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Abstract— In this paper the discretization of switched and
non-switched linear positive systems using Padé approxima-
tions is considered. We show:

1) first order diagonal Padé approximation preserves both
linear and quadratic co-positive Lyapunov functions,
higher order transformations need an additional condi-
tion on the sampling time1;

2) positivity need not be preserved even for arbitrarily small
sampling time for certain Padé approximations.

Sufficient conditions on the Padé approximations are given to
preserve positivity of the discrete-time system. Finally, some
examples are given to illustrate the efficacy of our results.

I. INTRODUCTION

Switched and non-switched linear positive systems have
been the subject of much recent attention [1], [2], [3], [4],
[5], [6], [7], [8]. A new problem in the study of such systems
concerns how to obtain discrete time approximations to a
given continuous time system.

This problem arises when one simulates a given system,
and when one approximates a continuous time system for
control design. While a complete understanding of this prob-
lem exists for LTI systems [9], and while some results exist
for switched linear systems [10], the analogous problem
for switched positive systems is more challenging since
discretization methods must preserve not only the stability
properties of the original continuous time system, but also
physical properties such as state positivity. To the best of
our knowledge, no other authors have yet looked at this
problem.

Specifically, in this paper we study diagonal Padé ap-
proximations to the matrix exponential, and consider their
suitability for discretizing positive systems. Such a study
is well motivated as diagonal Padé approximations are a
method of choice amongst control engineers.

We deal with two fundamental questions:
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(i) under what conditions is the stability of the origi-
nal positive system preserved;

(ii) under what conditions is positivity itself preserved.

In particular, we establish the following results:

(i) first order diagonal Padé approximation preserves
both linear and quadratic co-positive Lyapunov
functions for all sampling, while higher order
transformations require an additional condition on
the sampling time;

(ii) Padé approximations, of any order, do not, in
general, preserve positivity, even for an arbitrary
small, but positive, sampling time h, hence suf-
ficient conditions on h and p, order of the Padé
approximation, are given to preserve it.

This paper is organized as follows: in Section II the no-
tation and preliminary definitions are introduced. In Section
III a sufficient condition to find the suitable values of the
sampling time h, which map Metzler matrices into positive
ones, for the p − th order diagonal Padé transformation
is given (it involves a sub-class of the Metzler matrices);
some counterexamples are also included; finally Section
III presents the special case of the second order systems,
for which it is possible to give a complete picture of the
solution. In Section IV, the preservation of both quadratic
and linear co-positive Lyapunov functions in the discretiza-
tion process is presented; a result on the discretization of
switched positive systems follows. Section V concludes the
paper.

II. MATHEMATICAL PRELIMINARIES

A. Notation

Capital letters denote matrices, small letters denote vec-
tors. For matrices or vectors, (′) indicates transpose and (∗)
the complex conjugate transpose. For matrices X or vectors
x, the notation X or x Â 0 (º 0) indicates that X , or x,
has all positive (nonnegative) inputs and it will be called a
positive (non-negative) matrix or vector. The notation X > 0
(X < 0) or X ≥ 0 (X ≤ 0) indicates that the matrix X
is positive (negative) definite or positive (negative) semi-
definite. The sets of complex, real and natural numbers are
denoted by C, R and N, respectively.



A square matrix Ac is said to be Hurwitz stable if all its
eigenvalues lie in the open left-half of the complex plane.
A square matrix Ad is said to be Schur stable if all its
eigenvalues lie inside the unit disc. A matrix A is said
to be Metzler if all its extra-diagonal elements are non-
negative, moreover we ask that the others are non-positive,
with at least one non-zero element. B is an M-Matrix if
B = −A, where A is both Metzler and Hurwitz; if an
M-matrix is invertible, then its inverse is nonnegative [11],
[12]. The matrix I will be the identity matrix of appropriate
dimensions.

B. Definitions

Positive systems [1], [13] have the peculiar property that
any nonnegative input and nonnegative initial state generate
a nonnegative state trajectory and output for all times. We
recall here the well-known definition of positive systems for
both continuous and discrete time [1]:

Definition 1 An LTI autonomous continuous-time system

ẋ(t) = Acx(t), x(0) = x0 (1)

is positive iff Ac is a Metzler matrix.

