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Abstract: Road surface condition is vitally important for road safety and transportation efficiency.
Conventionally, road surface monitoring relies on specialised vehicles equipped with professional
devices, but such dedicated large-scale road surveying is usually costly, time-consuming, and
prohibitively difficult for frequent pavement condition monitoring—for example, on an hourly or
daily basis. Current advances in technologies such as smartphones, machine learning, big data,
and cloud analytics have enabled the collection and analysis of a great amount of field data from
numerous users (e.g., drivers) whilst driving on roads. In this regard, we envisage that a smartphone
equipped with an accelerometer and GPS sensors could be used to collect road surface condition
information much more frequently than specialised equipment. In this study, accelerometer data were
collected at low rate from a smartphone via an Android-based application over multiple test-runs on
a local road in Ireland. These data were successfully processed using power spectral density analysis,
and defects were later identified using a k-means unsupervised machine learning algorithm, resulting
in an average accuracy of 84%. Results demonstrated the potential of collecting crowdsourced data
from a large population of road users for road surface defect detection on a quasi-real-time basis.
This frequent reporting on a daily/hourly basis can be used to inform the relevant stakeholders
for timely road maintenance, aiming to ensure the road’s serviceability at a lower inspection and
maintenance cost.

Keywords: road surface condition; smartphone sensing; unsupervised machine learning; defect
detection

1. Introduction

In many countries around the world, ageing road pavement deterioration has been
widely observed across vast transportation networks of both highways and rural roads.
This long-term deterioration affects not only the safety and satisfaction of the road users, but
also the economic efficiency. In Ireland, for example, over 99% of all goods were transported
by road in 2016, leaving less than 1% to be transported by rail. As the transportation
of goods plays a vital role in the Irish economy, the government invested 55% of its
land transportation budget of EUR 1.9 billion to the repair and maintenance of the Irish
road system in 2018 [1]. The Irish government has increasingly invested more in road
improvement and maintenance over the past decade. In particular, the non-national roads
covering regional and rural areas account for 94% of the entire Irish road network [2]. This
lifeline road infrastructure deteriorates with time, subject to various natural and artificial
causes (e.g., flooding, landslide, or new construction), which necessitates timely monitoring
and maintenance to mitigate any risk.

To monitor the conditions of road surfaces, a common practice for the road asset
owners is to conduct multiannual surveys using specialised equipment (e.g., ground-
penetrating radar (GPR) and laser systems). Nevertheless, it is usually costly to employ
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these vehicles and the personnel to operate and maintain the specialised equipment. In
practice, the budget for large-scale road inspection and maintenance can be limited and,
therefore, necessitates novel road monitoring and repair optimisation methods [3]. Such a
challenge urges more cost-effective solutions for road surface condition monitoring and
defect detection on a more frequent basis.

In theory, most road surface defects may cause vehicles to vibrate, and induced vibra-
tion may technically be detectable by an accelerometer. Most smartphones manufactured
today are embedded with accelerometers and other hardware sensors, which enables smart-
phones to collect large amounts of data at a much lower cost and higher frequency than
specialised equipment. As such, the smartphone technology can also be supplementary to
regular road inspection, i.e., it can extend the regular examination period, thus reducing the
overall cost in the long run [4]. Recently, some studies have attempted to gather small-scale
data on road surface condition using smartphones, and then manually label part of the
data against observed road defects to train a supervised machine learning algorithm [5].
Such a supervised algorithm, however, requires a large amount of manually labelled data
for training, which can hardly apply to large-scale road inspection and data analysis.

In this study, an Android-powered smartphone was fixed to the dashboard of a test
vehicle to detect road surface conditions and defects. The collected data were analysed
using the power spectral density (PSD) analysis technique in order to remove noises
generated from various sources—for example, car engines and suspension systems. Unlike
the supervised machine learning adopted in previous efforts, an unsupervised machine
learning algorithm—i.e., k-means—was adopted in this study to detect anomalies and
defects along the monitored road with the corresponding GPS coordinates. The analysed
road condition data can be reported to the asset owners and stakeholders on a frequent
hourly/daily basis for timely maintenance at a lower inspection cost.

Economically, smartphones already available from road users were used for pavement
defect monitoring, thus avoiding the extra cost of smartphone purchase. It is envisaged
that some road users (e.g., bus drivers, commuter cars, road stakeholders) may enable their
smartphones for road defect monitoring in light of their own interests.

The rest of this paper is organised as follows: Section 2 provides a brief review of
the representative literature on road surface condition monitoring and the state-of-the-
art techniques. Section 3 outlines the methodology adopted in this study for the field
experiments and associated experimental parameters. Section 4 details the processing and
analysis of gathered smartphone data. Section 5 evaluates the performance of the proposed
smartphone sensing method against defect data points labelled manually. Lastly, Section 6
concludes the paper and gives some insights into further study.

2. Literature Review on Road Condition Monitoring

In road condition surveys, a variety of sensing technologies has been made available
in the civil and transportation industry, mainly including the following three categories:
(1) mechanical wave, (2) electromagnetic wave, and (3) image-based techniques [6].

The first category utilises specialised ultrasonic or acoustic sensors that transmit
mechanical waves to measure the road profile [7,8], whilst the electromagnetic wave
techniques depend on a series of professional equipment—for example, ground-penetrating
radar (GPR) [9], light detection and ranging (LiDAR) [10], and laser systems [11]. In
addition to wave measurements, the image-based techniques of the third category enable
the detection of road markings, features, and surface defects. The images and videos
of the road surface are usually recorded using high-quality digital cameras equipped
in vehicles, and the collected data can then be automatically segmented and classified
using machine learning algorithms (e.g., random forest algorithms [12] and convolutional
neural networks).

