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Abstract 

Irish climate is experiencing changes which have been found to be consistent with 

those occurring at a global scale and there is now growing confidence that these 

changes are largely attributable to global warming. Between 1890-2004, mean annual 

temperatures in Ireland rose by 0.7oC, based on the data from four, long-term 

monitoring, synoptic stations. In the absence of strict emissions controls, a doubling 

of global atmospheric concentrations of CO2 is likely by the end of the 21st century. 

As a consequence, global temperatures are projected to increase by between 1.8 to 

4oC over the same period depending on the climate sensitivity to increased levels of 

greenhouse gases. In order to determine the likely impact on Irish temperatures and 

related climatic variables, this paper illustrates a technique for downscaling Global 

Climate Model output for a selection of sites in Ireland. Results of a weighted 

ensemble mean, derived from multiple GCMs, are presented in an attempt to address 

some of the various uncertainties inherent in climate modelling. Projected changes in 

selected indices of temperature extremes are also presented for the ensemble A2 

emissions scenario, as changes in extremes are likely to have a larger and more 

immediate impact on human society than changes in the mean climate state. 

 

Introduction 

Global average surface temperature has increased by 0.74oC over the last 100 years 

(IPCC, 2007). While the global temperature record displays a large degree of 

variability, most of this warming occurred during two periods, 1910-1945 and 1979-

2006. The rate of warming during the latter period of 1979-2006 has been faster over 

land than the oceans. In the Northern Hemisphere, the 1990s was the warmest decade 

and 1998 was the warmest year (IPCC, 2001), followed by the joint second warmest 

years of 2005 and 2003, followed by 2002 and 2004, since reliable global 

instrumental records began in 1861 (Jones and Moberg, 2003). Eleven of the twelve 

warmest years in the instrumental record have occurred between 1995-2006 with the 

twelfth warmest year occurring in 1990. Proxy records indicate that the temperature 

increases recorded during the 20th century in the Northern Hemisphere resulted in it 



being the warmest century in the last millennium (IPCC, 2001). Much of this 

warming has occurred in the winter, spring and autumn seasons (Jones et al., 2001). 

There is also evidence to suggest that the rate of warming has accelerated in recent 

decades, with the warming rate of the past 50 years almost double that of the past 100 

years (IPCC, 2007). 

 

Based on the data from four, long-term, synoptic stations (Valentia, Malin Head, 

Armagh and Birr), McElwain and Sweeney (2007) calculated a mean annual 

temperature anomaly for Ireland which displayed a linear increase of 0.7oC over the 

1890-2004 period. This increase largely occurred over two periods, between 1910 to 

1949 and 1980 to 2004, in line with global trends. However, the warmest year in 

Ireland remains 1945, with an anomaly of 1.18oC above the 1961-1990 period. 

However, preliminary figures released by Met Eireann for 2007 indicate that a 

number of stations around the country recorded their warmest year (Valentia 

Observatory, Malin Head, Belmullet, Rosslare and Kilkenny) and hence 2007 may 

replace 1945 as the warmest on record in the Irish temperature anomaly. For the 

period 1960 to 2000, increases in minimum temperatures were found to be greater 

than increases in maximum temperatures during the summer and autumn, while 

during the winter months, maximum temperatures increased more (Sweeney et al., 

2002). Similar to global trends, winter warming is contributing a greater proportion to 

the increases in annual temperature. However, increasing winter temperatures in 

Ireland are being driven by changes in maximum temperatures and not minimum 

temperatures, in contrast to the global trend.  

 

Trends in the Irish temperature records have been found to be largely consistent with 

those occurring at a global scale (McElwain and Sweeney, 2007). There is now 

increased confidence that these global changes are largely attributable to the observed 

increase in anthropogenic greenhouse gas concentrations (IPCC, 2001). In the absence 

of strict emissions controls with a consequent increase in atmospheric concentrations 

of greenhouse gases, Global Climate Models (GCMs) project an increase in global 

temperatures of between 1.8-4.0oC over the course of the present century (Figure 1) 

(IPCC, 2007). An increase of this magnitude is likely to have a significant impact on 

climate processes operating at various scales, from global and hemispherical scale 

processes to the regional and local scale surface environmental variables.  



