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Abstract: Low frequency oscillations in blood pressure (BP) can occur due to
a feedback pathway between the sensing of BP and the central nervous system
(CNS), often termed the baroreflex, affecting both cardiac output (heart-rate and
stroke volume) and peripheral resistance. In this paper, an integrated model of
both these subsystems is assembled and an analysis technique developed, which
shows the conditions under which a limit cycle oscillation can occur. In particular,
the role of mean levels of cardiac output and peripheral resistance, previously
thought to be relatively unimportant, in establishing and maintaining sustained
oscillations, is highlighted. The ultimate aim of this analysis is to assist in the
development of diagnostic tests based on measurement of low-frequency blood
pressure oscillations. Copyright c©2005 IFAC
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1. INTRODUCTION

Over the last decade or so, it has been suggested
that the measurement of low-frequency oscilla-
tions (circa 0.1Hz in humans, sometimes known
as Mayer waves) could help in the diagnosis of
pathology or, at least, help in assessing the physi-
ological state (Malliani et al., 1991). For example,
it is known that the magnitude of oscillations
increases in the case of haemorrhage (Malpas and
Burgess, 2000) and the relatively straightforward
measurement of blood pressure spectrum may re-
veal internal physiological state. For some time,
researchers have striven to understand the ori-
gin of these oscillations and a variety of theo-
ries have been proposed, broadly separating into
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philosophies which either suggest that the oscil-
lation is produced centrally by the CNS (Cooley
et al., 1998), or propose that a limit cycle exists
around the neural blood-pressure control system
(termed the baroreflex) (Kitney, 1979). It has
been widely experimentally confirmed that the
frequency of this low freq. oscillation decreases
as species size increases and this has been seen
to accord well with the limit cycle explanation
(Ringwood and Malpas, 2001).

Both the heart and the peripheral resistance have
the capability to facilitate neural control of blood
pressure, via the ‘Ohm’s law’ relationship:

pb(t) = qh(t) rp(t) (1)

where

pb(t) is mean arterial blood pressure,
qh(t) is cardiac output, and
rp(t) is total peripheral resistance of the circula-
tory system
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Fig. 1. Complete model of baroreflex, including heart and peripheral resistance paths

A variety of models, based on the limit cycle
explanation and using various physiological com-
ponents have been proposed. These include lin-
ear (Burgess et al., 1997) and nonlinear models
(Ringwood and Malpas, 2001) based on the pe-
ripheral branch alone (Kitney, 1979) and models
based on the cardiac side alone (Cavalcanti and
Belardinelli, 1996). Some models also look at the
combined cardiac/resistance system as a source
of chaos (Seidel, 1997), while Liu et al. (2002)
concludes that the cardiac side plays little role
in the neural control of blood pressure around
the frequencies of interest. Though the papers
of Ringwood et al (Ringwood and Malpas, 2001)
Burgess et al (Burgess et al., 1997) both develop
analysis to show the conditions for oscillations, the
former relies on a very specific relation between
system (vasculature) and controller (neural) pa-
rameters, while the latter has a milder set of
conditions based on a describing function analysis.

This paper essentially extends the model reported
in (Ringwood and Malpas, 2001) in two ways:

• The complete peripheral resistance system is
modelled, rather then just the renal vascula-
ture, and

• The cardiac side is included, comprising both
heart-rate and stroke volume influences.

Though a simple describing function analysis is
no longer possible, due to the more complicated
structure of the enlarged system, an analysis tech-
nique is developed to examine the conditions for
limit cycle development. This is the focus of the
paper and allows important conclusions to be
drawn regarding the relative influences (and in-
teractions) of the cardiac and resistance branches.

In particular, the important role of mean cardiac
output and mean peripheral resistance, previously
thought to be relatively unimportant, is revealed.

The paper is laid out as follows: An integrated
model for cardiac output and total peripheral
resistance is developed in Section 2, while the
‘describing function-like’ analysis is developed in
Section 3, with a numerical example used to
confirm its accuracy. Finally, Section 4 articulates
the impact of the results from the analysis and
makes final conclusions.

