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Abstract

Power regulation of horizontal-axis grid-connected up-wind constant-speed pitch-regulated wind turbines
presents a demanding control problem with the plant, actuation system and control objectives all strongly
nonlinear.  In this paper, a novel nonlinear control strategy is devised which, in some sense, optimises
performance across the operating envelope.  In comparison with linear control, the nonlinear strategy
achieves a substantial improvement in performance.  The realisation adopted is crucial in attaining the
required performance.  An extended local li near equivalence condition is introduced which provides a basis
for the selection of an appropriate realisation.  This is an important, and general, issue in the design of gain-
scheduled systems and generic realisations, which satsify the extended local li near equivalence condition, are
derived for SISO systems scheduled upon an internal plant or controller variable.  For the wind turbine
nonlinear controller, realisations which satisfy the extended local li near equivalence condition provide a
substantial improvement in performance in comparison to linear control and realisations which do not satisfy
this condition.



1.  Introduction

Wind energy is one of the most promising sources of renewable energy for the U.K and over the last two
decades there has been rapid development of wind turbine technology.  The standard commercial design of
turbine is a horizontal-axis grid-connected up-wind medium-scale machine with a rating of approximately
300 kW to 500 kW.  It is anticipated that the next generation of wind turbines which are presently being
developed will i nclude large-scale designs with a rating of around 1 MW.  The rotor usually has two or three
blades and in pitch regulated machines the pitch angle of either the full span of the blades, or just the outer
tips, can be varied.  The control design task for constant-speed pitch-regulated machines is to exploit this
capabilit y in order to regulate power output whilst minimising the load transients and thereby reducing
fatigue damage.  The objectives of the SISO control system are discussed fully by Leithead et al. (1991a, b,
1992).

Wind turbine power regulation presents a demanding SISO control problem with the plant, actuation
system and control objectives all strongly nonlinear.  Having catered adequately for the nonlinear plant
dynamics (Leithead et al. 1991a, 1992, Leith & Leithead 1995), the plant may be considered to be essentially
linear but the control objectives remain nonlinear.  In this paper, a novel nonlinear control strategy is
presented which addresses the nonlinear control objectives.  This controller  is, in some sense, optimal across
the operating envelope rather than at an operating point.

A conceptually simple approach to the design of a nonlinear controller is to construct it by continuously
interpolating, in some manner, between the members of a family of linear controllers.  Each linear controller
might be designed on the basis of a linearisation, at a specified operating point, of the plant.  When the
controller is adjusted with reference to a slowly varying externally measured quantity (that is, the operating
point is parameterised by such a quantity), it is usually referred to as a ‘gain-scheduled’ controller.  However,
this term is also widely applied, in a somewhat imprecise manner, to encompass a broad range of systems
including those where the scheduling variable varies rapidly and where an internal state of the controller is
employed to implicitly schedule the system.  These latter systems may be strongly nonlinear and their
dynamic characteristics may, in general, bear littl e relation to that of traditional slowly varying exogeneously
gain-scheduled systems.  In order to emphasise their essentially nonlinear nature, it is proposed, within the
context of this paper, that ‘ interpolated linear controller’ is a more appropriate, and conceptually clearer,
term with which to denote this broad class of systems.  ‘Gain-scheduled’ is then reserved to describe systems
which are suff iciently slowly-varying that, in the context of a particular application, the characteristics of the
family of linear controllers are inherited by the interpolated linear controller and so-called frozen-time linear
analysis is applicable (trivially, when the rate of variation is zero).

Whilst interpolated linear controllers occur frequently (e.g. Astrom & Wittenmark 1989, Hyde & Glover
1990), techniques for the analysis and design of these systems are poorly developed.  In a context related to
gain-scheduling, Lawrence & Rugh (1993, 1995) propose that a necessary condition for the properties of the
members of the family of linear controllers to be inherited by an interpolated linear controller is that the
linearisation, at a specific equili brium operating point, of the nonlinear system corresponds to the associated
member of the family of linear controllers.  When the parameter variation in an unforced interpolated linear
system is suff iciently slow the nonlinear behaviour of the system is weak and linear stabilit y analysis is valid
(Desoer 1969).  Moreover, robustness is preserved with respect to convolution operator feedback
perturbations (Shamma & Athans 1987) and finite-dimensional nonlinear perturbations (under certain
conditions, Desoer & Vidyasagar 1975).  However, the tests of slowness are often very conservative and may
involve quantities for which values are diff icult to obtain (Shamma & Athans 1987, 1990).  Shamma &
Athans (1990) extend their analysis to forced gain-scheduled systems, but their results are confined to two
specific arrangements and they observe that evaluation of the suff iciency bounds obtained is impractical.  In
the forced case, a general result from singular perturbation theory (Hoppensteadt 1966, Khalil & Kokotovic
1991) indicates local stabilit y if the inputs vary suff iciently slowly that the system remains close to a family
of equili brium operating points.  However, the local nature of this result restricts its utilit y.  When the
members of the linear family of controllers are suff iciently alike, stabilit y of the associated interpolated linear
controller is assured (Shahruz & Behtash 1992, Becker et al. 1993).  The smoothness requirements imposed
are, however, very restrictive.

In the present application, the realisation adopted enables the use of an interpolated linear controller in
circumstances which are not, a priori, warranted by weakness of the nonlinearities.  (Wind speed fluctuations
are highly stochastic and the operating point of a wind turbine varies rapidly and continuously over the whole
operational envelope.  Whilst, typically, the bandwidth of the closed-loop system is 3 r/s, the operating point
might cover its full range in one or two seconds (Leithead et al. 1991a).  Consequently, the emphasis is on
the nonlinear behaviour and performance of the controlled system).  Although it is known that the dynamic
characteristics of interpolated linear controllers with integral action depend substantially on the positioning



of the pure integrator relative to the rest of the controller (Leithead et al. (1991a), in the context of strongly
nonlinear control; Lawrence & Rugh (1993,1995), Kaminer et al. (1995) in contexts related to gain-
scheduling), the influence of the choice of realisation adopted otherwise appears to have received littl e
consideration.

The paper is organised as follows.  Section Two outlines the controller specification.  In Sections Three,
Four, Five and Six the nonlinear control approach is discussed, including the selection of an appropriate
realisation.  In Section Seven, results from extensive simulations are used to compare the performance of the
nonlinear controller with conventional li near control.  Due to lack of space, attention is confined to
continuous-time control of a typical 300 kW two-bladed machine with full -span pitch regulation.  Similar
results are obtained with other configurations of wind turbine (Leith & Leithead 1994a,b).  In Section Eight,
the conclusions are summarised.

2.   Controller Specification

In this paper, controllers are described for a medium-scale wind turbine which is dynamically
representative of commercial machines of its class.  A block diagram of the linearised wind turbine control
model is depicted in figure 1.  The open-loop system dynamics, at a wind speed of 12 m/s, are modelled by
the transfer function G(s) (see Leithead et al. 1991a for details of the nonlinear representation) where

      1.553x1010(s+4.0)
 G(s)  =  

(s7+1.073x102s6+5.917x103s5+2.263x105s4+4.393x106s3+3.927x107s2+1.932x108s+4.423x108)

It is important that fair comparisons between controller performance are made.  To this end each
controller investigated is required to have similar stabilit y margins and to operate within the same actuator
restrictions.  All the controllers are designed to meet the following requirements :

(i) Gain margin of at least 10 dB.
(ii ) Phase margin of approximately 60 degrees.
(iii ) Servo pitch acceleration standard deviation no more than approximately 20 deg/s2.

