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A B S T R A C T

This paper addresses both the modeling and the resolution of the replacement problem for a population of
machines. The main objective is the computation of a minimum cost replacement policy, which, based on the
status of each machine, determines whether one or more machines have to be replaced over a given finite
time horizon.

The replacement problem of a set of machines can be regarded as a sequential decision-making problem
under uncertainty. Thanks to this, we propose a novel formulation for such problems consisting of a
composition of discrete-time multi-state Markov Decision Processes (MDPs), one for each specific machine. The
underlying optimization problem is formulated as a stochastic Dynamic Programming (DP), and then solved
by using the principles of the backward DP algorithm. Moreover, to deal with the curse of dimensionality due
to the high-cardinality state–space of real-world/industrial applications, a new generalized multi-trajectory
Least-Squares Temporal Difference (LSTD) based method is introduced. The resulting algorithm computes an
approximate optimal cost function by: (i) running Monte Carlo simulations over different trajectories of a
given length; (ii) embedding the policy improvement step within the recursive LSTD iterations; (iii) enforcing
an off-policy mechanism to improve the LSTD exploration capabilities. A study on the convergence properties
of the proposed approach is also provided. Several numerical examples are given to illustrate its effectiveness
in terms of parametric sensitivity, computational burden, and performance of the computed policies compared
with some heuristics defined in the literature.
. Introduction

The machine replacement problem has been addressed since a long
ime and is a relevant topic in industrial engineering and management
cience (Jones et al., 1991; Gress et al., 2012; Pan and Thomas, 2010).
n a typical industrial ecosystem, machines are under constant usage,
nd their key performance indicators can deteriorate over time (Wang,
002; Jiang et al., 2022; Lin and Dou, 2015). As a result of this, such
achines need replacement at a certain point in time, otherwise the

fficiency of the overall industrial ecosystem can suffer a lot. Proper
aintenance measures need to be put in place in order to make a trade-

ff between the replacement costs and the ones related to degraded
perational conditions (e.g., production losses).

In this paper, we are interested in modeling and solving the re-
lacement problem for a population of machines. A fixed number
f machines is in operation at all times. The operating cost of each
achine increases as time passes and the machine gets older. An older
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machine may have to be replaced by a new one when its operating
costs become too high. There is a fixed purchase and installation cost
associated with new machines. Our main objective is the computation
of a minimum cost replacement policy, specifying the ‘‘keep’’ or the
‘‘replace’’ actions for all the machines at each time slot over a given
finite time horizon.

Machine replacement problems can be regarded as sequential
decision-making problems under uncertainty, and can be tackled using
Markov Decision Processes (MDPs) and Dynamic Programming (DP)
methods, see Gress et al. (2012), Pan and Thomas (2010) and Bert-
sekas (2017). We model the overall machine replacement problem
as a composition of Markov Decision Processes (MDPs), one for each
specific machine. In principle, the resulting stochastic DP problem can
be solved exactly by using the backward DP algorithm for the finite
time horizon case, while the Value Iteration (VI) algorithm or the
Policy Iteration (PI) algorithm can be adopted for the infinite time
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horizon case (Bertsekas, 2017, 2012). However, the usage of these exact
techniques in real-world applications is limited by the so-called curse
of dimensionality, since complex systems are involved, formulated
through models featured by high-cardinality state spaces (Bertsekas,
2012; Li et al., 2012; Hu et al., 2022; Forootani et al., 2020a). For this
reason, efforts have been devoted to finding suitable techniques able
to address such issue in an approximate way (Forootani et al., 2022a;
Bertsekas, 2019). This research field has evolved under different names
(e.g., Approximate Dynamic Programming (ADP) and Reinforcement
Learning (RL), see Bertsekas (2012, 2011a) and Garí et al. (2021)),
and owes its results to the fruitful cross-fertilization among artificial in-
telligence, optimal control theory, and operations research (Bertsekas,
2011a; Forootani et al., 2019; Iervolino et al., 2021).

In this paper, we introduce a multi-trajectory Least-Squares Tem-
poral Difference (LSTD) based method to solve machine replacement
problems with large state spaces. This method falls within the category
of cost function approximations (Bertsekas, 2011a). A cost function
gives the expected cumulative cost when starting from a specific state,
and then following a given policy (with the expectation performed
over all the possible trajectories). An optimal policy is one minimizing
the cost function for each state (Bertsekas, 2012). The main technique
to cope with systems with large state spaces is to approximate such
cost function via a more compact parametric representation in the
subspace of selected features (which is also referred to as the approx-
imation architecture Bertsekas, 2012), and then perform Monte Carlo
simulations to collect samples and solve the underlying optimization
problem (Bertsekas, 2011b; Geist and Pietquin, 2013).

The paper main contributions together with its organization can be
summarized as follows:

• After providing some preliminaries about MDP, DP, and ADP in
Section 2, we formulate the replacement problem of a set of
machines in terms of a composition of MDPs in Section 3. As also
shown in the following paragraph, to the best of our knowledge,
this modeling has never been reported elsewhere.

• The generalized multi-trajectory LSTD algorithm is presented in
Sections 4 and 6. This algorithm computes an approximate op-
timal cost function by running Monte Carlo simulations over
different trajectories of a given length, by embedding the pol-
icy improvement step within the recursive LSTD iterations, and
enforcing an off-policy mechanism to improve the LSTD explo-
ration capabilities. A study on its convergence properties is also
provided. Moreover, some practical implementation aspects are
given in Section 7.

• In Section 8, both the exact DP algorithm and the generalized
multi-trajectory LSTD algorithm are applied to solve machine
replacement problems formulated as a set of MDPs. To this aim,
a MATLAB-based application has been developed to formulate
and solve such problems as well as to analyze and evaluate the
corresponding computed policies. In particular, the parametric
sensitivity of the proposed algorithm is shown, its computational
burden measured, and the performance of the computed policies
compared with some heuristics defined in the literature.

• Moreover, still in Section 8, we show and examine the results
of the generalized multi-trajectory LSTD algorithm in its differ-
ent configurations and for different sets of features to prove its
flexibility. Section 9 concludes the paper.

Finally, it is worth highlighting that the proposed multi-trajectory
STD algorithm can be applied to any (not necessarily industrial)
pplication formulated as a sequential decision-making problem under
ncertainty (and featured by a large state space). In this regard, we
an mention energy management systems (Zhu et al., 2022), electric
ehicle fleet operations (Lee and Boomsma, 2022), railway traffic man-
gement (Ghasempour and Heydecker, 2019), and capacity allocation
roblems in the service industry (Schütz and Kolisch, 2012).
2

1.1. A short literature review

To the best of our knowledge, most of the existing papers dealing
with machine replacement problems (and more in general, with main-
tenance issues of deteriorating systems Wang, 2002) address single-
machine systems (or systems with very few machines, each responsible
for specific tasks). For instance, in Ouaret et al. (2018), the problem of
simultaneous production planning and replacement control of a single
manufacturing machine was addressed. Random phenomena, such as
the quality deterioration and customers’ demand, were formulated via
a continuous-time dynamic model. In Ouaret et al. (2019), the same
authors focused on the production and replacement problem of a hybrid
manufacturing system composed of a manufacturing machine and a
remanufacturing machine. An MDP formulation, based on the extension
of the state space of the system (operational, repair and replacement),
was conceived for the resulting control law to take into account the
history of breakdowns and repairs. The problem of joint optimization
of production and replacement policies was studied in terms of the
evolution of finished product inventory, returned product inventory,
and the history of machine breakdowns and repairs. The underlying
machine dynamics were described by a continuous time stochastic
process with a discrete state transition representation. In both the
papers, the corresponding optimality conditions were formulated and
solved by using a second-order approximation of Hamilton–Jacobi–
Bellman (HJB) equations (Bertsekas, 2017). The robustness analysis
of the computed control policy versus specific model parameters was
also performed. In Dong et al. (2021), a periodic replacement policy
and an inspection replacement policy for a single unit system (subject
to both stochastic deterioration and external shocks) are compared to
determine which one is more profitable in terms of the relative gain on
the average maintenance cost rate.

A hierarchical decision making approach in production and re-
pair/replacement planning of a single machine was presented in Nodem
et al. (2009). The main goal of the paper was to determine the pro-
duction rate and the repair/replacement policy minimizing the total
expected cost when the machine deteriorates with age, and is subject
to damage failures. The authors showed how to operate the machine as
the machine aged or when a higher number of breakdowns occurred.

The integration of replacement and preventive/corrective mainte-
nance for a single machine subject to failures is another relevant topic
addressed in the literature, see Sharifi and Taghipour (2021), Leu and
Ying (2020), Cassady and Kutanoglu (2005) and Nodem et al. (2011).
In this regard, an interesting overview can be found in Nowakowski
and Werbińka (2009), where three different classes of maintenance op-
timization models were presented, that is to say, the block replacement
models, the group maintenance models, and the opportunistic mainte-
nance models. Moreover, an example of a two-unit system maintenance
process was provided in order to compare various maintenance policies.

In the recent work (Liu et al., 2021), a Conditional Based Mainte-
nance (CBM) model for a two-unit system over a finite time horizon
was considered. In particular, the maintenance problem was modeled
via an MDP framework and the maintenance cost was optimized by
employing the backward procedure of the exact DP algorithm. The
influence of both economic dependence and degradation processes on
the optimal policy was also assessed. However, the applicability of the
idea was limited to small size problems. In Schouten et al. (2022),
a single component model for maintenance optimization under time
varying costs was presented. The life of the component was modeled
as a discrete-time MDP and two policies were evaluated, i.e., age-
based and block-based replacement. The authors derived a periodic-age
replacement policy under mild conditions as the optimal solution. In
another line of research shown in van Staden et al. (2022), the his-
torical machine failures and maintenance records were used to derive
future failure estimates and schedule preventive maintenance. The
optimization problem was formulated via a finite time horizon MDP,
and a data driven solution was computed to determine when to deviate
from the planned preventive maintenance.
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In Childress and Durango-Cohen (2005), the authors also considered
to model the parallel machine replacement problem via MDPs. By
taking into account classes of replacement cost functions, the optimal
policy was computed analytically with predefined assumptions. Despite
of having valuable results, this work differs from our framework since
we seek to compute more general and practical solutions based on
approximate cost functions and Monte Carlo simulations. In the more
recent work (Li, 2020), the authors studied the replacement problem
of economically interdependent machines with the three actions: keep,
replace, and general repair. They proved that, under common cost as-
sumptions, there was an optimal policy such that machines in the same
state were either all generally repaired or none of them. In Seif et al.
(2019), parallel machine replacement problems were formulated as a
two-stage stochastic program with an uncertain planning horizon and
applied to construction projects. Numerical analyses were conducted to
obtain managerial implications.

The distinction between our work and the existing literature can
be highlighted as follows. First of all, in our paper, the replacement
problem of a set of machines is modeled as the composition of discrete-
time multi-state degradation Markov processes. Then, a multi-trajectory
LSTD based method is used to solve replacement machine problems
with a large state space by approximating the original cost function
via a parametric representation in the subspace of selected features.
The initial state of each trajectory is selected by applying a probability
distribution different from the frequencies of the associated MDP at
hand in order to generate a richer mixture of state visits. In the
literature, there exist some examples of ADP/RL methods used to solve
machine replacement problems. However, they do not usually address
the scalability issue of real-world machine replacement problems. For
instance, in Huang et al. (2019), the basic look-up table Q-learning
algorithm was adopted to solve machine preventive replacement prob-
lems in serial production lines. In that paper, the authors themselves
suggested the adoption of cost function approximations to deal with
systems featured by a larger state space. Further similar examples can
be found in Yousefi et al. (2020) and Zhang et al. (2021).

2. Preliminaries on MDPs, DP and ADP

This section provides an essential background on the mathematical
models and tools we will exploit for the machine replacement problem
formulation and the relative proposed solution. The basic structure of
an MDP can be defined as follows Bertsekas (2012) and Forootani et al.
(2020a)

• 𝑋 = {𝑥1,… , 𝑥𝛺} is the finite set of states, where 𝑥𝑣 ∈ 𝑋 and
𝑥𝑤 ∈ 𝑋 denote two generic elements of this set and |𝑋| = 𝛺 its
cardinality. The state variable at time slot 𝑘 ∈  ,  = {0, 1,… , 𝑇 },
is denoted by 𝑥(𝑘), with 𝑥(𝑘) ∈ 𝑋.

• 𝑈 = {𝑢1,… , 𝑢𝜎} is the finite set of actions (or decisions), where
𝑢 ∈ 𝑈 denotes an element of this set and |𝑈 | = 𝜎. We also
define 𝜇(𝑥𝑣, 𝑘) ∶ 𝑋 ×  → 𝑈 as the time-varying control function
mapping that maps the state 𝑥𝑣 into action 𝑢 at the time slot 𝑘.
𝑈 (𝑥𝑣) denotes the set of admissible actions at state 𝑥𝑣.

• The state transition probability function is defined as 𝑥𝑣𝑥𝑤 (𝑢) ∶=
[

𝑃 (𝑥(𝑘+1) = 𝑥𝑤|𝑥(𝑘) = 𝑥𝑣, 𝑢)
]

, 𝑃 ∶ 𝑋×𝑈×𝑋 → [0, 1]. It represents
the probability that an action 𝑢 ∈ 𝑈 performed in the state 𝑥𝑣 ∈ 𝑋
at the time slot 𝑘 leads the system to the state 𝑥𝑤 ∈ 𝑋 at time slot
𝑘+1. We denote with  ∈ R𝛺×𝜎×𝛺 the state transition probability
matrix with elements 𝑥𝑣𝑥𝑤 (𝑢).

• 𝑔(𝑥𝑣, 𝑢) ∶ 𝑋 × 𝑈 → [0,+∞) is the cost per stage function.