Almost all the sensing technologies mentioned above rely on specialised vehicles
equipped with specialised sensors (e.g., GPRs, high-quality cameras), which can be time-
consuming and expensive. In the interest of time and cost, hundreds of miles of road are
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only surveyed on a multiannual basis, which can hardly monitor the deterioration over
time of roads subjected to weather and seasonal change. Furthermore, road structural
conditions may degrade rapidly within days or weeks due to landslide, subsidence, or
other geohazards. Hence, a more frequent road condition monitoring system is desired
in order to give an early warning of critical road damage and reveal the mechanisms of
time-dependent road deterioration.

Unlike the aforementioned expensive monitoring methods using specialised sensors
and vehicles, low-cost general sensors available to the general public (e.g., smartphones)
have also attracted some attention for the detection of road surface condition. Recently,
Sattar et al. [4] conducted an in-depth review of over 19 previous studies on smartphone
sensing of road surface condition using different data analysis methods. In this research
area, earlier studies such as [13,14] have opted for threshold-based heuristic detection
methods. Mohan et al. [13] set a threshold limit called Z-Peak to detect accelerometer
signals above a given value. Furthermore, Mednis et al. [14] advanced the practice by
setting an additional threshold called Z-Diff, whereby they looked not only at the amplitude
of the accelerometer, but also at the differences in the signal data from one data point to the
next, using an algorithm called STDEV (Z).

More recent studies started to focus on developing machine learning techniques for
analysing smartphone data road anomalies. In [5], Allouch et al. compared three different
types of machine learning techniques in terms of their performance of smartphone data
analysis. They found that the C4.5 decision tree algorithm performed remarkably better
than the naive Bayes classifier and the support vector machines. In particular, results
were achieved by training the data after pre-processing via a correlation-based feature
selection process.

However, among all of the available machine learning techniques, there is a lack
of investigation of unsupervised algorithms for road surface condition monitoring and
defect detection. To date, only one research group—Bhoraskar et al. [15]—has specifically
investigated the techniques of unsupervised machine learning for the detection of road
defects and surface conditions. Nevertheless, Bhoraskar et al. focused on bump and
vehicle braking detection for traffic conditions rather than different types of road structural
defects. To this end, this study aims to integrate unsupervised machine algorithms into
smartphone sensors and signal-processing techniques to offer a cost-effective solution to
road surface inspection.

In most previous studies, the smartphone sensor data sampling frequency was high
(e.g., Allouch et al. used 50 Hz [5]) in order to gather large amounts of road surface data.
However, high sampling frequency will lead to high battery power consumption in the
smartphone, which hinders the application of smartphone sensing to many road users at
a larger scale. To this end, a low sampling rate of 16 Hz is adopted in this study for the
envisaged wide-application scenarios suitable for the general public.

In the next step, the data gathered by multiple smartphones from many road users
(e.g., bus drivers, commuter cars) can then be analysed for road surface defect detection
using an offline algorithm at this early research stage. At present, alternative online
approaches (e.g., Kalman filter methods) usually require smartphone data to be gathered
at very high sampling rate. Such real-time smartphone sensing and data analysis will
consume significant battery power, which can hardly be accepted by many road users.

3. Smartphone Data Acquisition
3.1. Project Background

In this study, a segment of national road (R148) in County Kildare, Ireland, was chosen
as the test road. The main reasons for selecting R148 as the test road rather than a national
road or motorway are listed as follows:

• The defects and associated GPS coordinates of the test road need to be recorded
through manual visual inspection by researchers in order to validate the proposed
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defect detection algorithm. It is usually more challenging and riskier to conduct a
visual inspection on a busy motorway (e.g., M50) than on a regional road;

• In a simplified driving scenario, the test vehicle is designed to maintain a relatively
constant speed (e.g., 30 ± 5 km/h) during data collection. Such a controlled road
environment is more likely to be achieved on a regional road with few road users than
on a busy motorway;

• In Ireland, the non-national roads covering regional and rural areas account for 94%
of the entire Irish road network [2], which deserves specific investigation for road
monitoring technology;

• Following the development of smartphone sensing based on regional roads, future
studies may apply this technology to many more road types in a transportation
network, including national roads, motorways, bridges, tunnels, etc.

The test road is approximately 2.2 km in length. It contains several typical kinds of
surface defect, in accordance with the Pavement Surface Condition Index (PSCI) [16]. In the
PSCI manual, four categories of road surface condition on rural flexible roads are defined,
including surface defect, pavement deformation, crack, and surface opening. A number of
photo images were taken from the test road segment to illustrate the types of defects and
deteriorations of interest to this study, as shown in Figure 1. The images show road surface
distortion, patching, pothole, and rutting, from left to right. The severity of the defect can
be rated from level 10 (no obvious defect) to level 1 (extensive structural distress). The
rating is measured based on the size of the defect—for example, the diameter of a pothole
or the length of rutting [16]. For brevity, this study focuses on the feasibility of using a
smartphone to detect the existence of road surface defects at a given location marked by
GPS coordinates, rather than classifying those defects into different types.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 15 
 

 