The aerodynamic behaviour of wind turbine blades is highly nonlinear and strongly dependent on wind
speed.  In terms of a linearised plant description, as wind speed increases the gain of the plant increases since
the rate of change of aerodynamic torque to pitch angle increases.  It is standard practice for wind turbine
controllers to include a nonlinear gain to compensate for this variation and make the control task essentially
linear (Leith & Leithead 1995, Leithead et al.1991a).  Because of their global mutual compensation (Leith &
Leithead 1995), these two nonlinearities are ignored in the remainder of this paper.  (The dynamics at all
wind speeds may now be considered to be the same and modelled by G(s)).  However, the representation of
the aerodynamics is very basic and subject to considerable uncertainty.  Consequently, a good gain margin,
in conjunction with a good phase margin, is particularly important in order to achieve adequate stabilit y
margins.  Because of the complexity of the interaction of the rotor with the wind, it is not possible to quantify
the uncertainty in the aerodynamic gain but practical experience indicates that 10 dB is an appropriate gain
margin.  If adequate gain and phase margins are not achieved the system must sometimes destabili se,
although not necessarily become unstable, in which case the wind turbine would experience large load
fluctuations.

Requirement (iii ) represents a practical limitation on the level of activity of the blade servo.  Servo pitch
acceleration is a measure of the force or torque developed by the actuator and the standard deviation reflects
activity over the medium and long term.  It should be emphasised that the value of pitch acceleration used is
not that of the actual turbine blades.  Rather, it is a normalised measure which permits valid comparisons to
be made between differing designs of actuator.  For example, blade pitching systems with different gearing
ratios linking the actuator to the blades may be compared in an unbiased manner using this measure.  The
pitch acceleration of the actual blades will t ypically have a lower value as a result of the compliance of the
blades and linkages together with many other factors.  The restriction on actuator activity inherent in (iii ) is
always necessary to prevent saturation occurring too frequently but there may also be additional hardware-
related reasons for its imposition. For the machine considered here, the actuator is an electro-mechanical
system and the restriction on servo pitch acceleration is equivalent to a restriction on the servo motor current
which is imposed to prevent over-heating.  The limit of 20 deg/s2 is typical of comparable commercial
machines.



There are several implementation issues which need to be considered.  The actuator, in addition to
requirement (iii ), is subject to hard limits on torque, velocity and position and effective anti-wind-up
measures are therefore important.  There is, also, the requirement to ensure smooth and timely start-up of the
controller. (When the wind speed falls below a certain level, rated power cannot be generated and control
action is suspended until the wind speed rises again).  These issues have a significant impact on performance
and are discussed in detail elsewhere (Leith & Leithead 1995, Leithead et al. 1991a).  It should be noted that
the nature of the realisation of the controller is important when addressing the implementation issues and also
impacts strongly upon the effectiveness of the compensating nonlinear gain discussed above.  The controller
realisations adopted in this paper are compatible with the requirements thereby imposed (Leith & Leithead
1995, Leithead et al.1991a).

3.   Nonlinear Control

The actuator characteristics, especially the limits on torque, are one of the main restrictions on the
performance that can be achieved by a controller.  As the wind speed rises, a linear controller places less
demand on the actuator since the sensitivity of the aerodynamic torque to pitch changes increases faster than
the sensitivity to wind speed changes.  Hence, for a controller with fixed open-loop cross-over frequency,
whilst the actuator may be worked to its full capabilit y at low wind speed, it is not used as fully at higher
wind speeds.  However, it is at these higher wind speeds that loads are greatest and therefore controller
performance is most critical.  Parametric studies (Rogers & Leithead 1993, 1994 and Leithead and Rogers
1993) indicate that there is an advantage in using this spare actuator capacity as the wind speed rises and that
there exists an optimum level of activity for the controller at each wind speed.  Whether, at any particular
wind speed, the resulting optimum cross-over frequency can be achieved in practice depends on the
capabiliti es of the actuator.

The optimum, as measured by the standard deviation of the power transients (see figure 2) exists due to
the action of two competing factors.  As wind speed rises, for a fixed controller the standard deviation of the
power also rises due to the increased level of turbulence.  It is therefore attractive to increase the controller
activity by raising the open-loop cross-over frequency, giving improved disturbance rejection.  However, the
wind spectrum differs from that experienced at a static point (see, for example, Leithead et al. 1991a).  In
particular, the wind experienced by a wind turbine contains large amounts of energy at frequencies nP, where
n is the number of blades or an integer multiple thereof, and P is the rotational speed of the rotor.  Since it is
necessary to protect the actuator by causing the open-loop transmittance to roll -off , whilst maintaining
adequate gain and phase margins, there is an inevitable tendency for the sensitivity transfer function to
increase the intensity of the nP peaks as the cross-over frequency is increased.

The requirement is to design a controller which operates as near as possible to its optimal level of activity
in all wind speeds, subject to actuator constraints.  A complication is the lack of a direct measurement of
wind speed.  Indeed there is no such thing as 'the windspeed' experienced by a wind turbine, since the rotor
experiences a spatially and temporally distributed wind field.  Simple scheduling is therefore not appropriate
and the wind speed must be inferred from the plant dynamics via the pitch demand.  If the controller is
operating correctly, the demanded pitch angle is a good indicator of wind speed.  (This approach is widely
used to vary the previously noted nonlinear gain, which essentially linearises the plant by compensating for
variations in the aerodynamic torque sensitivity).  Employing an internal state of the system, such as the pitch
demand, to implicitly change the controller as wind speed varies must be treated with some caution, however,
since it introduces additional nonlinear feedback loops, thereby changing the plant dynamics.  The design
task is to develop a continuously varying controller which induces the appropriate closed-loop dynamics at
any wind speed, despite the presence of these feedback loops.  The resulting controller is nonlinear.