2. A COMPLETE BAROREFLEX MODEL

A model for the complete neural baroreflex, which
has been assembled from experimentally validated
sub-components, is shown in Fig.1. The model
is parameterised for the rabbit, due to the best
availability of parameter values for this species.
In broad terms, the model can be divided into
components representing the heart, the vascula-
ture (peripheral resistance) and the central ner-
vous system. Note that the peripheral resistance
divides up into components which respond to
sympathetic nerve activity (SNA) [the innervated
resistance, rSNA] and that which is indepen-
dent of SNA, r∗. Innvervated resistance accounts
for approximately 70% of total peripheral resis-
tance and is distributed among the various beds
(Sherwood, 1997) as shown in Table 1. In addi-
tion, the various beds have different sensitivities
(Ninomiya et al., 1971) , also documented in Table
1. Note that the dc gains of the dynamical transfer
functions, Gk, Gg, Gm and Gs, are all normalised
to unity. The low-pass dynamics of these transfer



Table 1. Innervated resistance beds

Bed Kidney Gut Muscle Skin

Identifier kdk kdg kdm kds

Distribution 0.2 0.27 0.15 0.09

Identifier ksk ksg ksm kss

Sensitivity 0.9 0.25 0.9 0.1

functions are specified (Guild et al., 2001; Stauss
et al., 1999) as:

Gm(s) =
11s2 + 6.64s+ 1

4.27s4 + 21s3 + 36s2 + 22s+ 1
(2)

with Gk(s) = Gg(s) = Gm(s), and

Gs(s) =
1

1.87s+ 1
(3)

The delays in the various beds, including those
corresponding to parasympathetic and sympa-
thetic action to the heart and the afferent delay
(in the feedback path) are enumerated (Liu et

al., 2002; Ikeda et al., 1996) in Table 2. Note that

Table 2. Delay values

Identifier τa τb τpc τsc τk, τg , τm, τs

Value 0.2 0.4 0.3 0.8 0.85

the value used for the vascular beds represents an
average for the distributed innervated subsystems
(e.g. skin). The baroreflex curves, realised as sig-
moidal curves of the form:

f(x) =
l

1 + e−βx
−

l

1 + eβx
+ fo (4)

are parameterised (Head and McCarty, 1987) as
in Table 3, with curvature expressed by β, vertical
range by l and vertical offset by f o. The remain-

Table 3. Baroreflex curve parameters

Parasymp. Car. Symp. Resistance Symp.

βpc = −0.14 βsc = 0.04 βk = βg = βm = βs = 0.04

lpc = 65.5 lsc = 42.5 lk = lg = lm = ls = 42.5

fo
pc = 65.5 fo

sc = 42.5 fo
k
= fo

g = fo
m = fo

s = 102

ing two components of the peripheral resistance
subsystem are the mean peripheral resistance not
under neural control, r∗ = 0.12 mmHg min/ml,
and the scaling gain, kr = 0.0012, used to trans-
pose SNA values to peripheral resistance units.

On the cardiac side, the remaining dynamic com-
ponents (Ikeda et al., 1996; Kawada et al., 1996)
are:

GCNS(s) =
1.33s+ 1

s+ 1
(5)

Gpc(s) =
1

1.22s+ 1
(6)

Gsc(s) =
1

1.29s2 + 1.92s+ 1
(7)

while the scaling gains used to transform PSNA
and SNA values to nerve stimulation values are:

kpc = 0.148 , ksc = 0.181 (8)

Finally, stroke volume, vh, is assumed constant
(Suga et al., 1976) at 2.5 ml/beat and the
sympatho-vagal relationship, g(up, us), was deter-
mined by fitting a nonlinear curve (Levy, 1971;
Seidel, 1997) of the form:

fh = α1tanh(γ1us)(1− tanh(γ2up))−

α2tanh(γ3up) + foh (9)

to the data recorded by Kawada et al. (1999)
for the rabbit, giving the coefficients in Table 4.
foh has a value of 245.8, representing the (mean)
autorhythmic heart rate of the rabbit.

Table 4. Sympatho-vagal parameters

Parameter α1 α2 γ1 γ2 γ3
Value 181 156.1 0.04 0.035 0.07

3. A CONDITION FOR LF OSCILLATION

The model of Fig.1 has common components in
some of its branches and, in general, is too cum-
bersome to examine in terms of limit cycles, so the
simplified model of Fig.2 is proposed, which still
retains the individuality of cardiac (sympathetic
and parasympathetic) and peripheral resistance
branches, but is more tractable with a view to
analysis. It will be shown that this approximation
introduces negligible inaccuracy with respect to
prediction of oscillations. In this simplified repre-
sentation, Gr(s) is as given in (2), while kdr =
0.39, determined as the sum of the products of
the distribution and sensitivity gains for the indi-
vidual innervated resistance paths. Furthermore,
g(up, us) is linearised to the affine function:

g∗(up, us) = ksus − kpup + foh (10)

with kp = −1.2 and ks = 0.88, since it contains no
inflections and is therefore unlikely to contribute
to a limit cycle (it is also not significantly nonlin-
ear).