3. Smartphone Data Acquisition 
3.1. Project Background 

In this study, a segment of national road (R148) in County Kildare, Ireland, was cho-
sen as the test road. The main reasons for selecting R148 as the test road rather than a 
national road or motorway are listed as follows: 
• The defects and associated GPS coordinates of the test road need to be recorded 

through manual visual inspection by researchers in order to validate the proposed 
defect detection algorithm. It is usually more challenging and riskier to conduct a 
visual inspection on a busy motorway (e.g., M50) than on a regional road; 

• In a simplified driving scenario, the test vehicle is designed to maintain a relatively 
constant speed (e.g., 30 ± 5 km/h) during data collection. Such a controlled road en-
vironment is more likely to be achieved on a regional road with few road users than 
on a busy motorway; 

• In Ireland, the non-national roads covering regional and rural areas account for 94% 
of the entire Irish road network [2], which deserves specific investigation for road 
monitoring technology; 

• Following the development of smartphone sensing based on regional roads, future 
studies may apply this technology to many more road types in a transportation net-
work, including national roads, motorways, bridges, tunnels, etc. 
The test road is approximately 2.2 km in length. It contains several typical kinds of 

surface defect, in accordance with the Pavement Surface Condition Index (PSCI) [16]. In 
the PSCI manual, four categories of road surface condition on rural flexible roads are de-
fined, including surface defect, pavement deformation, crack, and surface opening. A 
number of photo images were taken from the test road segment to illustrate the types of 
defects and deteriorations of interest to this study, as shown in Figure 1. The images show 
road surface distortion, patching, pothole, and rutting, from left to right. The severity of 
the defect can be rated from level 10 (no obvious defect) to level 1 (extensive structural 
distress). The rating is measured based on the size of the defect—for example, the diame-
ter of a pothole or the length of rutting [16]. For brevity, this study focuses on the feasibil-
ity of using a smartphone to detect the existence of road surface defects at a given location 
marked by GPS coordinates, rather than classifying those defects into different types. 

 
Figure 1. Photo images of several typical road surface defects were taken from the test road segment. 
From left to right, they show road surface distortion, patching, pothole, and rutting. 

3.2. Data Collection 
Road condition data were collected using a smartphone (Google Pixel 2, hardware 

version 1) running an Android operating system (version 10). The smartphone was fixed 
on the dashboard of the test vehicle so as to eliminate the need for complex orientation 
calibration algorithms (one potential solution was mentioned in [13]). During data collec-
tion, the test vehicle was maintained at a relatively constant speed of 30 ± 5 km/h. The test 
road was traversed eight times in each direction, and data were collected independently 
from each run. As the test road is a two-way road, data collected in each direction were 
used for independent analysis. 

Figure 1. Photo images of several typical road surface defects were taken from the test road segment.
From left to right, they show road surface distortion, patching, pothole, and rutting.

3.2. Data Collection

Road condition data were collected using a smartphone (Google Pixel 2, hardware
version 1) running an Android operating system (version 10). The smartphone was fixed
on the dashboard of the test vehicle so as to eliminate the need for complex orientation cali-
bration algorithms (one potential solution was mentioned in [13]). During data collection,
the test vehicle was maintained at a relatively constant speed of 30 ± 5 km/h. The test
road was traversed eight times in each direction, and data were collected independently
from each run. As the test road is a two-way road, data collected in each direction were
used for independent analysis.

Of all the gathered smartphone data, the two most important datasets for road condi-
tion analysis were the accelerometer readings and the GPS coordinates. The accelerometer
reading data, including the x-, y- and z-axis readings, were directly exported from the
smartphone hardware sensor (STMicroelectronics LSM6DSM sensor) of the Android Sen-
sorManager. In the field experiments, the z-axis readings were used for analysis, as they
determine most of the vertical vibrations of the vehicle when driving on an uneven sur-
face. The accelerometer data were sampled at a constant rate of 16 Hz, which is much
lower than that adopted by previous investigations—for example, Allouch et al. used
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50 Hz [5], Mohan et al. used 310 Hz [13], and Eriksson et al. used 380 Hz (specialised
accelerometer) [17].

The adoption of a low sampling rate was mainly attributed to the envisaged applica-
tion scenarios. In this study, the application was designed to be used by the general public,
i.e., people from the residential communities of the interested areas would be encouraged to
use the developed application on a daily basis, with acceptable battery power consumption
at a low sampling rate of 16 Hz. Due to the low sampling rate (approximately one sample
per 0.5 m), a relatively small defect could easily be missed by one or two runs. To this end,
the collected data could be collectively cross-validated with repetitive runs from multiple
users—for example, community commuters and buses travelling on the same segments of
road every day. Due to the limited demand for a 100% real-time monitoring system for road
surface condition, such gathered big data from multiple users can then be processed using
batch analysis on a daily/hourly basis. On the other hand, another undeniable reason
for the much lower sampling rate is battery power conservation. With a much higher
sample rate configured, batteries could be drained very quickly by data acquisition and
transmission. Moreover, the larger amount of data generated by a higher sampling rate is
more likely to be restricted by smartphones’ local storage capacity.

Given a constant driving speed Sd and a fixed sampling rate rs, an accelerometer
reading was taken for every Sd

rs
meters. This configuration in the experiments allowed an

accelerometer reading to be taken for every ~0.5 m on average. Given the 2.2-km-long test
road, there were ~4500 data points collected per test run. In total, there were approximately
36,000 data points of vertical vibration and GPS collected in this study.