A family of linear controllers is designed for various wind speeds using classical loop-shaping design
techniques.  Taking some care to minimise the differences between them, the family of controller transfer
functions obtained is :

         (s2+7.59s+68.06)       (s+1.7)(s+1.8)(s2+3s+416.16)(s2+2s+104.04)(s2+7.243s+38.637)2209
g(u)    
          (s2+a(u)s+b(u))   s(s+0.3)(s+3.7)(s2+8s+416.16)(s2+11s+104.04)(s+100)(s+30)(s2+65.8s+2209)

where a(u)=-0.033047u2 + 0.75064u + 3.3749, b(u)= 2.6002u + 58.040, g(u)= (0.13779u + 0.29784), and u
is the nominal pitch angle, in degrees, demanded by the controller at the equili brium operating points.  It can
be seen that these controller transfer functions are the same except for a varying gain and a pair of varying



poles.  The Bode plot of the open-loop transfer function of the system with the member of this family of
controllers for 12 m/s wind speed is shown in figure 3.  The family of controllers exhibits low frequency
shaping to improve disturbance rejection, high frequency roll -off to reduce actuator activity, and notches at
2P and 4P to reduce actuator activity and reduce the enhancement of the loads induced by these spectral
peaks.  The gain and phase margins of the transfer functions for specific members of the family are given in
the following table :

u
(deg)

gain
margin
(dB)

phase
margin
(deg)

cross-over
freq.
(r/s)

3.84 (12 m/s) 13.74 55.23 1.36
11.14 (16 m/s) 10.03 55.89 2.51
16.21 (20 m/s) 10.00 55.62 2.85
20.59 (24 m/s) 10.79 55.64 3.25

As may be seen from figure 2, the optimum cross-over frequencies to minimise the standard deviation of the
power output are approximately 1.5 r/s, 2.25 r/s and 4 r/s at 12 m/s, 16 m/s and 23m/s respectively for this
configuration of wind turbine (Rogers & Leithead 1993, 1994, Leithead & Rogers 1993).  While at 24 m/s
the optimum cross-over frequency of around 4 r/s is not achieved due to the physical limitations of the
actuator, the minima is broad and the cross-over frequency of 3.25 r/s is near optimal.  The gain margin of
the 12 m/s controller is rather higher than 10 dB.  Since there is always a trade-off between performance and
robustness, the controller does not achieve the best performance possible at low wind speeds.  This choice of
controller is necessary, however, if the variation between the transfer functions of the controllers is to be
restricted to the values of a, b and g.

The controller is split i nto two main blocks as shown in figure 4 to cater for the situation when a negative
pitch angle is demanded, i.e. when the wind speed has fallen below the level at which rated power of 300 kW
can be generated.  In this situation the controller is switched out of operation .  Owing to the presence of low
frequency dynamics within the controller, transients may occur for a substantial period of time when the
controller is switched back in again as the wind speed rises.  To combat the transients, a minor loop is
introduced within the controller which is activated during below rated operation so that the controller is
continuously operating and thereby smooth switching achieved.  This technique, including the partitioning of
the controller into inner and outer blocks, is discussed in detail i n Leith & Leithead (1995) and Leithead et
al. (1991a, 1992).  The controller partitioning in the present case is as follows:

 (s+1.7)(s+1.8)(s2+7.59s+68.06)
Inner Block 4.5g(u) 
  s(s+0.3)(s+3.7)(s2+a(u)s+b(u))

          (s2+7.243s+38.637)(s2+2s+104.04) (s2+3s+416.16)
Outer Block 0.222  

 (s+100)(s+30)(s2+11s+104.04)(s2+65.8s+2209) (s2+8s+416.16)

A nonlinear controller is obtained by interpolating continuously between the members of the family of
linear controllers as pitch demand varies.  Upper and lower bounds are placed on a, b and g.  When u is less
than 3.84 degrees (corresponding to 12 m/s wind speed), a, b and g are held at their 3.84 degree values.
Similarly, when u is greater than 20.59 degrees (24 m/s wind speed), a, b and g are held at their 20.59 degree
values.  The nonlinearities are confined to the inner block of the controller.

It is known  (see, for example, Leithead et al. 1991a, 1992) that the dynamic behaviour of a nonlinear
controller can strongly depend upon the realisation adopted.  In particular, for controllers with integral
action, the position of the pure integrator is important (Leithead et al. 1991a, 1992).   Perhaps an obvious
choice of realisation for the inner block is to group the nonlinear elements together and place them after all
the linear dynamic terms (including the pure integrator term).  Alternatively, the nonlinear elements might be
positioned after the main linear dynamics but immediately before the pure integrator.  The performance, as
indicated by generated power, is depicted in figure 5a with the nonlinear elements positioned both after the
pure integrator and before.  (The precise realisation for the latter is that of figure 6a and the realisation for
the former is the same except for repositioning of the pure integrator).  A considerable difference in
performance is evident.  Of course, when the nonlinear nature of the controller is suff iciently weak, the



realisation adopted is immaterial.  Hence, the comparison acts as a simple test of the strength of nonlinearity.
The extent of the difference in performance in figure 5a, between the pure integrator being positioned  before
the nonlinear elements and after, indicates that, in the present case, the nonlinearity is not a priori weak.
Clearly, the influence of the choice of realisation is substantial and must be considered with some care.

It has been proposed by Leith & Leithead (1994c) that a nonlinear controller constructed by interpolating
between linear controllers should satisfy a local li near equivalence condition; that is, the linearisation, at any
operating point, of the nonlinear controller should correspond to the associated member of the family of
linear controllers.  In contrast, Lawrence & Rugh (1993,1995) restrict local li near equivalence to only the
equili brium operating points; that is, operating points for which the plant and controller states and the
scheduling variables have constant values.  Exploiting the particular characteristics of the class of
equili brium operating points, an algebraic condition is derived specifically for local li near equivalence at the
equili brium operating points.  Lawrence & Rugh (1993,1995) observe that, for controllers with integral
action, local li near equivalence at equili brium operating points is achieved by adopting a realisation in which
the pure integrator term is placed after the other dynamic elements.  Since the realisation depicted in figure
6a meets this requirement, it attains local li near equivalence at the equili brium operating points.  In addition,
the realisation of figure 6a has the desirable property that, at an equili brium operating point, variations in the
nonlinear terms, a, b and g which are unrelated to the input to the controller are rejected by the controller;
that is, the system will remain in equili brium regardless of spurious fluctuations in these terms.  Both these
properties of the controller are a direct consequence of the signals, upon which the nonlinear terms act,
having zero value in equili brium owing to the position of the pure integrator.

However, figure 6a does not represent a unique choice of representation and many satisfy the local li near
equivalence condition at equili brium operating points; for example, alternative realisations are depicted in
figures 6b and 6c.  (Without undue diff iculty, when implementing the controller with the realisation of figure
6c, it can be reformulated to accomodate the improper transfer function).  Lawrence & Rugh (1993, 1995) do
not distinguish between different realisations that satisfy the local li near equivalence condition at equili brium
operating points.  However, they are not equivalent.  Figure 5b compares the power outputs, in response to a
sequence of moderate gusts, for the controller realisations of figures 6a and 6c.  It is clear that the behaviour
exhibited by the controllers is substantially different despite both displaying local li near equivalence at the
equili brium operating points.