By using MDP based frameworks, it is possible to formulate and
solve stochastic sequential decision problems. At the core of such
frameworks, there is the resolution of a stochastic optimization prob-
lem (Bertsekas, 2012).

Let 𝜋 = {𝜇(0),… , 𝜇(𝑇 − 1)} denotes the policy, that is to say, the

sequence of control vector functions 𝜇(𝑘) applied on the whole state

3

space 𝑋 over the finite time horizon 𝑇 . More specifically, 𝜇(𝑘) is a
vector function with components 𝜇(𝑥(𝑘), 𝑘),∀𝑥(𝑘) ∈ 𝑋,∀𝑘 ∈  .

To evaluate the performance of a given policy 𝜋 over the finite
time horizon 𝑇 , we need to introduce the following (cumulative) cost
function

𝐽𝜋
(

𝑥(0)
)

= 𝐸

{

𝑔𝑇
(

𝑥(𝑇 )
)

+
𝑇−1
∑

𝑘=0
𝛼𝑘𝑔

(

𝑥(𝑘), 𝜇(𝑥(𝑘), 𝑘)
)

}

, (1)

where 𝐸{⋅} is the expectation operator, 0 < 𝛼 < 1 is the discount
factor, 𝑔𝑇 (𝑥(𝑇 )) is a given bounded terminal cost, and 𝑥(𝑇 ) is the state
at the terminal time 𝑇 . Solving sequential decision making problems
over a finite time horizon means finding an optimal policy 𝜋∗ =
{𝜇∗(0),… , 𝜇∗(𝑇 −1)} minimizing the cost function (1) from any possible
initial state 𝑥(0)

𝐽 ∗(𝑥(0)
)

= min
𝜋
𝐽𝜋

(

𝑥(0)
)

, (2)

where 𝐽 ∗(⋅) is called optimal cost function.
The expressions (1) and (2) can be easily extended to the infinite

time horizon case by computing their limit value for 𝑇 → ∞ and
setting 𝑔𝑇 to zero (Bertsekas, 2012). In such a case, the optimization
roblem (2) only addresses stationary policies, i.e., 𝜋 = {𝜇, 𝜇,…},

where 𝜇 is the stationary control vector function with components
𝜇(𝑥(𝑘)) ∶ 𝑋 → 𝑈,∀𝑥(𝑘) ∈ 𝑋. As a result, the stationary optimal policy
∗ = {𝜇∗, 𝜇∗,…} can be computed (Bertsekas, 2012). Later in the paper,

stationary policies are also denoted with 𝜇.
By defining a generic vector cost function 𝐽 ∶ 𝑋 → R𝛺 as a vector

with components 𝐽 (𝑥𝑣), we can introduce the optimal Bellman operator
∗ ∶ R𝛺 ↦ R𝛺 whose components are

(∗𝐽 )(𝑥𝑣) ∶= min
𝑢∈𝑈

(

𝑔(𝑥𝑣, 𝑢) + 𝛼
∑

𝑥𝑤∈𝑋
𝑥𝑣𝑥𝑤 (𝑢)𝐽 (𝑥𝑤)

)

. (3)

The Bellman operator ∗ can be viewed as a mapping that transforms
the vector cost function 𝐽 on 𝑋 into the vector function ∗𝐽 on 𝑋. The
optimal cost function 𝐽 ∗ for the infinite time horizon case is the fixed
point of Bellman equation 𝐽 ∗ = ∗𝐽 ∗ (Bertsekas, 2012).

When we refer to a specific stationary policy 𝜋 = {𝜇, 𝜇,… , } (either
optimal or not), we can introduce the Bellman operator  ∶ R𝛺 ↦ R𝛺

with components

(𝐽 )(𝑥𝑣) ∶= 𝑔(𝑥𝑣, 𝜇(𝑥𝑣)) + 𝛼
∑

𝑥𝑤∈𝑋
𝑥𝑣𝑥𝑤 (𝜇(𝑥𝑣))𝐽 (𝑥𝑤). (4)

As shown in Forootani et al. (2022a), the two operators can be ex-
pressed in a more compact vector form. In particular, (4) becomes

𝐽 = 𝑔 + 𝛼𝐽 , (5)

where 𝑔 is the cost per stage vector with components 𝑔(𝑥𝑣, 𝜇(𝑥𝑣)) and,
with a slight abuse of notation, the explicit dependency of  and 𝑔
from the specific stationary policy has been removed. Likewise, we
can define the transition probability matrix and the cost per stage
vector associated to the optimal stationary policy 𝜋∗ with ∗ and 𝑔∗,
respectively. Thus, the optimal Bellman operator (3) can be expressed
in a more compact vector format as follows (Forootani et al., 2022a)

∗𝐽 = 𝑔∗ + 𝛼∗𝐽 . (6)

We will denote by  𝑙 the composition of the mapping  with itself 𝑙
times, that is for all 𝑙 we write
(

 𝑙𝐽
)

(𝑥𝑣) =
(


(

 𝑙−1𝐽
)

)

(𝑥𝑣), 𝑥𝑣 ∈ 𝑋. (7)

When 𝑙 → ∞, the associated cost satisfies the fixed point mapping (Bert-
sekas, 2012),

𝐽 (𝑥𝑣) = lim
(

 𝑙𝐽
)

(𝑥𝑣). (8)
 𝑙→∞
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2.1. On solving stochastic DP problems

In case of computationally tractable problems, we can use the exact
Bellman DP algorithm to solve exactly the optimization problem (2)
over the finite time horizon (Bertsekas, 2017), while the Value Iteration
or the Policy Iteration algorithms can be used to solve it exactly over
the infinite time horizon (Bertsekas, 2012).

On the other hand, in case of large scale stochastic optimization
problems, we can employ ADP methods, which basically address the
so-called curse of dimensionality via architecture approximations and
simulations (Bertsekas, 2011a). In this paper, we approximate any
cost function 𝐽 (𝑥𝑣) by means of a parametric architecture of the form
𝐽 (𝑥𝑣, 𝑟) (or 𝐽 ∶ 𝑋 × R𝛾 → R𝛺 in its vector function representation),
where 𝑟 ∈ R𝛾 is a parameter vector with the component 𝑟𝑖 and has
to be computed by training the selected architecture (𝛾 ≪ 𝛺). More
specifically, a linear feature-based parametric architecture is chosen
and 𝐽 (𝑥𝑣, 𝑟) is defined as the inner product 𝜙(𝑥𝑣)′𝑟, where 𝜙(𝑥𝑣) =
[𝜙1(𝑥𝑣),… , 𝜙𝛾 (𝑥𝑣)]′ is referred to as the feature vector with 𝛾 given fea-
tures as components (in this paper, the symbol ′ denotes the transpose
operator).

As a result, the vector cost function 𝐽 can be approximated by a
vector in the feature subspace 𝛥 = {𝛷𝑟|𝑟 ∈ R𝛾}, where 𝛷 ∈ R𝛺×𝛾 is
called feature matrix with each row 𝜙(𝑥𝑣)′. In other words, we consider
the approximation of the cost function 𝐽 in the form of 𝐽 ≈ 𝛷𝑟,
where the feature matrix 𝛷 is defined by the designer by exploiting the
knowledge of the system at hand and 𝑟 ∈ R𝛾 is the parameter vector
that has to be computed via Monte Carlo simulations approaches,
e.g., the LSTD method (Bertsekas, 2011b). This leads us to address
the following weighted least-squares minimization problem (Bertsekas,
2011a, 2012)

𝑟 = arg min
𝑟∈R𝛾

‖𝐽 −𝛷𝑟‖2𝜖 , (9)

where 𝜖 ∈ R𝛺+ with ‖𝜖‖1 = 1 is a weighting vector. As shown later in
the paper, we conveniently choose as weighting vector the steady state
probability vector associated with the stochastic dynamics of the system
at hand (Bertsekas, 2019). In this paper, the parameter vector used to
approximate the optimal cost function 𝐽 ∗ and the cost function 𝐽 of
a specific stationary policy 𝜋 are denoted with 𝑟∗ and 𝑟, respectively
(note that the explicit dependency on the policy 𝜋 has been removed).
Moreover, the following two assumptions are made throughout this
paper.

Assumption 1. For each admissible stationary policy 𝜋 (and, hence,
for the optimal policy 𝜋∗), the underlying Markov chain is irreducible
(i.e., it has a single recurrent class and no transient states Bertsekas,
2012). The related stochastic matrix  (and, hence, ∗) has unique
steady state probability vectors 𝜖 with components 𝜖𝑥𝑣 > 0 (𝜖∗ ∈ R𝛺+
with components 𝜖∗𝑥𝑣 > 0).

Assumption 2. The matrix 𝛷 has rank 𝛾.

Thanks to them, as shown in Bertsekas (2011a), one can sample
according to such steady probability distributions in order to compute
via Monte Carlo simulations the parameter vector 𝑟 of linear cost
function approximations. All these aspects are exploited in the paper.

3. The machine replacement problem and its stochastic DP formu-
lation

The machine replacement problem definition for a single machine
can be found in Bertsekas (2017). More in general, let us consider the
problem of operating 𝑚 different machines over the finite time interval
 in an efficient way. Each machine 𝑀𝑖 (with 𝑖 ∈ {1,… , 𝑚}) can be
in any of 𝛺 operating states,1 denoted by 𝑥𝑣𝑖𝑖 with 𝑣𝑖 ∈ {1,… , 𝛺}. It is

1 For the sake of simplicity and without loss of generality, it is assumed the
ame number of possible states for all the machines.
4

assumed that the conditions of the machine in the state 𝑥𝑣𝑖𝑖 , with 𝑣𝑖 ∈
{1,… , 𝛺−1}, are better than those ones associated with the state 𝑥𝑣𝑖+1𝑖 ,
nd the state 𝑥1𝑖 corresponds to a machine 𝑀𝑖 in its fully operational
onditions. Moreover, by denoting with 𝑐𝑖(𝑥

𝑣𝑖
𝑖 ) the operating cost per

time slot (or stage) when machine 𝑀𝑖 is in state 𝑥𝑣𝑖𝑖 , we have the
following

𝑐𝑖(𝑥1𝑖 ) ≤ 𝑐𝑖(𝑥2𝑖 ) ≤ ⋯ ≤ 𝑐𝑖(𝑥𝛺𝑖 ), (10)

which is known as non-decreasing cost function.
At the beginning of each time slot 𝑘 ∈  , we know the state

𝑥𝑣𝑖𝑖 of each machine 𝑀𝑖 and one of the following two actions can be
performed:

• Let the machine 𝑀𝑖 operate one more time slot in the state it
currently is, i.e., the action 𝑢𝑖 is set to 0.

• Replace the machine 𝑀𝑖 with 𝑢𝑖 = 1 at a cost 𝑅𝑖 and restart from
the perfect state 𝑥1𝑖 .

During any time slot of operation 𝑘 ∈  , in case 𝑢𝑖 = 0, the
state of any machine can become worse or it may stay unchanged.
Hence, the state transition probabilities 𝑥𝑣𝑖𝑖 𝑥

𝑤𝑖
𝑖
(0) satisfy the conditions

𝑥𝑣𝑖𝑖 𝑥
𝑤𝑖
𝑖
(0) = 0 (if 𝑣𝑖 > 𝑤𝑖) and

(


𝑥𝑣𝑖+1𝑖 𝑥𝑤𝑖𝑖

(0)−𝑥𝑣𝑖𝑖 𝑥
𝑤𝑖
𝑖
(0)

)

≥ 0, known as in-
creasing failure rate. Note that non-decreasing cost function and increas-
ing failure rate are common assumptions in the literature (Childress and
Durango-Cohen, 2005).

In case we decide to replace (𝑢𝑖 = 1), we assume that the time
required for the machine replacement is negligible with respect to the
time slot needed to assess the operational conditions of the machines.
As a result, the addressed machine 𝑀𝑖 moves to the state 𝑥1𝑖 with
probability equal to 1 and stays in that state 𝑥1𝑖 for at least the current
time slot. In the subsequent ones, it may deteriorate according to the
state transition probabilities 𝑥𝑣𝑖𝑖 𝑥

𝑤𝑖
𝑖

. At each time slot, it is assumed
that more than one machine can be replaced simultaneously.

The state transition probability graph for one single machine can be
found in Bertsekas (2017). The main objective of the machine replace-
ment problem is to assess the level of deterioration of each machine
at which it is worth paying the cost of the machine replacement, say
𝑅𝑖, thereby obtaining the benefit of smaller future operating costs. As
a result, the replacement decision incurs a cost of 𝑅𝑖 + 𝑐(𝑥1𝑖 ), while the
decision of not replacing the machine implies an operating cost equal
to 𝑐𝑖(𝑥

𝑣𝑖
𝑖 ).

By exploiting the stochastic DP formulation used by the authors to
formulate resource allocation problems (see Forootani et al. (2020a,
2019, 2021a) and Forootani et al. (2021b)), we can model each ma-
chine 𝑀𝑖 as an MDP by defining the tuple 𝑀𝑖 = ⟨𝑋𝑖, 𝑈𝑖,𝑖, 𝑔𝑖⟩ as
follows

• 𝑋𝑖 is the state space, 𝑋𝑖 = {𝑥1𝑖 , 𝑥
2
𝑖 ,… , 𝑥𝛺𝑖 }. The state variable at

time 𝑘 is denoted with 𝑥𝑖(𝑘), where 𝑥𝑖(𝑘) ∈ 𝑋𝑖. Moreover, we
denote with 𝑥𝑣𝑖𝑖 and 𝑥𝑤𝑖𝑖 two generic states of the machine 𝑀𝑖.