The GPS coordinates for the defects were first recorded through manual visual inspec-
tion along the test road. The assumed accuracy of the GPS readings was based on the official
GPS report (https://www.gps.gov/systems/gps/performance/accuracy/ (accessed on
the 1 June 2021)), i.e., typically a ~4.9-m radius under an open-sky environment [18].
Thus, defects were roughly labelled with ±4.9-m distance from the central point of record-
ing. The manually labelled defects and their corresponding GPS readings were used as
the baseline for assessing the accuracy of the developed smartphone sensing method.
In the smartphone sensing experiments, GPS coordinates were collected along with the
accelerometer readings.

4. Data Analysis for Road Defect Detection
4.1. Data Processing

Figure 2 shows collected accelerometer readings along the road distance from eight
repeated and independent runs in one direction. Inevitably, the data are noisy, and the
number of data points varies slightly due to the inconsistent starting/stopping positions of
the test vehicle in each test run.

The aim here was to extract the abnormal events that correspond to various road
surface defects. When these defects were recorded by the accelerometer sensor—i.e., the
vertical vibrations detected—the corresponding sensor readings were considered as the
events of interest. On the other hand, any periodic signals that are likely to be introduced
by a vehicle’s engine vibration and/or suspension systems were of no interest to the study;
hence, the noise. In the worst case, these periodical signals can easily bury those small
vibrations caused by minor defects in the background, rendering them very difficult to
observe. This issue becomes particularly critical when the smartphone is fixed on the
test vehicle and, as such, the vibrations generated by the car components (e.g., engine,
suspension system, dashboard, etc.) are multiplexed.

https://www.gps.gov/systems/gps/performance/accuracy/
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Figure 2. The collected accelerometer raw data (vertical linear vibration in the vertical axis and data points in the horizontal
axis) from eight repeated and independent runs in one direction.

To understand how these periodical signals present in the collected data, a power
spectral density (PSD) analysis was conducted. Figure 3 shows the stem plot of the
temporal signals transformed into frequency domain. PSD analysis was applied to each
independent test run; this was done by first computing a fast Fourier transform (FFT) of the
signal ( f̂ ) then multiplying f̂ by its conjugate to receive the magnitude of f̂ squared—i.e.,∣∣∣ f̂
∣∣∣2—which is the vector of the power of each frequency; then, it was normalised with

frequency bin width. The analysis results show that the collected raw data contain some
predominant frequencies that were likely to be periodical. In particular, there is a cluster
of frequencies grouped around band (1–2) Hz; this perfectly matches the typical natural
frequencies of most cars’ suspension systems [19]. In addition, there are several smaller
clusters of dominant frequencies throughout the frequency band; these are likely due to
the engine and dashboard vibrations, as these car components are common sources for
noises in the frequency band (1–9) Hz [20]. These patterns can be noted repetitively in
each independent test run. In order to de-noise the raw data, these periodical frequencies
introduced by the test vehicle need to be removed. Moreover, it should be noted that the
extraordinarily high amplitude of some frequencies is very likely due to harmonics.

To remove these unexpected frequencies, a threshold (τ) needs to be determined
first. Referring to the previous research results in [19,20], and based on the empirical
studies conducted in this work, a threshold was settled at the average amplitude of the
signals. In fact, the actual threshold may vary slightly depending on the vehicle types,
the vehicle models, and the placement of the smartphones. A dedicated threshold (τ) can
be adjusted according to the relative value of the amplitude of each individual datum
collected. Once the τ is determined, those frequencies can be removed by simply zeroing
out all the frequency powers that are greater than tau, as shown in Figure 4. By applying
an inverse FFT to the filtered signals, a filtered signal can therefore be reconstructed.
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Figure 3. The PSD analysis of the eight independent test runs in one direction. The results from the
PSD analysis revealed the predominant frequencies from the raw data. The stem plots show that the
predominant frequencies are clustered around the frequency band (1–2) Hz, which are the typical
frequencies generated by most cars’ suspension systems. Additionally, there are smaller clusters
and relatively flat predominant frequencies across the x-axis; this is due mainly to the vibrations
generated by the car engines and dashboards.

Furthermore, considering that car engine noises oscillate, in general, at higher fre-
quencies, as well as other types of noise generated by mechanical components during
driving, the high-frequency signals should also be filtered. Nevertheless, as the sample
rate is significantly lower compared with other aforementioned research, all signals are
distributed in the frequency band (1–9) Hz, overlapping with noise signals (e.g., from car
engines and suspension systems).

It would be very challenging to extract information of interest from the mixed signals
without a carefully and artificially crafted signal-processing mechanism. Without compro-
mising generality, when the test vehicle passed over a defect, an abnormal signal should be
trigged by both the front wheel and the rear wheel. The distance between a vehicle’s front
axle and the rear axle is often known as the wheelbase. A typical wheelbase for cars ranges
from 1.2 to 3 m. Given a driving speed of Sd and the wheelbase B, it is expected to observe
a mirrored signal in a B

Sd
delay. These paired signals are the primary subjects of interest in

the experiments. Given the driving speed of 30 ± 5 Km/h and a standard wheelbase, the
paired signals should appear within frequency band (0.1–0.5) Hz.
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Figure 4. Filtered signals after the removal of periodical signals.