Furthermore, although realisations satisfying the local li near equivalence condition of Lawrence & Rugh
(1993, 1995) are not distinguishable at the equili brium operating points, the neighbourhoods of the
equili brium operating points, within which they are dynamically similar to the associated linear systems, can
vary substantially.  Consider the realisations of figures 6a and 6b.  For constant values of a, b and g (that is,
the linear time-invariant case), the realisations of figures 6a and 6b are equivalent and typical of
implementations that might be employed for linear systems.  For time-varying values, the dynamic behaviour
of the second order nonlinear element in figure 6b is described by the differential equation

� � �
x3 +  a(u)x3 + b(u)x3 =   x1 (1)

To clarify the analysis, the time-invariant zeroes of the second order nonlinear element are, without loss of
generality, neglected.  Locally to an equili brium operating point at which the nominal value of u is uo,

u  =  uo + δu (2a)
 x1  =  0 + δx1;  x3  =  0 + δx3;  

� �
x  =  0 + x3 3δ ;  

� � � �
x  =  0 + x3 3δ (2b)

and equation (1) has the linearisation
δ δ δ δ

� � �
x3 + a(uo ) x3 +  b(uo ) x3   x1≈ (3)

From (3), it is clear that the local li near equivalence condition is satisfied at the equili brium operating points.
The error, ε, in approximating (1), locally to the equili brium operating point, by (3) is

 ε = ( ) ( ) a(u) - a(uo ) x3 +  b(u) -  b(uo) x3 δ δ�
(4)

Since a(•) and b(•) are continuous and non-zero for all possible values of u, it follows that ε can be made
arbitrarily small for δu suff iciently small (and δx3 and its derivative finite); that is, the linearisation accurately
describes the dynamic behaviour of (1) in an arbitrarily large neighbourhood in state-space about the
equili brium point provided δu is suff iciently small .  Now, consider the realisation of figure 6a.  The
differential equation (1) is superseded by

� � � �
x3 +  a(u)x3 + b(u)x3 +  

da

du
u x3 =   x1 (5)



(again neglecting zeroes).  Locally to an equili brium operating point, the differential equation (5) might again
be approximated linearly by (3) and the local li near equivalence condition is again satisfied at the
equili brium operating points.  The error, ξ, in approximating (4), locally to the equili brium point, by (3) is

ξ = ( ) ( ) a(u) - a(uo ) x3 +  b(u) -  b(uo) x3 +  
da

du
(u) u x3δ δ δ

� �
(6)

In general, δδ
�
u can be arbitrarily large independently of the magnitude of δu and so, unless δx3 is confined to

an infinitesimally small neighbourhood about the origin, ξ may be large even if δu is small .  Although it is
unlikely that δδ �

u  is unduly large for ideally deterministic systems, to which Lawrence & Rugh (1993, 1995)
is restricted, this possibilit y is not so unlikely for stochastic systems where, for example, high frequency
measurement noise might be present.  In practice, therefore, the neighbourhoods of the equili brium operating
points, within which (1) and (5) are dynamically similar to (3), may be quite different.  Indeed, (5) may
exhibit substantially different dynamic behaviour from (1) and from that indicated by its linearisation local to
an equili brium operating point, even when δu is small and the states of the system are rather close to their
equili brium values.  The better realisation is apparently (1).

From the foregoing discussion it is evident that simply requiring local li near equivalence at the
equili brium points provides an inadequate basis for the choice of realisation for interpolated linear
controllers.  Dynamic behaviour far from the equili brium points cannot be neglected.  In unsteady operating
conditions, substantial prolonged perturbations from the equili brium operating point are experienced in many
applications.  For example, in the wind turbine case, the wind turbulence does not consist solely of small
wind speed fluctuations about some mean value.  Large, rapid fluctuations in wind speed and power output
are common, in particular gusts; that is, steady increases or decreases in the wind speed which persist for
relatively long periods.  Hence, it is insuff icient to consider only the dynamic behaviour of the system close
to the equili brium operating points; conditions which are far from equili brium cannot be neglected.  The
stronger criterion of Leith & Leithead (1994c) is required.

4.  Realisation of the Nonlinear Controller
4.1 Extended Local Linear Equivalence

A SISO interpolated linear system is described by the nonlinear differential equation
�x   =  F(x, r, ρ); y  =  H(x, r, ρ) (7)

where F(•,•,•), H(•,•,•) are differentiable, r denotes the input to the system, y the output and ρ is a
continuous scalar function of (x, r) corresponding to the scheduling variable.  The set of equili brium
operating points consists of those points, (xo, ro), for which F(xo, ro, ρo) is zero, where ρo denotes ρ(xo, ro).
Let Φ: ℜn×ℜ denote the space { (x, r)} .  The set of equili brium operating points forms a locus in Φ and the
response of the system to the general time-varying input, r(t), is depicted by a trajectory in Φ.  Satisfying
local li near equivalence at the equili brium operating points as proposed by Lawrence & Rugh (1993, 1995)
ensures that the interpolated linear system exhibits similar behaviour to the appropriate linear system near a
specific equili brium operating point only if (x, r) (and so also ρ(x, r)) remains within a suff iciently small
(perhaps vanishingly small ) neighbourhood of that operating point.  The size of the neighbourhood about
each operating point depends on the strength of nonlinearity of the system.  Outwith each neighbourhood the
interpolated linear system can exhibit very different characteristics from the local li nearisation.  The situation
is ill ustrated by figure 7a for a SISO first-order system: the neighbourhoods, depicted about specific
equili brium operating points, notionally indicate the respective regions within which linearisation is valid.

In general, for linearisation to provide a valid indication of the dynamic behaviour near an equili brium
point requires

(i)  suff iciently small variations in the scheduling variable, ρ
(ii )  every state to remain within a small neighbourhood of the specific equili brium operating point
(iii )  suff iciently small variations in the input, r.

Since the nonlinear character of an interpolated linear system is embodied in the scheduling variable, ρ, it is
reasonable to expect restrictions on the allowable behaviour of ρ for linear analysis to apply.  In contrast, the
latter two conditions represent very strong restrictions which do not seem to be a priori necessary yet limit
the analysis to small (perhaps vanishingly small ) neighbourhoods, in the space Φ, of the equili brium
operating points (requiring, implicitly, every system state to be, in some sense, slowly-varying).

Behaviour at the equili brium points alone provides littl e indication, in general, of the utilit y of a
realisation for an interpolated linear system, the behaviour of the realisation at every operating point in Φ
must, instead, be considered.  Leith & Leithead (1994c) proposed that local li near equivalence should be



required at all operating points, whether equili bria or not.  This condition subsumes that of equivalence at the
equili brium operating points alone and corresponds to the natural requirement that the linearisation about
every point in Φ for which ρ equals ρo should be identical to the member, specified by ρo, of the family of
linear controllers.  Since ρ is scalar, ρ equals ρo upon a surface of dimension (n-1) in Φ.  Moreover, for the
linearisation of the nonlinear system to be parameterised purely by ρ it follows that ∇xρ and ∇rρ are
functions of ρ alone and so are constant over the surface in Φ upon which ρ equals ρo.  Hence, the normal to
that surface is identical at every point on the surface and the surface must, therefore, be a hyperplane.  In
figure 7b, the shaded region notionally indicates the neighbourhood of linear equivalence about a specific
hyperplane.  Local li near equivalence, in this extended sense, thus, ensures that the family of linear systems
indicate  the local dynamic behaviour at every point in Φ, as required, rather than only in a small region close
to the locus of equili brium operating points.  In addition, it ensures that linear analysis is applicable to any
trajectory for which ρ is constant; that is, trajectories lying wholly on a hyperplane of constant ρ.  Hence, for
the dynamic behaviour of the realisation to be globally appropriate only the scheduling variable, ρ, is subject
to a restriction on its rate of variation, which surely represents the minimum constraint.  In contrast to the
extended local li near equivalence condition, the local li near equivalence condition of Lawrence & Rugh
(1993, 1995), as noted above, requires that every element of (x, r) remains within a small neighbourhood of
the equili brium point which indirectly imposes a constraint on the rate of variation of the states.  In general,
the resulting restriction on 

�
ρ is stricter than under the extended local li near equivalence condition.

