THE ALTERNATING GROUP 4; AND THE GENERAL LINEAR
GROUP GL4(2)

JOHN MURRAY*

ABSTRACT. We give an explicit construction for the isomorphism Ag 2 GL4(2).
The involutions of cycle type 22 in the symmetric group Sg, together with
the null-set, can be given the structure of an elementary abelian group of
order 16, in such a way that Se¢ preserves the group operation. This gives
an embedding ¢ of Se¢ into the general linear group GL4(2). Regarding Se
as a subgroup of the alternating group Ag, we show that { extends to Ag.
Coincidence of group orders implies that this extension is an isomorphism.

1. INTRODUCTION

Let S(X) denote the group of permutations, and A(X) the subgroup of even
permutations, of a set X. If n € N, set X, := {1,...,n}. We use S,, (respectively
A,) to denote any member of the isomorphism class of groups containing S(X,,)
(respectively A(X,)). If ¢ is a power of a rational prime number p, then GF(q)
will denote the finite field containing ¢ elements. The general linear group GL,,(2)
consists of all invertible n x n matrices with entries in GF(2). Since 1 is the only
non-zero element in GF(2), every invertible matrix over GF(2) has determinant 1.
So GL,(2) coincides with its special linear subgroup SL,(2). There is only one
scalar matrix in SL,(2), namely the identity n x n matrix. So SL,(2) can be
identified with its projective special linear factor group L,(2).

C. Jordan [3] first demonstrated that the groups As and L4(2) are isomorphic.
W. Edge gives some interesting historical background and references in [2]. The
definitive modern proof is due to J. Conway [1]. His proof relies on properties of
the Cayley embeddings of an elementary group of order 8 in Ag. There are two
classes of such subgroups, which he calls the even and odd subgroups. It turns out
that the even subgroups, together with an abstract identity symbol, can be given
the structure of an elementary abelian group of order 16, with the group operation
compatible with the conjugation action of Ag on even subgroups. This gives an
injective homomorphism Ag < L4(2), which, by coincidence of group orders, is an
isomorphism.

In this paper, we explore the combinatorial background to Conway’s proof. Sup-
pose that n is a positive integer. We call a product of n disjoint transpositions an
n-involution. Using a simple set-theoretic construction, we show that the trans-
positions (1-involutions) of Sg, together with an abstract identity element ¢, can
be given the structure of an elementary abelian group of order 16. As Sg has an
outer automorphism which interchanges 1-involutions and 3-involutions, this gives
a natural construction for an elementary abelian group whose non-trivial elements
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are the 3-involutions in Sg. Next, we define the signature of an even (or an odd)
subgroup of Ag as a certain 3-involution in Sg. Proposition 4.2 shows that the
intersection of an even with an odd subgroup is governed by the commutativity
of their signatures. Using this fact, we show that the conjugation action of Ag on
its even subgroups is compatible with the group operation defined on their signa-
tures. This provides an explicit, and we hope well-motivated, account of Conway’s
construction.

We note that our 3-involutions correspond to J. J. Sylvester’s synthemes. The
set of 5 transpositions in Sg moving a given numeral correspond, via Proposition
3.3, to the set of five synthemes which he calls a pentad. See [6, 7.11] or [4] for an
account of the combinatorial properties of the outer automorphisms of Sg.

Our interest in the topics in this paper arose from a study [5] of aspects of the
representation theory of the sporadic finite simple group McL. This group is the
unique finite simple group in which the centralizer of an involution is isomorphic
to the universal covering group Ag = 2. 45 of As. Tt has two classes of subgroups
24 : Ay, where the A; acts flag transitively on the 24, and the 2* is conjugate to
the inverse image in Ag of a Cayley embedding of 23 in Ag. As the referee kindly
informed me, the sporadic finite simple group Ms, actually has a subgroup of type
24 : Ag, where the complement Ag acts faithfully on the 24.

2. THE TRANSPOSITIONS OF Sg

Let X be a set. We use ¢ to denote the empty subset of X. If A and B are
subsets of X, their symmetric difference A A B is defined by:

AAB := (AUB)\(ANB).

Symmetric difference gives a commutative binary operation on the powerset P(X)
of X. In fact, we have the following well-known result:

Lemma 2.1. (P(X),A) is an elementary abelian 2-group of order 21X!, with the
empty set as identity.

