl. We

consider the case R = 1 for simplicity, and choose θ to satisfy

not (23), but (24) below:

i+n−1∑
l=i

1
E(nl)

1

1 + 1−p
p e

Nθ
E(nl)

= 1 (24)

The relation (24) is obtained from (23) by replacing nl with

its expected value and, since E(nl) = λn, simplifies to yield

θ =
−nλ

N
log

(λ(1− p)
p(1− λ)

)
. (25)

We now substitute the guess for θ (given by 25) and for Ni(l)
given by Ni(l) = N/nl into the objective (2). We have

∑
i∈A

(
θN +

i+n−1∑
l=i

log(1− p + pe−θNi(l))
)

=
∑
i∈A

(
θN +

i+n−1∑
l=i

log(
pθe−θNi(l)

γl
)
)

=
∑
i∈A

(
θN +

i+n−1∑
l=i

(
log(

pθ

γl
)− θNi(l)

))

(a)
=

∑
i∈A

i+n−1∑
l=i

log(
pθ

γl
)−

∑
i∈AC

θN +
∑

l:nl=0

θN

(b)
=

∑
i∈A

i+n−1∑
l=i

log
(p(1 + p

1−pe−Nθ/nl)
p

1−pe−Nθ/nl

)
−

∑
i∈AC

θN

+
∑

l:nl=0

θN

=
∑
i∈A

i+n−1∑
l=i

log
(
p + (1− p)eNθ/nl

)−
∑

i∈AC

θN +
∑

l:nl=0

θN

(c)
=

∑
i∈A

i+n−1∑
l=i

log
(
p + (1− p)

(λ(1− p)
p(1− λ)

)−nλ/nl
)
−

∑
i∈AC

θN

+
∑

l:nl=0

θN

=
∑

l

nl log
(
p + (1− p)

(λ(1− p)
p(1− λ)

)−nλ/nl
)
−

∑
i∈AC

θN

+
∑

l:nl=0

θN

where the equality (a) follows from the observation that

∑
i∈A

i+n−1∑
l=i

Ni(l) =
∑

l:nl �=0

N,

the equality (b) follows from substitution for θ/γl using (21)

and the equality (c) follows from guess for θ using (25).

We therefore have the following bound on the sum log of

the error probabilities:

∑
i

log Pr
( i+n∑

l=i

Ni(l)δi,l < N
)
≤

∑
l

nl.

. log
(
p + (1− p)

(λ(1− p)
p(1− λ)

)−nλ/nl
)
−

∑
i∈AC

θN +
∑

l:nl=0

θN

(26)

which holds for any arbitrary (not necessarily repetitive) arrival

pattern.

Repetitive arrivals – If the arrival pattern has period r and

if n is a multiple of r, then nl = nλ, where λ is the arrival

rate of packets. We plug this value in (26) to get

∑
i∈A

log Pr
( i+n∑

l=i

Ni(l)δi,l < N
)

≤
∑

l

nλ log
p

λ
−

∑
i∈AC

θN +
∑

l:nl=0

θN

Normalizing all the terms by the total number of arrivals |A|,
observing that |A| = Tλ, and that nl �= 0 for n which is a
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multiple of r, we have

1
|A|

∑
i∈A

logPr
( i+n∑

l=i

Ni(l)δi,l < N
)

≤ n log
p

λ
+ n(1− λ) log

λ(1− p)
p(1− λ)

= −nD(λ||p). (27)

As Ni(l) is uniform, each term inside the summation of the

L.H.S in (27) is equal to the R.H.S. In other words, for any

packet, the probability of the packet not being decoded is

upperbound by the exponential decay in n. We thus have the

following theorem:

Theorem 3. For general deterministic arrivals and for an
erasure channel, the error probability Pe is bounded by

Pe ≤ e−nD(λ||p).

IV. NUMERICAL RESULTS
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Fig. 3. λ = 0.5, pi,l = 1− 0.9i+n−l. O.A and U.A denote the error plots
under, respectively, optimal and uniform allocation, and E.B denotes the error
bound under optimal allocation

We ran simulations for the case when the channel probabili-

ties are given by pi,l = 1−0.9i+n−l ( alternately pj = 1−0.9j)

and the arrival rate is one packet every two time slots, i.e.,

when λ = 0.5. The Figure 3 plots the error probability versus

the decoding deadline for the optimal allocation that minimizes

the bound (2) ( obtained from numerically solving (16) and

(17)) and also plots the corresponding bound to the error

probability given by (2). The performance of the uniform

allocation (optimal for an erasure channel) is also compared

to the (w.r.t objective (2)) optimal allocation and is seen to be

significantly worse than this optimal allocation.

The Figure (4) compares our two stage coding scheme with

a causal Fountain code (which sends a linear combination of

undecoded packets at the receiver each slot) over the erasure

channel assuming infinite field and no decoding overhead. The

allocation which minimizes the objective (2) is uniform and

and we therefore refer to our scheme as Uniform coding with

no Feedback (see Fig. 4). We numerically compare our scheme

with the causal Fountain coding scheme and observe only

a slightly worse performance for our scheme. It is however

unfair to make a direct comparison since the causal coding

scheme requires feedback to limit the queue size at the sender.
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Fig. 4. λ = 0.25, p = 0.33 U.C FB denotes uniform allocation with
feedback. D is the delay (in slots) of feedback.

If we incorporate feedback into our scheme, we observe a

dramatic reduction in error probabilities. The incorporation

of feedback is explained as follows: Without feedback the

allocation for each data packet (arrived in the past n timeslots)

in a transmitted packet is N/nl = N/nλ. With feedback, the

sender drops the data packets which have been decoded at the

receiver and thus the new allocation is N/n̆l where n̆l is nl less

the number of packets decoded at the receiver. Fig. 4 shows

the error probability curves for different amount of delays

in the feedback. The numerical studies make a strong case

for our coding scheme, especially in the light of dramatically

improved performance using feedback.

V. SUM LOG UTILITY AND ERROR PROBABILITY

In all the cases considered so far, the sum log of the error

probabilities provided a direct handle on the error probabil-

ities themselves. For general reordering channels and arrival

patterns, the two quantities are not equivalent. Consider the

indicator of the error event for the packet arrived at the ith slot

given by Zi � 1{Pi+n−1
l=i Ni(l)δi,l<N

}. The normalized sum

log of the error probabilities is given by 1
|A|

∑
i∈A log E[Zi]

where the expectation is over the channel randomness. Note,

Zi is not identically distributed. However, it holds that Zi

is i.i.d modulo n, i.e., the sequence {Zln+q}l≥0 is i.i.d for

q = 0, . . . , n− 1. It therefore holds that

1
|A|

∑
i∈A

log E[Zi] =
1

nλ

∑
i∈{[0,n−1]}∩A

log E[Zi]. (28)

On the other hand, the error probability is given by

lim
|A|→∞

1
|A|

∑
i∈A

Zi =
1

nλ

∑
i∈{[0,n−1]}∩A

E[Zi].

Thus the exponent of the error probability is given by

log 1
nλ

∑
i∈{[0,n−1]}∩A E[Zi] and by Jensen’s inequality, this

exponent upperbounds the exponent in (28). Note that for

the erasure channel, both exponents are equal as the Zi’s are

identically distributed (though not independent).
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