Definition 2 An LTI autonomous discrete-time system

x(k + 1) = Adx(k), x(0) = x0 (2)

is positive iff Ad is a nonnegative matrix.

In the following we will tackle the discretization problem
of positive systems, looking for conditions on the sampling
time h in order to preserve positivity in addition to stability.
Here we recall the definition of the Padé approximation to
the exponential function.

Definition 3 [14] The [L/M ] order Padé approximation
to the exponential function esis the rational function Cp

defined by
Cp(s) = QL(s)Q−1

M (−s)

where

QL(s) =
∑L

k=0 lksk, QM (s) =
∑M

k=0 mksk, (3)

lk = L!(L+M−k)!
(L+M)!k!(L−k)! and mk = M !(L+M−k)!

(L+M)!k!(M−k)! .(4)

Thus, the diagonal Padé approximation to eAch, the matrix
exponential with sampling time h, is given by

L = M = p,

Cp(Ach) = Qp(Ach)Q−1
p (−Ach) (5)

where Qp(Ach) =
∑p

k=0 ck(Ach)k and ck = p!(2p−k)!
(2p)!k!(p−k)! .

Much is known about the Padé maps in the context of
LTI systems, particularly it is known that diagonal Padé
transformations of any order preserve stability [15].

Remark 1 The (0, 1) Padé transformation preserves both
stability and positivity for each choice of the sampling time
h. Stability preservation is straightforward from [15]. While,
since Ac is Metzler and Hurwitz and Ad(h) = (I−hAc)−1,
nonnegativity of Ad(h) follows for every value of h.

III. SUFFICIENT CONDITION FOR DIAGONAL PADÉ OF
THE p− th ORDER

In this Section a sufficient condition to find the candidate
values of h, which preserve the system’s positivity, is
presented for diagonal Padé with both one real root (first
order) and two complex conjugate roots (second order). The
decomposition in roots has been used in Section III-C in
order to generalize the theory to the p− th order diagonal
Padé.

A. One real root - first order diagonal Padé

According to (3) and (5) the first order diagonal Padè
approximation to eAch with sampling time h is given by

Ad1 =
(

I +
h

2
Ac

)(
I − h

2
Ac

)−1

. (6)

It has one real root, α(h), and it can be expressed as a
function of it:

Ad1 = (α(h)I + Ac) (α(h)I −Ac)
−1

, (7)

where α(h) = ᾱ
h and ᾱ > 0.

Theorem 1 Let Ac = {aij} be the Metzler and Hurwitz
stable matrix of system (1) and Ad1 the matrix achieved
through the transformation (7). If

h ≤min
i

ᾱ

|aii| (8)

then Ad1 is nonnegative and Schur stable.

Proof: The stability proof follows from [15]. Recall
that since Ac is a Metzler matrix then (α(h)I−Ac)−1 º 0.
If we also have θ = α(h)I + Ac º 0 then Ad1 is
non-negative. All the elements on the main diagonal of
θ are α(h) − |aii|. In order to have a nonnegative matrix
α(h) ≥max

i
|aii|, hence h ≤min

i

ᾱ
|aii| .

This concludes the proof.

Remark 2 Theorem 1 is a general condition for the generic
real root of a p−th order diagonal Padé. For the first order
one it becomes h ≤ 2 min

i

1
|aii| , since ᾱ = 2.



B. Two complex conjugate roots - second order Padé

According to (3) and (5) the second order diagonal Padè
approximation to eAch with sampling time h is given by

Ad2 =
(

I +
h

2
Ac +

h2

12
A2

c

)(
I − h

2
Ac +

h2

12
A2

c

)−1

.

(9)
It has two complex conjugate roots, λ(h) and λ∗(h), and it
can be expressed as a function of them:

Ad2 =
(|λ(h)|2I + 2Re(λ(h))Ac + A2

c

)×
× (|λ(h)|2I − 2Re(λ(h))Ac + A2

c

)−1
= θ1θ

−1
2

(10)

where λ(h) = λ̄
h and Re(λ̄) > 0, λ∗(h) = λ̄∗

h and
Re(λ̄∗) > 0. For the second order diagonal Padè
approximation λ̄ = 3 + 1.7321i.