• 𝑈𝑖 = {1, 0} is the finite set of actions (also called control inputs or
decisions). Its element is denoted by 𝑢𝑖, with 𝑢𝑖 = 1 representing
the replace action and 𝑢𝑖 = 0 the action of continuing to operate
the machine 𝑀𝑖. The control function at time 𝑘 is denoted as
𝜇𝑖(𝑥𝑖(𝑘), 𝑘).

• 𝑖 is the state transition probability matrix with elements

𝑥𝑣𝑖𝑖 𝑥
𝑤𝑖
𝑖

(

𝑢𝑖
)

∶= 𝑃
[

𝑥𝑖(𝑘 + 1) = 𝑥𝑤𝑖𝑖 |𝑥𝑖(𝑘) = 𝑥𝑣𝑖𝑖 , 𝑢𝑖
]

. (11)

• 𝑔𝑖(𝑥𝑣𝑖𝑖 , 𝑢𝑖) ∶ 𝑋𝑖 × 𝑈𝑖 → [0,∞) is the cost per stage function

𝑔𝑖(𝑥
𝑣𝑖
𝑖 , 𝑢𝑖) = 𝑐𝑖(𝑥

𝑣𝑖
𝑖 )(1 − 𝑢𝑖) + 𝑢𝑖

(

𝑅𝑖 + 𝑐𝑖(𝑥1𝑖 )
)

. (12)

Note that, for the sake of the simplicity, we use the same notation
for the machine and its related MDP representation.

The composition of 𝑚 MDPs associated with each machine 𝑀𝑖 gives
rise to the formulation of the overall machine replacement problem 𝑀 .
In particular, such problem can be modeled as an MDP, defined by the
tuple 𝑀 = ⟨𝑋,𝑈, , 𝑔⟩ where
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• 𝑋 is the entire state space, 𝑋 = {𝑥ℎ = (𝑥ℎ11 ,… , 𝑥ℎ𝑚𝑚 )′ ∈
�𝑚

𝑖=1𝑋𝑖}.
To simplify the complexity in the notation and with a slight abuse
of notation, we denote with 𝑥(𝑘) the state variable at time 𝑘.
Moreover, 𝑥𝑣 = (𝑥𝑣11 , 𝑥

𝑣2
2 ,… , 𝑥𝑣𝑚𝑚 )′ and 𝑥𝑤 = (𝑥𝑤1

1 , 𝑥𝑤2
2 ,… , 𝑥𝑤𝑚𝑚 )′

are two generic states of the process.
• 𝑢 = (𝑢1,… , 𝑢𝑚)′ ∈ 𝑈 is the overall control input, with 𝑈 =�𝑚

𝑖=1 𝑈𝑖. In line with the notation introduced in the previous
section, the control function at time 𝑘 is denoted as 𝜇(𝑥(𝑘), 𝑘) =
(𝜇1(𝑥1(𝑘), 𝑘),… , 𝜇𝑚(𝑥𝑚(𝑘), 𝑘))′.

•  is the state transition probability matrix with elements

𝑥𝑣𝑥𝑤
(

𝑢
)

∶=
𝑚
∏

𝑖=1
𝑥𝑣𝑖𝑖 𝑥

𝑤𝑖
𝑖
(𝑢𝑖). (13)

• 𝑔(𝑥𝑣, 𝑢) ∶ 𝑋 × 𝑈 → [0,∞) is the cost per stage function

𝑔(𝑥𝑣, 𝑢) =
𝑚
∑

𝑖=1
𝑔𝑖(𝑥

𝑣𝑖
𝑖 , 𝑢𝑖). (14)

By using (1) and (14), the cost function of a given policy 𝜋 for the
overall machine replacement problem 𝑀 over the finite time horizon
𝑇 can be formulated as follows

𝐽𝜋
(

𝑥(0)
)

= 𝐸

[

𝑔𝑇 (𝑥(𝑇 )) +
𝑇−1
∑

𝑘=0
𝛼𝑘

𝑚
∑

𝑖=1
𝑔𝑖(𝑥𝑖(𝑘), 𝜇𝑖(𝑥𝑖(𝑘), 𝑘))

]

. (15)

3.1. Remarks on the proposed machine replacement problem formulation

In the following, we present some useful properties and remarks on
the introduced MDP formulation used to model the machine replace-
ment problem.

Property 1. If we denote by 𝑁𝑖(𝑥
𝑣𝑖
𝑖 , 𝑢𝑖) the number of state transitions for

a given state 𝑥𝑣𝑖𝑖 when the control input 𝑢𝑖 is applied to a specific machine
𝑀𝑖, it is easy to verify that

𝑁𝑖(𝑥
𝑣𝑖
𝑖 , 𝑢𝑖) =

{

𝛺 − 𝑣𝑖 + 1, if 𝑢𝑖 = 0,
1, if 𝑢𝑖 = 1.

(16)

More in general, for the overall set of machines, the total number of
state transitions 𝑁(𝑥𝑣, 𝑢), when applying an admissible control input 𝑢 to
any given state 𝑥𝑣, is

𝑁(𝑥𝑣, 𝑢) =
𝑚
∏

𝑖=1
𝑁𝑖(𝑥

𝑣𝑖
𝑖 , 𝑢𝑖). (17)

Lemma 1. The transition probability matrix corresponding to a single
machine 𝑀𝑖 is upper triangular when the control input ‘‘keep’’ is applied.

Proof. The proof simply follows from the definition of the problem
since 𝑥𝑣𝑖𝑖 𝑥

𝑤𝑖
𝑖
(0) = 0, ∀𝑤𝑖 < 𝑣𝑖. □

Lemma 2. Consider the MDP formulation 𝑀𝑖 for a specific machine.
Assume that, ∀𝑣𝑖 ∈ {1,… , 𝛺 − 1}, it is

(i) 0 ≤ 𝑥𝑣𝑖𝑖 𝑥
𝑣𝑖
𝑖
(0) < 1;

(ii) 𝑥𝑣𝑖𝑖 𝑥
𝑤𝑖
𝑖
(0) ≠ 0, for at least one 𝑤𝑖 > 𝑣𝑖.

If we always apply the control input ‘‘keep’’, the state 𝑥𝛺𝑖 is an attractive
equilibrium state.

Proof. Let us define with 𝑝𝑥𝑖 (𝑘) the vector whose elements 𝑝𝑥𝑣𝑖𝑖 (𝑘)
correspond to the probability that the state of the machine at time 𝑘
is 𝑥𝑣𝑖𝑖 . Moreover, for the sake of simplicity, let us define 𝑥𝑣𝑖𝑖 𝑥

𝑤𝑖
𝑖

∶=
𝑥𝑣𝑖𝑖 𝑥

𝑤𝑖
𝑖

(

0
)

. The probabilities of the underlying Markov chain entering
specific states at time 𝑘+1 are related to the ones of the previous time

′ ′
step 𝑘 by the expression 𝑝𝑥𝑖 (𝑘 + 1) = 𝑝𝑥𝑖 (𝑘) 𝑖 (0) (Luenberger, 1979). t

5

By applying Lemma 1, such relationship can be written as follows for
the machine 𝑀𝑖

𝑝𝑥1𝑖
(𝑘 + 1) = 𝑥1𝑖 𝑥1𝑖 𝑝𝑥1𝑖 (𝑘), (18)

𝑝𝑥2𝑖
(𝑘 + 1) = 𝑥1𝑖 𝑥2𝑖 𝑝𝑥1𝑖 (𝑘) + 𝑥2𝑖 𝑥2𝑖 𝑝𝑥2𝑖 (𝑘), (19)

𝑝𝑥3𝑖
(𝑘 + 1) = 𝑥1𝑖 𝑥3𝑖 𝑝𝑥1𝑖 (𝑘) + 𝑥2𝑖 𝑥3𝑖 𝑝𝑥2𝑖 (𝑘) + 𝑥3𝑖 𝑥3𝑖 𝑝𝑥3𝑖 (𝑘), (20)

⋮ (21)

𝑥𝛺𝑖
(𝑘 + 1) = 𝑥1𝑖 𝑥𝛺𝑖 𝑝𝑥1𝑖 (𝑘) + 𝑥2𝑖 𝑥𝛺𝑖 𝑝𝑥2𝑖 (𝑘) +⋯ + 𝑥𝛺𝑖 𝑥𝛺𝑖 𝑝𝑥𝛺𝑖 (𝑘). (22)

Being the sum of all the row elements of any transition probability
atrix equal to 1 and from Lemma 1, we have 𝑥𝛺𝑖 𝑥𝛺𝑖 = 1. The

quilibrium point 𝑝̄𝑥𝑖 of the above system of linear iterative equations
an be computed by letting 𝑘→ ∞. In particular, by denoting with 𝑝̄𝑥𝑣𝑖𝑖
he generic element of 𝑝̄𝑥𝑖 , we have the following

𝑝̄𝑥1𝑖
= 𝑥1𝑖 𝑥1𝑖 𝑝̄𝑥1𝑖 , (23)

𝑝̄𝑥2𝑖
= 𝑥1𝑖 𝑥2𝑖 𝑝̄𝑥1𝑖 + 𝑥2𝑖 𝑥2𝑖 𝑝̄𝑥2𝑖 , (24)

𝑝̄𝑥3𝑖
= 𝑥1𝑖 𝑥3𝑖 𝑝̄𝑥1𝑖 + 𝑥2𝑖 𝑥3𝑖 𝑝̄𝑥2𝑖 + 𝑥3𝑖 𝑥3𝑖 𝑝̄𝑥3𝑖 , (25)

⋮ (26)
𝑝̄𝑥𝛺𝑖 = 𝑥1𝑖 𝑥𝛺𝑖 𝑝̄𝑥1𝑖 + 𝑥2𝑖 𝑥𝛺𝑖 𝑝̄𝑥2𝑖 +⋯ + 𝑥𝛺𝑖 𝑥𝛺𝑖 𝑝̄𝑥𝛺𝑖 . (27)

From the assumption (i) and by considering that 𝑥𝛺𝑖 𝑥𝛺𝑖 = 1, it
asy to verify that 𝑥𝛺𝑖 is the (unique) solution of the above system of
quations. Thanks to the assumption (ii) (i.e., for each state 𝑥𝑣𝑖𝑖 , there
s always the possibility of entering at least one state 𝑥𝑤𝑖𝑖 with 𝑤𝑖 > 𝑣𝑖)
nd Lemma 1 (i.e., it is not possible to enter a state 𝑥𝑣𝑖𝑖 once entering a
tate 𝑥𝑤𝑖𝑖 with 𝑤𝑖 > 𝑣𝑖), the equilibrium point 𝑥𝛺𝑖 is also attractive. □

orollary 1. We define with 𝑖(𝑢𝑖) the transition probability matrix
ssociated with the machine 𝑀𝑖 when the control input 𝑢𝑖 is applied on its
ntire state space. Similarly, (𝑢) is the transition probability matrix of the
verall machine replacement problem𝑀 when the control input 𝑢 is applied.
hen, the following relation holds

(𝑢) = 1(𝑢1)⊗ 2(𝑢2)⋯⊗ 𝑚(𝑢𝑚), (28)

here ⊗ denotes the Kronecker product.2

orollary 2. From Lemma 2 and Corollary 1, the vector (𝑥𝛺1 , 𝑥
𝛺
2 ,… , 𝑥𝛺𝑚 )

′

s the equilibrium point of the overall machine replacement problem𝑀 if the
olicy ‘‘keep’’ is always applied to all the machines 𝑀𝑖.

Remark 1. The Markov chain corresponding to the policy used in
Corollary 2 (i.e., 𝑢𝑖 = 0 in all the states, for all the time steps and
all the machines) is not irreducible (indeed, each machine has 𝛺 − 1
transient state), and thus such policy does not fulfill Assumption 1. In
the remaining parts of the paper, we always consider stationary policies
fulfilling Assumption 1. In particular, as for the machine replacement
problem 𝑀 , it is sufficient to consider stationary policies with the as-
sociated Markov chains satisfying at least the following two properties
for each machine 𝑀𝑖:

(i) in the state 𝑥𝛺𝑖 , we always apply the replacement action 𝑢𝑖 = 1;
(ii) for each state 𝑥𝑣𝑖𝑖 there exists at least one 𝑤𝑖 > 𝑣𝑖 such that

𝑥𝑣𝑖𝑖 𝑥
𝑤𝑖
𝑖
(0) ≠ 0.

Fig. 1 shows a schematic diagram of the replacement problem for a
single machine with 𝛺 = 3 states. To have a better understanding of the
machine replacement problem formulation, we present the following
two illustrative examples.

2 The joint transition probabilities are given by the product of the single
ransition probabilities being the machine state evolutions independent.
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Fig. 1. Schematic diagram of machine replacement problem for a single machine with
3 states.

Example 3.1. Consider a machine replacement problem for a single
machine with 𝛺 = 5 states and with the following state transition
probabilities

𝑥𝑣𝑥𝑤
(

𝑢
)

= 1
𝑁(𝑥𝑣, 𝑢)

. (29)

More specifically, the state transition probabilities with 𝑢 = 0 are

11
(

𝑢 = 0
)

=12
(

𝑢 = 0
)

= 13
(

𝑢 = 0
)

= 14
(

𝑢 = 0
)

= 15
(

𝑢 = 0
)

= 1
5
,

22
(

𝑢 = 0
)

=23
(

𝑢 = 0
)

= 24
(

𝑢 = 0
)

= 25
(

𝑢 = 0
)

= 1
4
,

33
(

𝑢 = 0
)

=34
(

𝑢 = 0
)

= 35
(

𝑢 = 0
)

= 1
3
,

44
(

𝑢 = 0
)

=45
(

𝑢 = 0
)

= 1
2
,

hile, with 𝑢 = 1, we have

11
(

𝑢 = 1
)

= 21
(

𝑢 = 1
)

= 31
(

𝑢 = 1
)

= 41
(

𝑢 = 1
)

= 51
(

𝑢 = 1
)

= 1.