Despite the high degree of sophistication of GCMs, their output is generally too 

coarse to be useful for regional or local scale impacts analysis, as important processes 

which occur at sub grid scale are not at present resolved by these models (Wilby et 

al., 1999). Changes in both temporal and spatial variability, which may be just as 

important as the magnitude of change, are also masked at the sub grid scale (Wigley 

et al., 1990), as it is unlikely that all locations will warm by the same amount and at 

the same rate. Global variations in the amount and rate of warming will also affect the 

distribution and rates of change of other meteorological variables, such as 

precipitation, radiation receipts and potential evapotranspiration. Therefore a disparity 

of scales exists between the global scenarios, as output by GCMs, and changes that 

are likely to occur at the regional or local level due to these large-scale changes. In 

order to overcome some of these scale differences, a number of statistical 

downscaling techniques have been developed in which large-scale GCM output can 

be translated or ‘downscaled’ into information about changes in the climate which can 

then be used for local scale impact analysis.  

 

Empirical statistical downscaling is one such technique employed where high spatial 

and temporal resolution climate scenarios are required. The methodologies employed 

in statistical downscaling are largely in common with those of synoptic climatology, 

however, the goal of downscaling is to adequately describe the relationship between 

atmospheric circulation and the surface environment, with attention being focused 

more on model parsimony and accuracy, rather than understanding the relationship 

between them (Yarnal et al., 2001). As a consequence of their relative ease of 

implementation and comparability of output to Regional Climate Models, the use of 

statistical downscaling methodologies to produce climate scenarios from GCMs is 

now widespread within the research community. 

 

Statistical downscaling requires that a number of assumptions are made, the most 

fundamental of which, is that the relationship established between predictor and 

predictand will remain constant under climate change conditions. This assumption has 

been found to be reliable under such conditions (Busuioc et al., 1998). 

 

The selection of an optimum predictor set of atmospheric variables has been the focus 

of much research. However, no one technique or predictor set has come to the fore 



and there has been little research in evaluating the skill of various atmospheric 

predictor sets between studies and regions. Cross comparisons between predictors and 

evaluation of skill has been complicated by the fact that different studies have utilised 

different techniques and atmospheric predictor combinations for different regions. A 

number of studies have shown that choice of technique (Wilby et al., 1998; Huth, 

2003) and predictors can have an impact on the resulting downscaled scenarios 

(Winkler et al., 1997; Huth, 2003). Ultimately the number and choice of candidate 

predictors available for use is constrained by the overlap between the National 

Centres for Environmental Prediction (NCEP) data and that output from the various 

modelling centres (Wilby and Dawson, 2004).  

 

The aim of this paper is to present a statistical downscaling methodology to 

downscale temperature, radiation and potential evapotranspiration for Ireland. The 

downscaling methodology described is based on developing a regression equation that 

establishes a robust relationship between observed large-scale atmospheric predictors 

and an observed surface climate variable of interest for a particular location and 

season. Having calibrated and verified the linear relationship based on the observed 

data, comparable GCM model projected large-scale atmospheric predictors can then 

be employed to project the climate for a location and season. In order to account for 

uncertainties inherent in global climate modelling, a number of climate models and 

emissions scenarios are then employed to produce multi-model averages or ensembles 

of the downscaled modelled data. 

 

Data 

Data sources  

Observed daily data for precipitation, maximum and minimum temperature and sun 

hours were obtained from 14 synoptic stations from the Irish meteorological service, 

Met Éireann, for the period 1961-2000. Potential evapotranspiration, based on the 

Penman-Montieth formula, was obtained for the 1971-2000 period, while radiation, 

obtained for the 1961-2000 period, was only available from a selection of synoptic 

stations. The synoptic stations represent low-lying conditions for a mixture of coastal 

and interior locations (Figure 2). Homogeneity analysis of the daily data was not 

performed as part of this research, primarily because the data obtained are from the 

synoptic network which are manned by experienced meteorological officers. 