Define Ac = {aij} and A2
c = {bij} then let P be the set

of indexes i, j, i 6= j, such that the ratio aij

bij
is well-defined.

Theorem 2 Let Ac = {aij} be the Metzler and Hurwitz
stable matrix of system (1) and Ad2 the matrix achieved
through the transformation (10). If

h ≤ 2Re(λ̄) min
i,j∈P

aij

|bij | , (11)

where bij are the elements of A2
c , then Ad2 is nonnegative

and Schur stable.

Proof: The stability proof follows from [15].
Recall that the sufficient condition aims to make θ1

nonnegative and θ2 an M-matrix.
The elements on the diagonal of θ2 are positive, since

bii > 0 and aii ≤ 0, while the extra-diagonal elements are:
−2Re(λ(h))aij + bij . They are all non-positive if bij ≤
0, ∀i 6= j, since aij ≥ 0, ∀i 6= j; otherwise the following
condition is needed:

2Re(λ(h)) ≥ bij

aij
. (12)

Similarly, consider now the extra-diagonal elements of θ1:
2Re(λ(h))aij +bij , which are nonnegative if bij ≥ 0, ∀i 6=
j, since aij ≥ 0, ∀i 6= j; otherwise the following condition
is needed:

2Re(λ(h)) ≥ |bij |
aij

. (13)

Finally, all the elements on the main diagonal of θ1 are:

|λ(h)2| − 2Re(λ(h))|aii|+ bii (14)

where bii > 0. Recalling that bii = a2
ii +

∑n

j=0

j 6=i

aijaji is

easy to verify that the expression (14) is always positive for
all h > 0.

From (12) and (13), the condition h ≤ 2Re(λ̄) min
i,j∈P

aij

|bij |
is straightforward.

This concludes the proof.

Remark 3 Theorem 2 is a general condition for all the
complex conjugate roots of a p − th order diagonal Padé.
For the second order one it becomes h ≤ 6 min

i,j∈P
aij

|bij | .

C. p− th order diagonal Padé transformation

Finally, we can write the conclusion of the decomposition
issue, introducing a sufficient criterion to find a sampling
time interval of values, which preserves both positivity and
stability, for the p− th order diagonal Padé transformation.

Theorem 3 Let Ac be a Metzler and Hurwitz stable matrix
and Ad(h) = Cp(Ach) be the p − th order diagonal
Padé approximation to eAch. Let ᾱθ and λ̄δ, λ̄∗δ the real
and complex conjugate roots of the Padé, respectively.
Let α̂ =min

θ
ᾱθ and λ̂ =min

δ
Re(λ̄δ). Then Ad(h) is

nonnegative and Schur stable for every h ≤ h∗, where

h∗ =min
{

min
i

α̂

|aii| , 2Re(λ̂) min
i,j∈P

aij

|bij |
}

, (15)

with aij and bij which are the i, j element of Ac and A2
c

respectively.

Proof: Decomposing the p − th order diagonal Padé
approximation into real and complex conjugate roots we
achieve:

Ad(h) =
m∏

θ=1

(αθ(h)I + Ac)×

×
n/2∏

δ=1

(|λδ(h)|2I + 2Re(λδ(h)Ac) + A2
c

)×

×
m∏

θ=1

(αθ(h)I −Ac)
−1×

×
n/2∏

δ=1

(|λδ(h)|2I − 2Re(λδ(h)Ac) + A2
c

)−1

(16)

where m+n = p, αθ(h) = ᾱθ

h and λδ(h) = λ̄δ

h , λ∗δ(h) =
λ̄∗δ
h and ᾱθ, λ̄δ and λ̄∗δ are the real and complex conjugate

roots of the p − th order diagonal Padé transformation
respectively.

Every real and complex conjugate root can be analyzed
as in Theorems 1 and 2, respectively, finding, for each
of them, a relation like hθ ≤min

i

ᾱθ

|aii| and hδ ≤min
i,j∈P

2Re(λ̄δ)
aij

|bij | , i 6= j. Hence, it is sufficient choosing the



minimum between min
θ

hθ and min
δ

hδ , which are achieved

taking into account only α̂ and λ̂. The minimum between
them is h∗ and this completes the proof.

