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1. Introduction

For terminology and notation used here we follow [1]. Let D = (V,E) denote a digraph (directed
graph) with vertex set V = V(D), arc set E = E(D) and order n. Loops are permitted but multiple arcs
are not. A u — v walk in a digraph D is a sequence of vertices u, uy,...,us, v € V(D) and a sequence of
arcs (u, uq), (U, Un),..., U, v) € E(D), where the vertices and arcs are not necessarily distinct. A closed
walk is au — v walk where u = v. A cycle is a closed u — v walk with distinct vertices except for u = v.

The length of a walk W is the number of arcs in W. The notation u ¥, vis used to indicate that there
isau — v walk of length k. The distance from vertex u to vertex v in D, is the length of a shortest walk
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from u to v, and denoted by d(u, v). A p-cycle is a cycle of length p, denoted Cp. If the digraph D has at
least one cycle, the length of a shortest cycle in D is called the girth of D, denoted s(D).

A digraph D is called primitive if for some positive integer t there is a walk of length exactly t from
each vertex u to each vertex v. If D is primitive the smallest such ¢t is called the exponent of D, denoted
by exp(D). There are numerous upper bounds on the exponent of a primitive digraph. One of the well
known result on the exponent is due to Dulmage and Mendelsohn [2].

Proposition 1.1. Let D be a primitive digraph with n vertices, and s be the girth of D. Then

exp(D) < n+sn—2).

A digraph D is primitive if and only of its strongly connected and the greatest common divisor of
all cycle lengths in D is equal to one.

For a digraph D with n vertices, we define the adjacency matrix of D to be the n x n matrix A(D) =
(a;j), where a;; =1 if there is an arc from vertex i to vertex j, and a; = 0 otherwise. For a posi-
tive integer r, the rth power of a digraph D, denoted by D', is the digraph on the same vertex set
and with an arc from vertex i to vertex j if and only if i—r>j in D. It is easy to see that (D(A))" =
D(A").

For a positive integer r > 1, the (i,j)th entry of the matrix A" is positive if and only if i—r>j in
the digraph D. Since most of the time we are only interested in the existence of such walks, not
the number of different directed walks from i to j, we interpret A as a Boolean (0, 1)-matrix, unless
stated otherwise. We denote by J, 0, and I the all 1’s matrix, the all 0’s matrix and the identity matrix,
respectively.

For vertices u, v and w of a digraph D, if (u,w), (v, w) € E(D), then vertex w is called a common out-
neighbour of vertices u and v. The scrambling index of a primitive digraph is the smallest positive integer

k such that for every pair of vertices u and v, there exists a vertex w such that u X wandvEwin
D. In other words, it is the smallest positive integer k such that each pair of vertices has a common
out-neighbour in D¥. The scrambling index of D will be denoted by k(D). An analogous definition can
be given for nonnegative matrices. The scrambling index of a primitive matrix A is the smallest positive
integer k such that any two rows of A¥ have at least one positive element in a coincident position, and
will be denoted by k(A). The scrambling index of a primitive matrix A can also defined as the smallest
positive integer k such that AKAT)k = .

In 2006, Cho and Kim [5] introduced the competition index of a digraph. They define the row graph
R(A) of a Boolean matrix A. It is a graph whose vertices are the rows of A, and two vertices in R(A) are
adjacent if and only if their corresponding rows have a nonzero entry in the same column of A. The
competition index, denoted cindex (D), is the smallest positive integer q such that R(A9) = R(AT™™) for
some positive integer m. For a primitive digraph D, cindex(D) is the smallest integer q such that R(A")
is a complete graph for any r > q.

Cho and Kim’s [5] definition of the competition index is the same as our definition of the scrambling
index in the case of primitive digraphs. In [5], the authors present the following result about the
competition index.

Proposition 1.2 (Cho and Kim). Let D be a primitive digraph of order n(>= 3) with girth s.

(1) If nis odd, then cindex(D) < n + ("_zﬁ
(2) Ifnis even, then cindex(D) <n—1+ (HEA

In Section 2, we present the motivation to consider the scrambling index, and give an attainable
upper bound on the second largest modulus of the eigenvalues of a stochastic matrix S by using the
scrambling index. In Section 3, we give an upper bound on the scrambling index k(D) of a primitive
digraph D in terms of the order n and the girth s of D.
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2. Coefficients of ergodicity

The spectral radius of A is the largest modulus of the eigenvalues of A, denoted by p(A). For a
primitive matrix A, by the Perron-Frobenius theorem we know that the spectral radius p(A) is a simple
eigenvalue of A and the modulus of every other eigenvalue is strictly less than p(A). Any primitive
matrix is diagonally similar to a scalar multiple of a stochastic matrix. Thus we will only consider
primitive stochastic matrices. For a primitive stochastic matrix S, the powers of S converge to a rank
one positive matrix, and the rate of convergence is governed by the second largest modulus of the
eigenvalues of S. There are numerous results giving the upper bounds on the second largest modulus
of eigenvalues of primitive matrices (see [4,7,9,11-13]).

In 1979, Seneta [9] introduced the general concept of coefficients of ergodicity forann x n stochastic
matrix and he showed that coefficients of ergodicity provide an upper bound on the moduli of non-unit
eigenvalues of a stochastic matrix.

An explicit expression for a coefficient of ergodicity in terms of the entries of the given matrix is
the well known Dobrushin or delta coefficient, denoted by z; (-), which according to Seneta [10], was
first introduced by Dobrushin [3] and Paz [6].

For an n x n stochastic matrix S, the coefficient of ergodicity is defined

l n
71(5)=§mi?>(2\511*5ﬂ|- (1)
=1

It is also shown (see [4,8,10]) that
A < T, (2)

where 1 is a non-unit eigenvalue of S. Seneta [10] had the following result.

Proposition 2.1. Let S be a stochastic matrix. Then t1(S) < 1 if and only if no two rows are orthogonal, or
equivalently, if any two rows have at least one positive element in a coincident position.

By the Perron-Frobenius theorem we know that |A| < 1 forany non-unit eigenvalues of S. In that case
the coefficient of ergodicity in (1) does not provide any new information. Therefore we are interested
in the case that 71 (S) < 1.