Therefore the data are considered to be of good quality. With the exception of 

potential evapotranspiration, the data are provided with quality control flags, 

indicating whether a measurement is the value as read, accumulated, trace or 

otherwise, therefore enabling the researcher to decide on a suitable threshold for 

accepting the data as valid. In the present research, all values not directly measured by 

the observer were removed from the analysis, with the exception of potential 

evapotranspiration which is a calculated variable. 

 

Downscaled precipitation amounts and occurrences for each site, based on the suite of 

GCMs employed in this analysis, were obtained from Fealy and Sweeney (2007) as 

additional predictor variables for use in the downscaling methodology outlined below.  

 

Large-scale surface and atmospheric data were obtained from the UKSDSM data 

archive (Wilby and Dawson, 2004) derived from NCEP Reanalysis (National Centre 

for Environmental Prediction) data. The extracted variables comprised of daily grid 

point mean sea-level pressure, 500 hPa and 850 hPa geopotential heights, relative 

humidity from each of the geopotential heights, near surface specific humidity and 

mean temperature (Table 1). A number of important secondary variables were also 

extracted from the archive, based on a 3x3 grid domain centred over Ireland, 

according to the methods described by Jones et al. (1993). These secondary variables, 

which convey important information about the state and stability of the circulation, 

consisted of daily vorticity, zonal velocity component, meridional velocity 

component, geostrophic airflow velocity and divergence. 

 

In order to derive the future climate scenarios based on the described downscaling 

methodology, GCM data were obtained, again from the UKSDSM archive, for three 

models, namely the Hadley Centre (HadCM3), Canadian Centre for Climate 

Modelling and Analysis (CCCma) (CGCM2) and the Commonwealth Scientific and 

Industrial Research Organisation (CSIRO) (Mark 2), for both the A2 and B2 

emissions scenarios (Wilby and Dawson, 2004). All the gridded datasets exist on a 

common grid resolution, that of 2.5o x 3.75o degrees, and for a common grid domain. 

The lead and lag of each predictor was also calculated to allow for a temporal offset 

which may occur between the predictor and predictand. 



Data calculations 

As global solar radiation is only measured at a limited number of synoptic stations, 

sun hours, measured at all synoptic stations, was used in conjunction with the 

Angstrom formula in order to calculate radiation (Angstrom, 1924; Brock, 1981). The 

Angstrom formula calculates radiation from sun hours as follows 
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where  is the received solar radiation (MJ mQ -2),  

Qa  is the potential solar radiation at the top of the atmosphere (MJ m-2),  

n is sunshine (hours) and 

N is the total day length 

 

Values for the constants a and b (0.21 and 0.67 respectively) employed in the 

Angstrom formula were previously established for Ireland by McEntee (1980) and 

were found to provide a reasonably good approximation for global solar radiation in 

Ireland (Sweeney and Fealy, 2003a) when applied to the Angstrom formula. 

 

Methodology 

For the present study, a stepwise multiple linear regression was employed in order to 

link the large scale data to the predictands or surface climate variable of interest. This 

method is particularly suitable for use in downscaling studies where the predictand 

tends towards a normal or near normal distribution. Any predictand that conforms to 

this requirement can be adequately modelled using a standard multiple linear 

regression technique, as follows   

exaxaxaaY nn +++++= .......2211  
Y = predictand 
an = coefficient 
xn = predictors 
e = error term 

 

The error term, e, can be employed to inflate the variance of the downscaled weather 

variables, which often tends to be underestimated, by adding ‘white noise’ to the 

predicted series. 

 



Predictor Selection 

The candidate predictor data set, comprising of large-scale surface and atmospheric 

variables from the NCEP Reanalysis Project, was split into a calibration and 

verification period. The calibration period for temperature spanned the 1961-1978 and 

1994-2000, while the period 1979-1993 was withheld for verification purposes. The 

selection of these periods was arbitrary, but were selected to coincide with periods 

being employed by the STARDEX project (Statistical and Regional dynamical 

Downscaling of Extremes for European regions) to allow for comparison of results 

where possible. The calibration periods for radiation and PE differed from that of 

temperature. The calibration period for radiation was based on the 1971-2000 period, 

with 1961-1970 being withheld for verification to facilitate a comparison of modelled 

radiation, derived from sun hours, against actual measured radiation at a selection of 

sites.  While potential evapotranspiration data was only available for the 1971-2000 

period, therefore the period 1991-2000 was withheld for independent verification.  