Remark 4 There may be cases in which the condition on
the complex conjugate roots gives h = 0 as sufficient
condition: aij = 0 and the corresponding bij 6= 0. However,
there exists a subset of Metzler matrices Ac for which it is
always possible to find h∗ > 0:

A =
{

Ac : min
i,j∈P

aij

|bij | 6= 0
}

, (17)

where, as already stated previously, aij and bij are the i, j−
th element of Ac and A2

c respectively.

Example 1 Let

Ac = {aij} =

=




−17.0936 6.551 9.5974 7.5127
7.5469 −11.6261 3.4039 2.551
2.7603 1.19 −15.8527 5.0596
6.797 4.9836 2.2381 −16.9908


 ,

that is Metzler and Hurwitz. Instead, A2
c = {bij} is not

Metzler. It is trivial to verify that Ac ∈ A. We use, for
example, the 5− th order Padé transformation, whose roots
are α = 7.2935, λ1 = 4.6493 + 7.1420i, λ∗1 = 4.6493 −
7.1420i, λ2 = 6.7039+3.4853i and λ∗2 = 6.7039−3.4853i.
Applying Theorem 3, h ≤ 0.3221, which gives as result, with
h = 0.3221:

Ad =




0.2911 0.3107 0.2856 0.2644
0.2855 0.3077 0.2762 0.2550
0.1446 0.1527 0.1431 0.1327
0.2226 0.2372 0.2149 0.2007


 ,

which is positive and Schur stable.

D. Counterexample for the sufficient condition on h

When Ac 6∈ A the sufficient condition introduced in
Theorem 3 returns h = 0 for every p ≥ 2, because of
the condition on the complex conjugate roots. It could
be interesting, therefore, to understand if the sufficient
condition found with the first order Padé transformation,
h1 ≤ h∗1, can be used with higher orders Padé, hν

p ≥ h∗1;
where h∗p is the value found applying the sufficient condition
of Theorem 3 to the p−th order Padé transformation and hν

p

is the real maximum suitable value of the sampling time h
which makes the p− th order Padé transformation mapping
Metzler into nonnegative matrices. Such a value can be
found by simulation.

Two scenarios are possible:
1) p − th diagonal Padé transformation, with p > 1,

maps Metzler and Hurwitz matrices into nonnegative

and Schur ones when h belongs to an interval [0, hν
p ],

with hν
p > h∗1;

2) there is a gap into the interval of suitable sampling time
values for some values of p.

Therefore, in case 1, see Example 2, it is possible to use h∗1,
i.e., the sufficient condition found for the first order diagonal
Padé transformation, with higher order diagonal Padé. In the
second case, instead, it is not possible to use it apriori, since
the interval found is not included in the suitable h values
for higher orders transformations, even if the intersection
can be not empty, see Example 3.

Example 2 Let

Ac = {aij} =

=




−0.5369 0.2920 0 0 0
0.5269 −0.3175 0.3724 0 0

0 0.0155 −0.8721 0.0527 0
0 0 0.4897 −0.3318 0.4177
0 0 0 0.2691 −0.4277


 ,

that is Metzler and Hurwitz, while A2
c = {bij} is not

Metzler. Applying Theorem 3 with p = 1 and, for example,
p = 2 we find h∗1 = 2.2933 and h∗2 = 0, because of the zero
elements in Ac and the corresponding nonzero elements in
A2

c . Still, it is possible to find, numerically, the real sampling
time intervals that achieve a nonnegative discretization for
both the first and the second order diagonal Padé and they
are: [0, hν

1 ] = [0, 2.37] and [0, hν
2 ] = [0, 17.37].

Hence, in this case, it was possible to use h∗1 also for
the second order Padé transformation and, according to
simulations, it works for higher orders too.

Example 3 Let

Ac = {aij} =

=




−10−3 1 0 . . . 0 0
0 −10−3 1 . . . 0 0

0 0 −10−3 . . . 0 0
...

...
...

. . .
. . .