Seneta called a matrix that satisfies the conditions of Proposition 2.1 as a scrambling matrix. An
irreducible scrambling matrix is also a primitive matrix. Motivated by Seneta’s work, we introduce the
scrambling index of a primitive digraph.

Definition 2.2. The scrambling index of a primitive matrix A is the smallest positive integer k such
that A¥ is a scrambling matrix.

Let S be a primitive stochastic matrix with scrambling index k(S) = k and A be an eigenvalue of S;
then S is also a primitive stochastic matrix and A is an eigenvalue of S¥. By applying Proposition 2.1
and (2) to the matrix S¥, we have the following result.

Theorem 2.3. Let S = (s;) be an n x n primitive stochastic matrix with scrambling index k(S) = k and
suppose that A is a non-unit eigenvalue of S. Then

Il < (z1 Sk VK 3)
and
Sk <1,

oy _

where 7y (SK) = 1 max;; YLy |s)

()
Sit” |-
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Formula 3 in Theorem 2.3 gives an attainable upper bound on the modulus of non-unit eigenvalues
of primitive stochastic matrix. For a stochastic matrix S, we denote the maximum modulus of the
non-unit eigenvalues of S simply by &(S). Consider the following example.

Example 2.4. Let A be the following n x n (n > 3) stochastic matrix

T
a 1-a O]X("T_z)
— a
A=] 0 1-a atzen 5 |
en2  Om-2x1  Om—2)x(n-2)

wherea e R,0 < a < 1,e,_5 is an (n — 2)-dimensional column vector with all entries 1 and Oy, is an
n x n zero matrix. Then

@ o
M=l o a-0?  f5Pel,

aep_y (I—-wmep—y Om—2)xm-2)

It is easy to see that A is a primitive stochastic matrix and that the scrambling index of A is k(A) = 2.
The eigenvalues of A are 1, ++/a — a2i and 0 with multiplicity n — 3. Then £(A) = v/a — a2. By Theorem
2.3 we get 71 (A%) = (a — a?). Comparing & (A) with 71 (A%), we have £(A) = (11 (A2))1/2,

3. Scrambling index of a primitive digraph

In this section, we introduce the scrambling index of a primitive digraph and give an upper bound
on the scrambling index in terms of the order and the girth of the digraph.

3.1. Introduction

Definition 3.1. The scrambling index of a primitive digraph D, denoted by k(D), is the smallest positive
integer k such that for every pair of vertices u and v, we can get to a vertex w from both u and v in the
digraph D by directed walks of length k.

For a vertex u € V(D), we define the local scrambling index of vertex u as

ky (D) = min{k : u has common out-neighbour with every other vertex in D).

For u,v € V(D)(u # v), define

kyv(D) = min{k : u LY w and vi w, for some w € V(D)}.
Then
kD) = urglv%){ku D)},

and

kD) = uﬁ% ){ku,v(D)}-

From the definitions of k(D), k, (D) and ky,y (D), we have
ku,v(D) < ky(D) < k(D).

The scrambling index gives another characterization of primitivity. For a primitive digraph D, by the
definition of the scrambling index and the exponent it is easy to see that k(D) < exp(D).
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3.2. The local scrambling index
We begin with a useful lemma.

Lemma 3.2. Let p and s be positive integers such that gcd(p,s) =1 and p > s > 2. Then for each t,1 <
t < max{s — 1, |p/2]}, the equation xp + ys = t has a unique integral solution (x,y) with |x| < |s/2] and
vl < Lp/2].

Proof. First consider the case that s is even. Then p is odd. We proceed by contradiction. Suppose that
(X1,y1) is an integral solution of equation xp + ys = t with minimum absolute value of x;. We claim
that x| < [ 3] and y1| < [ ]

Suppose to the contrary that |x{| > L%J so that |x{| > % Consider the case thatx; > # so that
y1 < 0.Since x1p + y15 = t, we have

yis =t —xp. (4)
Ifs—1=max{s -1, |p/2]}, thent < s — 1. By (4) we have
sp

yiIs<s—-1-xp<s—1-— > ~P.

Solving for y; we obtain

p 1 p
< - ___£
A 2+< S S)'

Since1-1 -2 <1 theny; <-|§].

If | 2| =max{s—1,|5]} thent < 2;'. By (4) we have

-1 s+2
ns< P31 (332),

2 2
solving for y1, gives us
p p+1
<2
NS5~

Since % > 0,theny; < — L%J Letx =x; —sandy =y; +p,thenxXp+y's=t,|x'| < |x1]and |y'| <
|y1], contradicting with the minimality of |x1|. The arguments for the case that x; < —% and for the
case that s is odd are similar and omitted.

Next we consider the uniqueness. Suppose for i = 1,2 that (x;,y;) is an integral solution of the

equation xp + ys = t for some ¢, where |x;| < |s/2] and |y;| < |p/2]. Then
Xip+yis=t,
where i = 1,2, and hence

X1 —x2)p+ (¥1 —y2)s=0. (5)
Since gcd(s,p) = 1, one of s and p is odd. Without loss of generality, suppose s is odd. Since |x;| <
Is/2],i=1,2, then |x; — x| < |X1| + |X2| < s. Suppose gcd((X1 — x2),5) =1, then 1 < I < |x1 — Xo|. Let
s=1Is" and x; — xy = X'l. It is easy to see that s’ > 2, otherwise s’ = 1, then s = I, but we have [ <
|x1 — x2| < S. Substitute s = Is" and x; — x, = X'l in (5), we have X'Ip + (y» — y1)Is’ = 0. Cancelling by [
we getx'p + (yo — y1)s’ = 0.Sinceged (¥, s') = 1, thenx'|(y2 — y1),p = (yz;“ ) s’and ged(s, p) = s'. This
is a contradiction to gcd(s,p) = 1.

Henceforth, we say (x,y) is a solution of equation xp + ys = t with minimum absolute value to mean
that |x| < [s/2],1y| < |p/2] and xp +ys = t.