 

In all, 53 candidate predictors were eligible for selection in the downscaling 

procedure. All potential predictors were assessed for suitability based on a number of 

criteria, such as, significance and strength of correlation with individual predictands, 

for each site and season. Predictors that demonstrated a degree of consistency across 

all sites were preferentially selected. Cross-correlations were also assessed between 

predictors in order to select a parsimonious data set with the aim of reducing issues 

associated with multicollinearity. Selected surface and atmospheric predictors were 

then used to calibrate the statistical transfer functions on a seasonal basis, linking the 

large-scale variables to the climate variable of interest, for each site and season. 

Tables 2 and 3 identify the most commonly selected predictors, for each season, for 

both maximum and minimum temperatures.  

 

In addition to employing large-scale surface and atmospheric variables as predictors 

for downscaling temperature, local, site specific, surface variables were also 

employed in conjunction with the large-scale predictors for downscaling radiation and 

potential evapotranspiration. This modification to the more ‘traditional’ downscaling 

methodology is one that was adapted for the purposes of this research from 

conventional weather generator techniques, where local site specific variables are 

employed as predictors in conjunction with the large-scale predictors in some form of 



a regression model as opposed to just employing the large-scale forcing provided 

from the reanalysis data. An important justification for the inclusion of site specific 

variables for downscaling radiation and potential evapotranspiration arises from their 

dependence on local conditions such as cloud cover, a process which occurs at sub 

grid scale and therefore not well represented by the large scale gridded data. 

Therefore, employing local climate variables as predictors, such as temperature range 

and precipitation which reflect thermal heating and local cloud cover, should provide 

additional and useful local scale information. The inclusion of these additional 

variables was found to be justified in this research. 

 

For example, large-scale surface temperature from the NCEP reanalysis data was 

employed in combination with precipitation and temperature range (maximum-

minimum temperature) from the relevant synoptic station as input to calibrate the 

seasonal radiation models at each site. Similarly for potential evapotranspiration, 

radiation, precipitation occurrence and precipitation amounts were used as inputs to 

calibrate the regression model. While wind plays an important role in the calculation 

of potential evapotranspiration, its importance has a seasonal dependence, being more 

influential during the winter months and diminishing during the spring, summer and 

autumn months. As calculated potential evapotranspiration values are at a minimum 

during the winter months, and based on previous research undertaken by the author 

(Sweeney and Fealy, 2003a), the exclusion of this variable is unlikely to significantly 

impact the predicted values of potential evapotranspiration. 

 

Results 

Results of the calibration and verification period for maximum and minimum 

temperature, radiation and potential evapotranspiration are shown in Tables 4-7. A 

significant portion of the variance is accounted for in the seasonal regression models, 

particularly for the maximum and minimum temperature and potential 

evapotranspiration data, suggesting satisfactory modelling of the climate series in all 

seasons. Figures 3 and 4 illustrate the mean monthly observed and modelled data for 

maximum temperatures at Valentia, a coastal site, and Kilkenny, an inland site, for the 

verification period of 1979-1993. Figures 5 and 6 show the results of the modelled 

radiation derived from sun hours for the verification period 1961-1970 for Malin 

Head and Rosslare. Comparison of modelled radiation with actual radiation for the 



independent verification period indicate that monthly average totals have been 

adequately captured by the technique employed, which uses a combination of large-

scale and local predictors.  

 

Figure 7 shows the comparison between observed radiation at Valentia and modelled 

radiation, calculated from the Angstrom formula employing sun hours, again for an 

independent verification period of 1961-1970. Slight underestimations in the 

modelled radiation values are apparent from the January to September period, due to 

the underestimation of radiation derived from the Angstrom formula and used to 

calibrate the downscaling model. However, results are encouraging despite the fact 

that observed global solar radiation was not available for use in calibrating the 

regression models. 

