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Abstract

This paper investigates the possible use of artificial neural networks (ANN), more precisely
multi-layer perceptrons (MLPs), for the nonlinear modelling and predictive control of a milk
pasteurisation plant. Model predictive control (MPC) schemes require the development of a
predictive model. Using data gathered from an industrial milk plant, a nonlinear multi-step
ahead neural network predictor model (NNM) was established. A neural predictive controller
(NPC) was then designed on the same basis for the control of milk pasteurisation temperature.
Simulation results are presented and conclusions are drawn.
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1 Introduction

Previous work has been done on modelling and control of milk pasteurisation using predictive
control by the same authors. A first principle physical model has been developed along with a
predictive functional controller (PFC) in [1]. The linear predictive controller is shown to perform
better than a classical PID [1, 2] where the linear model obtained from first principles has been
validated around a fixed operating point, consistent with normal operation of the pasteurisation
plant. For a wider control range, for example other dairy products that require higher or lower
heating requirements; a model capable of prediction over a wider range is needed and a linear
model cannot achieve such performance. Moreover, analytical MPC strategies are restricted to
linear models in order to compute a fixed control law [3, 4]. Therefore, for industrial processes, a
linearised model is most often used as an internal model. However, physical modelling of industrial
processes, due to their physical complexity, is not trivial and demands a lot of time and effort.
The use of ANNs is, therefore, justified due to their ability (see Section 3) to search for a valid
nonlinear model from input/output data. The established non-linear model can also be used for
the implementation of a “nonlinear” neural predictive controller. The extra computation involved
in NPC must be achievable within the 12 second sampling period of the pasteuriser.

2 Milk pasteurisation: process description

The pasteuriser used is a Clip 10-RM plate heat exchanger (PHE) from Alfa Laval. A PHE consists
of a pack of stainless steel plates clamped in a frame. The plates are corrugated in a pattern
designed to increase the flow turbulence of the medium and the product [5]. The pasteuriser is
divided in five sections, S1 to S5. Section S4 and S2 are for regeneration, S1 and S3 for heating
and S5 for cooling. In the Clip 10-RM the milk treatment is performed as shown in Figure 1. First
the raw milk at a concentration of 4.1% enters section S4 of the PHE at a temperature of 2.0°C.
It is then preheated to a temperature of 60.5°C by the outgoing pasteurised milk which as a result
is reduced to a temperature of 11.5°C. Passing this section, the milk now at a temperature of
60.5°C, enters section S3 where its temperature increases to 64.5°C using hot water as a medium.
The milk, before reaching the next section, is first separated from the fat then standardised and
homogenised to a concentration of 3.5%. It then enters section S2, where it is preheated to a



temperature of 72°C using the already pasteurised milk as a medium. The milk is finally brought
to the pasteurisation temperature in section S1 (75.0°C) using hot water at around 77.0°C as a
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Figure 1: General layout of the pasteuriser

medium.  After that the ho-
mogenised pasteurised milk is
held at the pasteurisation tem-
perature for 15 s in the hold-
ing tube section before being
cooled using the incoming cold
milk in section S4 and section
S2. Finally the pasteurised milk
enters the cooling section (sec-
tion S5) at a temperature of
11.5°C. The milk is chilled to
a temperature of 1.0°C using
propylene glycol as a medium at
a temperature of -0.5°C. Note
that the water for the heating
sections S3 and S4 is brought
to the adequate temperature in
steam /water heater of type CB76
from Alfa Laval. As shown in
Figure 1, milk pasteurisation tem-
perature is a function of three
inputs: steam flow injected in
steam /water heater 1, steam flow

injected in steam/water heater 2 and the milk input temperature, labeled as Fy1, F,o and Ty,
respectively. The milk pasteurisation temperature is then given by a multi input single output
(MISO) system, having F,1, Fy2 and T}, as inputs and y, the milk pasteurisation temperature, as

output.