Let D be a primitive digraph, and let s and p be two different cycle lengths in D. Suppose that
gcd(s,p) = 1,and that 2 < s < p < n.Foru,v € V(D), we can find a vertex w € V(D) such that there are
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directed walks from u to w and v to w such that both walks meet cycles of lengths s and p. Denote the
lengths of these directed walks by I(u, w) and I(v, w). We say that w is a double-cycle vertex of u and v,
and we let

Ly = max{l(u, w), l(v,w)}.
Note that any vertex is a double-cycle vertex, and that there are many possible I, ,’s. However, when
using [, y, for specific digraphs we will make a good choice of the double-cycle vertex w and good choices
of [(u,w) and I(v, w). In particular, we do not necessarily choose w so as to minimize max{l(u, w), [(v, w)}.
Without loss of generality, suppose that [(u,w) > l(v,w) and l(u,w) — I(v,w) = r(mods), where r ¢
{0,1,2,...,s—1}. Then

luw)-lv,w)y=ts+r (teZt>0),

Iw,w) — dv,w) +ts) =r. (6)
Whenr € (1,2,...,s — 1}, since (s,p) = 1, by Lemma 3.2 there exist x,y € Z withx < | 5§ |andy < L%J
such that either

Xp—yS=T O yS—Xp=T.

Xp—ys=r, (7)
then from (6) and (7) we have

xXp+1(v,w) +ts = ys + l(u,w).
That is

u I(uﬁysw and vl(v'wﬁpmw. (8)

When r = 0, from (6) we have I(u,w) = [(v,w) + ts, where t ¢ Z and t > 0. Hence

l(u, L(v,w)+t:
'™y and v, 9)

Therefore by (8) and (9) we obtain k; v(D) < ys + l(u, w).
Similarly, if ys — xp = r, then we have

kyy(D) < xp + l(u,w). (10)
From the above we have the following lemma.
Lemma 3.3. Let D be a primitive digraph, and let s and p be two different cycles lengths in D. Suppose that
2<s<p<nandgecd(s,p) = 1. Then
kyy(D) < min{|y|s, [X|p} + Ly, (11)
where (x,y) is the integer solution of the equation xp + ys = r with minimum absolute value and where
[l(u,w) — l(v,w)| = r(mods).
Note that the number k;y(D) not only depends on Iy, it also depends on r. Since k(D) =
maxyy{kyy(D)}, we have

k(D) < max{min{lyls, [Xp} + luv}, (12)

where x and y satisfy the conditions of Lemma 3.3. By Lemma 3.2 we have [y| < | 5] and [x| < | §].

Theorem 3.4. Let D be a primitive digraph, let p and s be different cycles lengths of D. Suppose that
gcd(p,s) =1and 2 < s < p < n. Then

kD) < mianJ sL%Jp} +rr5§3x{lu,v}, (13)
u#v
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where Iy = max{l(u, w), l(v,w)}, l[(u,w) and I(v, w) are the lengths of directed walks from u to w and v to
w that meet with cycles of lengths p and s.

3.3. The scrambling index of a primitive digraph with a Hamilton cycle
In this section we consider the scrambling index of primitive digraphs with a Hamilton cycle.

Theorem 3.5. Let D be a primitive digraph of order n with a Hamilton cycle, and let the girth of D be s,
where1 < s <n-1.Ifgcd(n,s) =1, then
(521 ) n, whensisodd,

k(D) <n—-s+
= (”2;1) s, whensiseven.

Proof. When s = 1, it is easy to see that kD) < n — 1. Next we consider the case thats > 2. Foru,v e
V(D), there exist v;, vj € Cs such that u 4 viand v 4 vj,where 0 < I < n—s.Thenkyy(D) < ky, v, (D) + L.
Therefore it suffices to show that k‘,i,vj D) < (521 ) n when s is odd and ky, i D) < (T) s when s is

even for all v;,v; € G. If v; = vj, then kvi'vj = 0. Next we consider the case where v; # v;.
Case 1. s is odd. Since (s,n) = 1, by Lemma 3.2 for each t € {1,2,...,5s — 1}, there exist positive
integers x and y such that
Xn—ys=t or ys—xn=t,
wherex < |5 |andy < | 5.
Suppose d(v;,vj) = t, where 1 <t < s—1.1fxn —ys = ¢, then
% LN vj », v; and

V]—>V].

Therefore we have ’
kv,v; (D) < xn < (S%) n.

If ys —xn = t, since v; — vj and v;, v; € Cs, then v; “=> v;. We also have xn — (y — 1)s = s — t. Therefore
we get

- s
vj = v; g v; and

vi—>vi.

Thus ky, v, (D) < xn < (%) n.

S
Case 2. s is even. Then n is odd. First consider all the pairs of vertices v; and v; such that v; SN vj.
The integer solution of equation xn +ys = 5 with minimum absolute valueisx = § and y = —%,

s n_s )
If v; —> vj, we have v; — v;. Since $n — (%) s = 3, then

71 S — 75—1 n—_n——s
2 2 2
Therefore

n-5 (5-1)n

(
v]—>v, — v; and
(11

Vi — Vj.

In that case ky,y; (D) = (%) S
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s—1

s+1

Fig. 1. Dsp.

Next suppose d(v;,vj) =T < 3, where s > 2. By Lemma 3.2 there exist positive integers x and y
withx < §andy < % such that either xn — ys = r or ys — xn = r. We claim that if xn — ys = r, then
y < "2;1 — 1.To see this note that ify = ”2;1,thenxn —ys=(x—3)n+3and|(x— 5)n+ 3| > r.Anal-

ogously we find thatifys — xn = r,thenx < § — 1.Henceky, v, (D) < {(% - l)s, 3-1) n} +5-1<
("2;1) s. O

Denote

| (%) n, whensisodd,
k(n,s) = (%> s, whensiseven

and
K(n,s) =kn,s)+n—s.

Let Ds , denote a digraph with a Hamilton cycle and unique cycle of length s, where the Hamilton cycle
isl-n—-n-1--...— 2— 1and the cycle of lengthsis1 —-s—-s—1— ... - 2 — 1as shown
in Fig. 1.

Corollary 3.6. Let D be a primitive digraph of order n with a Hamilton cycle, and let the girth of D be s,
where 1 < s < n—1andgcd(s,n) = 1. Ifk(D) = K(n,s), then D contains a subgraph isomorphic to Ds .