 

Figures 8 and 9 show the comparison between derived potential evapotranspiration at 

Valentia and Kilkenny and the modelled values of potential evapotranspiration from 

the statistical downscaling models. Again, the correspondence between monthly 

average totals for calculated and modelled potential evapotranspiration, for the 

independent verification period, suggests that the transfer functions and selected 

predictors are capable of reproducing statistics that are comparable with those of the 

observed data. While the model has a slight tendency to overestimate PE during June, 

July and August, the month-by-month results are encouraging. 

 

Comparison of observed/calculated and modelled results for all variables, illustrated 

in both the Pearson’s r values (Tables 4-7) and graphically (Figures 3-9), indicate that 

the technique employed, that of stepwise multiple linear regression, has adequately 

captured the seasonal forcing component of the large and local scale predictors 

employed and which explain a significant portion of variability in the observed 

variables of interest. Results for potential evapotranspiration display the highest 

Pearson’s r values for the independent verification period, with all stations showing 

an r value greater than 0.8. Verification values for both maximum and minimum 

temperatures also display high r values, in excess of 0.7. Pearson’s r values for 

radiation tended to be lower for both calibration and verification with values generally 

greater than 0.6, however, results for the summer (JJA) verification period tend to be 

weaker, with r values of between 0.4-0.6 apparent for this season. 



 

Projected future changes in mean temperature, radiation and potential 

evapotranspiration in Ireland  

In order to produce simulations of future changes in temperature, radiation and 

potential evapotranspiration as a consequence of climate change, data from the 

HadCM3, CSIRO and CCMA GCMs were employed as predictor variables in 

conjunction with the calibrated transfer functions, outlined in the methodology 

section, which linked the large-scale atmospheric data to the climate variables of 

interest. Although it has long being recognised that different GCMs produce 

significantly different regional climate responses even when forced with the same 

emissions scenario (Hulme and Carter, 1999), it was common practice until recently 

for many impact studies to employ only one climate change scenario, based on one 

emissions scenario, derived from a single GCM. Hulme and Carter (1999) consider 

this practice, which ultimately results in the suppression of crucial uncertainties, as 

‘dangerous’ due to any subsequent policy decisions which may only reflect a partial 

assessment of the risk involved. 

 

In cognisance of the uncertainty associated with employing only one GCM or 

emissions scenario, ensemble mean scenarios of temperature, radiation and PE were 

produced sampling across all three GCMs and both the A2 (medium-high) and B2 

(medium-low) emissions scenario employed in the analysis. Ensembles or model 

averages were calculated based on the Climate Prediction Index (CPI) (Murphy et al., 

2004) which calculates a weighting factor for individual GCMs based on their ability 

to reproduce the statistics of the observed climate over a common time period. A 

modified version of the CPI was derived by Wilby and Harris (2006) for application 

to a narrower suite of GCM outputs and has been applied in an Irish context by Fealy 

and Sweeney (2007). Results are shown for three future time periods, the 2020s 

(2010-2039), the 2050s (2040-2069) and the 2080s (2070-2099). Thirty year time 

periods are employed as standard in order to account for decadal and inter-decadal 

variability, which can be large for mid-latitude locations such as Ireland. 

 

Temperature  

The mean ensembles, produced from the CPI, suggest that by the 2020s, average 

seasonal temperatures across Ireland will increase by between 0.75-1.0oC (Table 8) 



relative to the 1961-1990 ‘normal’ period. A portion of this warming has already been 

experienced over the period since 1990. Results for the winter and autumn months 

display the largest inter-GCM difference (Figure 10), ranging from a marginal 

decrease to a +2oC increase in winter, while in autumn the range is +0.7oC to +1.8oC. 

By the 2050s, Irish temperatures are projected to increase by 1.4-1.8oC above the 

1961-1990 period, with the greatest warming occurring during the autumn (Figure 

10). While differences between the individual emissions scenarios are small for all 

seasons, the inter-GCM range is large, again indicating the requirement for output 

from multiple GCMs when conducting climate change research. Spatial differences 

also become more apparent during the 2050s, with an enhanced ‘continental’ effect 

becoming apparent (Figure 13). 