We applied the exact DP algorithm with the two different replace-
ent costs 𝑅 = 4 and 𝑅 = 5 to evaluate their impact on the computed

ontrol action for each state. The results are presented in Figs. 2 and 3.
t is straightforward to see that, if we decrease the replacement costs,
he obtained DP policy tends to use 𝑢 = 1 more often. Such results also
omply with the conclusion reported in Childress and Durango-Cohen
2005), i.e., in case of increasing failure rates and non-decreasing
eplacement costs, it is optimal to replace the machine if it enters any
tate worse than a particular state. In this example, for the case of
eplacement cost 𝑅 = 4, it is optimal to replace the machine in any
tate worse than 𝑥𝑣 = 2, while, for the case of replacement cost 𝑅 = 5,
t is optimal to replace the machine in any state worse than 𝑥𝑣 = 3.

xample 3.2. Now suppose to apply the exact DP algorithm for the
ase of two machines each having 𝛺𝑖 = 5, 𝑖 = 1, 2 states with different
ransition probabilities and different replacement costs. We assume
hat the first machine 𝑀1 has the same state transition probabilities
s defined in (29), while the second one 𝑀2 has the following state
ransition probabilities

𝑥𝑣22 𝑥𝑤22

(

𝑢2 = 0
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑁2(𝑥
𝑣2
2 ,0)−𝑣2

𝑁2(𝑥
𝑣2
2 ,0)

, if 𝑥𝑣22 = 𝑥𝑤2
2 ,

1−
𝑁2(𝑥

𝑣2
2 ,0)−𝑣2

𝑁2(𝑥
𝑣2
2 ,0)

𝑁2(𝑥
𝑣2
2 ,0)−1

, if 𝑥𝑣22 ≠ 𝑥𝑤2
2 ,

(30)

hile the state transition probabilities are equal to 1 in case the replace-
ent action is carried out in any state. The results of this experiment

re shown in Figs. 4 and 5. Being the cardinality of the state space
= 25, it is not convenient to show the state-control pairs for the entire

ime horizon as we did in Example 3.1. Instead, we performed the exact
6

P algorithm and saved its result as a lookup table. Then, we ran a
onte Carlo simulation to observe the visiting states, while employing

he optimal control action extracted from the computed lookup table.
ig. 4 shows the visited states and the applied control actions for 𝑀1,
hile Fig. 5 presents the same information for the second machine. It is
orth highlighting that 𝑀2 is replaced less frequently than 𝑀1 thanks

o the lower state transition probabilities. Indeed, from (30), it is easy
o verify that if we apply the control action ‘‘not-replacement(𝑢2 = 0)’’,
t is more likely that 𝑀2 stays in its current state rather than being
eteriorated.

. The generalized multi-trajectory LSTD algorithm

In this Section, we introduce the generalized multi-trajectory LSTD
lgorithm. In short, this algorithm computes an approximate optimal
ost function by running Monte Carlo simulations over different tra-
ectories of a given length and enforcing both off-policy or on-policy
echanism to improve the LSTD exploration capabilities.

The proposed algorithm is a generalized ADP method that belongs
o the family of LSTD based enhanced exploration approaches. In
articular, the proposed algorithm integrates on-policy single trajectory
STD (Bertsekas, 2017), off-policy LSTD (Forootani et al., 2022a; Sutton
t al., 2016; Forootani et al., 2022b), and multi-trajectory greedy
STD (Forootani et al., 2020b) approaches. A study on its sufficient
onvergence properties is also provided.

To start with, let us fix a specific stationary policy 𝜇. Note that we
onsider the fixed policy regardless of the finite or infinite time horizon.

Later in this Section, we include the policy improvements in our
roposed approach within Monte Carlo trajectories.

The family of LSTD based algorithms makes use of Monte Carlo sim-
lations to take samples for cost function of a fixed policy for the MDP
t hand (see Bertsekas (2017, 2011a) for more details). Based on the
ampling algorithm these methods are generally divided into on-policy
nd off-policy approaches (Sutton et al., 2016). The main challenge in
onte Carlo simulation approach is to enhance the exploration of the

tate space of the MDP, hence reaching better approximation. In this
egard we use the multi-trajectory Monte Carlo simulation method. By
oing so we are capable to visit more states and capture the nature of
he MDP at hand.

In particular, we generate 𝑄 simulated trajectories, the states of
trajectory are generated according to the transition probabilities
𝑥𝑣𝑥𝑤

(

𝜇(𝑥𝑣)
)

, where 𝜇 is the stationary policy under evaluation, the
ransition cost is discounted by an additional factor 𝛼 with each tran-
ition, and following each transition to a state 𝑥𝑤, the trajectory is
erminated when we reach to the maximum length 𝐿.

Once a trajectory is terminated, an initial state for the next tra-
ectory is chosen according to a fixed probability distribution 𝜖(0) =
𝜖𝑥1 (0),… , 𝜖𝑥𝑣 (0),… , 𝜖𝑥𝛺 (0)

)

, where

𝑥𝑣 (0) = 𝑃𝑟
(

𝑥𝑣(0)
)

, (31)

nd 𝑃𝑟(⋅) denotes any fixed probability distribution over the state space
, and 𝑥𝑣(0) the initial state.

Let the 𝑗th trajectory have the form
(

𝑥𝑣,𝑗 (0), 𝑥𝑣,𝑗 (1),… , 𝑥𝑣,𝑗 (𝐿)
)

, 𝑗 =
,… , 𝑄, where 𝑥𝑣,𝑗 (0) is the initial state, and 𝑥𝑣,𝑗 (𝐿) is the state at which
he trajectory is completed. For each state 𝑥𝑣,𝑗 (𝑙), 𝑙 = 0,… , 𝐿−1, of the
th trajectory, the accumulative simulated cost by setting the terminal
ost function to its approximation 𝜙

(

𝑥𝑣,𝑗 (𝐿)
)′𝑟𝑠 is given by

𝑗,𝑙(𝑟𝑠) =
𝐿−1
∑

𝑞=𝑙
𝛼𝑞−𝑙𝑔

(

𝑥𝑣,𝑗 (𝑙), 𝜇(𝑥𝑣,𝑗 (𝑙))
)

+ 𝛼𝐿−𝑙𝜙
(

𝑥𝑣,𝑗 (𝐿)
)′𝑟𝑠, (32)

here 𝛷𝑟𝑠 is the representation of cost function 𝐽 at stage 𝑠 under any
tationary policy 𝜇 and we assume it is given.

In particular, once the cost function 𝜆𝑗,𝑙(𝑟𝑠) is computed for all states
𝑣,𝑗 (𝑙) of the 𝑗th trajectory and for all trajectories 𝑗 = 1,… , 𝑄, the vector
𝑠+1 is obtained from 𝑟𝑠 by a least-squares fit of these values

𝑠+1 = arg min
𝑟∈R𝛾

𝑄
∑

𝐿−1
∑

(

𝜙
(

𝑥𝑣(𝑙)
)′𝑟 − 𝜆𝑗,𝑙(𝑟𝑠)

)2
. (33)
𝑗=1 𝑙=0
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Fig. 2. State-Control pairs for the case of single machine, with time horizon  = 30 and replacement cost 𝑅 = 4.

Fig. 3. State-Control pairs for the case of single machine, with time horizon  = 30 and replacement cost 𝑅 = 5.
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Fig. 4. State-Control pairs for 𝑀1, with time horizon  = 30 and replacement cost
𝑅1 = 4 in one experiment.

Fig. 5. State-Control pairs for 𝑀2, with time horizon  = 30 and replacement cost
𝑅2 = 6 in one experiment.

It is worth highlighting that we can view (33) as a policy evaluation
step in the policy iteration algorithm of the DP where 𝑟𝑠+1 corresponds
to the new policy that is being evaluated and 𝑟𝑠 corresponds to the
old policy. We can write the solution of least-squares problem (33)
explicitly as

𝑟𝑠+1 =

( 𝑄
∑

𝑗=1

𝐿−1
∑

𝑙=0
𝜙
(

𝑥𝑣(𝑙)
)

𝜙
(

𝑥𝑣(𝑙)
)′
)−1 𝑄

∑

𝑗=1

𝐿−1
∑

𝑙=0
𝜙
(

𝑥𝑣(𝑙)
)

𝜆𝑗,𝑙(𝑟𝑠). (34)

In the following, we provide more details about multi-trajectory
LSTD method.

To gain the insight regarding (33), let us utilize (5) and view  𝑙+1𝐽
as the vector of total discounted costs over a horizon of (𝑙 + 1) stages
with the terminal cost function being 𝐽 , and write one iteration of the
Bellman’s operator in the vector form

𝐽 = 𝑔 + 𝛼𝐽 . (35)

Indeed over a horizon with (𝑙 + 1) stages and the terminal cost
function 𝐽 , in vector form we have

 𝑙+1𝐽 = 𝛼𝑙+1 𝑙+1𝐽 +
𝑙

∑

𝑞=0
𝛼𝑞𝑞𝑔, 𝑙 = 0,… , 𝐿 − 1. (36)

As a result equivalently, we can write

(

 𝑙+1𝐽
)

(𝑥𝑣) = 𝐸

{

𝛼𝑙+1𝐽
(

𝑥𝑣(𝑙 + 1)
)

+
𝑙

∑

𝛼𝑞𝑔
(

𝑥𝑣, 𝜇(𝑥𝑣(𝑞))
)

}

,

𝑞=0

8

𝑙 = 0,… , 𝐿 − 1. (37)

Hence
(

 𝑙+1𝐽
)

(𝑥𝑣) can be seen as the expected value of (𝑙 + 1)-stages
cost of the policy under evaluation starting at state 𝑥𝑣. Now consider
to replace the terminal cost function 𝐽 with its approximate value,
i.e. 𝐽 ≈

(

𝛷𝑟𝑠
)

(𝑥𝑣), then we have

(

 𝑙+1(𝛷𝑟𝑠)
)

(𝑥𝑣) = 𝐸

{

𝛼𝑙+1𝜙(𝑥𝑣(𝑙 + 1))′𝑟𝑠 +
𝑙

∑

𝑞=0
𝛼𝑞𝑔

(

𝑥𝑣, 𝜇(𝑥𝑣(𝑞))
)

}

,

𝑙 = 0,… , 𝐿 − 1. (38)

Comparing (38) with the right hand side of (32) follows that cost
sample 𝜆𝑗,𝑙(𝑟𝑠) produced by the simulation earlier can be used to
stimate

(

 𝑙+1(𝛷𝑟𝑠)
)

(𝑥𝑣) for all 𝑥𝑣 by Monte Carlo averaging. The final
stimation formula is

𝐿(𝛷𝑟𝑠)
)

(𝑥𝑣) ≈ lim
𝑄→∞

1
∑𝑄
𝑗=1

∑𝐿−1
𝑙=0 𝛿

(

𝑥𝑣,𝑗 (𝑙) = 𝑥𝑣
)

.
𝑄
∑

𝑗=1

𝐿−1
∑

𝑙=0
𝛿
(

𝑥𝑣,𝑗 (𝑙) = 𝑥𝑣
)

𝜆𝑗,𝑙(𝑟𝑠), (39)

here for any event, we denote by 𝛿(𝑒𝑣𝑒𝑛𝑡) the indicator function of
he event.

Suppose we denote by 𝜂𝑥𝑣 the probability of being at the state 𝑥𝑣
fter exploring the state space with 𝑄 trajectories each having the
ength 𝐿, then by using the definition of the projection with respect
o this probability distribution, we can write

𝑠+1 = arg min
𝑟∈R𝛾

∑

𝑥𝑣∈𝑋
𝜂𝑥𝑣

(

𝜙(𝑥𝑣)′𝑟 −
(

𝐿(𝛷𝑟𝑠)
)

(𝑥𝑣)

)2

. (40)

From (39) and consistency of Monte Carlo simulation for policy
valuation (Bertsekas and Tsitsiklis, 1995), the simulation based solu-
ion of above relation is in the form of

𝑠+1 = arg min
𝑟∈R𝛾

𝑄
∑

𝑗=1

𝐿−1
∑

𝑙=0

(

𝜙
(

𝑥𝑣(𝑙)
)′𝑟 − 𝜆𝑗,𝑙(𝑟𝑠)

)2
, (41)

hich is (33).
In order to solve the least-squares minimization problem for com-

uting 𝑟𝑠, we note that by using (38) (which is the approximation of
37)) and replacing into (40) we have

𝑠+1 = arg min
𝑟∈R𝛾

∑

𝑥𝑣∈𝑋
𝜂𝑥𝑣

×

(

𝜙(𝑥𝑣)′𝑟 − 𝐸

{

𝛼𝑙+1𝜙(𝑥𝑣(𝑙 + 1))′𝑟𝑠 +
𝑙

∑

𝑞=0
𝛼𝑞𝑔

(

𝑥𝑣, 𝜇(𝑥𝑣(𝑞))
)

})2

,

(42)

nd by taking gradient from above relation with respect to 𝑟, equiva-
ently we have

𝑠+1 =

(

∑

𝑥𝑣∈𝑋
𝜂𝑥𝑣𝜙(𝑥𝑣)𝜙(𝑥𝑣)′

)−1(
∑

𝑥𝑣∈𝑋
𝜂𝑥𝑣𝜙(𝑥𝑣)

(

𝐿(𝛷𝑟𝑠)
)

(𝑥𝑣)

)

. (43)

In the following we try to find an operative implementation formula
or (43) by using simulations, therefore we replace 𝑟𝑠+1 by its estimated
ne, computed via simulation, that, with some abuse of notation, we
till denote with 𝑟𝑠+1.