3 Modelling of the pasteurisation plant using ANN

It has been shown by
Cybenko [6], that back-
propagation neural net-
works, with one hidden
layer, can approximate
any non-linear function
and generate complex
decision regions for input-
output mapping. For
ease of training and
overall reduction for neu-
ron counts, a multi-
layer network with an
input layer, an output

Figure 2: NNM topology and input signals used for training

layer and two hidden
layers is used. The in-
puts to the NNM, for
training, are chosen to

be a sequence of data from, F,;, F,2 and a set of delayed values of the output signal y, see



Figure 2. The neurons in the two hidden layers are tan sigmotd neurons, where the output layer
neuron is a linear neuron. The prediction will be given by the NN M obtained after appropriate
training on the form of a Nonlinear Moving Average with Exogeneous Variable (NARMAX) model,
given by:

:/y\(k) = NNM[@\(k_ 1)7@\(k_2)@\(k _8)7Fv1(k - 1)7Fv1(k_ 1)7Fv2(k_ 1)7Fv2(k_ 1)] (1)
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Figure 3: Training and validation of the ANN model (NNM)

The choice of the inputs has been heavily dictated by the a-priori information gathered from
the first principle physical model used in [1]. Where the output pasteurisation temperature can
be modelled by an eighth order linear system, this justifies the use of eight delayed signals of
y(k) in equation (1). The input milk temperature T}y, is not used in the NNM as the milk is
kept at a relatively constant temperature of 2°C, and its use, in the training process, will only
introduce a random disturbance to be modelled. The choice of a good network topology is not
a straightforward task. There are no hard rules or theorems to find an optimal topology for a
given set of input/output data. However, an appropriate topology may be found by performing
network pruning or network growing. Starting with a sufficiently big topology, the NNM is
pruned by eliminating the links containing insignificant weights using a weight elimination method,
for example the Optimal Brain Damage (OBD) method developed by Le Cun [7]. Alternatively,
starting with a small NNM (for example a 1-2-1 topology). The network is grown until reaching
a size which gives a good prediction model. In this paper, we chose a topology large enough
to permit good modelling and possible network pruning. The modelling approach chosen in this
paper is, in the main, similar to the one described by Ngrgaard et al in [8]. Folowing such
experimentation, an 8-12-1 MLP is chosen, the network was trained for a total of 20,000 epochs
using a set of data that consists of data subsets obtained during a series of test protocols, where Fq
and F,5 were varied around the operating region. Four subsets of data were used, three for training
and a separate subset was used for validation in order to make sure of the validity of NNM. To
avoid overtraining i.e., deterioration of the model as it tries to fit the training set, a sum squared
error (SSE) on the validation set is plotted along the epoch number and the NNM parameters
are chosen when the SSE is minimum. Overtraining and its effects are explained in detail in [9].
A cross validation method, also called cross model selection, is used for validation. This method
consist of using all the data subsets in turn for validation, obtaining a number of NNMs. The



Y
Inputs o Y 4+t error

Figure 5: Ouverall NNM model: Linear combiner

method proved to be useful when the number of sample points is constrained. Moreover, having
several validation estimates covering the entire training data set gives a better confidence degree
to the estimates. The best results, obtained after a number of training runs, for two validation
subsets are shown in Figure 3. The model and process response to a change in F; and F,z, given

in m®/s (shown scaled on the graph by a factor of 500), can be seen for the training and validation
data sets. On the other hand, the valida-

; ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ tion SSE versus epoch number, for the first
set, is given in Figure 4. We can see that
10° 7 the SSE after 5,500 epoch start to increase
(overtraining occurring), the model param-
eters are then chosen at that moment in the
. training process. A number of simulations
were run for each validation subset, as we
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g0 1+ are not guaranteed to reach a global, or at
. least a decent local minimum in one training

° ‘ 1 session. The SSE for the second and third
il | set have a similar shape, therefore their cor-

- ¢ responding graphs, have been omitted. Us-
107 4 ing the three validation subset we obtained

three ANN models, NNM1, NNM2 and
W w0 @ w0 e  w  wm a0  NNMS3, the corresponding minimum mean

Epochs x 100

square errors MSEs for validation are given
in Table 1 along with the corresponding
epoch number and the training MSE values.
The NN Ms where trained using the Mat-
lab Artificial Neural Network Toolbox [10], where the training algorithm used is the well known
back propagation algorithm described in detail in [11]. The definitive NNM is then given by a

Figure 4: Validation SSE progression versus training
epoch number



linear combination of NNM1, NNM2 and NN M3, as shown in Figure 5. The linear combiner is
trained over the complete data set in order to obtain the weight parameter values; using a simple
least square method. The weights Wy, Wy and W3 are found to be 0.0689, 0.7703 and 0.1617
respectively.