Proof. Using Venn diagrams, it is easy to show that A is an associative operation.
Also
ANA =A\A = ¢,
ANp = NA=A\¢p =A,

The lemma follows. O

As (P(X),A) is an abelian group, < X >:= {¢, X} is a normal subgroup. Let
P(X) denote the quotient group P(X)/ < X >. Then P(X) is elementary abelian
of order 21XI=1, If A € P(X), then AL := A A X is the complement of A in X.
So the elements of P(X) are the 2-part partitions {4, A1} of X. Let A denote the
group operation in P(X). Then for A4, B C X, we have

{4, A"}A{B,B'} = [AAB, (45 B)}
={AA B, (AABY)*).
Suppose now that |X| is even. We say that {A, A+} € P(X) is even if |A] is
even. Since

|[AAB| = |A] +|B| - 2[AN B,
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it follows that the product of any two even elements of | P(X) is even. So the set,
E(X), of even elements forms a subgroup of index 2 in P(X).

Lemma 2.2. Suppose thatn > 2. Then (E(X,,),A) is an elementary abelian group
of order 272,

It is a coincidence of small numbers that every non-trivial even 2-part partition of
X6 :={1,...,6} contains exactly one part of size 2. So the non-trivial elements of
E(Xg) can be identified with the transpositions (7, j) of S(Xs) = S¢. This allows us
to define the operation A on the set consisting of ¢ together with the transpositions
of S(Xs). For example

(1,2) A (3,4) = (5,6),
(1,2) A (2,3) = (1,3),
(1,2) A(L,2) = ¢,

1,2)A¢  =(1,2).

Lemma 2.3. Let s # t be transpositions in S(Xg). Then there is the unique
transposition, u # s,t, in S(Xg), with the property that u commutes with all trans-
positions in S(Xg) which commute with both s and t. Moreover, s At = u. Thus
S(Xe) acts on the group (E(Xg), ).

Proof. Suppose that st = ts. Without loss of generality s = (1,2) and t = (3,4).
Any transposition which commutes with all transpositions of S(Xg) which commute
with both s and ¢ necessarily commutes with s and ¢. So it is one of (1,2),(3,4) or
(5,6). Thus v = (5,6). Also (1,2) A (3,4) = (5,6),

Suppose that st # ts. Without loss of generality s = (1,2) and ¢t = (1,3). The
transpositions of Sg which commute with both s and ¢ are precisely those which fix
the symbols 1,2, 3. So the transpositions which commute with these are (1,2),(1, 3)
and (2,3). Thus v = (2,3). Also (1,2) A (1,3) = (2,3).

The group S(Xg) acts by conjugation on its transpositions, and hence on the
non-trivial elements of E(Xg). We can make S(Xg) to act on E(Xg) by setting
@7 := ¢, for all o € S(Xg). Then S(Xg) preserves the group operation of E(Xg),
since it preserves the commutation relations between its own elements. O

No element of S(Xg) centralizes every transposition. So the previous lemma
gives an embedding;:
R. Gow has pointed out the following consequence of this fact.

Corollary 2.4. Sg = Spy(2).

Proof. Suppose that X is a finite set of even cardinality. Set
A E(X) x E(X) —» GF(2),
A{A,A*},{B,B'}) = |AN B|lgr@), for A,BCX.

It is readily verified that A\ endows E(X) with an alternating bilinear form. The
elements of Aut(E(X)) = Ljn-2(2) which preserve X form a group isomorphic to
the symplectic group Spyn—2(2).
We now specialize to X = Xg. If (4,5) and (k,l) are transpositions in S(Xg),
then A\((,7), (k,1)) = 0 if and only if (i,j) commutes with (k,). In particular, the
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action of S(Xg) on E(Xg) preserves A. So ((S(Xs)) is isomorphic to a subgroup of
Sp4(2). However,

S(Xe)| = 2*-32-5 = 222(2*2 —1)(2° ~ 1) = [Sp,(2)]-
We conclude that ¢(S(Xs)), and hence Sg, is isomorphic to Sp,(2). O
We need the following lemma:

Lemma 2.5. Let z and y be transpositions in S(Xg). Then zy = yz < y = ¢,
for some involution t of cycle type 23.

Proof. Suppose that zy = yx. If x = y, then we may take ¢ to be any involution
of cycle type 2% which commutes with . If  # y, then without loss of generality
z = (1,2) and y = (3,4), and ¢t = (1, 3)(2,4)(5,6) will do.