...
0 0 0 . . . −10−3 1
0 0 0 . . . 0 −10−3




that is a 10 × 10 Metzler and Hurwitz matrix, while
A2

c = {bij} is not Metzler. Applying Theorem 3 with
p = 1 and, for example, p = 2 we find h∗1 = 2000
and h∗2 = 0, because of the zero elements in Ac and the
corresponding nonzero elements in A2

c . In this case, if we
look numerically for the real sampling time intervals, which
achieve a nonnegative discretization for both the first and
the second order diagonal Padé, we find: [0, hν

1 ] = [0, 2000]
and {0}⋃

[h−2 , hν
2 ] = {0}⋃

[1512.2, 3464]. The former is
not a subset of the latter, hence it is not possible to use a-
priori a value of the first interval with the second order Padé



transformation, even if it is still possible to find an interval
of values of h that satisfies both the transformations.

The not trivial issue is to distinguish a-priori between
cases 1 and 2.

E. Second order systems

The two cases shown in Section III-D cannot happen
when Ac is a second order matrix. In this case Ac always
belongs to A, since aij = 0 implies that |bij | = 0 too,
therefore the sufficient condition formulated in Theorem 3
always succeeds in finding a solution.

For the second order systems, n = 2, the sampling time h
that satisfies the sufficient condition for the first order Padé
achieves a nonnegative discretization using the second order
Padé too.

Lemma 1 Let Ac be a 2 × 2 Metzler and Hurwitz stable
matrix. If Ad1 = (α(h)I + Ac)(α(h)I − Ac)−1 º 0 then

Ãc = 2Re(λ(h)) α(h)
|λ(h)|

Ac

|λ(h)|
(
I + A2

c

|λ(h)|2
)−1

is a Metzler
and Hurwitz matrix. Here α(h) and λ(h) are the roots of
the first order and second order Padé respectively, and both
functions of the sampling time h:

α(h) = ᾱ
h , λ(h) = λ̄

h .

Proof: Define

Ad1 =(α(h)I + Ac)(α(h)I −Ac)−1

Ad2 =(|λ(h)|2I + 2Re(λ(h))Ac + A2
c)×

× (|λ(h)|2I − 2Re(λ(h))Ac + A2
c)
−1

(18)

where Ad1 is the matrix achieved using the first order Padé,
which has a real root α(h), and Ad2 is the one achieved
through the second order Padé, whose roots are complex
conjugate: λ(h) and λ∗(h). Ãc is the matrix achieved
applying the inverse Padé of the first order to Ad2:

Ãc =(Ad2 − I)(Ad2 + I)−1α(h) =

=2Re(λ(h))
α(h)
|λ(h)|

Ac

|λ(h)|
(

I +
A2

c

|λ(h)|2
)−1

.
(19)

Let Ac be a 2× 2 Metzler and Hurwitz matrix:

Ac =
[ −a b

c −d

]
,

where a, b, c, d ≥ 0, (a + d) > 0 and ad− bc > 0.

Ad1 =(α(h)I + Ac)(α(h)I −Ac)−1 =

=
1
41

[
β1 2bα(h)

2cα(h) β2

]
,

(20)

where β1 = α2(h)−(a−d)α(h)−ad+bc, β2 = α2(h)+(a−
d)α(h)−ad+bc and41 = α2(h)+(a+d)α(h)+ad−bc > 0
since Ac Hurwitz and the Padé roots have positive real part.

Ad1 is nonnegative if ad − bc ≤ α2 and this condition
is fulfilled if the sampling time h is such that α(h) ≥max

{a, d}, i.e. α(h) ≥max
i
|aii|, hence h ≤min

i

ᾱ
|aii| .

From (19) it follows:

Ãc =2Re(λ(h))
α(h)
|λ(h)|

Ac

|λ(h)|
(

I +
A2

c

|λ(h)|2
)−1

=

=
2Re(λ(h))

42

α(h)
|λ(h)|

[
φ1(h) φ2(h)
φ3(h) φ4(h)

]
,

(21)

where

φ1(h) = − a

|λ(h)| −
d

|λ(h)|
ad− bc

|λ(h)|2

φ2(h) =
b

|λ(h)|
(

1− ad− bc

|λ(h)|2
)

φ3(h) =
c

|λ(h)|
(

1− ad− bc

|λ(h)|2
)

φ4(h) = − d

|λ(h)| −
a

|λ(h)|
ad− bc

|λ(h)|2

42 =
(ad− bc)2

|λ|4 +
a2 + d2 + 2bc

|λ|2 + 1.