The intention is to keep the frequency band narrow enough so that the filtered signals
only exhibit the characteristics of defect-related events. The boundary frequencies are
also known as the cutoff frequencies. A first-order Butterworth filter [21] was chosen
experimentally for the filtering process, i.e., a bandpass for frequency band (0.1–0.5) Hz.

With the average driving speed of 30 ± 5 Km/h and a 16-Hz sampling rate, Figure 5
shows the road surface condition of the first 500 m, and the corresponding accelerometer
readings. The vertical bars in various colours indicate the manually labelled defects,
including potholes (light blue), distortion (light orange), rutting (light green), and patching
(pink). It is now much easier to observe how the accelerometer readings reflect the abnormal
events corresponding to many of the actual defects. The width of the vertical bars indicates
an approximate region where the defect was observed; this was done by mapping GPS
readings in the collected data to the GPS coordinates recorded in the photos taken at the
site of the defects. However, due to the level of accuracy of GPS for civilian use, the GPS
coordinates recorded by different devices and at a different travelling speed may not be an
exact match. Thus, in order to accommodate the potential drifts at a certain level, a defect
is marked in a range. In this work, the width of the vertical bar corresponds to 4.9 m (or
higher, depending on the environment); this is the main reason that the vertical bars shown
in Figure 5 have some overlaps. An example of each type of defect is shown in Figure 6.
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To summarise the analysis processes, the data pre-processing stage consists of three
essential steps.

1. PSD analysis for the identification of periodical signals introduced by the test vehicles;
2. Filtering out periodical signals and low frequencies;
3. Reconstructing signals using inverse FFT.

4.2. Defect Detection

Autonomous defect detection without the involvement of human inspection relies on
emerging machine learning algorithms. Broadly speaking, a machine learning algorithm
can be classified as either supervised or unsupervised. A supervised machine learning
algorithm generally requires a significant amount of labelled data for training. The la-
belled data must present various types and characteristics of defect, so that the trained
algorithms can be generalised to recognise similar defects. In contrast, an unsupervised
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machine learning algorithm does not require pre-knowledge about defects. Based on the
characteristics of the defects contained in the dataset, the algorithm can automatically
classify them into a predefined number of categories. In the application scenario of this
work, collection and manual labelling of defects can be very time consuming and costly. An
unsupervised machine learning k-means algorithm was adopted, as this is one of the most
well-developed and widely accessible clustering algorithms. Future study will evaluate
the performance of different clustering algorithms for road defect classification.

Assuming that the collected accelerometer readings can be organised into a set of
observations (x1, x2, . . . , xn), where each observation is a d-dimensional feature vector, the
aim of the use of a k-means algorithm in this work was to classify the n observations into
k sets, S = {s1, s2, . . . , sk}, (k ≤ n). The objective of a k-means algorithm, in general, is to
minimise the within-set Euclidean distance between x and the sj centroid µj.

The first step for employing a k-means algorithm in this work was to identify what
constitute “features”. A scalar data point is obviously lack of identity for characterising
defects. An intuitive choice is to use a number of consecutive data points that span a short
timeframe, i.e., a window of data points. In the second step, the number of categories
needs to be defined. In practice, there were four types of defects—i.e., pothole, distortion,
rutting, and patching—commonly observed along the road in this study. Depending on the
severity level of the defect, potholes are mostly represented by sharp spikes with different
levels of amplitude. In contrast, rutting, distortions, and patching are all reflected as
long-spanning blocks. The situation could be further complicated when multiple different
defects were in close proximity. Figure 7 shows the classification results with various
window sizes ~21 (10 m) and step size of 16 (1-s readings, 7.7 m) for k = 5; as can be seen,
there are many misclassifications. This is also evidence that a window of data points cannot
adequately characterise so many types of defects, with such a variety of shapes, lengths,
depths, diameters, etc. However, the situation may be improved by increasing the density
of the data points—i.e., increasing the sampling rate for data collection—but considering
the battery life of smartphones, their available storage space, and the time required to
upload data for analysis, a sampling rate in the <32-Hz range is more practical.
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A compromised solution is to only detect defects at a given location and classify them
into one of two types: narrow spikes, or long-spanning blocks. In such a configuration,
only three categories (narrow spikes, long-spanning blocks, and without a defect) would
suffice and, as such, k is set to be 3.

Furthermore, the feature vector for each sliding window includes the robust measure
of central location (i.e., the median) and the dispersion of data points in the sliding window
(i.e., the 310 variance). As shown in Figure 8, the classification results have largely improved.
Of particular interest is that the signal (Figure 8, upper) may contain some irrelevant events,
possibly caused by unusual driving manoeuvers. In order to minimise such events, a cross
check between independently collected data is needed.



Sensors 2021, 21, 5433 11 of 15Sensors 2021, 21, x FOR PEER REVIEW 11 of 15 
 

 

 

 
Figure 8. Classification results from k-means with various window sizes of ~10 m and step sizes of 
1 s for k = 3. 

5. Evaluation of the Proposed Method 
In this section, the performance of the proposed scheme is evaluated against 16 inde-

pendently collected data points. The measure of accuracy and precision is defined. The 
performance measures are computed from the confusion matrix, in terms of accuracy, re-
call, precision, and f-measure. Thus, it is important to clarify how the terms true positive 
(TP), false negative (FN), true negative (TN), and false positive (FP) are defined in this 
application scenario. 