Suppose that y = xt, for some involution . If ¢ commutes with z, then z = y.
Otherwise, we may assume that z = (1,2) and t = (1,3)(2,4)(5,6). Then y = z* =
(3,4) commutes with x. O

3. THE 3-INVOLUTIONS OF Sg

As is well known, Sg possesses outer automorphisms i.e. automorphisms which
do not arise from the conjugation action of the group on itself. In the spirit of
the paper, we provide an elementary proof of this fact, and in Proposition 3.3 we
establish a property of the outer automorphisms which we will need.

Let X be afinite set. A transposition of X is a permutation of X which swaps two
elements and fixes all other elements. We call a product of n disjoint transpositions
an n-involution. Suppose that s and ¢ are each products of disjoint transpositions
of X. We say that s is contained in t, or t contains s, if each transposition which
occurs in s also occurs in ¢. So, for example, the 2-involution (1, 2)(3,4) is contained
in the 3-involution (1,2)(3,4)(5,6).

Consider the subgroup H =< (1,2,3,4,5) >x<(2,3,5,4) > of S(X5). We have
[S(X5) : H] = 6 and it is easy to show that

Core(H) := (| H°={1}.
a€S(Xs)

So the permutation representation of S(X5) on the left cosets H\S(X5) of H in
S(X5) induces an embedding

12 S(X5) = S(Xe),

via some fixed identification S(H\S(X5)) = S(Xg). The image K := 1(S(X53)) is
necessarily a transitive subgroup of S(Xg)). In particular, it is not conjugate to
the stabilizer, S(X5), of the numeral 6 in S(Xs). Now [S(Xs) : K] = 6. Also, it is
well known that A(Xs) is the only proper non-trivial normal subgroup of S(Xg),
from which we deduce that Core(K) = {1}. So the permutation representation of
S(Xg) on the left cosets K'\S(Xg) of K in S(Xs) induces an automorphism

T: S(XG) — S(Xg),

via some fixed identification S(K\S(Xg)) = S(Xs). We claim that 7 is an outer au-
tomorphism of Sg. To prove this, we will show that 7 interchanges the 1-involutions
and the 3-involutions of Sg.
Note that the involutions in S(X35) are 1 or 2-involutions, while those of S(Xs)
are 1, 2 or 3-involutions.
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Lemma 3.1. The conjugacy classes of S(Xs) which have non-trivial intersection
with H are those of cycle type 1°,5,1.4,1.22. So if (o) fizes a point of Xg, for
o € S(X5), then o is a member of one of these classes.

Proof. The first statement can be verified directly. Suppose that ¢ is an element of
S(X5) and (o) fixes a point of Xg. Then ouH = pH, for some u € S(X5). Hence
o* € H. This completes the proof. O

Corollary 3.2. Lett be an involution in S(Xs). If t is a 1-involution then 1(t) is
a 3-involution. If t is a 2-involution then 1(t) is a 2-involution. In particular K
contains no 1-involutions.

Proof. Tt is clear that +(A(X5)) = K N A(Xg) (for instance because A(X5) is the
unique subgroup of index 2 in S(X5)).

Suppose that t is a 1-involution. Then «(t) € K\ A(Xs) is either a l-involution
or a 3-involution. A 1l-involution has fixed points in Xg. So the former case is
impossible, using Lemma 3.1.

Suppose that t is a 2-involution. Then +(¢) is an even involution. So it must be
a 2-involution. |

We now prove the following:

Proposition 3.3. 7 interchanges the classes of l-involutions and 3-involutions.
In particular T is an outer automorphism of S(Xs).

Proof. The 1-involutions and the 3-involutions are the only classes of odd involu-
tions in S(Xg). So T either normalizes both classes or interchanges them.

Let t be a l-involution in S(Xg). Since K contains no involutions, 7(¢) is a
fixed point free permutation of Xg. So 7(¢) must be a 3-involution. The result
follows. O

Corollary 3.4. Let x and y be 3-involutions in S(Xg). Then zy = yz <y = z*,

for some 1-involution t in S(Xg).
Proof. This follows immediately from Lemma 2.5 and Proposition 3.3. |

We have previously identified the non-trivial elements of E(Xg) with the 1-
involutions of S(Xs). So we can use 7 to identify the the non-trivial elements
of E(Xg) with the 3-involutions of S(Xg). This allows us to define the operation
A on the set consisting of the 3-involutions of S(Xg), together with the symbol ¢.
Notice that 7 is not uniquely defined: it depends on the way in which S(K\S(Xs))
is identified with S(Xg). However, the operation A does not depend on the choice
of 7, as the following result shows.