Let 𝜂̃𝑥𝑣 be the empirical relative frequency of state 𝑥𝑣 during the
imulation, given by

̃𝑥 = 1
𝑄 × 𝐿

𝑄
∑

𝑗=1

𝐿−1
∑

𝑙=0
𝛿
(

𝑥𝑣,𝑗 (𝑙) = 𝑥𝑣
)

. (44)

Note that 𝜂̃𝑥𝑣 is the long-term occupancy probability of state 𝑥𝑣

during the simulation process.
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If we replace (44) into (43), then the simulation-based estimate (34)
can be written as

𝑟𝑠+1 =

( 𝑄
∑

𝑗=1

𝐿−1
∑

𝑙=0
𝜙
(

𝑥𝑣,𝑗 (𝑙)
)

𝜙
(

𝑥𝑣,𝑗 (𝑙)
)′
)−1

.
𝑄
∑

𝑗=1

𝐿−1
∑

𝑙=0
𝜙
(

𝑥𝑣,𝑗 (𝑙)
)

𝜆𝑗,𝑙(𝑟𝑠)

=

(

∑

𝑥𝑣∈𝑋

𝑄
∑

𝑗=1

𝐿−1
∑

𝑙=0
𝜙(𝑥𝑣)𝜙(𝑥𝑣)′

)−1

.
∑

𝑥𝑣∈𝑋

𝑄
∑

𝑗=1

𝐿−1
∑

𝑙=0
𝛿
(

𝑥𝑣,𝑗 (𝑙) = 𝑥𝑣
)

𝜆𝑗,𝑙(𝑟𝑠)

=

(

∑

𝑥𝑣∈𝑋
𝜂̃𝑥𝑣𝜙(𝑥𝑣)𝜙(𝑥𝑣)′

)−1

.
∑

𝑥𝑣∈𝑋

1
𝑄 × 𝐿

.𝜙(𝑥𝑣)

.
𝑄
∑

𝑗=1

𝐿−1
∑

𝑙=0
𝛿
(

𝑥𝑣,𝑗 (𝑙) = 𝑥𝑣
)

𝜆𝑗,𝑙(𝑟𝑠)

=

(

∑

𝑥𝑣∈𝑋
𝜂̃𝑥𝑣𝜙(𝑥𝑣)𝜙(𝑥𝑣)′

)−1
∑

𝑥𝑣∈𝑋

∑𝑄
𝑗=1

∑𝐿−1
𝑙=0 𝛿

(

𝑥𝑣,𝑗 (𝑙) = 𝑥𝑣
)

𝑄 × 𝐿
.𝜙(𝑥𝑣)

. 1
∑𝑄
𝑗=1

∑𝐿−1
𝑙=0 𝛿

(

𝑥𝑣,𝑗 (𝑙) = 𝑥𝑣
)

𝑄
∑

𝑗=1

𝐿−1
∑

𝑙=0
𝛿
(

𝑥𝑣,𝑗 (𝑙) = 𝑥𝑣
)

𝜆𝑗,𝑙(𝑟𝑠). (45)

If we define

𝛬𝑄(𝑥𝑣) =
1

∑𝑄
𝑗=1

∑𝐿−1
𝑙=0 𝛿

(

𝑥𝑣,𝑗 (𝑙) = 𝑥𝑣
)

.
𝑄
∑

𝑗=1

𝐿−1
∑

𝑙=0
𝛿
(

𝑥𝑣,𝑗 (𝑙) = 𝑥𝑣
)

𝜆𝑗,𝑙(𝑟𝑠), (46)

hen finally have

𝑠+1 =

(

∑

𝑥𝑣∈𝑋
𝜂̃𝑥𝑣𝜙(𝑥𝑣)𝜙(𝑥𝑣)′

)−1
∑

𝑥𝑣∈𝑋
𝜂̃𝑥𝑣𝜙(𝑥𝑣)𝛬𝑄(𝑟𝑠). (47)

Since
(

 (𝛷𝑟𝑠)
)

(𝑥𝑣) = lim𝑄→∞ 𝛬𝑄(𝑥𝑣) and 𝜂𝑥𝑣 = lim𝑄→∞ 𝜂̃𝑥𝑣 hence
we see that the iteration (43) and the simulation-based implementation
(47) asymptotically coincide. For a general discussion on the consis-
tency of Monte Carlo simulation for policy evaluation step see section
5.2 in Bertsekas and Tsitsiklis (1995).

In the following we provide some remarks that will be discussed in
the rest of the paper.

Remark 2. It is noticed that one can consider the length of each
trajectory different from another. In the sense that if we consider 𝑄
trajectories then length of trajectory 𝐿𝑗 may differ from 𝐿𝑗+1. In this
case we have

𝜂̃𝑥𝑣 =
1

𝐿1 + 𝐿2 +⋯ + 𝐿𝑄

𝑄
∑

𝑗=1

𝐿𝑗−1
∑

𝑙=0
𝛿
(

𝑥𝑗 (𝑙) = 𝑥𝑣
)

, (48)

ccordingly we can modify the rest of formulas for the new framework.

emark 3. If 𝑄 = 1 then the solution of the least-squares minimization
33) will be single trajectory Monte Carlo simulation method and it is
onsidered as an on policy LSTD approach (see Bertsekas (2017) for
ore details).

emark 4. If 𝑄 ≫ 1 and 𝐿 = 1 then the multi-trajectory simula-
ions method is categorized as an off-policy LSTD or off-policy LSPE
pproach, where the projection is with respect to the weighted sup-
orm corresponding to probability distribution of the initial state of
ach trajectory (Bertsekas, 2017) (see (31)).

emark 5. If 𝑄 ≫ 1 and 𝐿 ≫ 1 then the multi-trajectory simulations
ethod is categorized as an on-policy LSTD approach since the number

f visiting states within multiple trajectories are considerably greater
han the number of initial states of the trajectories.

emark 6. If the probability distribution of selecting initial state
f the next trajectory i.e. 𝜖(0), was corresponding to the steady state
istribution of the policy under evaluation with the transition proba-
ility matrix  , then the method is simplified to the single trajectory
n-policy LSTD method.
9

emark 7. The least-squares minimization of the form (33) can run
nto some practical issues: (i) collecting whole samples at once and
omputing the new parameter vector 𝑟𝑠+1 from 𝑟𝑠 is susceptible to

simulation noise in optimistic policy iteration setting (see discussion
in Thiery and Scherrer (2010)); (ii) for the MDPs with a large state
space and a large action space including policy improvement step in
policy iteration algorithm in the form of (33) is impractical since it
requires the collection of many samples between policy updates (see
section 6.3.5 in Bertsekas (2017)); (iii) in the case of large policy space
and practical size MDPs it is difficult to determine the base policy to
initialize the Monte Carlo simulation for collecting samples (Forootani
et al., 2020b), and finally (iv) implementation of (33) requires summa-
tion of whole trajectory (one-shot) which makes it difficult for real time
update of the parameter vector 𝑟𝑠+1.

In the next section, we will discuss the convergence property of the
proposed generalized multi-trajectory LSTD approach in the extreme
case when the condition of Remark 4 holds. Moreover a modified
version of (33) will be presented which allows to integrate policy
improvement step within the Monte Carlo simulations and address the
susceptibility to simulation noise.

5. Discussion on the convergence of the generalized multi-trajec-
tory LSTD approach

The probability distribution in (31) to select the initial state of
each trajectory is important for the convergence of the proposed LSTD
algorithm, especially when the length of each trajectory is short. In
particular, the extreme case as mentioned in Remark 4 occurs when
we set the length of each trajectory equal to 1, i.e. 𝐿 = 1. By doing so,
the generalized multi-trajectory LSTD method is categorized as an off
policy approach whereby sufficient condition is required to guarantee
its convergence. Indeed if the length of each trajectory is long the recur-
sive algorithm which computes estimated parameter vector 𝑟 gradually
forgets its initial state that started the Monte Carlo simulation. In the
following, we consider the most critical case where the length of each
trajectory is 𝐿 = 1 since the other cases are derived from this case,
hence providing the sufficient condition for its convergence covers the
rest.

Note that in this case 𝐿 =  and the initial probability distribution
𝑥𝑣 in (31) coincides with 𝜂𝑥𝑣 defined in the previous section.

The policy that we consider within a trajectory is fixed, hence we
uppress in our notation the dependency of the transition probability
atrix  to control 𝜇. Therefore we say  to represent the whole
atrix.

Inspired by the work (Bertsekas and Yu, 2009), in this paper we
ormally assume that the initial state of each trajectory is chosen based
n the probability distribution 𝜖 derived from the irreducible transition
robability matrix ̃ which is defined as follows (Bertsekas, 2017)

̃ = (𝐼 − ) + , (49)

here 𝐼 is the identity matrix,  is a diagonal matrix with diagonal
omponents 𝛽𝑖 ∈ [0, 1), and  is another transition probability matrix3

ith the elements 𝑑𝑥𝑣𝑥𝑤 . In this framework, at state 𝑥𝑣, the next state 𝑥𝑤
s generated with probability 1−𝛽𝑖 according to transition probabilities
𝑥𝑣𝑥𝑤 , and with probability 𝛽𝑖 according to transition probabilities
𝑥𝑣𝑥𝑤 . It is worth highlighting that a computer program is required to
enerate state transitions based on ̃ . Moreover, the pair (𝑥𝑣, 𝑥𝑤) with
𝑥𝑣𝑥𝑤 needs not correspond to physically plausible transitions. With this
hoice the projection that we introduced in the LSTD method is based
n the following relation in the vector form

𝑟 = 𝛱̄ (𝛷𝑟), (50)

3 In our case, ̃ is irreducible if  is.
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where

𝛱̄ = 𝛷(𝛷′𝛯̄𝛷)−1𝛷′𝛯̄, (51)

and 𝛯̄ ∈ R𝛺×𝛺 is the diagonal matrix, having 𝜖 along its diagonal.
The following Lemma provides the sufficient condition to preserve

he convergence of 𝛱̄ .

emma 3 (Forootani et al., 2022b). Assume that ̃ is an irreducible state
ransition probability matrix and that 𝜖 is its unique steady-state probability
ector with positive components. Then,  and 𝛱̄ are contraction mappings
ith respect to ‖ ⋅ ‖𝜖 , and the associated modulus of contraction is at most
qual to 𝛼̄, where

𝛼̄ = 𝛼∕
√

1 − 𝛽, with 𝛽 = max
𝑖=1,…,𝑛

𝛽𝑖. (52)

Note that the relation 𝛽 < 1 − 𝛼2 has to be fulfilled for 𝛱̄ to be a
ontraction mapping w.r.t. 0 < 𝛼̄ < 1.

Since 𝛱̄ is a contraction mapping w.r.t. 𝜖 and by exploiting the
ssumption that 𝛷 has full rank 𝛾, it is easy to prove the following
emma, which extends the Proposition 6.3.1 of Bertsekas (2017).

emma 4. Let the assumptions of Lemma 3 hold, and let the matrix 𝛷 be
f full column rank 𝛾. Then, we have

𝐽 −𝛷𝑟‖‖
‖𝜖

≤ 1∕(
√

1 − 𝛼̄2)‖‖
‖

𝐽 − 𝛱̄𝐽
‖

‖

‖𝜖
, (53)

where 𝑟 is the unique solution of the projected Bellman equation (50) and
𝐽 is the fixed point of the mapping  .

Proof. The fact that 𝛷 has full column rank 𝛾 guarantees that the
unique fixed point of the operator 𝛱̄ can be represented by a unique
parameter vector 𝑟. Moreover, we have
‖

‖

‖

𝐽 −𝛷𝑟‖‖
‖

2

𝜖
= ‖

‖

‖

𝐽 − 𝛱̄𝐽
‖

‖

‖

2

𝜖
+ ‖

‖

‖

𝛱̄𝐽 −𝛷𝑟‖‖
‖

2

𝜖

= ‖

‖

‖

𝐽 − 𝛱̄𝐽
‖

‖

‖

2

𝜖
+ ‖

‖

‖

𝛱̄𝐽 − 𝛱̄ (𝛷𝑟)‖‖
‖

2

𝜖

≤ ‖

‖

‖

𝐽 − 𝛱̄𝐽
‖

‖

‖

2

𝜖
+ 𝛼̄2‖‖

‖

𝐽 −𝛷𝑟‖‖
‖

2

𝜖
, (54)

where the first equality uses the Pythagorean theorem,4 the second
equality holds because 𝐽 is the fixed point of  and 𝛷𝑟 is the fixed
point of 𝛱̄ , and the last inequality uses the contraction property of
𝛱̄ . □

Unfortunately the computation of 𝛱̄ requires the matrix inversion
and multiplication with large size matrices, which is impractical for
large scale MDP problems. To tackle this practical issue, in the follow-
ing, we discuss the construction of simulation based approximations
to the projected 𝛷𝑟 = 𝛱̄ (𝛷𝑟) and related convergence analysis. In
this regard, let us consider the iterative estimation of the parameter
vector 𝑟 given by 𝛷𝑟𝑠+1 = 𝛱̄ (𝛷𝑟𝑠). By expressing the projection as a
least-squares minimization, we see that 𝑟𝑠+1 is given by

𝑟𝑠+1 = arg min
𝑟∈R𝛾

‖𝛷𝑟 −  (𝛷𝑟𝑠)‖2𝜖 , (55)

or equivalently

𝑟𝑠+1 = argmin
𝑟∈R𝛾

∑

𝑥𝑣∈𝑋
𝜖𝑥𝑣

(

𝜙(𝑥𝑣)′𝑟 −
{

𝑔(𝑥𝑣, 𝜇(𝑥𝑣)) + 𝛼
∑

𝑥𝑤∈𝑋
𝑥𝑣𝑥𝑤𝜙(𝑥𝑤)′𝑟𝑠

}

)2

,

(56)

which is identical to (40) with 𝐿 = 1. By setting the gradient of the
minimized expression above to 0 we have

𝑟𝑠+1 =

(

∑

𝑥𝑣∈𝑋
𝜖𝑥𝑣𝜙(𝑥𝑣)𝜙(𝑥𝑤)′

)−1

4 It is noticed that from the Pythagorean theorem we have

𝐽 −𝛷𝑟‖‖
‖

2

𝜖
= ‖

‖

‖

𝛱̄(𝐽 −𝛷𝑟)‖‖
‖

2

𝜖
+ ‖

‖

‖

(𝐼 − 𝛱̄)(𝐽 −𝛷𝑟)‖‖
‖

2

𝜖
..
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Fig. 6. The basic simulation scheme.