Referring to Figure 8, the manually labelled defect blocks are treated as references. 
Each reference may contain one or more continuous labelled blocks. For example, the first 
reference block contains three labelled blocks, starting from GPS coordinate (Latitude: 
53.4060605, Longitude: −6.5243956) to (Latitude: 53.4063506, Longitude: −6.524446), within 
approximately 37 m. There are a total of 30 reference blocks with various lengths. Starting 
from the first cross-validated classification result, each classified block is checked as to 
whether it falls into one of the reference blocks. If it partially overlaps with one of the 
reference blocks, then the length of the overlapping part and the length of the non-over-
lapping part will be recorded. Accumulating these measures, the TP measure is the length 
of the correctly classified road segments that contain defects; the TN measure is the length 
of the correctly classified road segments that do not actually contain defects; the FP meas-
ure is the length of the road segments incorrectly classified as containing defects, but ac-
tually containing no defects; whilst the FN measure is the length of the road segments 
incorrectly classified as not containing defects, but containing defects. The scheme is illus-
trated in Figure 9. 

 
Figure 9. Illustration of the evaluation scheme. 

Figure 8. Classification results from k-means with various window sizes of ~10 m and step sizes of 1 s for k = 3.

5. Evaluation of the Proposed Method

In this section, the performance of the proposed scheme is evaluated against 16
independently collected data points. The measure of accuracy and precision is defined.
The performance measures are computed from the confusion matrix, in terms of accuracy,
recall, precision, and f-measure. Thus, it is important to clarify how the terms true positive
(TP), false negative (FN), true negative (TN), and false positive (FP) are defined in this
application scenario.

Referring to Figure 8, the manually labelled defect blocks are treated as references.
Each reference may contain one or more continuous labelled blocks. For example, the
first reference block contains three labelled blocks, starting from GPS coordinate (Latitude:
53.4060605, Longitude: −6.5243956) to (Latitude: 53.4063506, Longitude: −6.524446),
within approximately 37 m. There are a total of 30 reference blocks with various lengths.
Starting from the first cross-validated classification result, each classified block is checked
as to whether it falls into one of the reference blocks. If it partially overlaps with one of
the reference blocks, then the length of the overlapping part and the length of the non-
overlapping part will be recorded. Accumulating these measures, the TP measure is the
length of the correctly classified road segments that contain defects; the TN measure is the
length of the correctly classified road segments that do not actually contain defects; the FP
measure is the length of the road segments incorrectly classified as containing defects, but
actually containing no defects; whilst the FN measure is the length of the road segments
incorrectly classified as not containing defects, but containing defects. The scheme is
illustrated in Figure 9.
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Furthermore, to minimise the effects of GPS drift, 16 sets of data points were inde-
pendently collected. Classifications were also done for each dataset, independently. For
each classification, the result (on a per dataset basis) was cross-validated with two other
randomly selected classification results. In summary, the outline of this study can be found
in Figure 10, while Table 1 shows the accuracy, recall, precision, and f -measure for each
run of the evaluation.
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Table 1. Evaluation metrics for the proposed smartphone sensing.

Evaluation Accuracy Recall Precision f -Measure

1 0.86 0.89 0.43 0.58
2 0.87 0.83 0.44 0.58
3 0.84 0.82 0.44 0.58
4 0.84 0.88 0.5 0.64
5 0.81 0.98 0.47 0.64
6 0.8 0.91 0.45 0.6
7 0.84 0.92 0.46 0.61
8 0.82 0.94 0.41 0.57
9 0.84 0.92 0.46 0.62
10 0.8 0.89 0.45 0.6
11 0.83 0.89 0.49 0.63
12 0.81 0.85 0.48 0.61
13 0.88 0.77 0.48 0.59
14 0.83 0.83 0.43 0.56
15 0.87 0.83 0.52 0.64
16 0.86 0.84 0.49 0.62

Our results show that the proposed method achieved a maximum accuracy of 87%
and an average accuracy of 84%. More importantly, the recall that indicates the ratio of
the total number of correctly classified positive (defects) examples divided by the total
number of actual defects reached 98%, and was 87% on average. The high recall indicates
that more defects have been correctly classified, with a relatively small number of false
negative results. Nevertheless, the precision is relatively low—52% at maximum and 46%
on average. This indicates that the proposed method classified a relatively high number of
false positives. The high recall and low precision indicate that the proposed method was
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able to correctly identify most of the defects, but erroneously classified a number of normal
road segments as containing defects. In the last column of Table 1, the f -measure shows the
relative value of precision and recall by using harmonic mean instead of arithmetic mean to
diminish the weight of extreme values. In addition, the confusion matrix for the evaluation
is shown in Table 2. Since multiple independent evaluations were conducted, the values
shown in the table are the average values across the evaluations shown in Table 1.

Table 2. The confusion matrix of the evaluation results. As multiple independent evaluations were
conducted, the values shown in the table are the average values.

True False

True 32.44 37.69

False 4.63 189.25

In addition, an ROC curve (receiver operating characteristic curve) may be considered
in order to validate the proposed approach in this study [22]. In general, it is straight-
forward to construct an ROC curve for a classifier with univariate output. However, the
k-means algorithm adopted in this study does not transform the multivariate feature input
into a univariate output; as such, it will require dedicated investigation to construct an
ROC curve for the k-means algorithm in future works, as stated in [23].

Previous investigations into the smartphone sensing of road surface condition usually
adopted high frequencies (e.g., 50 Hz in [5]), but were only able to detect large defects
(e.g., potholes) [17]. In this study, the accelerometer sampling rate was set to a lower level
at 16 Hz, which enabled it to detect not only potholes, but also other types of relatively
minor defects.