Proof. By Theorem 3.5, we know that kvi,vj (D) < k(n,s) for v;, v; € Cs. We claim that the cycle of length
s is formed from s consecutive vertices on the Hamilton cycle. Otherwise for any two vertices u and v
of D, we can get to vertices s; and s, on the cycle Cs by directed walks of lengths less than n — s. Then
kuv(D) < k(n,s) + n — s. This is contradiction to k(D) = K(n, s).

Suppose vs, vs_1,...,Vq are the s consecutive vertices on the Hamilton cycle that form the cycle C;,
and let the Hamilton cycle be v{ — v, v Vs_q ---v1. Then there is an arc from vertex v; to vertex
vs. Otherwise any arc from vy to v;, 2 < i < s — 1, will produce a cycle with length less than s. This is a
contradiction, since the girth of Diss. [J
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Next we consider the digraph Ds;, and throughout in this paper we label Dsj as in Fig. 1. By the
definition of the digraph D, it is obvious that Ds , is primitive if and only if gcd(s,n) = 1. Cho and Kim
[5] have obtained the formula for k(D) when n is even and s > n/2. We will find the exact value of
k(Ds ) for all cases and give the list of all pairs of vertices u and v of D , such that ky, v (Ds,n) = k(Ds ). For
Dsn,ifs = 1,itisvery easy to see that k, ;(Dsn) = n — 1foreachi # n,and foralli,j # n, k;j(Dsn) < n—1.

Lemma 3.7. Suppose that gcd(s,n) = 1, and s > 2. For vertices u,v € V(Dsp), U,V # n, then kyy(Dsn) <
K(n,s).

Proof. For a pair of vertices u and v in Dsp, if u,v # n, then there are vertices s; and s, on cycle
Cs such that I(u,s1) = I(v,s) < n —s. By Theorem 3.5, we know that ks, s, (Dsn) < k(n,s). Therefore
kuyv(Dsn) < Ksy 5, Dsn) + 11, 51) < k(n,s) + 1w, s1) < k(n,s) +n—s=Kmn,s). O

By Lemma 3.7 we know that the upper bound on the scrambling index for the digraph Ds is
achieved for vertex n and some vertex (or vertices) u(# n) in Ds . Also notice that for vertices n and
u(# n), the local scrambling index ky , (Ds ) is attained with s as the double-cycle vertex. Therefore for
vertices n and u (# n) in D, we always choose vertex s as the double-cycle vertex. Below we explain
how to find ky ;(Ds ).

Remark 3.8. We consider the following two cases.

(a) Vertex u is not on the cycle C;. From the digraph we know that there are unique directed paths
from vertices n and u to vertex s, and d(n,s) =n —s,d,s) = u —s,d(n,u) =n — u.

Suppose d(n,u) = d’(mods), so that d(n,u) = d’ + ts for some nonnegative integer t. If d’ = 0, then
d(n,u) = t's for some positive integer t’. Hence d(n, s) = d(u, s) + t’s. In that case we have

dn,s
n?™Ps and

dw,s) t's
u—Ss—S.

Since the directed walks from vertices n and u to vertex s are unique, then we have ky ;(Dsn) = d(n,s) =
n-s.

If d > 1, then by Lemma 3.2, there exist unique positive integers x and y with minimum absolute
value such that xn — ys = d’ or ys — xn = d’, where |x| < | 5| and |y| < | § |. Without loss of generality
suppose that xn — ys = d’. Then

dn,s S
n?s ¥ s and

du,s) _xn+ts
V— S —S.

Hence kny (D) = ys + d(n,s).
(b) Vertex u is on the cycle C;. Then d(n,s) = n — s, and there are exactly two different directed paths
from vertex u to vertex s. They are u S Lsandu'5"1 5 0" s, Let di=uandd, =n—-s—u.
Suppose d; = d(mods), so that d; = d; + ts for some nonnegative integer ¢, where i = 1,2. For each
dj,i = 1,2, similar to (a), we can find directed walks from vertices n and u to vertex s of the same lengths.

Denote the lengths of these directed walks by f{%,i = 1,2. In that case, k(D) = min{f{},i = 1,2}.
Lemma 3.9. Let D = D; . Then for all vertices u and v in D, I, y(D) < max {n—s, | 7 |}.

Proof. Let u,v € V(D) and w be a double-cycle vertex of vertices u and v.

Case 1. If u,v € G, then either d(u,v) < | 5| or d(v,u) < | 5 |. Without loss of generality, suppose
we have d(u,v) < | §]. Thenletw = v. We have l,y(D) < | 3] < | §].

Case 2.Ifu,v ¢ Cs, take w = s. Then [,y (D) < n—s.
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Case 3. If u € G, v ¢ C;, consider the following two cases. If s < (%—‘ take w =s. Then d(v,s) <
n—-sdus)y<s—-1<n-s.
Ifs> P’zj—‘ and d(v,u) < | % |, then let w = u. Otherwise we have s > (%—‘ and d(u,v) < | 2.

From the digraph we know that d(v,s) < n—sand d(u,s) < du,v) < L%J In that case let w = s, and
we have I,y <max{n—s,|5|}. O

Theorem 3.10. Let D = Ds, and gecd(s,n) = 1, where2 < s < n— 1. Then
kD) = K(n,s). (14)

Proof. For a pair of vertices u and v in D, if u, v # n, then by Lemma 3.7 we have k, v(D) < K(n,s).
Next we consider all the pairs of vertices n and u, and show that k;, ; (D) = K(n, s) for some vertices
u in D. We consider the following three cases.
Case 1.sis odd and n is even. We have

D (5

Let % = r(mods), so that % =r + t's for some nonnegative integer t’. Then

CE
<%)n—(g—ﬂ—l>s=s—r. (16)

Case 1.1. d(n, u) = r(mods). Since % =71+ t's,n=2r+2t's. Let h = 2t/, then n = 2r + hs. From the di-
graph we know that d(n,u) = r(mods) whenu =n —r —ts, wheret € {0,1,2,...,h}. When t € {0,1, 2,
..,h—1},vertexn —r —ts ¢ Cs and d(n,s) — d(u,s) = r + ts. Using Remark 3.8 (a) and (15) we have

s—1

kn,n—r—ts(D) = (T) n+n-s.