Corollary 3.5. Let s # t be 3-involutions in S(Xe). There is the unique 3-
involution, u # s,t, in S(Xg), with the property that it commutes with all 3-
involutions in S(Xg) which commute with both s and t. Moreover s At = u.
In particular, the element u does not depend on the choice of outer automorphism
T.

Proof. This follows immediately from Lemma 2.3 and Proposition 3.3. |
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Using this result, it is easy to see that

(1,2)(3,4)(5,6) A (1,2)(3,5)(4,6) = (1,2)(3,6)(4,5),
(1,2)(3,4)(5,6) A (1,3)(2,5)(4,6) = (1,2)(3,4)(5,6)13)(25)(4,6)
= (1,6)(2,4)(3,5).
Also, by definition
(1,2)(3,4)(5,6) A (1,2)(3,4)(5,6) = ¢,
(1,2)(3,4)(5,6) A ¢ = (1,2)(3,4)(5,6).

Let n be a positive integer. The map
S(Xn) _)A(Xn+2)>

L1 if o € A(X,)
g con+1,n+2), ifoeS(X)\AXn)

is an injective homomorphism. We use S(X,,) to denote its image. The action of
S(Xe) on the set consisting of ¢ and the class of 3-involutions induces a map

¢ :S(Xe) =& Aut(E(Xes)) = Ls(2).
It remains to show that ¢ extends to A(Xs).

4. THE ODD AND EVEN SUBGROUPS OF Ag

We now describe the odd and even subgroups of Ag, objects first introduced by
Conway [1].
Suppose that G is a finite group. Its holomorph is the group

Hol(G) == G » Aut(G).

So the elements of Hol(G) are pairs (g, f), with ¢ € G and f € Aut(G), and
multiplication * is defined by

(91, f1) * (g2, f2) = (91f1(g2), f1 0 f2), for g1,92 € G and fi, f2 € Aut(G).

The map
Cy : Hol(G) —»S(G),

Cy(g, f)(x) =gf(x), for (g,f) € Hol(G) and z € G,

is an injective homomorphism, which we shall call the Cayley embedding. More-
over, Cy(Hol(G)) is a self-centralising subgroup of S(G), Cy(G) acts regularly and
transitively on G and the normalizer of Cy(G) in S(G) coincides with Cy(Hol(G)).

Let £(Xg) be the image in S(Xg) of the Cayley embedding of an elementary
abelian group Z3 of order 8, where the elements of Z3 are identified in some manner
with the numerals of Xg.

Lemma 4.1. All non-trivial elements of £(Xs) are 4-involutions, and each trans-
position of S(Xs) is contained in exactly one 4-involution of £(Xg). The nor-
malizer N'(Xs) of £(Xsg) in S(X3) is contained in A(Xg) and is isomorphic to the
holomorph 73 x L3(2) of Z3. Therefore, there are exactly two conjugacy classes
of such Cayley embeddings in A(X3g), but only one class in S(Xg). Also, any two
distinct A(X3g)-conjugates of E(X3g) intersect in the trivial group.
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Proof. The non-trivial elements of £(X3g) are 4-involutions, since they are involu-
tions of S(X3) which have no fixed points in Xg.

Suppose that z, y are 4-involutions in £(Xg) which both contain the same trans-
position ¢. Then zy fixes the numerals in Xg transposed by ¢. Hence zy = 1, and
so x = y. This shows that each transposition ¢ of S(X3) is contained in at most one
4-involutions of £(Xg). The seven 4-involutions in £(Xs) account for 7 x 4 = 28
transpositions of Sg. But S(Xs) has (§) = 28 transpositions. So each transposition
of Sg is contained in exactly one 4-involution of £(Xs).

The structure of N (Xg) comes from discussion prior to this lemma. Let K(Xs)
be a complement to £(Xg) in N(Xg). It is clear that

N(Xg) N A(Xg) = £(X3)(K(Xg) N A(X3)),

since £(X3g) is contained in A(Xg). But K(Xg) is isomorphic to the simple group
L3(2), of order 168. So K(Xg) N A(Xg) = K(Xs) and hence N(Xg) is contained
in A(Xg). We conclude that there are two classes of Cayley embeddings £(Xs) in
A(Xs), while S(X3g) contains only one such class.