It follows immediately from the extended local li near equivalence condition that the nonlinear
components of the implemented interpolated linear system must be purely functions of ρ; that is, the
nonlinear system has the form

�x   =  Ax + Br + f(ρ) (8a)
y  =  Cx + Dr + h(ρ) (8b)

where A, B, C, D are constant matrices, f(ρ) and h(ρ) are differentiable functions and ∇∇xρ and ∇∇rρ are
functions of ρ alone.  Consequently, the hyperplanes of constant ρ in Φ do not intersect; that is, the
hyperplanes, and so their normals, must be parallel for all ρ.  Hence, it may be assumed, without loss of
generality, that (∇∇xρ, ∇∇rρ) is a constant vector and ρ is a linear combination of the states and the input.
Assuming that the point (x, r) lies in a suff iciently small neighbourhood of the hyperplane containing the
equili brium point (xo, ro,), then

f f f f f x( )  ( ) +  ( ) ( - ) =  ( ) +  ( )(  +  o o o o o x rρ ρ ρ ρ ρ ρ ρ ρ∆ ρ∆≈ ′ ′ ∇∇ ∇∇ r)

h( )  ( ) +  h ( ) ( - ) =  h( ) +  h ( )(  +  o o o o o x rρ ρ ρ ρ ρ ρ ρ ρ∆ ρ∆≈ ′ ′h )∇∇ x ∇ r

and the nonlinear system (8) has the linearisation
∆ �x   ≈ { A+ f'(ρo)∇∇xρ} ∆x + { B+f'(ρo)∇∇rρ} ∆r (9a)
∆y   ≈ { C+h'(ρo)∇∇xρ} ∆x + { D+h'(ρo)∇rρ} ∆r (9b)

where x = xo+∆x; r = ro + ∆r; y = yo + ∆y and yo = Cxo + Dro + h(ρo).  Note, ∆x and ∆r need not be small .
Unfortunately, the utilit y of (9) is hindered by the states being different from those in the nonlinear system
(8) and varying with the operating point.  Moreover, (8) and (9) have different forms and the relationship
between them is not transparent.  These issues are resolved by reformulating (9) as

�x  ≈ - { A+ f'(ρo)∇∇xρ} xo - { B+f'(ρo)∇rρ} ro + { A+ f'(ρo)∇∇xρ} x + { B+f'(ρo)∇rρ} r   (10a)
y  ≈  yo - { C+h'(ρo)∇∇xρ} xo - { D+h'(ρo)∇rρ} ro +{ C+h'(ρo)∇∇xρ} x + { D+h'(ρo)∇rρ} r (10b)

and differentiating (10) to obtain
�

w ≈ { A+ f'(ρo)∇∇xρ} w + { B+f' (ρo)∇rρ} �r (11a)
�
y  ≈ { C+h'(ρo)∇∇xρ} w + { D+h'(ρo)∇rρ} �r (11b)

where w equals �x .  When the right-hand side of (8a) is invertible, so that x may be expressed as a function
of w and r, then restricting the domain of w restricts the range of x and (11) is an alternative linearisation of
(8).  In addition, an alternative representation

�
w = { A+ f'(ρ(w,r))∇∇xρ} w + { B+f' (ρ(w,r)∇rρ} �r (12a)
�
y  = { C+h'(ρ(w,r)∇∇xρ} w + { D+h'(ρ(w,r)∇rρ} �r (12b)

of the nonlinear dynamics is obtained by differentiating (8).  The relationship between the linearisation (11)
and the nonlinear system (12) is direct; indeed, (11) is simply the frozen-time form of (12).  The dependence
upon �r in (11) and (12) is purely a consequence of the states selected and may be removed by an appropriate
state transformation (see section 4.2).

The foregoing analysis assumes that a suitable scheduling variable, ρ, has been selected.  Shamma &
Athans (1990), in accordance with common guidelines, indicate that this variable should reflect the plant
nonlinearity and be relatively slowly varying.



4.2 Realisations with Extended Local Linear Equivalence

It is necessary to determine whether requiring the controller to be a member of the class of interpolated
linear systems which satisfy the extended local li near equivalence condition for a suitable choice of
realisation is restrictive.

Consider the nonlinear system
�

�

�

�

x1
x2

xn-1
xn

  =   

-A1(x1 + b1r) +  x2 + b2
-A2(x1 + b1r) +  x3 + b3

-An-1(x1+ b1r) +  xn + bn
-An(x1+ b1r) +  r

;         y  =   G(x1 + b1r)
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(13)

for some functions G(•) and An(•).  The system (13) has the form required by (8) and, therefore, meets the
the extended local li near equivalence condition.  When An(•) is invertible, (13) can be reformulated as in
(12).  In addition, when G(•) is invertible the scheduling variable can be replaced by y.  With these
invertibilit y conditions, an alternative representation, for which the associated family of linear systems
consists of the frozen-time linearisations, is
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  =   
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with w = �x , ai(y) = A i'(G
-1(y)), i=1..n, and g(y) = G'(G-1(y)).  The requirement on (13) that G(•) and An(•)

are invertible becomes a requirement on (14) that g(y) and an(y) have fixed signs.  Any realisation related to
(13) and (14) by a non-singular linear time-invariant state transformation clearly also displays extended local
linear equivalence.  The nonlinear systems, (13) and (14), are the realisations depicted in figures 8 and 9,
respectively.  At every point in state-space where x1 has the value x10, and so y has the value yo= G(x10), the
linearisations of figure 8 or 9 have the transfer function

                      b1s
n + b2s

n-1 + ... + bns + 1
Y(s)  =  g(yo)   R(s) (15)

           sn + a1(yo) s
n-1 + ... + an-1(yo) s + an(yo))

where Y(s) and R(s) are the Laplace transforms of y(t) and r(t), respectively.
For a specific interpolated linear controller parameterised by y, for which the transfer functions of the

corresponding family of linear controllers are known and conform to (15), G(•) and A i(•), i=1..n, are
determined from

 ρ   y
A i(ρ)  =  ∫  ai(G(s)) ds; G(y)  =  ∫  g(s) ds (16a)

 0  0

with suitable boundary conditions; for example,
A i(0) = 0 = G(0) (16b)

ensures that, in equili brium, the output, y, is zero for r zero.  Whilst the realisation of figure 8 is directly
applicable to controllers without integral action, the pure integrator in the realisation of figure 9 is an
essential element of that realisation and cannot be omitted.  Controllers without integral action can,
nonetheless, be accomodated, in amost all cases when G(•) and An(•) are invertible, within the realisation of
figure 9 by reformulating the controllers to act on �r rather than r in order to introduce integral action.  The
realisation of figure 9 has the distinct advantages of being directly related to the members of the family of
linear controllers from which the interpolated linear controller is constructed.



