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ROBUST SHAPE CONTROL IN A SENDZIMIR COLD-ROLLING STEEL MILL
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Abstract: The shape control problem for a Sendzimir 20-roll cold rolling steel mill is characterised by operation
over a wide range of conditions arising from roll changes, changes in roiling schedules and changes in material
gauge, width and hardness. Previous approaches to the problem suggest storing a large number of
precompensator matrices to cater for the full range of operating conditions. This paper, on the other hand,
atempts to synthesise a controller which is optimally robust to changes in the conditions associated with the
rolling cluster, resulting in a reduced storage requirement for the controlling computer. The performance of the
robust controller is evaluated via nonlinear simulation.
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1. INTRODUCTION

Accurate control of the shape (internal stress distribution)
of steel strip in cold rolling presents a significant challenge,
due to the multi-pass, multi-schedule nature of the activity.
The different passes and schedules (approx. 2500 in all)
required to achieve a given final gauge for different grades
and widths of rolled strip involve variations in mill sewp,
such as roll diameters and strip speed and changes in
material characteristics, such as input and output gauges
for each pass, strip width and material hardness. These
cause significant (up to 300%) changes in the mill model
parameters, which point clearly to a requirement for a
number of controllers.

The Sendzimir mill (see Fig.1) is a reversing mill, and a
separate schedule containing a number of passes is
specified for each different material rolled. A schedule can
contain from 4 to 15 passes through the rolling cluster.
Each pass involves different entry and exit gauges. with
minor changes in the material hardness from pass to pass.

To date, the approach has been to design controllers using
traditional multivariable techniques for a set of nominal
cases (e.g. every schedule) and then employ a test to check
for controller stability for schedules and passes outside this

nominal set (Ringwood, et al., 1990; Ringwood, 1995).
However, the deficiencies of this approach are (a) little
attempt is made to actively build in robustness to model
variations, resulting in possible wide variations in
performance (although stability may be retained), and (b)
no systematic method for scheduling different controllers
across different passes and schedules is obvious.

Fig.1. 20-roll cold rolling Sendzimir mill

This paper attempts to actively build in robustness to model
parameter variations, due to pass and schedule changes,
and clearly identify a scheduling strategy which can be
implemented. In addition, other sources of model



imperfection are addressed. The approach relies on a
problem formulation in H., where an attempt is made to
guarantee robust stability over an unstructured model
uncertainty due to pass changes, while maintaining
reasonable performance (small sensitivity function) and
high frequency measurement noise rejection.

2. SENDZIMIR MILI. MODEL

The Z-mill has an ASEA 'Stressometer’ for measuring the
differential tension (or stress) profile across the strip. This
device is mounted 2.91 m downstream of the roll gap and
produces 8 (modelled) output measurements. Four pressure
measurements per revolution of this device are provided,
causing a four-period-per-revolution sinusoid to be
superimposed on the output signal (40Hz at a speed of 10
m/sec.). Further noise on the output signal is introduced due
to the 2kHz magnetising currents used with the pressure
SEnsors.

Shape actuation is effected via the 'As-U-Rolls', which
provide the equivalent of 8 independent (but equally spaced)
point loads. This generates roll bending, causing
differential elongation of the strip, thus influencing the
shape profile.

The Z-mill model, therefore, has 8 outputs and 8 inputs.
The rolling cluster is the most complex part of the system
and accounts for all of the interaction between the 8
(modelled) paths in the system. A linearized gain matrix
(G,) relates changes in the roll-gap shape profile to changes

in the positions of the AUR's respectively (Gunawardene,
1982).

Diagonal dynamic blocks account for the actuators, strip
dynamics (between roll-gap and shapemeter) and the
shapemeter filters. The mill model is therefore of the form:

1
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where p(s) includes dynamics due to the strip and
shapemeter, and the nonlinear function fu(.) represents the

AUR actuators (see Fig.2). An actuator linearisation
technique (Ringwood, 1994) is applied to the nonlinear
actuators, resulting in a first order linear response for each
actuator with a time constant of 2 secs.

Fig.2. As-U-Roll actuator block diagram
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The resulting overall mill dynamics are therefore given by:
e 05823

16
(1+1.0645)(1+0.745)(1 +25)

8(s)

for a medium strip speed (= 10 m/s). A disturbance, d(s), is
included in the mill model to account for the shape of the
incoming steel strip.