×

(

∑

𝑥𝑣∈𝑋
𝜖𝑥𝑣𝜙(𝑥𝑣)

{

𝑔(𝑥𝑣, 𝜇(𝑥𝑣)) + 𝛼
∑

𝑥𝑤∈𝑋
𝑥𝑣𝑥𝑤𝜙(𝑥𝑤)′𝑟𝑠

}

)

. (57)

In spite of considering a model-based method in this paper, the
approach can be extended to model-free cases by assuming that a
computer simulation can be employed to generate samples accord-
ing to the probability distribution 𝜖𝑥𝑣 and the transition probability
𝑥𝑣𝑥𝑤 (Bertsekas, 2012, 2019).

In particular, such a simulator can generate the needed samples
along the Monte Carlo trajectories, that is to say, the sequence of states
{

𝑥𝑣(0), 𝑥𝑣(1),…
}

and the sequence of state transitions
{

(

𝑥𝑣(0), 𝑥𝑤(0)
)

,
(

𝑥𝑣(1), 𝑥𝑤(1)
)

,…
}

. In other words, we estimate the

above recursive equation by using its sampled version

𝑟𝑠+1 =

( 𝑠
∑

𝑡=0
𝜙
(

𝑥𝑣(𝑡)
)

𝜙
(

𝑥𝑣(𝑡)
)′
)−1

×

( 𝑠
∑

𝑡=0
𝜙
(

𝑥𝑣(𝑡)
)

(

𝑔
(

𝑥𝑣(𝑡), 𝜇(𝑥𝑣(𝑡))
)

+ 𝛼𝜙
(

𝑥𝑤(𝑡)
)′𝑟𝑡

)

)

, (58)

which is the same as (45) for 𝐿 = 1. The probabilistic mechanism in
(58) is subject to the following conditions:

1. The sequence
{

𝑥𝑣(0), 𝑥𝑣(1),…
}

is generated based on the dis-
tribution 𝜖 associated with ̃ in (49), which defines projection
norm ‖ ⋅ ‖𝜖 , in the sense that with probability 1,

lim
𝑠→∞

𝑠
∑

𝑡=0
𝛿
(

𝑥𝑣(𝑡) = 𝑥𝑣
)

∕(𝑠 + 1) = 𝜖𝑥𝑣 , ∀𝑥𝑣 ∈ 𝑋, (59)

where 𝛿(⋅) denotes the indicator function.
2. The sequence

{

(

𝑥𝑣(0), 𝑥𝑤(0)
)

,
(

𝑥𝑣(1), 𝑥𝑤(1)
)

,…
}

is generated ac-

cording to stochastic matrix  with state transition probabilities
𝑥𝑣𝑥𝑤 , that is

lim
𝑠→∞

∑𝑠
𝑡=0 𝛿

(

𝑥𝑣(𝑡) = 𝑥𝑣, 𝑥𝑤(𝑡) = 𝑥𝑤
)

∑𝑠
𝑡=0 𝛿

(

𝑥𝑣(𝑡) = 𝑥𝑣
) = 𝑥𝑣𝑥𝑤 , ∀𝑥𝑣, 𝑥𝑤 ∈ 𝑋. (60)

Fig. 6 shows the basic simulation methodology which consists of
generating states {𝑥𝑣(0), 𝑥𝑣(1),…} according to the distribution 𝜖, and
a sequence of transitions

{

(

𝑥𝑣(0), 𝑥𝑤(0)
)

,
(

𝑥𝑣(1), 𝑥𝑤(1)
)

}

.
For the convergence analysis of the proposed algorithmic implemen-

tation, it is useful to express the least-squares minimization (55) in the
following form

𝑟𝑠+1 = arg min
𝑟∈R𝛾

‖𝛷𝑟 − (𝑔 + 𝛼𝛷𝑟𝑠)‖2𝜖 . (61)

By setting to 0 the gradient with respect to 𝑟 of the above quadratic
expression, we obtain the orthogonality condition

𝛷′𝛯̄
(

𝛷𝑟𝑠+1 − (𝑔 − 𝛼𝛷𝑟𝑠)
)

= 0, (62)

which yields

𝑟𝑠+1 = 𝑟𝑠 − 𝐺(𝐶𝑟𝑠 − 𝑦), (63)

where

𝐶 = 𝛷′𝛯̄(𝐼 − 𝛼)𝛷, 𝑦 = 𝛷′𝛯̄𝑔, 𝐺 =
(

𝛷′𝛯̄𝛷
)−1. (64)
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We approximate the matrix 𝐶 and vector 𝑦 by

𝐶𝑠 = 1∕(𝑠 + 1)
𝑠
∑

𝑡=0
𝜙
(

𝑥𝑣(𝑡)
)

(

𝜙
(

𝑥𝑣(𝑡)
)

− 𝛼𝜙
(

𝑥𝑤(𝑡)
)

)′
, (65)

and

𝑦𝑠 = 1∕(𝑠 + 1)
𝑠
∑

𝑡=0
𝜙
(

𝑥𝑣(𝑡)
)

𝑔
(

𝑥𝑣(𝑡), 𝜇(𝑥𝑣(𝑡))
)

, (66)

where we estimate the probabilities 𝜖𝑥𝑣 and 𝑥𝑣𝑥𝑤 by their empirical
frequencies in the Monte Carlo simulations as follows

𝐶𝑠 =
∑

𝑥𝑣∈𝑋

∑𝑠
𝑡=0 𝛿

(

𝑥𝑣(𝑡) = 𝑥𝑣
)

𝑠 + 1
𝜙
(

𝑥𝑣
)

×

(

𝜙
(

𝑥𝑣
)

− 𝛼
∑

𝑥𝑤∈𝑋

∑𝑠
𝑡=0 𝛿

(

𝑥𝑣(𝑡) = 𝑥𝑣, 𝑥𝑤(𝑡) = 𝑥𝑤
)

∑𝑠
𝑡=0 𝛿

(

𝑥𝑣(𝑡) = 𝑥𝑣
) 𝜙

(

𝑥𝑤
)

)′

, (67)

nd finally

𝑠 =
∑

𝑥𝑣∈𝑋
𝜖𝑡,𝑥𝑣𝜙(𝑥𝑣)

(

𝜙(𝑥𝑣) − 𝛼
∑

𝑥𝑤∈𝑋
̂𝑡,𝑥𝑣𝑥𝑤𝜙(𝑥𝑤)

)

. (68)

Similarly we can write

𝑦𝑠 =
∑

𝑥𝑣∈𝑋
𝜖𝑡,𝑥𝑣𝜙(𝑥𝑣)𝑔(𝑥𝑣, 𝜇(𝑥𝑣)). (69)

Since the empirical frequencies 𝜖𝑡,𝑥𝑣 and ̂𝑡,𝑥𝑣𝑥𝑤 asymptotically con-
erge to the probabilities 𝜖𝑥𝑣 and 𝑥𝑣𝑥𝑤 respectively, we have with
robability 1, 𝐶𝑠 → 𝐶 and 𝑦𝑠 → 𝑦 (Bertsekas, 2011b).

Considering the Assumptions 1 and 2, the following results guaran-
ee the convergence of the algorithm described above.

emma 5 (Forootani et al., 2022a). Matrix 𝐶 is positive definite.

emma 6 (Forootani et al., 2022a). 𝐺−1 = (𝛷′𝛯̄𝛷)−1 exists and it is
symmetric positive definite.

Theorem 7 (Forootani et al., 2022a). If matrix 𝐶 is positive definite (but
not symmetric in general) then the following holds: (i) Eigenvalues of 𝐶 have
ositive real parts, (ii) det(𝐺−1𝐶) < 1, (iii) 𝐺−1𝐶 is positive definite, (iv)
− 𝐺−1𝐶 has the eigenvalues strictly within unit circle.

orollary 3. Since 𝐼 −𝐺−1𝐶 has the eigenvalues strictly within unit circle
s proven in Theorem 7, then the recursive iteration (63) or equivalently
58) is convergent.

Note that the multi-trajectory LSTD approach proposed above is
cale free. Indeed let us define the set

=
{

𝛷𝑟|𝑟 ∈ R𝛾
}

. (70)

or any invertible 𝑚 × 𝑚 matrix 𝛩 such that 𝛷 = 𝛹𝛩 then we have

=
{

𝛹𝑓 |𝑓 ∈ R𝛾
}

, (71)
11
ence  can be represented as the span of a different set of basis
functions, and any vector 𝛷𝑟 ∈  can be written as 𝛩𝑓 , where the
weight vector 𝑓 is equal to 𝛩𝑟. In addition, each row 𝜙(𝑥)′, i.e. the
eature vector of state 𝑥 in the representation based on 𝛷, is equal
o 𝜓(𝑥)′𝛩, i.e. the linearly transformed feature vector of 𝑥 in the
epresentation based on 𝛹 . Consider to denote by 𝐶𝑠,𝛷 and 𝑦𝑠,𝛷 the
atrix and the vector corresponding to feature matrix 𝛷 (see (65)

and (66)), and denote by 𝐶𝑠,𝛹 and 𝑦𝑠,𝛹 the matrix and the vector
orresponding to feature matrix 𝛹 . It is straightforward to show that
𝑠,𝛷 = 𝛩′𝐶𝑠,𝛹𝛩 and 𝑦𝑠,𝛷 = 𝛩′𝑦𝑠,𝛹 . The following lemma proves that the

LSTD method is scale free.

Lemma 8. If 𝛷 = 𝛹𝛩, then we have 𝛷𝑟𝑠 = 𝛹𝑓𝑠 for all 𝑠.

Proof. It is easy to verify that

𝛷𝑟𝑠 = 𝛷
(

𝐶𝑠,𝛷
)−1𝑦𝑠,𝛷 = 𝛹𝛩

(

𝛩′𝐶𝑠,𝛹𝛩
)−1𝛩′𝑦𝑠,𝛹 = 𝛹

(

𝐶𝑠,𝛹
)−1𝑦𝑠,𝛹 = 𝛹𝑓𝑠.

(72)

which proves that LSTD is scale free for all 𝑠. □

6. Solution to near singularity and policy improvement issues

In this section, we will discuss near singularity issues of matrix 𝐶,
and consider the policy improvement step within the Monte Carlo sim-
ulation trajectories. Moreover, we provide more details about feature
matrix selection.

6.1. Solution to near singularity of matrix 𝐶

In Lemma 5, we stated that the matrix 𝐶 is invertible and positive
definite. However, this property may not hold for 𝐶𝑠 until a sufficient
number of samples in the Monte Carlo simulation are acquired for its
calculation. Near-singularity of 𝐶𝑠 can be due either to the columns of
𝛷 being nearly linearly dependent or to the matrix 𝛯̄(𝐼 − 𝛼) being
nearly singular (see (64)). To resolve this issue, a regularization term
is introduced. More specifically, in each iteration along the Monte
Carlo trajectory, we compute 𝑟𝑠 by solving the following least-squares
problem

min
𝑟

{

(

𝑦𝑠 − 𝐶𝑠𝑟
)′𝛴−1(𝑦𝑠 − 𝐶𝑠𝑟

)

+ 𝜎 ∥ 𝑟 − 𝑟𝑠 ∥2
}

. (73)

By setting the gradient of above function to 0, we have

𝑟𝑠+1 =
(

𝐶 ′
𝑠𝛴

−1𝐶 ′
𝑠 + 𝜎𝐼

)−1(𝐶 ′
𝑠𝛴

−1𝑦𝑠 + 𝜎𝑟𝑠
)

, 𝑠 = 1,… , 𝑄, (74)

where the quadratic term 𝜎‖𝑟 − 𝑟𝑠‖2 is known as a regularization term
(here, ‖ ⋅ ‖ denotes the 𝐿2-norm), and has the effect of biasing the
estimate 𝑟𝑠+1 towards the previous parameter vector estimation 𝑟𝑠.
We consider the heuristic guess 𝑟̄ for the parameter vector 𝑟0. It is
based on some intuition about the problem at hand. Moreover, the
matrix 𝛴 and the coefficient 𝜎 are respectively positive definite and
positive (Hoffman et al., 2011). To see more discussion on the selection
of matrix 𝛴, we refer the reader to Bertsekas (2011b), and for an
empirical study, to Forootani et al. (2022a, 2020b).

The convergence of the iteration (74) follows from 𝐶𝑠 → 𝐶, 𝑦𝑠 → 𝑦
(see Bertsekas (2011b)), and the following Lemma, the proof of which
can be found in Forootani et al. (2022a).

Lemma 9 (Forootani et al., 2022a). The recursive iteration (74) is conver-
gent.