(22)

The elements on the main diagonal of Ãc are always
negative, while the extra-diagonal elements are positive if
1 − ad−bc

|λ(h)|2 > 0, that is true if α(h)2 < |λ(h)|2. This last
inequality is always verified since the root of the first order
Padé α(h) is greater than 1 and less than the absolute value
of the root λ(h) of the second order Padé.

Ãc is also Hurwitz. Indeed, consider a complex number
x+iy with x < 0 and apply the transformation (x+iy)(I +
(x + iy)2)−1:

x + iy

1 + (x + iy)2
=

x(1 + x2 + y2) + iy(1− x2 − y2)

(1 + x2 − y2)2 + 4x2y2
(23)

Re

(
x + iy

1 + (x + iy)2

)
=

x(1 + x2 + y2)

(1 + x2 − y2)2 + 4x2y2
< 0, ∀x < 0.

(24)

This concludes the proof.

Theorem 4 Let Ac be a 2× 2 Metzler and Hurwitz stable
matrix. If Ad1 = C1(Ach) is the first order diagonal Padé
approximation of eAch and is nonnegative and Schur stable
for any h1 ≤ h∗1, then Ad2 = C2(Ach), second order
diagonal Padé approximation of eAch, is nonnegative and
Schur stable for any h2 ≤ h∗2, with h∗2 ≥ h∗1.

Proof: According to Lemma 1 if Ad1 is nonnegative
and Schur ∀h1 ≤ h∗1, then Ãc is Metzler and Hurwitz ∀h1 ≤



h∗1. This implies that, for the same values of the sampling
time, Ad2 is nonnegative and Schur too. Indeed,

Ad2 =

(
I +

Ãc

α(h1)

)(
I − Ãc

α(h1)

)−1

. (25)

The second matrix of the product in (25) is the inverse of
an M-matrix, hence it is nonnegative. Moreover, since Ãc
is Metzler, only the elements on the main diagonal of the
first matrix need to be checked, if they are nonnegative Ad2
will be the product of two nonnegative matrices.
(

I +
Ãc

α(h1)

)
= I +

2Re(λ(h1))

42

1

|λ(h1)|
[

φ1(h1) φ2(h1)
φ3(h1) φ4(h1)

]

(26)
where φi(h1) are defined as in (22). Recalling the definition
of 42 in (22) and that Re(λ(h1)) ≤ |λ(h1)|, it is easy to
see that the elements on the main diagonal are positive. This
concludes the proof.

Remark 5 Let α1 be the real root of the first order Padé
transformation and λ2, λ∗2 be the complex conjugate roots
of the second order one. We have proved in Theorem 4 that
h∗1 ≤ h∗2, i.e. min

i

α1
|aii| < 2Re(λ2) min

i,j∈P
aij

|bij | . Moreover, by

simulation it is possible to notice that the minimum absolute
value of the real part of the Padé roots increases with the
transformation order, even if we have not been able, by now,
to prove it analytically. Since |aii|, aij and |bij | do not
change with the Padé order, a straightforward consequence
is that the sufficient condition of Theorem 3 will always
result in increasing values of h. Therefore the value of h
found with the first order Padé maps Metzler 2×2 matrices
into positive ones for every Padé order p.

IV. LYAPUNOV FUNCTION PRESERVATION

In the following section we will present some preliminary
results on the Lyapunov functions preservation through the
Padé approximation [16]. Particularly both the quadratic and
linear co-positive Lyapunov function, see [17], [3] and [18],
can be preserved.

As we have shown in the previous, positivity preservation
is not a trivial issue.

Lemma 2 Let Ac be a Metzler and Hurwitz stable matrix
and Ad = C1(Ach) be the first order diagonal Padé
approximation of eAch. Moreover assume h ≤min

i

ᾱ
|aii| ,

where aii are the elements of the main diagonal of the matrix
Ac and ᾱ is the real root of the first order diagonal Padé
approximation. Then

1) Ad(h) is a nonnegative and Schur matrix;
2) if v(x) = x′Px, with P = P ′ > 0, is a quadratic

Lyapunov function for Ac, that is

x′(A′cP + PAc)x ≺ 0, ∀x Â 0 (27)

then v(x) is a quadratic Lyapunov function for Ad(h)
too, that is

x′(A′dPAd − P )x ≺ 0, ∀x Â 0; (28)

3) if v(x) = w′x, w Â 0 is a linear co-positive Lyapunov
function for Ac, that is

w′Ac ≺ 0,

then v(x) is a linear co-positive Lyapunov function for
Ad(h) too, that is

w′Ad ≺ w′.