A conventional describing function (DF) ap-
proach, which can be used to reveal conditions
for limit cycle oscillations, cannot be directly ap-
plied to the system of Fig.2 due to the multi-
ple paths with individual dynamics and nonlin-
ear characteristics. Some modest extension of the
DF method is possible beyond the classic single
loop analysis (Atherton, 1982), but the baroreflex
system presents a more significant challenge. The
approach adopted is to assume a sinusoidal input
at point x, evaluate the feedback return from this
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Fig. 2. Simplified model of baroreflex, including heart and peripheral resistance paths

excitation and equate it to the original signal,
therefore solving for limit cycle conditions. It will
be assumed (in the spirit of the DF) that (a)
harmonics arising in the nonlinearities described
by fpc( ), fsc( ) and fr( ) and (b) sum frequencies
arising in the multiplier at the system output have
negligible influence over a possible limit cycle, due
to the low pass nature of Gpc, Gsc and Gr. This
is confirmed from examination of the spectrum of
x(t) (X(ω)) during a typical limit cycle, as shown
in Fig.3. Assume the input to the nonlinearities is
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Fig. 3. Spectrum of x(t) during a limit cycle

sinusoidal:
x(t) = Asin[ωt] (11)

Then, in the spirit of the DF, the output of each
nonlinearity is given by:

yp(t) =Np(A)Asin[ωt] + fopc (12)

ys(t) =Ns(A)Asin[ωt] + fosc (13)

yr(t) =Nr(A)Asin[ωt] + for (14)

Note that since fpc( ), fsc( ) and fr( ) are all
odd, the describing functions Np, Ns and Nr are
all real and independent of the input frequency, ω
(Slotine and Li, 1990). Now,

fh(t) = fh +

ks|Gsc(ω)|kscNs(A)Asin[ωt+ 6 Gsc(ω)− ωτsc]−

kp|Gpc(ω)|kpcNp(A)Asin[ωt+ 6 Gpc(ω)− ωτpc] (15)

where

fh = foh + kskscf
o
sc − kkpkpcf

o
pc (16)

Equation (15) can be represented, with the obvi-
ous identification of terms, as:

fh(t) =Kssin[ωt+ φsc]−Kpsin[ωt+ φpc] + fh

=Kcsin[ωt+ φc] + fh (17)

where

Kc =
√

K2
s +K2

p − 2KsKpcos[φsc − φpc] (18)

φc = tan−1
Kscos[φsc]−Kpcos[φpc]

Kpsin[φpc]−Kssin[φsc]
(19)

Similarly,

rp(t) = kr|Gr(ω)|kdrNr(A)sin[ωt+ 6 Gr(ω)− ωτr] + r(20)

where
r = r∗ + krkdrf

o
r (21)

or
rp(t) = Krsin[ωt+ φr] + r (22)

Using (17) and (22) gives:

pb(t) = vhrfh

+ vhKrKcsin[ωt+ φr ]sin[ωt+ φc]

+ vhfhKrsin[ωt+ φr ] + vhrKcsin[ωt+ φc] (23)

Ignoring the double frequency term at 2ω gives:

pb(t) = vhrfh + vhKrKccos[φr − φc]

+ vhfhKrsin[ωt+ φr ] + vhrKcsin[ωt+ φc] (24)

or, with accumulation of terms:

pb(t) = vhrfh + κ(ω)

+K∗
r sin[ωt+ φr ] +K∗

c sin[ωt+ φc] (25)

or

pb(t) = vhrfh + κ(ω) +K∗
psin[ωt+ φp] (26)



with

K∗
p =

√

K∗2
r +K∗2

c + 2K
∗
cK

∗
r cos[φc − φr](27)

φp = tan−1
K∗
r cos[φr] +K∗

c cos[φc]

−(K∗
r sin[φr] +K∗

c sin[φc])
(28)

Continuing around the feedback path, we finally
arrive at:

xret(t) = |GCNS(ω)| {(p
set
b − vhrfh − κ(ω))−

K∗
psin[ωt+ φp − ω(τa + τb) + 6 GCNS(ω)]} (29)

The requirement for sustained oscillation is:

xret(t) = x(t) (30)

which, from (11) and (29) gives the three condi-
tions:

|GCNS(ω)| (p
set
b − vhrfh − κ(ω)) = 0 (31)

|GCNS(ω)|K
∗
p =A (32)

φp − ω(τa + τb) + 6 GCNS(ω) + π = 0 (33)

Some comments on these equations are appropri-
ate:

• Equation (31) merely establishes a d.c. equi-
librium around the system of Fig.3, subject
to a frequency dependent term, κ(ω).