Suppose thatt = h,sothatn —r — ts = r.Since r < s, vertex r € Cs. Then as in Remark 3.8 (b) there are
two different directed walks from vertex r to vertex s; they are r - s and r iy
For the directed path whose length isr,ifn—s>r,thenn—s—r=r+Q@t' —l)sorn—s— (r +

(2t' — 1)s) = r. Then by (15) we have

(<)

n-s 2
n—s — s and

r (%—t’)s+(2t’—1)s
r—S — S.

and

Ifn—s<r,thenn=2r,r—(n—-s)=s—-rand

<%)n—(g—1>s:s—r. (17)

Therefore by (17) we have
s=1)p
nEs(Z—Q s and
ro (3-1)s
r—s = s.
In this case let f{? = kn,s) +n —s.
For the directed path whose length is n — s + r, by (15) we have

n ’
n-s (5-t)s
n’=3s2 3" s and

sy (20
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Letfé,zr) = (%) n+ n — s+ r.Therefore by Remark 3.8 (b), we have ky  (Ds,n) = min n(']r), n@}

n-s.
Case 1.2. d(n,u) # r(mods). Then d(n, u) + g and by Lemma 3.9 we have I, < {% —1,n—s}. By
Lemma 3.3 and (16) we have

=k(n,s) +

knu(D) < (g —t - 1) S+ lw <kns) +n—s

as desired.
Case 2. s is odd and n is odd. We have

(5)e (%)=

Let % = r(mods), so that % =r + t's for some nonnegative integer t’. Then

(% —t’)s— <%)n=r, (18)
(%)n—(ngl—t/—l)s:s—r. (19)

Case 2.1.d(n,u) = r(mods). Since 55 =r + t's,we haven = 2r + 2t' + 1)s.Leth = 2t' + 1, thenn =
2r + hs.From the digraph we know thatd(n, u) = r(mods) whenu = n —r — ts,wheret € {0,1,2,-- -, h}.
When t € {0,1,2,---,h — 1}, vertex n —r — ts ¢ Cs, and d(n,s) — d(u,s) = r + ts. Using Remark 3.8 (a)
and (18), we have

and

s—1
knn—r—ts(D) = (?> n+n-s.

When t = h, then n —r —ts =r. Since r < s, vertex r € C;. Then as in Remark 3.8(b), there are two

different directed walks from vertex r to vertex s, and they are r Lsand r'™5%s,

For the directed path whose length is r, since n — s — r = r + 2t’s, then by (18) we have
s=1)p
nl=3s (2—2 s and
. (”2;1—t’)s+2t’s

r—S — S.

Let fi}) = k(n,s) +n —s.
For the directed path whose lengthisn —s+r, sincen —s +r —n —s =r, then by (18) we have

n—1 7
s (T—t)s

n—s — s and

sy (2

Let fi2 = (%) n+n — s + 1. Therefore kn (D) = min{f;{ ", f2'} = k(n,s) +n —s.
Case 2.2. d(n,u) # r(mods). We know from Lemma 3.9 that [;;, < max {”2;1 n-— s}. Therefore by
Lemma 3.3 and (19) we get

km,(D)gmax{n_l,n—s}-i-(n;l —t/—1>s<k(n,s)+n—s,

as desired.
Case 3. s is even and n is odd. We have

(-3
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Case 3.1.d(n,u) = %(mods). Ifn> 32—5 then n — % > s. Let d(n,u) = % + t’'s for some nonnegative

integer t’. Then

<%>n—(%—t’>s=%+t’s. (21)

If u ¢ Cs, then by Remark 3.8(a) and (21) we have
n-1
2

Whent' =0, thenu=n—- 35 and kn'n_% (D) =kn,s)+n-—s.

If u € G, then ' > 1. Otherwise if ' =0, then u =n— 3. Since n— 5 > s, then u ¢ G;, this is a
contradiction. In that case, kn,(D) = (% - t’) s+n—u= (”2;1) S+n—s— (@t —1s—u<kms) +
n-—s.

If n < % then n — % < s, so that vertex n — % € Cs. There is only one vertex such that d(n,u) =

5 (mods). It is vertex n — 5. By Remark 3.8(b), there are two directed walks from vertex n — 5 to vertex
s, and their lengths are n — § and n — § + n — s. For the directed walk whose length is n — 5 we have

knu(D) = < —t’)s+n—s,

n—s S n-3
n—s and n—j—>s.

Since n — 5 — (n —s) = 5, then by (20) we havefrizﬂ)_s = (%) s+n—3.
'2
For the directed path whose length n— 5 +n—s, we have n— 3§ nfﬂiss and n 2= 5. Note that
d(n— 5,n) =n— 3.By(20) we have

(-

n-1
n—s = )5
n—>s(—>) s and
s n—35+n-s (5-1)n
n—j — § —> S.

Then

Thereforefrfzﬂ) =G -1)n+n-s+n-3=kms) +n-s.Therefore knn—s (D) = min {frf]ﬂ) _S,ffﬂ) _S}
V3 ) )

=k(n,s)+n-s.
Case 3.2.d(n,u) # 5 (mods). Then

knu(D) < <?—1>s+max{n—s,%} <kms)+n—s. O

Let r be the positive integer that is defined as follows:

0 e .
_ {j(mods), if sis odd and n is even, (23)

15 (mods), if both s and n are odd.
From the proof of Theorem 3.10, we know all the pairs of vertices u and v in Ds, such that kyy(Dsn) =
K(n,s).

Corollary 3.11. Suppose that gcd(s,n) = 1, and s > 2. Then for u,v € V(Ds ), without loss of generality
take u > v, ky v(Dsn) = K(n,s) if and only if u = n and

(1)v=n—r—tsforsomet c {0,1,2,...,”‘T”},whensisodd.
(2) v=n-— 5, whensis even.
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3.4. Upper bounds on the scrambling indices for arbitrary primitive digraphs
In this section we consider upper bounds on the scrambling indices for general primitive digraphs.

Lemma 3.12. Let D be a primitive digraph with a Hamilton cycle and let the girth of D be s, where gcd(n, s) =
1,2 < s < n. Then either the cycle Cs is formed from s consecutive vertices on the Hamilton cycle or there
is another cycle of length p such that gcd(s, p) = q, where q < 5 when s is even and q < § when s is odd.