The scalar dynamical transfer function, p(s), varies with
strip speed, while the mill matrix, G,, varies with mill setup
(and therefore with pass and schedule no.). In this paper, an
attempt will be made to design a controller which can cover
all the (six) passes of a given schedule. The controller
design is based on the nominal (average) G, of:

[ 43907 49866 -007199 -21837 -23209 -20186 ~17916 ~17943]

06112 25487 25138 02207 -15248 -19372 ~17115 -17027

~0.7673 04553 27242 17667 05024 -17515 -1.7883 17682

-10494 -10781 11593 26865 15551 -06776 -17538 -17282

G - 09135 -16900 -07009 14843 27079 12133 11479 -L1449
-0.7882 -17710 -16810 -03389 19747 27206 04609 04541

-0.7566 ~17308 -19495 -15653 00505 23465 26623 26831

L—08345 —-18083 -19580 —22416 -19845 -01392 49882 49173

Mill matrices for passes 1 and 6 of the schedule are given in
the Appendix.

3. ROBUST CONTROLLER DESIGN

3.1 Design Framework

Controller design in the H.. framework provides a guarantee
of stability within a given set of model perturbations arising
from pass or schedule changes (Maciejowski, 1989).
Further objectives include the achievement of good
dynamical performance across the set of perturbed plants
and the attenuation of measurement noise and disturbances.
Tradeoffs and conflicts arising from these different
requirements are resolved using the weighting functions
Wi(s) and W(s) in the H.. cost function:

_ WS
I o= W, T(s)

S(s) = (1 + GK(s))"

3

where:

@

is the system sensitivity function, which determines the
disturbance rejection properties of the system, and

T(s) = GK(s)(1 + GK(s))"* &)
is the complementary sensitivity function, which determines

robust stability and measurement (shapemeter) noise
attenuation. The components considered in a robust control



design are detailed in Fig.3. A further issue in weight
selection is the requirement that the closed-loop bandwidth
rolls off in frequency before the phase effects of the pure
delay term in equation (2) become significant. This is
achieved using W,(s).

perturbation
A (s)

measurement noise
Fig.3. Plant configuration for robust control design

Robust stability is guaranteed by ensuring that the weight
W (s) overbounds the plant (multiplicative) perturbation in
the maximum singular value sense as:

§w,j@)] 26[aGw) VvV 020 6
where

G(5) =G, (W1 + A(s)) o)

3.2 Reduction of Plant Dimension

Examination of the mill matrix, G, indicates singularity
problems due to a significant spread in its singular values.
In addition, an order of magnitude difference exists
between the four largest and four smallest singular values.
As an example, the singular value spectrum of the nominal
plant mill matrix G, is:

{12.3568 9.1120 4.9125 1.5625 0.3306 0.2101 0.0259 0.0051)

This poses a significant problem for a H.. design, since the
sensitivity function, S(s), will be always close to unity in
the directions of the small singular values (i.e. the product
GH(s) is approximately zero in those directions). This
suggests a reparameterisation of the plant in terms of the
four most significant singular values. Partition the plant as:

x, ofv]
0 zz]lv;J

z,%, e R

G(s) = g()U, U, 1[ ®)

where:

U,U,,V,V,e R** |

A parameterisation U,” is now applied to the mill output
shape profile, while the control input is parameterised
using V;. The H.. design is now concentrated on the
reduced dimension system, given by:
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G..(5) = gHUGY, )]
Such a parameterisation is consistent with previous
approaches (Ringwood, 1995), motivated by rolling
practice considerations.

3.3 Controller Design

The H.. controller design was now performed using the
reduced plant in (9) against the objectives and
considerations set out in Section 3.1. The weighting
functions are chosen as:

10 (10%5+1) 0.2774 (107%s+1)
e T L

and are shown together with (A (jw)) in Fig.3.

W,(s) is chosen to:

¢ Penalise sensitivity, S(s), at low frequency, giving good
d.c. disturbance rejection (step changes in incoming
strip shape profile due to welds), and

¢ Ensure that system performance (dynamic response) is
maintained in spite of parameter variations at low
frequency.

W,(s) is chosen to:

e Ensure robust stability by covering A(s) i.e. that
condition (6) is met, and

¢ Attenuate high frequency (shapemeter) measurement
noise, by driving T(s) down at high frequency.

In addition, the relative positions of W (s) and Ws(s)
determine the closed-loop bandwidth, controlling the
dynamical response to setpoints and disturbances.

Gain dB

-250 . .
103 102 101 100 101

Frequency (Rads./sec)
Fig.4. Weighting functions and perturbation.



The software used in the controller optimisation was based
on the MATLAB® Robust Control Toolbox (Safonov and
Chiang, 1988), with the derived controller detailed in the
Appendix. A block diagram of the closed-loop system is
shown in Fig.5. Note that the shape control problem is
basically a regulator problem, since the desired shape
(stress) profile in the output strip is uniform i.e. zero at all

points.
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Fig.5. Closed-loop system

4. CONTROLLER PERFORMANCE ANALYSIS

Nominal performance and achievement of specifications
were checked using frequency response plots, as given in
Section 4.1. However, to assess the added effects of
neglected time delay and residual nonlinearity in the
actuators, nonlinear simulation tests were used to
demonstrate realistic controller performance.