• Equations (31) to (33) are a set of non-
linear coupled equations in both ω and A.
Though (32) appears to just contain mag-
nitude terms, K∗

p contains phase terms, as
evident in (27). Similarly, magnitude terms
(which depend on A via the describing func-
tion terms) are included in (33) via φp.

• The presence of π (due to negative feedback)
is interesting, since it can be offset by an
arbitrary addition (or subtraction) of π from
φp in (28), since tan[γ] = tan[γ + π]. This
could correspond to positive feedback !

Ideally, we would like to solve (31) to (33) analyt-
ically for ω and A, to determine relationships be-
tween the physiological parameters of the system
and the presence/absence and/or magnitude and
frequency of blood pressure oscillations. However,
this presents some difficulties, since:

• Equations are nonlinear and may not admit
a unique solution,

• The equations represent extremely complex
relationships between the model parameters
and the unknowns, ω and A, via equations
(15) to (28), and

• The complexity of the equations is further
exacerbated by the need for an analytical
approximation for the describing function
terms in (12) to (14).

The describing function problem is significant,
since no exact closed-form analytical expression

exists for the describing function of a sigmoid-
type nonlinearity. In an attempt to preserve the
analytical relationship between model parame-
ters and oscillation characteristics (for a periph-
eral resistance only model), various sigmoid ap-
proximations have been developed (Kinnane et

al., 2004), but all involve series expansions, which
are unwieldy. However, the intricate mix of terms
involving both cardiac and peripheral resistance
components shows the collective importance of
both sides in sustaining oscillations.

A simulation of the nominal system, with a blood
pressure setpoint, psetb , of 80mmHg, as in Fig.1
reveals a 0.34Hz oscillation in blood pressure,
with amplitude 9 mmHg (typical of experimental
evidence (Malpas and Burgess, 2000)). This is
confirmed by equations (31) to (33) as follows:

1.26(80− (2.5)(0.16)(202) + 0.033) =−1.08 (0)

(1.26)(9.1) = 11.46 (11.6)

−1.353− 2.14(0.2 + 0.4) + 0.1 + π = 0.6 (0)

with the close equality (correct values in bold)
confirming the validity of the adoption of the
reduced model of Fig.2 for the purpose of stability
analysis. The Fourier integrals in the DFs of (12)
to (14) were evaluated using the trapezoidal rule.

The cases where either cardiac or peripheral resis-
tance side were inhibited were also examined, with
a disappearance of the oscillation in both cases.
This was the case even when the mean nerve ‘tone’
(due to fopc, f

o
sc, f

o
k , f

o
g , f

o
m and f

o
s ) were retained,

indicating the clear inter-dependence of both sides
in sustaining oscillations.

4. CONCLUSIONS

This paper has given some insight into the produc-
tion of low frequency oscillations in blood pres-
sure via a limit cycle by assembling a compre-
hensive model containing all relevant subsystems
and developing an analysis tool to examine for
the presence/absence of oscillations. The model
itself gives significant insight into the mechanisms
and components which may be important in the
generation of limit cycles. For example, the model
clearly shows that mean levels, via the multipli-
cation blocks (see Fig.1), play an important role
in mediating oscillations, as well as gain. It is also
clear, both from the model and from simulation
studies on the model, that the cardiac side has an
important role to play in mediating oscillations,
contrary to some previous conclusions. Indeed, the
conclusion (Liu et al., 2002) that the cardiac side
has little influence, based on the fact that a vago-
tomy and suppression of cardiac SNA resulted in
little change in the frequency response relating
renal SNA to blood pressure, is easily explained



by our model, with an alternative conclusion. In
the experiments of Liu et al. (2002), mean heart
rate was found to drop from 265 bpm to 206,
which gives an effective mean reduction in cardiac
output of 3dB, which is almost exactly the mean
gain reduction in renal frequency response (51
→ 48.8dB). However, this gives little information
about the ability of the cardiac loop to sustain
oscillations itself. Simulation studies, in fact, con-
firm that oscillation (under nominal conditions) is
primarily due to the gain in the cardiac branch.

Finally, the mathematical conditions for oscilla-
tion in (31) to (33) are a little disappointing in
that clear analytical relationships between the
physiological parameters and oscillation charac-
teristics are difficult to deduce. However, numer-
ical results confirm the validity of the reduced
model in Fig.2 for development of the criterion
and future work will focus on the numerical solu-
tion of these coupled nonlinear equations.

REFERENCES

Atherton, D.P. (1982). Nonlinear Control Engi-

neering. Van Nostrand Reinhold.
Burgess, D.E., J.D. Hundley, S.-G. Li, D.C.