Proof. In the following we give the proof for the case that s is even. The case that s is odd is similar.
Suppose the Hamilton cycle of D is

l-n->n-1-...-2->1.

If D contains an arc from vertex i to vertex i + s — 1(mod n) for some i, then the cycle C; is formed
from s consecutive vertices on the Hamilton cycle. Otherwise the cycle Cs includes s vertices that are
not all consecutive on the Hamilton cycle. Suppose (u,v) is an arc on cycle Cs, and that u and v are
not consecutive vertices on the Hamilton cycle. Then there is a directed path from vertex v to vertex u
through the Hamilton cycle. This directed path with the (u,v) arc forms a directed cycle. Denote this
directed cycle by Cyy. Suppose p is the length of C;;; thens < p < n.

If gcd(s,p) = ,q < 3, then we are done. Otherwise, suppose the arcs (g;,a)),i = 1,2,...,m, are all
the non-consecutive arcs on the cycle Cs in order, and p; is the length of cycle Ca,-a;- Then

m—1
S=m+ Y (a— A1) + Ay — a4
i=1
and
_fai—a+1, when a; > g;,
pi= n—(a—a)+1, whend <a;.

Summing the p; we obtain
m m—1
Y pi=m+ Y (@ —ayq)+a, —a; +tn=s+1n,
i=1 i=1

where t is the number of cycles Ca,.a; with a; < a;. Therefore t < m <'s.

We claimthatt < s.Ifm < s,thenclearly t < s.Ifm =s,thend} = a; fori=1,2,...,m - 1,a;, = ay,
and the cycle Gsisay — a; — --- — am — aq. Without loss of generality, suppose that a; = max{a;,i =
1,2,---,m}.Wehaveay <a;,sot <m-1<s.Hencet <s.

Since s|p;,i = 1,2,...,m, then s|tn and gcd(s,n) = 1, so s|t. But t < s, a contradiction. [

Lemma 3.13. Let D be a primitive digraph with n vertices, and suppose that s is the girth of D with s > 2.
If there is another cycle of length p,s < p < n, such that gcd(s,p) = 1, then

k(D) < K(n,s).

Proof. We consider the following three cases.

Case 1. p = n. By Theorem 3.5, we have the result.

Case 2. p=n— 1. Then the cycle Cs and the cycle C, have at least s — 1 and at most s common
vertices.

If the cycle Cs and the cycle C, have s common vertices, then we consider the subgraph of D that
contains Cs and Cp. As in the proof of Theorem 3.5 we have k;;(D) < k(n — 1,s) for i,j € Cs. Hence

k(D) <k(n—1,s)+n—s<kmn,s)+n-s.

If the cycles Cs and G have s — 1 common vertices, then only one vertex of the cycle Cs does not belong
to the cycle Gy, and we have k;;(D) < k(n —1,s) + 1 fori,j € G.
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n-2

Fig. 2. D;.

When s > 4, we have k(D) < k(n—1,5)+1+n—-5s < k(n,s)+n—s.

When s = 2, the digraph D has a spanning subgraph Dy as in Fig. 2. For D1,k(D1) = 2n — 4. Hence
k(D) <2n—-4 <2n-3.

When s = 3, the digraph D has a subgraph D, as in Fig. 3. For u,v € V(D,), we have I, < n - 3.By
Theorem 3.4 we get k(D7) < [ 5] (n— 1)+ lyy < 2n — 4. Hence k(D) < 2n—4 < 2n—3.

Case 3.p < n— 2.Foru,v e V(D), we can find vertices s1,5, € Cs such that

n-s n-s
u—s; and v—ss.

If there exists avertexw € Gs N Cp, thenls, 5, < s — 1.O0therwisels, s, <n—p.Thenl,y <n—s+1s,,
and by Lemma 3.3 we have

kyv(D) < min { LgJ s, L%Jp} + lyy.

Case 3.1.sis even. Then
-1
kuv(D) < (%) S+ lyy. (24)
Case3.1.1.1f G N Cp # ¥, we have lyy <n—s+1s,5, <n—1.Then

-1
kuy(D) < (pT>S+ n-1

Fig. 3. D,.
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Fig. 4. Ds.

N

(%) 1
_ (ot s—s+n-1 n-1 s+n—s

Case 3.1.2. If GNCp =¥, we have Iyy <n—s+1s,s, <n—s+n—p. We consider the following
two cases.

(@) p<n-2ands > 2.Then
kuy(D) < (p%l>5+n—p+n—s
—p(E-1)+n-S1n-s

<(n—2)<%—1)+n—%+n—s

:(n;1>sfs+2+(n—s)< (nz;l>s+n—s.

(b) p < n—2ands = 2. In that case we need to show that k, v(D) < 2n — 3 for u,v € V(D). Suppose
vertices sy and s; are in Gs. Then there is a vertex w on the cycle G, such that max{l(s1, w), (s, w)} <
n — p. Without loss of generality, suppose that I(s{, w) = max{l(s1, w), [(53, W)}.

If I(s1,w) <n—p, and I(sq,w) and I(sp,w) have the same parity, then ks, s,(D) <n—p <n—2.
Otherwise I(s1,w) = 2t + 1 + I(s3, w) for some nonnegative integer t. Then

-1 I(s1,w
512205,y and

2t lsw)p
S)—>S) — W—->Ww.
Hence ks, s,(D) < I(s1,w) +p — 1 < n— 2. In that case, for vertices u,v € V(D), there exist vertices s’
and s” on the cycle Cs such that max{l(u,s’),l(v,s")} <n—2.Then ky,(D) <n—2+n—-2=2n—-4 <
2n—3.
If I(s;,w) = n — p, then the digraph D has a spanning subgraph D5 as in Fig. 4. We have

—1 n—
S1 L S1 "Pw and
n-p-1_ p

S) —> W—W.