Gain dB

100 100 102 10> 104 10

Frequency (Rads/sec)
Fig.6. Sensitivity and complimentary sensitivity functions

4.1 Achievement of design objectives

Fig.6 shows the system sensitivity function, S(jo), and the
complementary sensitivity function, T(jw). Note that S
drops to -30dB at low frequency, ensuring good d.c.
disturbance rejection and insensitivity to d.c. plant
parameter variations. The profile of the complementary

460

sensitivity function, which also specifies the closed-loop
transfer function, has a 3dB bandwidth of approx. 0.1
rads/sec., giving a reasonable closed-loop bandwidth, while
providing good attenuation of high frequency shapemeter
noise. In addition, the closed-loop transfer function rolls off
before the phase effects of the time delay in equation (2)
become significant.
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Fig.7. Disturbance rejection properties of system

To indicate the transient response and robustness of the
system, a step disturbance in path 2 of the idealised (linear,
delay-free) system was introduced and the output reponse
for each path shown in Fig.7(a). Robustness to variations in
G, is demonstrated by observing the response for 3 different
G, matrices, corresponding to passes 1 (Fig.7(b)), 3
(Fig.7(c)) and 6 (Fig.7(d)) of a 6 pass schedule. It is seen
that nominal performance and disturbance decoupling is
preserved to a good degree of accuracy in all cases.
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Fig.8. Shape control for nominal system



4.2 Simulation results

The controller developed above was now simulated with a
simulation model of the mill, containing the transport delay
(which was ignored in the design), nonlinear actuators
together with their linearising precompensators and a
realistic incoming strip shape disturbance. The shape
profile variations are shown in Fig.8 for the nominal
system. Parametric shape variations, which are shown as
the output in Fig.5, are given in Fig.9. These plots confirm
the results obtained in the previous section, while Fig 10,
which shows the parametric shape profile variations for the
nominal controller used in conjunction with G, for Pass 6
verify the retention of robust stability and performance
which is very close to nominal.

% T T T T T T T T
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Fig.9. Parametric shape profile variations (nominal)
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Fig.10. Parametric shape profile variations (Pass 1)
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5. DISCUSSION OF APPROACH

Several comments regarding the approach taken, together
with the outline results achieved, are pertinent. Firstly the
H.. control design methodology provides an analytical
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methodology for controller determination with a guarantee
of robust stability across a given set of plant perturbations,
Some user input is required in terms of weight function
selection, in order to specify the desired controller
properties, but this specification will be consistent across
different plants. Such a solution procedure is in contrast to
previous approaches, which have tended to involve a
considerable amount of user input (e.g. for frequency
response shaping) and retention of stability across different
passes must be checked separately for each individual case.
One of the principal benefits, therefore, in adopting the H.,
methodology, is the provision of an automated design
philosophy, which can provide a systematic means of
developing a set of controllers to cover all passes and
schedules.

The dimension reduction, which was employed in Section
3.2, accords with other design approaches, but is clearly
motivated by the inability to formulate a design for the full
8 x 8 system which has reasonable sensitivity properties.

Some further benefits of the H. design, which are not
explicitly stated in the specification, are also available. In
particular, it is known that the mill matrices produced from
the static model of Gunawardene (Gunawardene, 1982)
contain modelling inaccuracies. The H.. controller naturally
produces some immunity to such errors, by providing good
stability margins and insensitivity to d.c. parameter
variations. These benefits extend to unmodelled (soft)
nonlinear dynamics (Safonov, 1980), which are known to
be present in the actuators, Further nonlinear effects may
manifest themselves in the real sysiem, since the mill
matrices produced by Gunawardene’s model are linearised
gain matrices.

A final comment concemns controller implementation.
Observation of the controller state space description
highlights the possible need to employ controller order
reduction techniques. This will be the subject of further
investigation.

CONCLUSIONS

H.. has been shown to be a sound framework in which the
Sendzimir mill shape control problem may be tackled. The
synthesis of a controller which actively builds in robustness
to known parameter variations is particularly significant
when the multi-pass, multi-schedule nature of the mill
operation is considered. The design philosophy can also
form an important building block upon which to base a
systematic solution to the controller scheduling problem.
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—1.6076 + 2.6923i
( —1.6076 — 2.6923i
—3.5069
~6.4409
~5.8667
—4.8711
—3.0574 + 5.3484i 0 0 0 0
oAy = | —30574 - 5.3484i p=| 9 0 0 o
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—0.0100
—0.0100
\ -0.0100
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