Randall and D.R. Brown (1997). First-order
differential-delay equation for the baroreflex
predicts the 0.4hz blood pressure rhythm in
rats. Am. J. Physiol. 273, R1878–R1884.

Cavalcanti, S. and E. Belardinelli (1996). Mod-
elling of cardiovascular variability using a
differential delay equation. IEEE Trans. on

Biomed. Eng. 43, 982–989.
Cooley, R.L., N. Montano, C. Cogliati, P. Van

de Borne, W. Richenbacher, R. Oren and
V.K. Somers (1998). Evidence for the central
origin of the low-frequency oscillation in rr-
interval variability. Circulation 96, 556–561.

Guild, S.-J., P.C. Austin, M. Navakatikyan, J.V.
Ringwood and S.C. Malpas (2001). Dynamic
relationship between sympathetic nerve ac-
tivity and renal blood flow: a frequency do-
main approach. Am. J. Physiol. 281, R206–
R212.

Head, G. and R. McCarty (1987). Vagal and
sympathetic components of the heart rate
range and gain of the baroreceptor-heart rate
reflex in conscious rats. J. Auton. Nerv. Syst.

21, 203–213.
Ikeda, Y., T. Kawada, T. Sugi-

machi, O. Kawaguchi, T. Shishido, T. Sato,
H. Miyano, W. Matsuura, J. Alexander and
K. Sunagawa (1996). Nueral arc of barore-
flex optimises dynamic pressure regulation in
achieving both stability and quickness. Am.

J. Physiol. 40, H882–H890.
Kawada, T., M. Sug-

imachi, T. Shishido, H. Miyano, T. Sato,

R. Yoshimura, H. Miyashita, T. Nakahara,
J. Alexander and K. Sunagawa (1999). Si-
multaneous identification of static and dy-
namic vagosympathetic interactions in regu-
lating heart rate. Am. J. Physiol. 276, R782–
R789.

Kawada, T., Y. Ikeda, M. Sugimachi, T. Shishido,
O. Kawaguchi, T. Yamazaki, J. Alexander
and K. Sunagawa (1996). Differential dy-
namic baroreflex regulation of cardiac and
renal sympathetic nerve activities. Am. J.

Physiol. 40, H288–H295.
Kinnane, O., J.V. Ringwood, D. Kelly and S. Mal-

pas (2004). Describing function approxima-
tion for biomedical engineering applications.
In: Proc. Irish Signals and Systems Conf..
pp. 125–247. IEE. Belfast.

Kitney, R.I. (1979). A nonlinear model for study-
ing oscillations in the blood pressure control
system. J. Biomed. Eng. 1, 89–99.

Levy, M.N. (1971). Sympathetic-parasympathetic
interactions in the heart. Circ. Res. 29, 437–
445.

Liu, H.-K., S.-J. Guild, J.V. Ringwood, C.J.
Barrett, B.L. Leonard, S.-K. Nguang, M.A.
Navakatikyan and S.C. Malpas (2002). Dy-
namic baroreflex control of blood pressure: in-
fluence of the heart vs. peripheral resistance.
Am. J. Physiol. 283, R533–R542.

Malliani, A., M. Pagani, F. Lombardi and
S. Cerutti (1991). Cardiovascular neural regu-
lation explored in the frequency domain. Cir-

culation 84, 482–492.
Malpas, S.C. and D.E. Burgess (2000). Renal sna

as the primary mediator of slow oscillations
in blood pressure during hemorrhage. Am. J.

Physiol. 279, H1299–H1306.
Ninomiya, I., N. Nisimaru and H. Irisawa (1971).

Sympathetic nerve activity to spleen, kidney
and heart in response to baroreceptor input.
Am. J. Physiol. 221, 1346–1351.

Ringwood, J.V. and S.C. Malpas (2001). Control
of renal blood flow - the case for a nonlinear
model. Am. J. Physiol. 280, R1105–R1115.

Seidel, H. (1997). Nonlinear dynamics of physio-

logical rhythms. Lagos Verlag.
Sherwood, L. (1997). Human Physiology. 3rd ed..

Wadsworth.
Slotine, J.-J. and W. Li (1990). Applied Nonlinear

Control. Pearson.
Stauss, H.M., J.U. Stegmann, P.B. Persson and

H.J. Habler (1999). Frequency response char-
acteristics of sympathetic transmission to
skin vascular smooth muscle in rats. Am. J.

Physiol. 277, R591–R600.
Suga, H., H. Sagawa and A. Shoukas (1976).

Carotid sinus baroreflex effects on instanta-
neous pressure-volume ratio of the canine left
ventricle. J. Physiol. Soc. Japan 65, 106–107.