Hence ks, 5, (D) =n—1.
If for vertices u, v, there exist vertices s’ and s” on the cycle Cs such that
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max{l,s),1(v,s")} <n—2,thenkyy(D) <n—2+n—1=2n—3.0therwise max{l(u,s),l(v,s")} =
n — 2. Without loss of generality, suppose that I(u,s’) = n — 2. Then vertex v is on the directed walk
from vertex u to vertex s’. If I(v,s”) has the same parity as n — 2, then kyv(D) = n — 2.0therwisen — 2 =
2t + 1 + Il(v,s’) for some nonnegative integer t. We have
u" APy and
lvs)y ,2t+p+1 ,
v->5's T s

Hence kyy(D) <n—-2+p<n—-2+n-2<2n-3.
Case 3.2.sisodd (s > 3). Then

-1
s ) < (57 )+ b (25)

Case 3.2.1.If Gs N Cp + ¥, we have Iy < n — 1. Then we consider the following two cases.
(a)p <n—-2.Then

kuv(D) < ($;1>P+n—1

(5 )2

(b) p = n — 2. In that case we have I, < n—s+ 551, Hence
p . 2

kuy(D) < (%) (n—2)+n—5+%
(32 agnos- St
- (= -

g n+n-s
< 7] .

Case 3.22.If GGNCp =0, we have I,y <n—s+15s, <n—s+n—p.Sinces >3, thenp <n-2.
We consider the following two cases.
(a)p <n—-2ands > 3. Then

-1
ki (D) < (52 )p+nfp+nfs

=p<%—1)+2n—s

<(n—2)<?—1>+2n—s

-1
< <nT>s+n—s.

(b) p <n—2 and s = 3. In that case we need to show that k;y(D) < 2n — 3 for u,v € V(D). Since
gcd(s,p) = 1, then there exists a positive integer m such that p = 3m + 1 or p = 3m + 2. Let the cycle
Cs be s; - s — s3 — s1. For a vertex s on the cycle Cs we can find a vertex w on the cycle C, such
that the directed walk from vertex s to vertex w does not contain the other two vertices of the cycle
Cs and I(s,w) < n — p — 2. Without loss of generality, suppose s = s3; then I(s{,w) = I(s3,w) + 2 and
I(s3,w) = I(s3,w) + 1. Hence I(sy,w) <n—p—1and I(s;,w) <n-p.

(b.1)p =3m+1.Since p — 3m = 1, we have
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3m _ lspw)
s1—S; — w and

Sy I(Siv:)wLw.
Therefore ks, 5, (D) < I(sp, W) +p<n—p—-1+p=n—-1.
Also since 3(m + 1) — p = 2, we have

I(s1,w
s % Pow and

S3 3(m_+)1) S3 1(53—"/‘;) w.
Therefore ks, s, (D) <I(s;,w)+p<n—-p+p=n.

Foru,v e V(D), we can find vertices s’,s” on the cycle C3 such that l(u,s') = l(v,s") < n—3.Ifs' =5,
then kyy(D) < n—3.1fs' =sy ands” = s, then kyy(D) < ks, 5,(D) +n -3 <n-3+n—-1=2n-4<
2n—3.1fl(u,s1) =1(v,$3) < n—3, then kyy(D) < ks;s;(D) +n—3=n+n-3=2n-3.

So the only remaining case is I(1,s1) = [(v,s3) = n — 3. For the directed walks from vertices u and
v to vertices s; and s3, one of them does not go through the cycle C3. Otherwise l(u,s1) = l(v,s3) =
n —3 —ts < n — 3 for some nonnegative integer t. Without loss of generality, suppose that the directed
walk from vertex u to vertex s; does not go through the cycle Cs, and that [(u,s1) = n — 3. Then the
directed walk from v to s3 also passes through the vertex s;, and we have [(v,s1) = n — 5.Since l(1,s1) =
n—3 > n — p, the directed walk from vertex u to vertex s; also passes through the cycle C,. Hence

u"_—3tp sy and
n-5  3(¢+1)
V—>$S1 — §1.
Therefore kyy(D) <n—-3+p <2n-5.
(b.2) p =3m+ 2.Since p — 3m = 2 we get
512 s, 'S and

I(s3,w
539w P

Therefore ks, s, (D) <I(S3,W)+p<n—-p—-2+p=n-2.
Also since 3(m+ 1) — p = 1, we have

I(s1,W)
sp oy Pow and

3(m+1 1(s3,w)
5y WD g Wy,

Therefore ks, s, (D) < I(s;,w)+p<n—-p+p=n.

Foru,v € V(D), we can find vertices s, s” on the cycle C3 such thatl(u,s') = I(v,s") <n—3.Ifs' =,
then kyy(D) < n—3.1fs’ = sy and s” = s3, then ks, s,(D) <n—3+n—-2=2n—-5<2n-3.

Ifs' =s;ands’ =sp,and I(u,s1) = l(v,s3) < n — 3, then ks, 5,(D) < 2n — 3.

So the only remaining caseis l(u,s1) = l(v,s2) = n — 3. For the directed walks from vertices u and v to
vertices s; and s,, one of them does not go through the cycle C3. Otherwise l(u, 1) = I(v,S3) =n—3 — ts
for some nonnegative integer t. Without loss of generality, suppose that the directed walk from vertex
u to vertex s; does not go through the cycle C3, and that [(u,s1) = n — 3. Then the directed walk from v
to s, also passes through the vertex sq, and we have I(v,s1) = n — 4. Since l(u,51) =n —3 > n —p, the
directed walk from vertex u to vertex s; also passes through the cycle . Hence

u"_—pip sy and

n-4  3(¢+1)
V—>S§1 — §1.

Therefore kyv(D) <n—-3+p<2n-5 01
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From the proof of Lemma 3.13 we have the following result.

Corollary 3.14. Let D be a primitive digraph with n vertices, and suppose that s is the girth of D withs > 2
If there is another cycle of length p,s < p < n — 1, such that gcd(s,p) = 1, then

kD) < K(n,s).

Let D be a primitive digraph with n vertices, and let L(D) = {s, a4, ..., a;} be the set of distinct cycle
lengths of D, where 2 <s < a; < --- < ar < n. Next we consider the case that gcd(s, a;) # 1 for each
i=1,2,...,r

Lemma 3.15. Let D be a primitive digraph with n vertices, and s be the girth of D withs > 2. Let L(D) =
{s,a1,az,...,ar_1,ar}). If gcd(s, a;) # 1 foreachi=1,2,...,r, Then

kD) < K(n,s).