The centralizer of a 4-involution in Sg is isomorphic to Z2 ! S4, and is clearly
not contained in A(Xg). So the 4-involutions form a single conjugacy class of
size 8!/(2* x 24) = 105 in A(X3). Each 4-involution is contained in some A(Xg)-
conjugate of £(X3g). From the structure of A'(Xg), there are (8!/2)/(2% x 168) = 15
distinct conjugates of £(Xg) in A(Xg). So these conjugates contain at most 7 x
15 = 105 non-trivial elements. We conclude that every 4-involution is contained in
exactly one conjugate of £(Xs), and hence that any two distinct A(Xg)-conjugates
of £(X3g) intersect in the identity group. O

Let £ and O be representatives of the two classes of Cayley embeddings of Z3
in A(Xg). We call the class containing £ the even subgroups of A(Xs), and the
class containing O the odd subgroups of A(Xg). We say that £ meets O if their
intersection is not the trivial group.

By Lemma 4.1, exactly one 4-involution ¢ € £ contains the involution (7,8). The
product of the other three involutions contained in ¢ is a 3-involution s in S(Xg).
We call s the signature of £, and denote it by sig(£). Clearly sig establishes a
bijection between the even subgroups of A(Xg) and the 3-involutions in S(Xg).
Similar remarks apply to O and to the odd subgroups of A(Xs).

The following result is vital:

Proposition 4.2. £ meets O if and only if sig(E)sig(O) = sig(O) sig(E).

Proof. Suppose that £ meets O. Let z be a 4-involution in £ N Q. Then x contains
at least one transposition ¢ in S(Xg). Since z € £ N E N O, Lemma 4.1 implies
that either & = £ or £ = (0. The first case is impossible, since the normalizer of
& in S(Xg) is contained in A(Xg). So & = O. Since t € S(Xg), it follows that
sig(€)t = sig(E) = sig(0). We conclude from Lemma 3.4 that sig(€) commutes
with sig(O).

Conversely, suppose that sig(€) sig(O) = sig(O)sig(€). We can reverse the
argument of the previous paragraph to show that £ meets O. O

Notice that the definition of sig depended on an arbitrary choice of 6 numerals,
namely Xg, from the set Xg. However, the criterion for an even and odd subgroup
to meet does not depend on this choice.
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Suppose that £; and & are distinct even subgroups of A(X3g). Set
E1 NEy = &3,
where & be the unique even subgroup satisfying
sig(&1) A sig(Es) = sig(Es).

Let E(X3g) be the set consisting of the even subgroups of A(Xg) and the symbol ¢.
If £ is an even subgroup set

ENE =¢, ENGp:=E ¢AE =E.

The group A(X3g) acts on its class of even subgroups by conjugation. If o € A(X3),
set ¢ := ¢. This makes E(X3g) into an A(Xg)-set. We have the following proposi-
tion:

Proposition 4.3. The set E(Xg) forms an elementary abelian group of order 16,
under the operation A. The action of A(Xs) on E(Xg) preserves the group opera-
tion, and hence induces an injective homomorphism ¢: Ag — Aut(E(Xg)) = L4(2).

Proof. The first statement is obvious, given the fact that sig establishes a bijection
between the nontrivial elements of E(Xg) and those of E(Xg).

Let & and &> be even subgroups of A(Xs). It follows from Propositions 3.5 and
4.2 that & A & is the unique even subgroup of A(Xs), distinct from & and &,
with the property that it meets every odd subgroup which meets both & and &;.
Since A(Xs) preserves intersections between even and odd subgroups, we have

(&1 A&) =87 ANET,

for each ¢ in A(Xg). Thus A(Xg) acts on the group E(Xg).

It is clear that no non-trivial element of A(Xg) normalizes all fifteen even sub-
groups of Ag. So the action of A(Xg) on E(Xg) is faithful. The rest of the lemma
follows immediately. O

We note that f extends (, in the sense that
5ig(55(")) =5ig(£)$(?),  for all 0 € S(X) and all even subgroups &.
Theorem 4.4. Ag = [4(2).

Proof. We know from Proposition 4.3 that A(Xg) is isomorphic to a subgroup of
Aut(E(Xg)) = Ly(2). The coincidence of group orders

AKX = 5 = 208257 = 200-D/2(9" _1)(27 1)@~ 1)(2-1) = | Aut (B(Xs )],

establishes that the two groups are in fact isomorphic. |
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