Adoption of the realisation of figures 8 or 9 ensures that the extended local li near equivalence condition
is satisfied for the class of interpolated linear SISO controllers for which the system poles are scheduled by
an internal state but the zero dynamics are fixed.  Moreover, with the penalty of a non-minimal realisation, it
is straightforward to show that a change in the magnitude and phase of a transfer function arising from a
modification of the location of a zero may equivalently be obtained by an appropriate modification of the
location of a pole.  Hence, realisations of the form in figures 8 and 9, with varying poles, can be employed to
implement interpolated linear SISO designs with varying zeroes.  Indeed, this may be achieved directly, by
selecting the family of linear controllers, upon which the interpolated linear controller is based, such that
every member has identical zeroes; that is, during synthesis, without loss of generality, the variation between
members is confined to the overall gain and the poles.

It is self-evident that the realisations considered here can be applied to any interpolated linear controller
scheduled on an internal state; in particular, the controller output which is usually the most appropriate since
it has a tendency to be the most slowly varying.  The realisations can also be applied to those scheduled on a
plant state, x, by employing the arrangement depicted in figure 10.  P1 is the operator relating x to the plant
input and it is assumed that the inverse operator P1

-1, or a suitable realisable approximation, exists.  To
ill ustrate scheduling on a plant state, consider the following situation.  In the nonlinear controller of section
3, the nonlinear terms are functions of the pitch demand output of the controller.  Although the wind speed is
better indicated by the actual pitch angle of the blades, the pitch demand is a satisfactory alternative because
the actuator has a high bandwidth (around 20 r/s) relative to that of the controlled system.  However, were
the actuator to be much slower, for example, with transfer function 0.3/(s+0.3), then the controller should be
scheduled on the blade pitch angle; that is, a plant state.  The required arrangement is that depicted in figure
10, with P1 equal to 0.3/(s+0.3).  Simulation studies undertaken to estimate the performances of this
arrangement and the original realisation of figure 6a modified by scheduling on its actual pitch angle rather
than pitch demand (so no longer exhibiting extended local li near equivalence) indicate that the power outputs
differ by more than 30 kW.

5.   Realisation of Wind Turbine Nonlinear Controller

In section 4, it is shown that extended local li near equivalence is ensured for a wide class of interpolated
linear SISO systems by adopting an appropriate realisation.  The implications for the wind turbine nonlinear
controller of section 3 need to be evaluated.

In section 3, three realisations of the wind turbine nonlinear controller are considered; namely, those of
figures 6a and 6b, which are equivalent to the nonlinear differential equations (1) and (5), respectively, and
that of figure 6c.  All three exhibit local li near equivalence at the equili brium operating points.  However,
even locally, as discussed in section 3, the dynamic behaviour of the realisations can be considerably
different since the control signals have substantial high frequency component due to disturbances at nP (and
hence δδ �

u  in (6) cannot a priori be expected to be relatively small ).  Since (4) is not dependent on δδ �
u , the

realisation of figure 6b is initially deemed preferable.  However, it is immediately evident that the realisation
depicted in figure 6a corresponds to that of figure 9, for a second order system, and satisfies the extended
local li near equivalence condition while the realisation of figure 6b does not.  (It should be noted that both
b(•) and g(•) have fixed sign and the controller has integral action, as required).  Surprisingly, therefore, it
must be concluded that the realisation of figure 6a and not figure 6b is the most appropriate.  The
relationship of the realisation of figure 6a to the other two realisations is discussed below.

Firstly, the relationship of the realisation of figure 6b to that of figure 6a is considered.  The dynamic
behaviour of these realisations are closely related: they can be made dynamically equivalent, for example, by
introducing an additional term in (1) such that x1 is replaced by  x1 - a(u)x3

� ; that is, replacing b(u) by

b(u) - a(u)
�

in figure 6b.  The introduction of terms involving derivatives of the nonlinear elements in (1) is
somewhat counter-intuitive and emphasises the need for an analytic basis for  the choice of realisation.  Only
when the nonlinear behaviour is suff iciently weak that the term 

�
a(u)x3  is negligible are the realisations in

figures 6a and 6b equivalent.  Simulation studies encompassing a wide range of wind conditions indicate
that, for these two realisations, the power output typically only differs by about 1 kW, in comparison with a
standard deviation of the power about the rated value of approximately 40 kW.  Hence, in the context of this
particular application, the feedback term, 

�
a(u)x3 , may indeed be neglected and the second order network is

weakly nonlinear in the sense that its dynamic behaviour is insensitive to the realisation adopted.
Secondly, the relationship of the realisation of figure 6c to that of figure 6a is considered.  Simulation

studies indicate that the dynamic behaviour is essentially unchanged when the low frequency pole (of



frequency 0.3 r/s) in the realisation of figure 6a is repositioned after the nonlinear second order network but
immediately before the nonlinear gain, g(u), thereby confirming the weakly nonlinear nature of the second
order network.  However, it is clear, see figure 5b, that substantially different dynamic behaviour is exhibited
when the low frequency pole is positioned after the gain, g(u) to obtain the realisation of figure 6c.  The gain,
g(u), cannot, therefore, be considered to be a priori  weakly nonlinear in the sense that its dynamic behaviour
does not depend on the realisation adopted.  With the low frequency pole positioned immediately after the
nonlinear gain, g(u); that is, the realisation of figure 6c (neglecting, without loss of generality, the above
mentioned pole-zero pair),

� � �
u +  0.3u =  g(u) x4 (17)

where x4 is the output of the nonlinear second order network.  With the low frequency pole positioned
immediately before the nonlinear gain,

� � �
�

�
u +  0.3u  -  

g

g
(u)u =  g(u) x4 (18)

The dynamic relationships (17) and (18) only differ by the term 
g

g
(u)u

�
�

.  If the realisation of figure 6c is

modified by adding the feedback signal 
�

�g

g2 (u)u  to x4, then these two realisations become equivalent.  The

term 
g

g2
(u)u

�
�

 has fixed sign (since 
dg

du
 has fixed sign) and it introduces a positive bias, evident in figure

5b, of up to 50 kW in the power during gusts.  Hence, in the context of this particular application, the

feedback term, 
�

�g

g2 (u)u , cannot be neglected and the nonlinear gain is not a priori weak.

The realisation of figure 6a, which satisfies the extended local li near equivalence condition strictly,
regardless of the strength of the nonlinearities, is adopted for the inner block of the nonlinear wind turbine
controller (Leith & Leithead 1994c † ).

6.  Dynamic Analysis of Nonlinear Controller

Although the extended linear equivalence criterion introduced above does not guarantee that the
performance requirements are met by the interpolated linear controller, it does provide additional guidance
for the design of this type of controller.  As usual, the dynamic behaviour must be confirmed by analysis
and/or simulation.  In particular, the non-local stabilit y and robustness properties of the nonlinear controller,
which depend on the choice of realisation, must be similar to those of the linear controllers.  The nonlinear
control strategy involves implicit scheduling on an internal controller state which is not, prima facie, slowly
varying.  The stabilit y and robustness of such a controller can be investigated using a variety of methods.
Two approaches to stabilit y and robustness analysis are considered here, namely:  (i) Small Gain theorem,
(ii ) rate of controller variation. Whilst the analytic tools are more conservative than in those available for the
analysis of linear systems the success of the choice of realisation of the nonlinear controller, in causing it to
inherit the properties of the family of linear controllers, can be expected to be reflected in the results.