Proof. Since gcd(s,a;) # 1foreachi=1,2,...,r,thensisnotaprime number ands > 6. There exists a
directed cycle of length p,s < p < ar, such that ged(s,p) < §. Otherwise, if gcd(s, a;) is equal to either s
or % foreachi,thengcd(s,aq,ay,...,ar) > %,This is acontradiction tothefactthatged(s, aq,as,...,a;) =
1. Suppose gcd(s,p) = t, where 2 <t < §.

We know that if D is primitive, then D! is also primitive. Further D contains t cycles of length £,
and ¢ cycles of length %. Lets'=%andp = %, then ged(s’,p’) =1ands' < p’ < Z.Foru,v e V(D") we
can find vertices s, s, € Cy such that

n—s’ n—s’
u—sy and v—ss.

Case 1. Cy N Cy # ¢ in D'. There exists a vertex w € Cy N Cy, then s, 5, <8’ — 1.
When s’ is even, then

Thus
nePS_ S _
kuyv(D) < thyv(D") < 5% 3 +tn—t.
When s’ is odd, Then
kuy (DY < (S _1>p/+n—1
S—t\p
=(Z—=)Z+n-1.
< 2 ) ¢ "
Thus
nePS_P _
kuyv(D) < thyv(D") < 5% 32 +tn—t.
Since p >, 5 — 5 +m—t < 5 — 5 +m—t Let k) = 5 — 5 +tn—t, where 2 < £ < §. Note that
k(t) is concave up as a function of t on the interval [2, ] Hence it attains its maximum at one of the
end points. When t =2, we have k2) = & — 5§ +2n-2 < ( )s+n—s

Suppose that t = £.If sis odd, thens >7 and k(3)= 37" — 5+ ¥ — §.Since p < n, we get

3p s sn <3n sn 5s (s—l

7—§+?—§\2+?—€< 3 >n+n—s. (26)
Ifsiseven, thens > 6and k() = 3 — § + S — 5. Similarly we have
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3p

sosn_s _3mosn 55 n-1y o
2 23 372 3 6 2 '

Case2.Cy NCy =¥in Dt. Then we can find a vertex w in Cp such that

n—tp’ n—tp'+%
12w and s, — ’w.

When s’ is even, we have

kyv (DY < <%> S +2n—tp — %

_(P-t)s _p_ S
_<2t)t+2n P=3

kuy(D) < thyy (DY) < ini +2nt —pt —s. (27)

Hence

When s’ is odd, we have

s -1 s
kuy (DY) < <T> p+n—tp+ 5 +n-s

_ PP S S
So@ T TPt
Thus
kuy(D) < thuy 09 < 22 +2ne—pe— 2 - 2. (28)

Since 5 + 2nt — pt — § — 5§ < B + 2nt — pt — 5, we consider the expression 5 + 2nt — pt — s.Letk(t) =
‘z’—f + 2nt — pt — s. Then k(t) is concave up on any compact subinterval of R*, so it attains its maximum
at one of the end points.

If s > 8, then there exists a directed cycle of length p, such that gcd(s, p) < §. Otherwise ged(s, a;)
is equal to one of 5,5 or 3. Then gcd(s,ay,ay,...,ar) > §. This is a contradiction to the fact that
gcd(s,ay,ay,...,ar) = 1. Thus we check at the two end points t =2 and t = i.

If t=2kyv(D) < ‘% +4n-2p—s= p(ST’s) +4n—s. When s=38, kyyD) <4n-8 <5n-12

(: (”2;1)5+n—s>.Whens>8,

kuv(D) < p(s; ® +4n—s
RV Io

< s—1 n+n-s
5 :

Ift = §, we have kyy(D) < 282 4 15 _ s Whens = 8,kyy(D) < % —s < (%) +n—s.Whens > 8,

ns s—8 ns s+2)(s—8
ku'v(D)gj—p(Al )— 5—()4#—5

_ns s(s—2) s—1
=5 " "2 +4<<T)n+n—s.

s<

There is only one remaining case, namely t = 2 and s = 6. In that case, there exists a cycle of length
p such that gcd(s, p) = 2. Otherwise gecd(s,a;) =3 foralli=1,2,...,r, and gcd(s,ay,...,ar) # 1. This
is a contradiction. Since s = 6, then p > 8. We have t = 2 and s’ = 3, then by (28), we get k(D) <

dn—p-3<4n—11 <4n—9(: (%)Hn—s). O
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From the proof of Lemma 3.15, we get the following corollary.

Corollary 3.16. Let D be a primitive digraph of order n, and s be the girth of D with s > 2. If there is a cycle
of length p,s < p < n, such that gcd(s,p) < s/3 or ged(s,p) < s/3 and Cs N Cp + ¥, then

kD) < K(n,s).
From Lemmas 3.13 and 3.15, we have the main result of this paper.

Theorem 3.17. D be a primitive digraph with n vertices and girth s. Then

kD) < K(n,s). (29)

Since k(Dsn) = K(n,s), the upper bound in (29) is attainable. Comparing upper bounds on k(D) in
Theorem 3.17 with Cho and Kim'’s [5] result on cindex(D), the upper bounds on k(D) and cindex(D) are
the same when n is odd and s is even, and for all other cases, the upper bounds on k(D) are less than
the upper bounds on cindex(D).

Whens=n—-1,Kmn—1) = {%—‘
Theorem 3.18. Let D be a primitive digraph of order n. Then

(30)

n-12+1
o<1

Equality holds if and only if D = Dp_1 .

Proof. For a primitive digraph D, we have s < n — 1. Then by Theorems 3.10 and 3.17, we get the
inequality in (30). When s = n — 1, apart from labeling of the vertices, there are only two primitive
digraphs; they are D;_1 , and D,_1 , U {2 — n}. By Theorem 3.10, we know that k(D,_1,) = K(n,n — 1).
LetD’ = Dy_1, U {2 — n}. By Corollary 3.11, we know that there is only one pair of vertices in D, , 1 that
can attain the upper bound, and they are vertex n and some vertex u(# 1). Similarly, there is only one
pair of vertices that can attain the upper bound in D’ — {1 — n}, and they are vertex 1 and some vertex
v (# n). Therefore k; (D) < K(n,s) and kq (D) < K(n,s), and we can conclude that k(D') < K(n,s). U

Remark. In a subsequent paper, we will give the characterization of primitive digraphs D with k(D) =
K(n,s).
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