6.2. Integrating the policy improvement

We can modify (57) in order to integrate the policy improvement

step within Monte Carlo simulations by using the results in Forootani
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et al. (2022a, 2020b) as follows:

𝑟𝑠+17 = arg min
𝑟∈R𝛾

∑

𝑥𝑣∈𝑋
𝜖𝑥𝑣

×

(

𝜙(𝑥𝑣)′𝑟 − min
𝜇

{

𝑔
(

𝑥𝑣, 𝜇(𝑥𝑣)
)

− 𝛼
∑

𝑥𝑤∈𝑋
𝑥𝑣𝑥𝑤 (𝜇(𝑥𝑣))𝜙

(

𝑥𝑤
)′𝑟𝑠

}

)2

, (75)

by setting to 0 the gradient of above equation

𝑟𝑠+1 =

(

∑

𝑥𝑣∈𝑋
𝜖𝑥𝑣𝜙(𝑥𝑣)𝜙(𝑥𝑣)′

)−1

×

(

∑

𝑥𝑣∈𝑋
𝜖𝑥𝑣𝜙(𝑥𝑣) min

𝜇

{

𝑔
(

𝑥𝑣, 𝜇(𝑥𝑣)
)

+ 𝛼
∑

𝑥𝑤∈𝑋
𝑥𝑣𝑥𝑤 (𝑢)

(

𝜙
(

𝑥𝑤
)′𝑟𝑠

)

}

)

, (76)

this recursive iteration can be approximately written as

𝑟𝑠+1 =

( 𝑠
∑

𝑡=0
𝜙(𝑥𝑣(𝑡))𝜙(𝑥𝑣(𝑡))′

)−1

×

( 𝑠
∑

𝑡=0
𝜙(𝑥𝑣(𝑡))

{

(

𝑔(𝑥𝑣, 𝜇(𝑥𝑣(𝑡)))
)

+ 𝛼
(

𝜙
(

𝑥𝑤𝜇 (𝑡)
)′𝑟𝑠

)

}

)

, (77)

where 𝑥𝑤𝜇 (𝑡) is selected based on the following control law

𝜇∗(𝑥𝑣(𝑠)) ∶= argmin
𝜇

(

𝑔
(

𝑥𝑣(𝑠), 𝜇(𝑥𝑣(𝑠))
)

+ 𝛼𝜙
(

𝑥𝑤𝜇 (𝑠)
)′𝑟𝑠

)

, ∀ 𝑠, (78)

in the other words, at the start of the iteration 𝑠, we have the current
parameter vector 𝑟𝑠, we are at the state 𝑥𝑣(𝑠), and we have chosen a
control 𝜇∗(𝑥𝑣(𝑠 − 1)).

6.3. Discussion on feature selection

In many other ADP algorithms based on linear cost-to-go approx-
imation architectures (such as Least-Squares Policy Iteration (Thiery
and Scherrer, 2010), Least-Squares Policy Evaluation (Bertsekas, 2017),
LSTD (Sutton et al., 2016), etc.), the feature vectors enter into the
algorithm as outer products of the form 𝜙(𝑥𝑣)𝜙(𝑥𝑤)′ (see Eq. (58)). This
approach works well when the number of features is small, but if it is
desirable to use a large number of features, difficulties are encountered
since computing the outer product becomes computationally expensive.

One possible solution is to exploit the graph structure of the state
space of the MDPs to select the feature matrix. In particular, e.g. for
a fixed policy, the state transition dynamics of the MDP are described
by a Markov chain, where each state 𝑥𝑣 is represented as a node in the
graph and is connected to states that are reachable from 𝑥𝑣 in one step
with positive probability. In this regard one can define a feature matrix
based on the graph which measures the number of steps necessary
to move from one state to another. To clarify, consider the following
feature matrix

𝜗(𝑥𝑣) = 𝜙(𝑥𝑣) − 𝛼
∑

𝑥𝑤∈𝑋
𝑥𝑣𝑥𝑤𝜙(𝑥𝑤), (79)

where 𝜗(𝑥𝑣) represents a new feature mapping that accounts for the
structure of the MDP dynamics. More specifically, it demonstrates a
combination of the features at state 𝑥𝑣 and all states 𝑥𝑤 that can be
reached in one step from 𝑥𝑣. The following Lemma states an important
property of the new feature mapping and proves that the set of vectors
{𝜗(𝑥𝑣)|𝑥𝑣 ∈ 𝑋} are linearly independent.
12
Lemma 10. Assume the feature matrix 𝛷 is full column rank. Then the
vectors {𝜗(𝑥𝑣)|𝑥𝑣 ∈ 𝑋}, where 𝜗(𝑥𝑣) = 𝜙(𝑥𝑣) − 𝛼

∑

𝑥𝑤∈𝑋 𝑥𝑣𝑥𝑤𝜙(𝑥𝑤), are
also linearly independent.

Proof. Consider the real vector space 𝛶 spanned by the vectors
{𝜙(𝑥𝑣)|𝑥𝑣 ∈ 𝑋}. It is evident that 𝜗(𝑥𝑣) is a linear combination of vectors
in 𝛶 , so a linear operator 𝐵 that maps 𝜙(𝑥𝑣) to 𝜗(𝑥𝑣) can be defined

𝜗(𝑥𝑣) = 𝐵𝜙(𝑥𝑣). (80)

Since

𝜗(𝑥𝑣) = 𝜙(𝑥𝑣) − 𝛼
∑

𝑥𝑤∈𝑋
𝑥𝑣𝑥𝑤𝜙(𝑥𝑤), (81)

the matrix of 𝐵 is (𝐼 − 𝛼), where 𝐼 is the identity matrix and 
is the probability transition matrix for the fixed policy. Since  is a
stochastic matrix, its largest eigenvalue is 1 and all other eigenvalues
have absolute value less than 1; thus all the eigenvalues of 𝛼 have
absolute value less than or equal to 𝛼 < 1. Since all eigenvalues of 𝐼
are equal to 1, (𝐼 − 𝛼) is full rank and 𝑑𝑖𝑚

(

𝑘𝑒𝑟(𝐵)
)

= 0. Hence,

𝑑𝑖𝑚
(

{𝜗(𝑥𝑣)|𝑥𝑣 ∈ 𝑋}
)

= 𝑑𝑖𝑚
(

{𝜙(𝑥𝑣)|𝑥𝑣 ∈ 𝑋}
)

, (82)

o the vectors {𝜗(𝑥𝑣)|𝑥𝑣 ∈ 𝑋} are linearly independent. □

By exploiting the graph structure of an MDP as the future work, we
lan to develop a new family of algorithms similar in spirit to Bellman
esidual methods (Antos et al., 2008). Note that Bellman residual
pproaches attempt to minimize the error incurred in solving Bellman’s
quation at a set of sample states. However, in our future work by
xploiting kernel-based regression techniques with non-degenerate ker-
el functions as the underlying cost function ADP architecture, our
lgorithms are able to construct cost function for which the Bellman
esiduals are explicitly forced to zero at the sample stats. The fol-
owing remark summarizes our main goal for employing kernel-based
egression in the future work.

emark 8. By using kernel-based regression techniques, our algo-
ithms will compute only inner products of the feature vectors, which
an be computed efficiently using kernels even when the effective
umber of features is very large or even infinite. Thus, our future
pproach can allow the use of very high-dimensional feature vectors
n a computationally tractable way.

. Practical algorithm for generalized multi-trajectory LSTD

In the previous sections, we introduced multi-trajectories and its
arious forms in the LSTD-ADP framework. We also discussed the
olution to near singularity of matrix 𝐶𝑠 at the beginning of the Monte
arlo simulation. Finally, we considered policy improvement within
onte Carlo simulation. In this section, we integrate all the previous

teps in one framework to provide a general simulation algorithm as
ollows for the generalized multi-trajectory LSTD approach.

1. Choose the number of trajectories 𝑄 and their length 𝐿, set 𝑗 = 1
and 𝑙 = 0,

2. Initialize the vector 𝑟0 = 𝑟̄, the initial state 𝑥𝑣,1(0), the matrix
𝐶0 = 0, the vector 𝑦0 = 0, and index 𝑠 = 0.

3. While 𝑗 ≤ 𝑄, 𝑗 ∈ {1,… , 𝑄}:

• While 𝑙 ≤ 𝐿, 𝑙 ∈ {0, 1,… , 𝐿}:
• Set 𝑠 ← 𝑠 + 1
• For each 𝑢 ∈ 𝑈 (𝑥𝑣,𝑗 (𝑙)) do:

– From the current state 𝑥𝑣,𝑗 (𝑙), generate a candidate
next state 𝑥𝑣,𝑗𝑢 (𝑙 + 1) by Monte Carlo simulation and
by applying the admissible control 𝑢 based on the
transition probability matrix (𝑢)

– Compute the corresponding feature vector 𝜙
(

𝑥𝑗𝑢(𝑙)
)

( 𝑣,𝑗 )
and the reward of the current state 𝑔 𝑥 (𝑙), (𝑢)
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– Calculate the matrix 𝐶𝑠(𝑢)

𝐶𝑠(𝑢) = (1− 1
𝑠 + 1

)𝐶𝑠−1+
1

𝑠 + 1
𝜙
(

𝑥𝑣,𝑗 (𝑙)
)

(

𝜙
(

𝑥𝑣,𝑗 (𝑙)
)

−𝛼𝜙
(

𝑥𝑣,𝑗𝑢 (𝑙+1)
)

)′

(83)

– Calculate the vector 𝑦𝑠

𝑦𝑠(𝑢) = (1 − 1
𝑠 + 1

)𝑦𝑠−1 +
1

𝑠 + 1
𝜙
(

𝑥𝑣,𝑗 (𝑙)
)

𝑔
(

𝑥𝑣,𝑗 (𝑙), 𝑢
)

(84)

– Compute the candidate parameter 𝑟𝑠(𝑢) as follows

𝑟𝑠(𝑢) =
(

𝐶 ′
𝑠(𝑢)𝛴

−1𝐶𝑠(𝑢) + 𝜎𝐼
)−1.

(

𝐶 ′
𝑠(𝑢)𝛴

−1𝑦𝑠(𝑢) + 𝜎𝑟𝑠−1
)

(85)

• Choose the pair (𝑟𝑠(𝑢̄), 𝑥
𝑣,𝑗
𝑢̄ (𝑙 + 1)) and the related greedy

control 𝑢̄ by

arg
𝑟𝑠(𝑢),𝑥

𝑣,𝑗
𝑢 (𝑙+1)

min

(

𝑔
(

𝑥𝑣,𝑗 (𝑙), (𝑢)
)

+𝛼𝜙
(

𝑥𝑣,𝑗𝑢 (𝑙+1)
) ′𝑟𝑠(𝑢)

)

(86)

• Set 𝐶𝑠 ← 𝐶𝑠(𝑢̄), 𝑥𝑣,𝑗 (𝑙+ 1) ← 𝑥𝑣,𝑗𝑢̄ (𝑙+ 1), 𝑟𝑠 ← 𝑟𝑠(𝑢̄), 𝑙 ← 𝑙+ 1
• Set 𝑗 ← 𝑗 + 1,
• Generate the new initial state 𝑥𝑣,𝑗 (0) from 𝑥𝑣,𝑗 (𝑙 − 1) based

on ̃ in (49).

We can note that the sample computational complexity in the
proposed multi-trajectory LSTD algorithm mainly depends on matrix
inversion operations. In particular, we need to perform a 𝛾×𝛾 matrix in-
version (𝛾 is the number of features) in order to compute the candidate
parameter vector 𝑟𝑠(𝑢) for each admissible action 𝑢 in the current state
𝑥𝑣,𝑗 (𝑙), see (85). Such matrix inversion operation has a computational
cost of 𝑂(𝛾3), which can be reduced to 𝑂(𝛾2) by using the Sherman–
Morrison formula (Dann et al., 2014). The algorithmic complexity
along with its convergence rate determines the computational resources
needed for evaluating the estimated parameter vector 𝑟∗ from the
parameter vector values 𝑟𝑠, the latter recursively calculated through the
proposed algorithm iterations.

It is known that, for linear function approximation, the convergence
of LSTD-based methods is guaranteed if the states are sampled accord-
ing to the underlying system dynamics (Bertsekas, 2011b). As discussed
in Section 5 and numerically verified in the next one, the asymptotic
convergence rate of the LSTD based methods is not influenced by the
choice of LSTD input parameters (such as 𝛴 and 𝜎, provided that
the matrix 𝛴 is symmetric positive definite Bertsekas, 2011b; Yu and
Bertsekas, 2009; Nedić and Bertsekas, 2003), but it is influenced by the
state sampling mechanism itself (Bertsekas, 2011b). This means that
the convergence rate of the classical single-trajectory LSTD algorithm
(where the cost of a specific policy is evaluated, see Bertsekas (2012))
is expected to be different from the one of the proposed multi-trajectory
LSTD algorithm (where the policy under evaluation is renewed at each
iteration, see (86)): the two state sampling mechanisms, even though
based on the underlying system dynamics, are different. Thus, the
convergence rate of the multi-trajectory LSTD algorithm is expected to
be slower than the one of the single trajectory LSTD. On the other hand,
besides the feature matrix, two critical parameters are the number of
trajectories 𝑄 and their length 𝐿. As also shown in the next Section,
they can influence both the quality of the value function approximation
and the convergence rate of the algorithm.

8. Numerical simulation

In this section, we provide some examples to illustrate the effec-
tiveness of the proposed approach for machine replacement problems.
A MATLAB-based application has been developed to construct the
system state space, to define the state transition probability matrix
13
concerning the machine replacement, to solve the optimization problem
via both the exact DP and the proposed generalized multi-trajectory
LSTD algorithm (in short, ADP algorithm in this Section), as well as to
perform Monte Carlo simulations for evaluating the computed policies.
To do this, such application takes as input parameters and all the data
necessary to set up the MDP formulation and the related stochastic DP
framework (e.g., the operating cost per stage, the replacement cost, and
the finite time horizon).