 (i) The Small Gain theorem (see for example Desoer & Vidyasagar 1975) is one of the most useful
tools for the analysis of nonlinear systems, particularly where the system contains important linear elements,
as in the present case.  In order to use a small gain approach in the current application, the system is
reformulated as in figure 11.  In figure 11, No is a linear approximation to the nonlinear second-order
network, N; Co is the outer block of the controller plus the time-invariant part of the inner block; gL is a
constant gain approximating the nonlinear controller gain, g.  ∆ accommodates the nonlinear behaviour of
both the second-order network, N, and the control gain, g.

Employing the Small Gain theorem, it is determined that the closed-loop system is stable for |gL+∆| in the
ranges (0.00, 5.55) and (3.33, 11.49).  ∆ may be decomposed into a component ∆N associated with the
nonlinear behaviour of the second-order network, N, and a component ∆g associated with the nonlinear
behaviour of the control gain g.  These components may be isolated using the following approximate method.
N is obtained by interpolating between linear time-invariant operators NL.  With the 24 m/s case as No, the

                                                          
† The figure in Leith & Leithead 1994c ill ustrating the realisation is, unfortunately, incorrect; the realisation
adopted was in fact that of figure 6a in the present paper.



ratios between the magnitudes of NL'(s) and of No'(s) are easily calculated (where NL' denotes the Laplace
transform of NL, etc).  Taking the peak value of these ratios as an estimate of 1+|∆N|, bounds on |∆g| are found
from the bounds on |∆|.  The permitted ranges for     |∆g| are (0.00, 5.30) and (3.18,10.97).  Given that the
actual values of the gain g lie between 1.50 and 3.46, the first range for  |∆g| indicates that the system should
be stable for the nominal plant and controller whilst the second range indicates that stabilit y is maintained
when the variation in the inner block gain is increased by a factor of 3.17, i.e. there is a gain margin of at
least 10.02dB. ■

(ii ) For a nonlinear system composed of a linear dynamic element and a single time-varying gain, a
result due to Desoer & Vidyasagar (1975) provides a suff icient condition on the gain to ensure that the
system exhibits weakly nonlinear behaviour and admits linear analysis.  Weak nonlinearity in this sense may
result from both suff iciently slow variation of the gain and/or variation which is suff iciently small i n
magnitude.  Specifically, the closed-loop system is stable if,

              t
    sup    ∫ | Ht (t-τ) { g(t)-g(τ)} | dτ < 1
t∈[o,∞)  0

where g(•) is the varying gain, and Ht(•) is the impulse response of the linear time invariant closed-loop
system obtained with g set constant to the value it attains at time t.  It is assumed that this impulse response is
bounded; that is, the time-invariant system is stable.  The result requires that g(•) remains suff iciently
constant during the ‘memory time’ of Ht(•) (the period when Ht differs appreciably from zero).  It is satisfied
if g(•) is slowly varying over time, or if the variation in the magnitude of g(•) is suff iciently small (even if
this variation is rapid), or for some suitable combination of these characteristics.

In order to apply this result to the present case, it is necessary to assume that the nonlinear behaviour
exhibited by the second-order network, N, is suff iciently weak that it admits linear analysis.  The assumption
is supported by the results of section 4.4 and by the following argument.  The linear transfer functions in the
family, which forms the basis for N, only differ significantly from one another at frequencies above 5 r/s, and
have unity gain at lower frequency.  Linear analysis should, therefore, certainly apply at low frequencies.  N
is varied with pitch demand which has littl e frequency content above 2-3 r/s. Hence, with respect to
frequencies above 5 r/s, N appears to be slowly varying, as required.  If the maximum magnitude of the rate
of change of g(•) is α, then we have that

|g(τ) - g(t)| ≤ α |τ-t|

Numerically evaluating the integral reveals that values of α up to 1.12 are permissible.  An estimate of the
actual value of α can be obtained from

α = dg/dt = (dg/du) (du/dt)

where u is the pitch demand signal used to vary the controller.  It is known that dg/du ≤ 0.14 and it is
determined from simulations that du/dt ≤ 2 deg/s.  Hence, dg/dt ≤ 0.28 and the system is stable.
Furthermore, this result suggests that the nonlinear behaviour can be considered to be suff iciently weak that
stabilit y may be predicted by linear analysis.  Given the rapid variation in pitch demand in absolute terms,
whereby the full controller range could be covered in one or two seconds, this is a somewhat unexpected
conclusion. ■

Whilst neither of the stabilit y results presented above are conclusive, it is believed that they are based on
reasonable assumptions and they appear to be consistent with one another and with the properties of the
family of linear systems.  That the latter is the case is an indication, supported by the lack of
conservativeness of the results, that the choice of realisation successfully enables the interpolated linear
controller to be applied when, a priori, not warranted by weakness of the nonlinearity.

In extensive simulations carried out with the controller for various wind conditions it is confirmed that
the controller performs as intended.  Specifically, even in very turbulent conditions (up to 20% turbulence
intensity) the performance of the nonlinear controller closely agrees with that of the member of the family of
linear controllers for the corresponding mean wind speed.  In further simulations in which the gain of the
controller increased, a gain margin of around 10.9 dB is observed at wind speeds around 24 m/s.  At lower
wind speeds the gain margin appears to be greater.  This behaviour is in surprisingly good agreement with



the gain margins predicted by the analysis carried out when designing the controller.  By introducing a first
order all -pass network with a non-minimum phase zero, the effect of phase changes may also be investigated.
In simulations the system is marginally stable for a non-minimum phase zero at s=-5 r/s, corresponding to a
62 degree phase lag at 3 r/s, the approximate controller cross-over frequency .

7.   Performance Assessment & Comparison

The performance of the nonlinear control strategy is investigated using a well validated simulation
methodology.  For comparison, a conventional li near controller designed to meet the same specifications is
also considered:

Linear Controller (see for example Leithead et al. 1991a, 1992):

     (s+1.6)2(s2+7.243s+38.637) (s2+1.5s+104.04)(s2+6s+416.16)
871.229  

        s(s+0.3)(s+3.7)(s+20)(s+50) (s2+11s+104.04)(s2+10s+416.16)(s2+65.8s+2209)

(gain margin 10 dB, phase margin 56.14 degrees, cross-over frequency 1.826 r/s).  This controller is similar
to previous controllers used with a commercial two-bladed design of wind turbine (Leithead & Agius 1991,
Bossanyi et al. 1992).

Assessment of the performance follows the well -validated approach of Leithead & Agius (1991) and
Bossanyi et al. (1992).  Simulation runs are performed with each specific controller over a range of wind
speeds and turbulence levels.  Four mean wind speeds of 12, 16, 20 and 24 m/s were used at three nominal
turbulence levels of 10, 15 and 20 %.  Each simulation run is of 260 seconds duration, giving 4 one minute
periods of data per run, after discarding the initial 20 seconds to allow the system to settle down, and 48 one
minute periods over all the runs.  (A data sampling rate of 50 Hz is used).  The nominal turbulence level only
applies over a long time period and the range of turbulence levels for the one minute samples is 6 - 26 %.
While turbulence in the range 8 - 18 % corresponds to the moderate wind conditions noted Leithead & Agius
(1991) and Bossanyi et al. (1992), results for slightly more turbulent conditions with intensity in the range 13
- 26 % are presented in this paper.  For each one minute sample, within the specified turbulence range, the
maximum power was plotted against the mean wind speed over that sample.  A linear fit to this data then
provides an indication of the trend in maximum power with wind speed. Moreover, if the standard deviation
of the residues of the maxima about the linear fit is determined, then the power maxima experienced under
normal operating conditions are unlikely to exceed the linear fit by more than three times the standard
deviation.  Empirical investigations (Leithead & Agius 1991, Bossanyi et al. 1992) have shown that despite
the small number of data points used, this approach is nevertheless a good indicator of the comparative
performance between controllers.