Proof: Since Ad is the first order diagonal Padé
approximation, it can be decomposed in its real root α(h) =
ᾱ
h : Ad(h) = (α(h)I + Ac) (α(h)I −Ac)

−1, where α(h) =
ᾱ
h , ᾱ Â 0. For the first order Padé ᾱ = 2.

1) Ad(h) is Schur according to [15], since the transfor-
mation used is the Padé (1, 1). Moreover, let aij ≥ 0
be the elements of the Metzler matrix Ac, which has
the following structure:



−|a11| · · · a1n

...
. . .

...
an1 · · · −|ann|


 ; (29)

Ad(h) is also nonnegative if ᾱ
h ≥max

i
|aii|, that is if

ᾱ ≥ h max
i

|aii| or, equivalently, h ≤min
i

ᾱ
|aii| , since

it becomes the product of two nonnegative matrices,
recalling that the second one is the inverse of an M-
matrix.

2) From (27) follows that (28) becomes

x′(A′dPAd − P )x =

=x′[(α(h)I −Ac)
−′ (α(h)I + Ac)

′×
× P (α(h)I + Ac) (α(h)I −Ac)

−1 − P ]x =

= x′ (α(h)I −Ac)
−′ ×

× [(α(h)I + Ac)
′
P (α(h)I + Ac)+

− (α(h)I −Ac)
′
P (α(h)I −Ac)]×

× (α(h)I −Ac)
−1

x =

= x′ (α(h)I −Ac)
−′ [2α(h) (A′cP + PAc)]×

× (α(h)I −Ac)
−1

x ≺ 0, ∀x Â 0

since (27) holds and the matrix (α(h)I −Ac) is an
M-matrix, hence its inverse is nonnegative for all h.

3) Following the same rationale of the previous point we
can write:

w′Ad − w′ = 2w′Ac (α(h)I −Ac)
−1 ≺ 0.

This completes the proof.



Lemma 3 Let Ac be a Metzler and Hurwitz stable
matrix. Let θ1 = (λ(h)I + Ac) (λ∗(h)I + Ac), θ2 =
(λ(h)I −Ac) (λ∗(h)I −Ac) and, finally, define

Ad(h) = θ1θ
−1
2 (30)

and assume that λ = λ̄
h , that is a complex number with

Re(λ) > 0, is such that θ2 is an M-matrix and θ1 is a
nonnegative one. Then

1) if v(x) = x′Px, with P = P ′ > 0, is a quadratic
Lyapunov function for Ac, that is

x′(A′cP + PAc)x ≺ 0, ∀x Â 0, (31)

and h is also sufficiently small so that

−|λ(h)|2x′(A′cP + PAc)x Â x′A′c(A
′
cP + PAc)Acx

(32)
is satisfied for each x Â 0, then v(x) is a quadratic
Lyapunov function for Ad(h) too, that is

x′(A′dPAd − P )x ≺ 0, ∀x Â 0; (33)

2) if v(x) = w′x, w Â 0 is a linear co-positive Lyapunov
function for Ac, that is

w′Ac ≺ 0,

then v(x) is a linear co-positive Lyapunov function for
Ad(h) too, that is

w′Ad ≺ w′.

Proof:
1) Recalling (30), we want to show that x′(A′cP +

PAc)x < 0 implies x′(A′dPAd − P )x < 0 ∀x > 0.
Indeed,

x′(A′dPAd − P )x =

=x′θ−
′

2 [
(|λ(h)|2I + 2Re(λ(h))Ac + A2

c

)′
P×

× (|λ(h)|2I + 2Re(λ(h))Ac + A2
c

)− θ′2Pθ2]θ
−1
2 x =

=x′θ−
′

2 [4|λ(h)|2Re(λ(h))(A′cP + PAc)+

+ 4Re(λ(h))A′c(A
′
cP + PAc)Ac]θ

−1
2 x

(34)

that is negative, if h satisfies (32), for all x Â 0.
2) Following the same rationale of the previous point we

can write:

w′Ad − w′ =4Re(λ(h))w′Ac (λ(h)I −Ac)
−1×

× (λ∗(h)I −Ac)
−1 ≺ 0.