6. Conclusions

This paper conducted a series of field experiments to collect over 36,000 data points of
vertical vibration and GPS using a smartphone installed on a moving car. The gathered
smartphone data were then processed and analysed to detect road surface defects. The
developed smartphone sensing technique can potentially enable quasi-real-time road
surface condition monitoring, improving the safety and efficiency of transportation while
simultaneously reducing inspection costs.

One major challenge is to extract signals corresponding to various defects from noisy
sensor data. Throughout the study, the three aspects of vital importance were: (1) data
quality, (2) minimising the possible sources of background noise in the collected data, and
(3) the choice of algorithms. In this study, multiple sets of data were collected independently
and carefully labelled; signal data were analysed using PSD and filtered using Butterworth
filters for de-noising; a carefully crafted k-means algorithm was used for the identification
of defects.

When evaluated against manually labelled defects, the proposed method achieved
a high recall, at 87%, but low precision, at 46%; that is, the proposed method was able
to correctly identify most of the defects, but erroneously classified a number of normal
road segments as containing defects, generally demonstrating the feasibility of smartphone
sensing for detecting road surface condition.

Unlike previous relevant studies, the experiments in this study adopted a lower
sampling frequency of smartphone data collection, which enabled the detection of both
major and minor road defects, and at a lower rate of battery consumption.

Nevertheless, the experiments in this study were conducted in relatively idealised
conditions by driving at a constant speed and fixing the smartphone at one position.
Future studies will conduct many more experiments on the smartphone sensing of road
surface condition, and collect a large amount of data subject to different driving speeds,
behaviours, car models, smartphone types, placement of smartphones, sampling rates, and
other influences.
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In practice, acceleration and GPS data can be gathered by different smartphones with
a variety of sensor specifications, inertia vibration, battery consumption, etc. Further
investigation will evaluate and compare the data gathered by smartphones of different
brands and models. Future studies will also compare smartphones using iOS and Android
operating systems for accelerometer and GPS data acquisition, although in theory the
difference is likely to be negligible.

In this study, only the road directly above ground is considered, but not road segments
within a bridge, tunnel, or other infrastructure possibly subject to dynamic loads. For such
road segments embedded in a dynamic system, eigenvalue perturbation and other online
data analysis methods may be adopted for real-time damage detection. For further study,
the smartphone vibration data can be combined with video/image camera data and other
inspection methods to jointly monitor and assess large-scale road structural conditions
with improved accuracy.

Author Contributions: Conceptualisation, Z.L.; methodology, D.D.; software, D.D.; validation, Z.L.
and D.D.; formal analysis, Z.L. and D.D.; writing—original draft preparation, D.D.; writing—review
and editing, Z.L.; funding acquisition, Z.L. and D.D. Both authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Experiential Learning Research Programme (SPUR),
Maynooth University, Ireland. The authors would also like to thank Transportation Infrastruc-
ture Ireland (TII), Science Foundation Ireland (SFI), and the Irish Centre for Research in Applied
Geosciences (iCRAG).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The main reported data can be found in the tables and figures in
this paper.

Acknowledgments: This research was supported by the Experiential Learning Research Programme
(SPUR), Maynooth University, Ireland. The authors would also like to thank Transportation Infras-
tructure Ireland (TII), Science Foundation Ireland (SFI), and the Irish Centre for Research in Applied
Geosciences (iCRAG) for providing relevant road condition assessment reports and financial support.
In particular, the assistance from Christopher Schultz and Chao Wang is gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or
in the decision to publish the results.

References
1. IGEES. Transport Trneds, an Overview of Ireland’s Transport Sector. Available online: https://igees.gov.ie/transport-trends-20

20-an-overview-of-irelands-transport-sector/ (accessed on 11 August 2021).
2. National Development Plan 2007–2013, Transforming Ireland—A Better Quality of Life for All. Available online: https://www.

drugsandalcohol.ie/6137/ (accessed on 11 August 2021).
3. Lempert, A.A.; Sidorov, D.N.; Zhukov, A.; Nguyen, G.L. A combined work optimization technology under resource constraints

with an application to road repair. Autom. Remote Control 2016, 77, 1883–1893. [CrossRef]
4. Sattar, S.; Li, S.; Chapman, M. Road Surface Monitoring Using Smartphone Sensors: A Review. Sensors 2018, 18, 3845. [CrossRef]

[PubMed]
5. Allouch, A.; Koubâa, A.; Abbes, T.; Ammar, A. Roadsense: Smartphone application to estimate road conditions using ac-

celerometer and gyroscope. IEEE Sens. J. 2017, 17, 4231–4238. [CrossRef]
6. Li, W.; Burrow, M.; Metje, N.; Ghataora, G. Automatic road survey by using vehicle mounted laser for road asset management.

IEEE Access 2020, 8, 94643–94653. [CrossRef]
7. Viollon, S.; Lavandier, C. Multidimensional assessment of the acoustic quality of urban environments. In Proceedings of the

“Internoise”, Nice, France, 27–30 August 2000; Volume 4, pp. 2279–2284.
8. Paje, S.; Bueno, M.; Terán, F.; Viñuela, U.; Luong, J. Assessment of asphalt concrete acoustic performance in urban streets. J. Acoust.