MSE/Data subsets 1 st 2 nd 3rd
Training 5.7825 10—5 | 2.0862 10—° | 2.2391 103
Validation 1.0457 10~* | 1.0400 10~% | 4.3521 103

Epoch stop 2100 5500 2800

Table 1: Overall SSE values.

4 Neural predictive controller design

Predictive control is becom-
ing a valuable control strat-
egy for higher control require-

NPC ments i.e, tighter, faster reg-
PSS lation or tracking in the in-

Model Optimisation_of uatio
fo—e> pCriterion J dustrial world. MPC has been
Reference U | pasteuriser y used in over 2,000 industrial
/,'.‘ M Plant applications in the refining,
{790 trochemical, chemical, pul
M petrochemical, chemical, pulp
and paper and food process-
ing industries [12]. Some ex-

amples of industrial predic-
Figure 6: Structure of the neural predictive controller NPC tive controllers include, PFC
from ADERSA, Dynamic Ma-
trix Control (DMC) from DMC Corp and Robust Model Predictive Control Technology (RMPCT)
from Honeywell. Most of these algorithms rely on linear or linearised internal models. Using
predictive control, a process is regulated by specifying the desired plant output at a particular
instance or instances in the future and then calculating the controller action which minimises the
predicted error either in the form of an equation, analytical solution for linear internal models or
using an optimiser, in the case of a nonlinear model. In this section, a neural predictive controller
NP(C is designed as shown in Figure 6. The model NN M obtained in Section 3 is used to produce
prediction data to the optimisation algorithm. The control variable u is obtained by minimising a
criterion function, J given in equation (2), where N1 is the time delay (if any), N the prediction
horizon and N2 the control horizon.

N1+N i=N2
J= Y ek +0) =gk +ilR)* + > Au(k +i) (2)
i=N1 i=0

At each instant k, the predicted output §(k+i|k) is compared to a reference y, (k+1) describing
the optimal trajectory to reach the target, in the regulation case a constant C. The control variable
u is represented physically by F,1, where F,3 is used to act on the intermediate temperature at
the output of section S3 (see Figure 1) and can be considered in the control of the pasteurisation
temperature as a disturbance. An optimiser has to be used in order to obtain the value of u
that minimises J since an analytical solution is not possible. The NPC is based on a gradient
optimiser from the NAG toolbox used with Matlab [13] and developed by Gill and Murray in
[14]. The optimal u is found by applying different control variable values to the NNM, Figure
6 until finding the value that minimises J. Other, and maybe more efficient optimisers can be



used, as a large number of optimisation routines are available in the literature. As an example,
the interior-point method based optimiser is proven to be efficient for MPC design [15]. However,
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the optimiser used in this paper is found to give
satisfactory results, as the sampling time is 12s,
which makes, in this case, the convergence speed
of the optimisation algorithm not a priority. Dur-
ing the simulation, the process and the internal
models NNM are subject to a disturbance Fy3
modelled as shown in Figure 7. As can be seen,
the value of F,3 varies in a pseudo random manner
around a given value. In real life, this value would
be around 0.08 m?/s, a steam flow necessary to
bring the intermediate temperature, at the out-
put of section S3 in Figure 1, to 64°C. The large
change of F,3 at time 3,500s is an extreme con-
dition and is improbable, but has been modelled
to test the capabilities of N PC under severe dis-
turbance changes. Figure 8(a), shows the results
obtained using NPC for target temperatures of

74°C and 80°C. Milk pasteurisation is performed at around 74/75°C, however this temperature
might be changed in the case of reconstructed milk or pasteurisation of other dairy product. For
this reason NPC behaviour must be examined for higher temperature set points. Figure 8(b)
shows the computed control variable, it can be seen that NPC takes into account the upper and
lower bounds of F,1, namely 0.1 m3/s and 0 m?/s respectively. The prediction horizon has been
chosen to be 25 samples while a single step control horizon is chosen since, in practice such control

action is sufficient.
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Figure 8: NPC behaviour to disturbance and set point changes