Before considering results based on the above one minute binning approach, an indication of the relative
performance of the controllers is obtained by comparing the probabilit y distributions of the power time
histories for these controllers.  These are given in figure 12 for typical power time histories at a mean wind
speed of 24 m/s, 20% turbulence intensity.  A large reduction in the time spent at high power levels is
evident with the nonlinear controller.  For example, the percentage of time that the power level exceeds 450
kW for the nonlinear controller is 0.64 % compared with 4.02 % for conventional li near control.  Similar
results are obtained at other wind speeds and turbulence levels (Leith & Leithead 1994c).

The equations of linear fits to the power maxima, from the one minute samples with turbulence in the
range 13-26 %, are given in the table below.  The plot in figure 13 shows the three standard deviation line
associated with each fit.  As noted, this line provides an indication of the maximum power likely to be
encountered during normal operation.  Once again, the performance achieved with the nonlinear controller is
a substantial improvement over that with linear control.

Controller Fit Standard Deviation
linear 8.49w+280.05 20.02

nonlinear 5.11w+330.49 14.52

The power maxima for the nonlinear controller increase at only around two-thirds the rate of those for linear
control.  The reduced rate of increase of the maxima in combination with much lower standard deviations of



the residues, corresponding to tighter bunching of the maxima, represents a significant overall reduction in
the peak power excursions likely to be experienced and a consequent reduction in drive-train load transients.

The pitch acceleration standard deviations for the one minute samples are shown in figure 14.  The linear
controller works the actuator hardest at low wind speeds but the actuator activity falls rapidly as the wind
speed rises due to the increase in the sensitivity of the aerodynamic torque to pitch changes.  In contrast, the
standard deviation for the nonlinear controller remains roughly constant as wind speed rises, exploiting the
extra actuator capacity available at higher wind speed as intended.

More detailed results are contained in Leith & Leithead (1994a, b) together with results for a three-
bladed machine.

8.   Conclusion

In the control design task for pitch-regulated constant-speed wind turbines, the plant, actuation system
and control objectives are all strongly nonlinear.  Having catered adequately for the nonlinear plant dynamics
(Leithead et al. 1991a, 1992, Leith & Leithead 1995), the plant may be considered to be essentially linear but
the control objectives remain nonlinear.  Improvement in the controller performance can still be achieved by
adjusting the controller as the operating point changes.  Wind speed fluctuations are highly stochastic and the
operating point of a wind turbine varies rapidly and continuously over the whole operational envelope.
Consequently, the emphasis is on the nonlinear behaviour and performance when considering control
strategies which are adjusted as the operating point changes.  An interpolated linear control strategy is
presented in which the control algorithm continuously changes with the operating point in such a way that the
controller is instantaneously always the most appropriate for the inferred wind speed.  The resulting control
strategy with integral action may, in some sense, be considered to be optimised across the operating envelope
rather than at an operating point.  From the results of extensive tests using a well validated simulation
methodology, the performance of a typical two-bladed configuration of wind turbine is compared for the
nonlinear controller and a conventional li near controller.  The simulations confirm that the nonlinear
controller performs as intended.  Nonlinear control is found to reduce both the peak power and the time spent
at high power levels in comparison to linear control, with a consequent reduction in drive-train loads.  The
improvement is obtained by exploiting the actuator capabilit y left unused at higher wind speeds by linear
time-invariant controllers and is cheap in the sense that to achieve the same improvement by means of linear
control, were it possible within practical constraints, would require much greater and expensive actuator
capabilit y than is typically available.  The improvement in performance, in comparison to conventional li near
control, is substantial.

The nature of the realisation of the nonlinear controller is demonstrated to be crucial in attaining the
required performance.  (Much greater care is required for this aspect of the controller design than for the
synthesis of the linear algorithm embedded within it).  Of course, when the nonlinear characteristics are
suff iciently weak the dynamic behaviour exhibited is insensitive to the realisation adopted; the influence of
the choice of realisation upon performance is therefore employed as a novel measure, which is direct and
straightforward to apply, of the strength of nonlinear behaviour.  With regard to previous, somewhat scarce,
results in the literature concerning the choice of realisation of interpolated linear controllers it is noted that
local li near equivalence condition at the equili brium operating points (Lawrence & Rugh 1993, 1995) is of
littl e utilit y and that, even locally, controller realisations satisfying this condition may exhibit substantially
different dynamic behaviour.  An extended local li near equivalence condition is, therefore, introduced which
is of general application and subsumes the previous condition.  This condition ensures that at every operating
point the linearisation of the nonlinear controller matches the appropriate member of the family of linear
controllers upon which the design is based.  The extended local li near equivalence condition does not require
that the system be a priori slowly varying and is not confined to the equili brium operating points.  Indeed,
equivalence holds equally at equili brium operating points and at unsteady operating points far from
equili brium.  Realisations which display this property are derived for a wide class of SISO interpolated linear
systems (those scheduled upon an internal plant or controller signal).  With regard to the wind turbine
application, the interpolated linear controller satisfying the extended local li near equivalence condition
causes a large reduction (50 kW) in the power peaks in comparison to realisations which only satisfy local
linear equivalence about the equili brium operating points but not the extended criterion.  This reduction is
similar to that achieved by appropriately realised nonlinear control in comparison to linear control; thereby
ill ustrating the importance of adopting an appropriate realisation.
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Figure 1 Linearised control model.

dQ/dp is sensitivity of aerodynamic torque, Q, to changes in pitch, p.
dQ/dV is sensitivity of aerodynamic torque, Q, to wind speed, V.

Figure 2 - Predicted variance of power output vs open-loop  cross-over frequency and wind speed
(Leithead & Rogers 1993).

Figure 3 Bode plot of open-loop transfer function with 12 m/s member of family of controllers.

Figure 4 Controller structure.

Figure 5a Comparison of power output for nonlinear gain positioned before and after integrator.

Figure 5b Comparison of power output for the realisations depicted in figures 5a and 5b.

Figure 6 Realisation of inner block of nonlinear controller.

Figure 7a Illustration of local li near equivalence neighbourhoods about constant operating points.

Figure 7b Illustration of extended local li near equivalence neighbourhoods.

Figure 8 Realisation satisfying extended local li near equivalence for varying poles.

Figure 9 Equivalent realisation satisfying extended local li near equivalence for varying poles.

Figure 10 Arrangement for scheduling upon a plant state, x.

Figure 11 Reformulation used for Small Gain theorem analysis of nonlinear controller.

Figure 12Probabilit y density function of power at 24 m/s, 20% turbulence intensity.

Figure 13Three standard deviation lines for fits to power maxima.

Figure 14Pitch acceleration standard deviation.
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