Soc. Am. 2008, 123, 1439–1445. [CrossRef] [PubMed]
9. Krysin´ski, L.; Sudyka, J. Gpr abilities in investigation of the pavement transversal cracks. J. Appl. Geophys. 2013, 97, 27–36.

[CrossRef]

https://igees.gov.ie/transport-trends-2020-an-overview-of-irelands-transport-sector/
https://igees.gov.ie/transport-trends-2020-an-overview-of-irelands-transport-sector/
https://www.drugsandalcohol.ie/6137/
https://www.drugsandalcohol.ie/6137/
http://doi.org/10.1134/S0005117916110011
http://doi.org/10.3390/s18113845
http://www.ncbi.nlm.nih.gov/pubmed/30423962
http://doi.org/10.1109/JSEN.2017.2702739
http://doi.org/10.1109/ACCESS.2020.2994470
http://doi.org/10.1121/1.2828068
http://www.ncbi.nlm.nih.gov/pubmed/18345833
http://doi.org/10.1016/j.jappgeo.2013.03.010


Sensors 2021, 21, 5433 15 of 15

10. Guan, H.; Li, J.; Cao, S.; Yu, Y. Use of mobile LiDAR in road information inventory: A review. Int. J. Image Data Fusion 2016, 7,
219–242. [CrossRef]

11. Laurent, J.; Hébert, J.F.; Lefebvre, D.; Savard, Y. Using 3D laser profiling sensors for the automated measurement of road
surface conditions. In 7th RILEM International Conference on Cracking in Pavements; Springer: Dordrecht, The Netherlands, 2012;
pp. 157–167.

12. Nguyen, T.H.; Nguyen, T.L.; Sidorov, D.N.; Dreglea, A.I. Machine Learning Algorithms Application to Road Defects Classification.
Int. J. Intell. Decis. Technol. 2018, 12, 59–66. [CrossRef]

13. Mohan, P.; Padmanabhan, V.N.; Ramjee, R. Nericell: Rich monitoring of road and traffic conditions using mobile smartphones.
In Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems, Raleigh, NC, USA, 5–7 November 2008;
pp. 323–336.

14. Mednis, A.; Strazdins, G.; Zviedris, R.; Kanonirs, G.; Selavo, L. Real time pothole detection using Android smartphones with
accelerometers. In Proceedings of the 2011 International Conference on Distributed Computing in Sensor Systems and Workshops
(DCOSS), Barcelona, Spain, 27–29 June 2011; pp. 1–6.

15. Bhoraskar, R.; Vankadhara, N.; Raman, B.; Kulkarni, P. Wolverine: Traffic and road condition estimation using smartphone
sensors. In Proceedings of the 2012 Fourth International Conference on Communication Systems and Networks (COMSNETS
2012), Bangalore, India, 3–7 January 2012; pp. 1–6.

16. Mulry, B.B.; McCarthy, J. Development and implementation of a simplified system for assessing the condition of Irish regional
and local roads. In Proceedings of the 9th International Conference on Managing Pavement Assets (ICMPA9), Alexandria, VA,
USA, 4 June 2015. Available online: https://vtechworks.lib.vt.edu/handle/10919/56413 (accessed on 11 August 2021).

17. Eriksson, J.; Girod, L.; Hull, B.; Newton, R.; Madden, S.; Balakrishnan, H. The pothole patrol: Using a mobile sensor network
for road surface monitoring. In Proceedings of the 6th International Conference on Mobile Systems, Applications, and Services,
Breckenridge, CO, USA, 17–20 June 2008; pp. 29–39.

18. van Diggelen, F.; Enge, P. The world’s first gps mooc and worldwide laboratory using smartphones. In Proceedings of the 28th
International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2015), Tampa, FL, USA, 14–18
September 2015; pp. 361–369.

19. Barbosa, R.S. Vehicle Vibration Response Subjected to Longwave Measured Pavement Irregularity. J. Mech. Eng. Autom. 2012, 2,
17–24. [CrossRef]

20. Yang, T.; Wang, T.; Li, G.; Shi, J.; Sun, X. Vibration characteristics of compression ignition engines fueled with blended petro-diesel
and fischertropsch diesel fuel from coal fuels. Energies 2018, 11, 2043. [CrossRef]

21. Butterworth, S. On the theory of filter amplifiers. Wirel. Eng. 1930, 7, 536–541.
22. Zhukov, A.V.; Sidorov, D.N.; Foley, A.M. Random Forest Based Approach for Concept Drift Handling. In Communications in

Computer and Information Science; Springer: Cham, Switzerland, 2017; Volume 661, pp. 69–77.
23. Lee, G.N.; Fujita, H. K-means Clustering for Classifying Unlabelled MRI Data. In Proceedings of the 9th Biennial Conference of

the Australian Pattern Recognition Society on Digital Image Computing Techniques and Applications (DICTA 2007), Glenelg,
Australia, 3–5 December 2007; pp. 92–98.

http://doi.org/10.1080/19479832.2016.1188860
http://doi.org/10.3233/IDT-170323
https://vtechworks.lib.vt.edu/handle/10919/56413
http://doi.org/10.5923/j.jmea.20120202.04
http://doi.org/10.3390/en11082043

	Introduction 
	Literature Review on Road Condition Monitoring 
	Smartphone Data Acquisition 
	Project Background 
	Data Collection 

	Data Analysis for Road Defect Detection 
	Data Processing 
	Defect Detection 

	Evaluation of the Proposed Method 
	Conclusions 
	References