 

This ‘continental’ effect becomes further enhanced by the 2080s period, particularly 

during the autumn season. This season accounts for the greatest warming for this 

period, with a mean increase of 2.7oC projected to occur (Figure 12). The mean 

temperature in all seasons is projected to increase by 2oC or more (Table 8). Ensemble 

mean summer temperatures are projected to increase by 2.5oC, however, under the A2 

emissions scenario, this increase may be as high as 3oC (Figure 12). Inter model 

ranges again display a large range in the projections for the 2080s, particularly during 

the winter season. 

 

Radiation 

By the 2020s, ensemble mean seasonal radiation is projected to decrease in all but the 

summer months, which suggests no change relative to the 1961-1990 period (Figure 

14). Individual results from the GCMs for the 2020s suggest a change in winter 

radiation of between +1 to –12%. An inconsistent signal is again apparent for spring, 

with individual GCM suggesting a range from a marginal, but positive increase of 

0.5% to a decrease of –5%. For autumn, a more consistent signal of change is 

suggested, with all GCMs indicating a decrease in radiation. 

 

By the 2050s, a greater seasonal divergence is apparent in radiation receipt, with the 

ensemble mean suggesting reductions of almost -11% during the winter months while 

an increase of 1.5% is projected to occur during the summer months (Figure 15). 

GCM ranges are also more consistent in projecting the direction of change, with the 



exception of the spring season, with one GCM suggesting a marginal increase in 

radiation receipt during this season. 

 

These seasonal changes are further enhanced by the 2080s, with decreases of between 

–13 to –18% being projected for the winter season by the individual emissions 

scenarios (Figure 16). The ensemble mean scenario projects a decrease of –16% in 

radiation for winter, while a small increase of 3% is projected to occur during the 

summer months. However, inter GCM ranges are greatest for this season ranging 

from a decrease of –1.5% to an increase of +6% in receipts, by the 2080s.  

 

Potential Evapotranspiration 

Due to the dependence of PE on radiation, projected changes in this variable are 

broadly in line with the changes projected in radiation for the future time periods 

(Figures 17-19) and are not discussed further for space purposes. 

 

Projected future changes in extremes of temperature 

Extreme climate events, such as the prolonged heat wave, which occurred in Central 

Europe during the summer of 2003 or the severe flooding in Eastern Europe during 

the summer of 2002, tend to have a larger impact on human society than changes in 

the mean climate state. While Ireland has not experienced the type of extremes that 

have been witnessed in Central Europe, projected changes in the frequency and 

magnitude of extreme events are increasingly likely to have an affect on human 

activities in Ireland over the course of the present century. During the summer of 

2006, much of Ireland suffered significant soil moisture deficits due to a combination 

of above average mean temperatures, which were over 1oC higher than normal for the 

1961-1990 period (nearly 2oC higher than normal for the 1961-1990 period in the 

midland stations of Clones and Kilkenny), and below average rainfall resulting in it 

being the warmest, driest and sunniest summer since 1995 (Met Ēireann, 2006). 

Poulter indices, which are derived from a combination of mean temperature, rainfall 

and sunshine and are a means of quantifying summer weather, calculated for the 

summer of 2006 recorded the third highest index value in a series that extends back 

for almost 100 years (Met Eireann, 2006). 

 



As temperature is a key meteorological parameter, changes in its frequency and 

magnitude are further, but provisionally, assessed to determine its likely impact as a 

consequence of projected climate change. Caution must be exercised with regards to 

any analysis of projected changes in extremes due to the uncertainties associated with 

regional projections of these events. In a recent analysis of climate extremes based on 

various downscaling methodologies, STARDEX (Statistical and Regional dynamical 

Downscaling of Extremes for European regions) found that performance of the 

models was better for temperature than precipitation, better for means than extremes, 

and best in winter and worst in summer (STARDEX, 2006). Additionally, the 

methodology employed in the current research was primarily focused on generating 

scenarios representing the projected mean climate state for the present century and 

therefore is likely to underestimate changes in the extremes of temperature. The 

results should therefore be interpreted as indicative of likely changes based on the 

projections of climate resulting from climate change. 