For all the simulation examples, we considered the following oper-
ating cost per stage

𝑐𝑖(𝑥𝑖) = 0.1 + 0.9𝑒0.3𝑥𝑖 , (87)

while the transition probabilities are defined as

𝑥𝑣𝑖𝑖 𝑥
𝑤𝑖
𝑖

(

𝑢𝑖
)

= 1
𝑁𝑖(𝑥

𝑣𝑖
𝑖 , 𝑢𝑖)

. (88)

t is quite simple to verify that (88) satisfies the condition
(


𝑥𝑣𝑖+1𝑖 𝑥𝑤𝑖𝑖

(0)−

𝑥𝑣𝑖𝑖 𝑥
𝑤𝑖
𝑖
(0)

)

≥ 0, which implies that there is a higher probability of

nding at a worse state 𝑥𝑤𝑖𝑖 if we start at the less operational state 𝑥𝑣𝑖+1𝑖 .
In this paper, for each state 𝑥𝑣 = (𝑥𝑣11 , 𝑥

𝑣2
2 ,… , 𝑥𝑣𝑚𝑚 ), we define the

ollowing components of the feature vector (note that, in our case,
= 𝑚)

𝑖(𝑥
𝑣𝑖
𝑖 ) =

1

1 + 𝑒−𝑥
𝑣𝑖
𝑖 +3

, 𝑖 = 1, 2,… , 𝑚, (89)

where 𝑥𝑣𝑖𝑖 is the state of each machine.
This paper does not address the construction of the feature func-

tions, which is indeed an important research area, see Bertsekas and
Yu (2009), Busoniu et al. (2011) and Barker and Ras (2019). A limited
number of well-crafted feature functions can capture the dominant
non-linearities of cost functions for complex systems, and thus their
linear combination can work well as an approximation architecture,
see Bertsekas (2017) and Busoniu et al. (2011).

The cost function approximation 𝐽 ∗ = 𝛷𝑟∗ of the machine replace-
ment problem is used over the finite time horizon 𝑇 . More specifically,
we can calculate the (stationary) approximate optimal policy 𝜇̃∗(⋅) by
replacing 𝐽 ∗ as the terminal cost function in the Bellman optimality
operator

𝜇̃∗(𝑥𝑣) = argmin
𝑢∈𝑈

[

𝑔(𝑥𝑣, 𝑢) + 𝛼
∑

𝑥𝑤∈𝑋
𝑥𝑣𝑥𝑤

(

𝑢
)

𝜙′(𝑥𝑤)𝑟∗
]

. (90)

It is also worth highlighting that all the policies computed in this
section (i.e., both via the exact DP and the proposed LSTD algorithm) as
well as the heuristics/non-optimal policies have been tested and com-
pared each other via Monte Carlo simulations with initial conditions
randomly generated for each experiment. All the algorithms used for
policy computations and their subsequent testing have been run by
using a laptop equipped with a 2 GHz Quad-Core Intel Core i5 processor
and 16 GB RAM.

Example 8.1. Consider the machine replacement problem 𝑀 with
𝑚 = 3 machines and 𝛺 = 6. The total number of states is 63. The
operating cost per stage of each machine is shown in Fig. 7, which
satisfies the non-decreasing property of 𝑐(𝑥𝑖), see (10). We performed
he exact DP algorithm and saved its results. Then, by considering a set
f 100 experiments with 𝑇 = 30, we compared the expected cumulative
osts resulted from the exact DP algorithm with the following four
on-optimal policies∕heuristics:

• Non-optimal policy (i): choosing a machine based on a round
robin policy, i.e., sequentially replacing machines regardless of
their operating status.

• Non-optimal policy (ii): choosing one or two machines randomly
to replace among them.

• Non-optimal policy (iii): sequentially replacing machines choos-
ing the one with the worst operating status.
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Fig. 7. Non-decreasing behavior of the cost-per stage (87).

Fig. 8. Comparison of the exact DP with the non-optimal policies in Example 8.1.

• Non-optimal policy (iv): a machine is replaced only if all ma-
chines in worse states are replaced (worse cluster replacement
rule, see Childress and Durango-Cohen (2005)).

The results of the comparison between the exact DP and such
on-optimal polices is shown in Fig. 8. It is evident that the exact
P policy outperforms the other non-optimal policies and achieves
inimum expected total cost. Fig. 9 shows the number of replaced
achines when applying the exact DP policy together with the ones

orresponding to the above non-optimal policies∕heuristics. It can be
noticed that the exact DP policy tends to replace fewer machines than
all the non-optimal policies, with the exception of policies (i) and (iii)
which replace a fixed number of machines in each experiment. Fig. 10
displays the total costs over 100 experiments of the exact DP policies
computed with two different replacement costs 𝑅1 = 7 and 𝑅2 = 9.
This way, one can assess the impact of the replacement costs on the
resulting total costs, which are higher in case of machine replacement
problems with higher replacement costs.

Finally, Figs. 11 and 12 compare the results of our proposed LSTD-
based approach with the exact DP by computing, respectively, the
total cost and the total number of replacements over 100 experiments.
As expected, the exact DP provides better performance results, also
achieved with fewer replacement operations. The computational time
required to determine the exact DP policy was 989 s, while it took 413 s
to compute the parameter vector 𝑟∗ in case of the proposed LSTD-based
algorithm (both 𝑄 and 𝐿 were set to 10).
14
Fig. 9. Number of replacements with the exact DP approach and the non-optimal
policies in Example 8.1.

Fig. 10. Comparison of the exact DP with two different replacement costs in
Example 8.1.

Fig. 11. Comparison of the exact DP with ADP in Example 8.1.

xample 8.2. Consider the machine replacement with 𝑚 = 6 machines
and 𝛺 = 10 operating states. Being |𝑋| = 106, the problem suffers from
the curse of dimensionality in the state space. Thus, we applied our
proposed ADP method for the following different scenarios:

1. We executed the proposed algorithm 10 times, with 𝑄 = 1 and
𝐿 = 10 000 in each run. Moreover, we applied the same values
for the parameters 𝛴, 𝜁 , and 𝑟̄. and performed the Monte Carlo
simulations for a set of experiments to compute the estimated
parameter vector 𝑟∗ from the parameter vector values 𝑟𝑠 re-
cursively calculated over the ADP algorithm iterations. In this
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Fig. 12. Number of replacements with the exact DP and the ADP in Example 8.1.

Fig. 13. Computed Norm-2 of the vector 𝑟𝑠 as in (1) in Example 8.2.

Fig. 14. Computed Norm-2 of the vector 𝑟𝑠 as in (2) in Example 8.2.

Fig. 15. Computed Norm-2 of the vector 𝑟𝑠 as in (3) in Example 8.2.
15
Fig. 16. Computed Norm-2 of the vector 𝑟𝑠 as in (4) in Example 8.2.

regard, norm-2 of the parameter vectors 𝑟𝑠 is plotted in Fig. 13.
As we can see, all the curves converge to very close Norm-
2 values. By taking the average of these results, we obtained
𝑟∗ = [131.6388, 127.3602, 131.8741, 46.7978, 46.8144, 48.1488]′.
The computational time required to determine the parameter
vector 𝑟∗ for this scenario was 112 478 s.

2. In the second scenario, we used the same setup as (1), with the
exception of running the Monte Carlo simulations with different
values of 𝛴, 𝜁 and 𝑟̄. The outcome of this computation for a set
of 10 algorithm executions is shown Fig. 14. The averaged value
of the parameter vector is 𝑟∗ = [127.4561, 124.7104, 139.655,
46.9587, 46.9683, 49.8320]′. As expected, the resulting parame-
ter vector is quite close to the one computed in the previous
scenario. The computational time required to determine the pa-
rameter vector 𝑟∗ was almost the same as the previous scenario
since a similar set-up was used.

3. In the third scenario, we considered 𝑄 = 200 and 𝐿 = 1. We
performed 10 algorithm executions with different values of 𝛴, 𝜁
and 𝑟̄. The outcome of this scenario is shown in Fig. 15. The aver-
aged value of the parameter vector is 𝑟∗ = [238.35, 234.2, 180.7,
211.6, 177.02, 170.02]′. As expected, the computed parameter
vector is different from the ones computed in the two previous
scenarios. The computational time required to determine the
parameter vector 𝑟∗ for this scenario was 1329 s.

4. In the fourth scenario, we considered 𝑄 = 200 and 𝐿 = 100.
We performed 10 executions of the proposed algorithm with
different values of 𝛴, 𝜁 and 𝑟̄. The outcome of this scenario is
shown in Fig. 16. The averaged value of the parameter vector
is 𝑟∗ = [135.47, 132.86, 128.13, 48.07, 48.05, 48.61]′. Again, due
to a different choice of the algorithm parameters, we obtained
a different parameter value. The computational time required to
determine the parameter vector 𝑟∗ for this scenario was 50 499 s.

The main goal of Example 8.2 is to verify the convergence of the
proposed multi-trajectory LSTD algorithm (when applied to machine
replacement problems) and assess its parametric sensitivity. In partic-
ular, we considered different number of trajectories 𝑄 with different
lengths 𝐿. The obtained parameter vectors 𝑟∗ are quite similar for the
cases 1, 2, and 4, where trajectory lengths are sufficiently large to allow
the algorithm to explore the state space over a given trajectory. As for
case 3, the trajectory length is set to 1, and this results in a different
value of the parameter vector 𝑟∗ since the algorithm performs only
one step along a given trajectory. In conclusion, 𝑄 and 𝐿 influence
both the quality of the computed value function approximation and the
convergence rate of the proposed multi-trajectories LSTD algorithm

In the next example, we modify the feature matrix in order to
perform the generalized multi-trajectory LSTD by applying the result
of Lemma 10 on the Machine Replacement problem.
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Fig. 17. Computed Norm-2 of the vector 𝑟𝑠 for the feature matrix corresponding
Lemma 10 in Example 8.3.

Example 8.3. Consider the machine replacement problem of Exam-
ple 8.2 with the feature matrix resulted from Lemma 10.

The implementation of the our ADP algorithm with the feature
vectors in the form of 𝛿(𝑥) = 𝐵𝜙(𝑥) has slower convergence speed
compared to the previous feature vectors 𝜙(𝑥). This comes from the fact
that the feature vector 𝛿(𝑥) requires the generation of the transition
probabilities 𝑥𝑣𝑥𝑤 (𝑢), which have to be computed along the Monte
Carlo simulation trajectories. In particular, we also considered the
policy improvement step as explained in Section 6.2, which makes the
simulation speed slower.

In Fig. 17, norm-2 of the resulting parameter vector 𝑟 is shown. In
particular, we considered the case of 𝑄 = 800 trajectories with length
𝐿 = 1, and run the proposed ADP algorithm 10 times. As we can see, all
the curves converge to very close Norm-2 values. By taking the average
of these results, we obtained 𝑟∗ = [37.58, 37.26, 36.02, 25.53, 24.05,
12.93]′. The computational time for this example was 5124 s.

As expected, the computed parameter vector based on Lemma 10
has different values compared to the parameter vector of Example 8.2.

Example 8.4. Consider the machine replacement problem with 𝑚 = 5
machines and 𝛺 = 10 operating states. The total number of states is
105. We performed our proposed ADP approach for the case of 𝐿 = 1
and 𝑄 ≫ 1 to compute the associated parameter vector 𝑟. We made
use of the feature matrix of the form (89). The computed parameter
vector with this setting is 𝑟∗ = [178.5, 179.6, 180.2, 181.2, 184.8]′.
We considered a set of 100 experiments each having a length of 𝑇 =
50, and by using (90), we compared the result of our ADP approach
with the non-optimal policies defined in Example 8.1. The outcome
of this comparison is shown in Figs. 18 and 19. As shown in Fig. 18,
the ADP approach has lower cumulative costs compared to the other
non-optimal policies over the 100 experiments, and replaces fewer
machines to reach such lower total cost with the exception of the non-
optimal policies (i) and (iii), see Fig. 19. The computational time for
this example was 4051 seconds. Finally, it was not possible to solve
the machine replacement problem of this example via the exact DP
approach in a reasonable time.

9. Conclusion

This paper has presented an approach to formulate the replacement
problem of a set of machines as a composition of Markov Decision Pro-
cesses (MDPs), one for each specific machine. The underlying stochastic
optimization problem has been defined and solved over a finite time
horizon by exploiting the principles of the backward Dynamic Program-
ming (DP) algorithm. This way, a minimum operational cost policy can
be determined, specifying the ‘‘keep’’ or the ‘‘replace’’ actions for all the
machines, at each time slot, over the given finite time horizon.
 r

16
Fig. 18. Comparison of the total cost computed with the ADP approach with the
non-optimal policies in Example 8.4.

Fig. 19. Number of replacements with the ADP approach and the non-optimal policies
in Example 8.4.

We have also introduced the generalized multi-trajectory Least-
Squares Temporal Difference (LSTD) algorithm to solve machine re-
placement problems featured by a large state space. This algorithm
computes an approximate optimal cost function by running Monte
Carlo simulations over different trajectories of a given length and
enforcing an off-policy mechanism to improve the LSTD exploration
capabilities. A study on its convergence properties has also been pro-
vided. Several numerical examples have been reported to illustrate the
effectiveness of the proposed modeling and solution approaches.

As for future work, we plan to model and solve machine replace-
ment problems featured by a set of operational constraints, also ex-
pressing a higher level of interdependence among the machines. The
analytical formulation of the problem can take the form of a compo-
sition of Constrained Markov Decision Processes (CMDPs) with more
complex cost per stage function definitions. Inspired by the avail-
able literature, preventive and corrective maintenance can also be
integrated into the MDP formulation. In this paper, the states are as-
sumed to be fully observed. Finally, the assumption of fully observable
states can be removed to deal with the interesting case of machine
replacement problems with hidden states.
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