This concludes the proof.

Remark 6 As shown in Theorem 3, it is possible to find
a sufficient condition on the real part of the roots λ(h)
of the complex Padé transformation in order to achieve a
nonnegative matrix Ad. Calling aij the elements of Ac and

bij the elements of the matrix A2
c , the condition on λ(h)

would be Re(λ(h)) ≥ 1
2 max

i,j∈P
|bij |
aij

. This condition can be

formulated using the sampling time h, recalling that λ(h) =
λ̄
h : h ≤ 2Re(λ) min

i,j∈P
aij

|bij | . Still, as it has been shown in

Section III-D, there can be cases in which the result of this
sufficient condition is h = 0, because aij = 0 and bij 6= 0,
that is unacceptable.

It is now possible to introduce the discretization of
switching positive systems by p − th order diagonal Padé
transformation.

Consider a continuous-time switched linear positive sys-
tems of the general form

ẋ(t) = Acσ(t)x(t), x(0) = x0, (35)

defined for all t ≥ 0, where x(t) ∈ Rn
+ is the state

variable vector, σ(t) ∈ {1, 2, . . . , N} is the switching rule,
x0 ∈ Rn

+ is the initial condition and Aci belongs to the set
{Ac1, . . . , AcN}. In order to be a positive system Aci has
to be Metzler, i.e. aij ≥ 0, ∀(i, j), i 6= j and aii ≤ 0, ∀i.

Theorem 5 Consider system (35). Let Aci be a Metzler and
Hurwitz stable matrix for all i = 1, . . . , N and Adi(hi) =
Cp (Acihi) be the p−th order diagonal Padé approximation
of eAcihi , with hi ≤ h∗i , h∗i achieved using the condition
(15) of Theorem 3.

Let h∗ =min
i

h∗i , then ∀h ≤ h∗ the discretized system

x(k + 1) = Adµ(h)x(k) (36)

is positive, where µ =∈ {1, 2, . . . , N}.
Moreover, if there exists a common linear co-positive

Lyapunov function, or a quadratic one and h is such that
(32) holds, for system (35), then the origin x = 0 is globally
uniformly asymptotically stable for system (36) too under
arbitrary switching.

Proof: Positivity of system (36) is straightforward from
Theorem 3, since the minimum condition on h, h ≤ h∗, is
taken into account in order to guarantee the positivity of
each matrix Adi(h); hence the switching system achieved
applying the p − th order diagonal Padé transformation is
positive under arbitrary switching.

Moreover, following the idea expressed in [16], we recall
that Adi(h) = Cp(Acih) = Qp(Acih)Qp(−Acih)−1 and
that Adi(h) can be factored as in the Proof of Theorem 3.

Since all the constituent matrices commute with each
other and the sampling time preserving positivity makes also
θ2 of Lemma 3 an M-matrix, we can apply Lemma 2 and
the second part of Lemma 3; then, if there exists a common
linear co-positive Lyapunov function for system (35), it is
preserved by the p− th order diagonal Padé approximation.



If h is such that condition (32) is fulfilled, then also the first
part of Lemma 3 holds and common quadratic co-positive
Lyapunov functions are preserved too.

Recalling that if there exists a common Lyapunov func-
tion for a switching system, it is globally uniformly asymp-
totically stable under arbitrary switching [5], [19], the sys-
tem (36) is globally uniformly asymptotically stable under
arbitrary switching and positive for all h ≤ h∗.

Remark 7 If Aci ∈ A ∀i, then it is always possible to find
h 6= 0 for which system (36) is positive.

V. CONCLUSIONS

In this paper we cope with the effect of the p− th Padé
transformations on positive systems. We provide sufficient
conditions for both positivity and quadratic and linear co-
positive Lyapunov function preservation; an analysis of
switched positive systems follows. For second order systems
a complete picture of the solution is provided; for higher
order systems a few conjectures are included showing the
peculiarity of the positivity property under discretization.
Many examples and counterexamples are also given to
illustrate the efficacy of our results.
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