 

Four core indices were selected for this analysis (Table 9). These indices are based on 

thresholds defined by percentiles rather than fixed values (STARDEX, 2006), with 

the exception of Number of Frost Days, which requires minimum temperatures to be 

less than 0oC. Figure 20 displays the station results for the four indicies, on an annual 

basis, for the period 1961-2099, based on the modelled A2 ensemble data. Trends 

were found to be significant (0.01 significance level) at all stations and for all 

temperature indices employed in the analysis. The Hot-day threshold (10th hottest day 

per year) indicates warming at all stations and is more pronounced at inland stations, 

away from the coast. Based on the modelled data, heat wave durations are also 

suggested to increase by up to 3-4 days per decade. A significant increase in cold 

night temperatures (10th coldest night per year) is projected to occur and is likely 

associated with the projected and significant decrease in the number of frost days per 

decade. 

 

While an assessment of these extreme indices on an annual basis is likely to mute the 

seasonal changes, all the temperature indices suggest significant trends that are 

consistent with observations and expectations of changes resulting from climate 

change. Over the 1961-2005 period, a significant increase in both maximum and 

minimum observed temperatures, resulting in fewer frost days and a shortening of the 



frost season, has been identified by McElwain and Sweeney (2007). The duration of 

heat waves was also found to be increasing at a number of stations, while the number 

of consecutive cold days was also found to be decreasing over this period.  

 

While this section focused on changes in values at the 90th percentile, suggested 

changes occurring above this cut-off are likely to have a smaller return period and be 

more extreme than experienced at present. Susceptibility to changes in the mean 

climate, but also to changes in extremes needs to adequately assessed in order to 

minimise potential future risks.  

 

Conclusions 

A number of studies have attempted to produce future climate scenarios for Ireland 

(McWilliams, 1991; Sweeney and Fealy, 2002; Sweeney and Fealy, 2003a; 2003b) 

for use in impact studies to assess changes in agriculture, water resources, forestry, 

biodiversity and the marine environment (Sweeney et al, 2003; Holden et al., 2003; 

Holden et al, 2004; Charlton et al., 2006). However, these studies have acknowledged 

and inherent weaknesses due to the top-down and generally single trajectory approach 

of employing projections from just one GCM. While the single-trajectory approach 

has been common practice in the literature, quantification of uncertainties is becoming 

increasingly more important and feasible, primarily, due to increased data availability 

from GCM modelling centres. 

 

In an attempt to address this deficiency, this paper presented a downscaling 

methodology for a selection of climate variables for Ireland that combined 

downscaled output from multiple GCMs. The methodology outlined, based on a 

stepwise multiple linear regression technique, can be readily applied where the 

predictand, or climate variable of interest, tends towards a normal or near normal 

distribution. An added advantage of this technique is that the error term of the 

regression equation can be employed to add a stochastic component to the resultant 

data series. 

 

Having selected a parsimonious set of predictors from which to calibrate the seasonal 

transfer functions, which link the large-scale atmospheric predictors to the surface 

climate variable of interest, models were then assessed by comparing model output 



with observed data, for an independent verification period. Results from the 

independent verification period indicated that the seasonal models adequately 

captured the forcing component of the selected large- and local- scale atmospheric 

and surface predictors employed in the analysis. A comparable suite of predictors, 

from each of three GCMs, were then employed, in conjunction with the derived 

transfer functions, to produce the climate scenarios for each site, season and variable. 

 

The seasonally and time averaged projections from the individual GCMs were found 

to vary both in direction and magnitude, largely reflecting uncertainties inherent in 

climate modelling arising from uncertainties associated with future emissions 

scenarios, GCM parameterisation, internal variations in the climate system and their 

representation, selection of initial forcing conditions for particular GCM runs and the 

climate sensitivity of a model. In order to cater for some of these uncertainties in the 

present research, the Climate Prediction Index (CPI) was employed to produce model 

averages or ensembles of the downscaled climate scenarios. While the method 

outlined in this paper takes into account uncertainties associated with the selected 

GCMs and emissions scenarios, no measure of the uncertainty due the transfer 

functions is considered. This is an area that warrants further research. 