5 Conclusions

Artificial neural networks are a formidable tool for function approximation and classification prob-
lems, but yet very easy to use, thus results can be easily achieved. That feature makes ANN



extensively used in modelling of industrial processes unfortunately, not always at their best. ANN
are often used as a black box modelling strategy, which they are. However, an insight knowledge
of the process can help the designer to find quickly an adequate topology for the neural model.
Indeed, having an idea on the order of the system, existence of possible time delays and correlated
inputs can influence the choice of the number of inputs used for the network, dictating roughly, the
complete ANN topology, this in turn makes a possible network pruning operation more efficient.
Nevertheless, ANNs should be used in predictive control only when an internal linear model does
not give satisfaction and a development of a valid nonlinear first principle model tend to be too
expensive and time consuming; in this case, it is important for the designer to have some physical
knowledge of the process. Once a model is established, the designer needs to make sure of its
validity and to be aware of any overtraining that might occur. In this paper, the neural model
NN M is based on a physical first principle model of the plant developed earlier [1]. A cross model
selection method is used for validation (picking for each validation subset) the neural model that
gives a minimum SSE. Finally, the three neural networks obtained are combined linearly to give
the final NNM. This approach increases the chances to reach a global (or at least a decent local)
minimum and gives more confidence to the overall model validity.

Predictive control is a powerful control design strategy, for its ability to handle time delays, non
minimum phase and a wide range of constraing, which suits industrial applications. However MPC
relies heavily on the quality of the internal model. Therefore, if a valid ANN model, describing
a complex non linear industrial process can be achieved, then MPC can ensure excellent control.
However, computation time (and thus the choice of the optimiser algorithm) becomes an important
issue if we are dealing with a fast process. In this case, the pasteurisation plant being a slow process,
gives the designer enough time and freedom for the choice of the prediction horizon, internal model
complexity and the optimisation algorithm. Indeed, the sampling time of 12s is a comfortable
margin for an online optimisation even using a relatively slow optimisation algorithm.

References

[1] Khadir, M.T., Richalet, J., Ringwood, J. and O’Connor, B. Modelling and Predictive Control of Milk
Pasteurisation in a Plate Heat Ezchanger. Proc. Foodsim, Nante, France, June 2000.
[2] Khadir, M.T., Ringwood, J. and O’Connor, B. Comparison of Model Predictive and PID Controllers
for Dairy Systems. Proc. ISSC, Dublin, Rep of Ireland, June 2000.
[3] Clarke, D.W., Mohtadi, C. and Tuffs, P.S. Generalised Predictive Control-part I. The Basic Algorithm.
Automatica, Vol 23, No2, 137-148, 1987.
[4] Richalet, J. Pratique de la Commande Predictive. Traite des Nouvelles Technologies, Serie Automa-
tique Hermes, 1993.
[5] Alpha Laval Dairy Processing Handbook. Tetra Pak, 1995.
[6] Cybenko, G. Aprozimation by superposition of a sigmoidal function. Math. Cont. Sig. syst. vol 2,
303-314 1989.
[7] Le Cun, Y., Denker, J.S. and Solla, S.A. Optimal brain damage. Addvanced in Neural information,
vol 2, pp126-142 1989.
[8] Ngrgaard, M., Poulsen, N.K. and Hansen, L.K. Neural networks for modelling and control of dynamic
systems. Springer-Verlag, London, UK 2000.
[9] Sjoberg, J. Non-linear system identification with neural networks. Ph.D. Thesis No 831, Division of
Automatic Control, Department of Electrical Engineering, Linkping University, Sweden, 1995.
[10] Artificial Neural Network Toolbox for use with Matlab. Users guide. The Mathworks Inc. 1994.
[11] Heicht-Nielsen, R. Neurocomputing. Addison-Wesley, Reading, Massachusetts 1989.
[12] Quin, S.J. and Badgwell, T.A. An overview of industrial model predictive control technology. Chemical
Process Control. AIChe Symposium Series. Kantor., J., Garcia, C. and Carnahan, B. Eds. New York.
pp 232-256 1997.
[13] NAG Foundation Toolbox for use with Matlab, Numerical Algorithms group Ltd, 1995.
[14] Gill, P.E and Murray, W. Minimisation subject to bounds on the variables. Report NAC 72, National
Physical Laboratory 1976.
[15] Rao, C.V., Wright, S.J. and Rawlings, J.B. Application of Interior-Point Mehods to Model Predictive
Control. Journal of Optimisation Theory and Applications. Vol. 99, No 3, pp 723-757 1998.