 

The findings outlined in this paper reaffirm the importance of using an ensemble of 

GCMs and emissions scenarios in order to derive future projected changes in climate. 

In order to estimate how much confidence we can have in climate change projections 

and subsequent impact assessments, various sources of uncertainty need to be 

adequately accounted for. 
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Variable 
Mean Temperature 
Mean sea level pressure 
500 hPa geopotential height 
850 hPa geopotential height 
Near surface relative humidity 
Relative humidity at 500 hPa height 
Relative humidity at 850 hPa 
Near surface specific humidity 
Geostrophic airflow velocity 
Vorticity 
Zonal velocity component 
Meridional velocity component 
Divergence 

Table 1 List of primary candidate predictor variables for use in the analysis from the UKSDSM 
data archive. Italics indicate secondary airflow indices calculated from pressure fields (surface, 

500 and 850 hPa) 

 
 
Season Relative 

Humidity 
Zonal velocity 

component 
Meridional 

velocity 
component 

Geopotential 
height 

500 hPa 

Vorticity Mean 
Temperature

DJF - 13 (ld)/1 11(ld)/1 12 (ld)/1 2 13 
JJA - 1 (ld)/10 12 - 10 (ld) (850)/1 14 
MAM 12 11 (850) 9 (ld) - 12 14 
SON 14 (l) 11 (500) 14 (ld) (850) 14 - 14 (l) 

Table 2 Number of stations for which the most commonly occurring predictors were selected as 
inputs to calibrate the regression models for maximum temperature. (l) indicates the lag of a 

variable, (ld) the lead of a variable. Number in brackets indicates the measurement level 
(hectopascals), where not specified, the measurements represent surface level. 

 

Season 
 
 

Geostrophic 
airflow 
velocity 

Zonal velocity 
component 500 

hPa 

Geopotential 
height  

500 hPa 

Near surface 
relative 

humidity 

Mean 
Temperature  

(l) 

DJF 
12 - 13 - 14 

JJA 14 (850) 8 10 14 14 
MAM 13 1 14 14 14 
SON 12 1 12 13 14 

Table 3 Number of stations for which the most commonly occurring predictors were selected as 
inputs to calibrate the regression models for minimum temperature. (l) indicates the lag of a 

variable, (ld) the lead of a variable. Number in brackets indicates the measurement level 
(hectopascals), where not specified the measurements represent surface level. 

 
 
 
 
 
 
 
 
 
 



Maximum Temp. DJF MAM  JJA SON 
Stations Cal.  Ver.  Cal.  Ver.  Cal.  Ver.  Cal.  Ver.  
Valentia Observatory 0.88 0.87 0.89 0.90 0.83 0.84 0.88 0.86 
Shannon Airport 0.89 0.88 0.89 0.91 0.82 0.84 0.88 0.87 
Dublin Airport 0.82 0.81 0.87 0.89 0.80 0.82 0.87 0.87 
Malin Head 0.83 0.86 0.83 0.86 0.78 0.78 0.85 0.84 
Roche's Point 0.89 0.88 0.85 0.87 0.76 0.80 0.86 0.87 
Belmullet 0.85 0.86 0.85 0.87 0.79 0.79 0.86 0.85 
Clones 0.86 0.85 0.87 0.90 0.81 0.82 0.87 0.86 
Rosslare 0.90 0.90 0.86 0.86 0.74 0.79 0.87 0.87 
Claremorris 0.87 0.86 0.87 0.90 0.79 0.82 0.86 0.86 
Mullingar 0.88 0.88 0.87 0.91 0.80 0.85 0.87 0.87 
Kilkenny 0.90 0.89 0.89 0.91 0.83 0.85 0.87 0.87 
Casement Aerodrome 0.90 0.89 0.88 0.90 0.81 0.84 0.87 0.87 
Cork Airport 0.90 0.89 0.87 0.89 0.80 0.84 0.87 0.87 
Birr 0.89 0.88 0.89 0.92 0.83 0.85 0.87 0.87 

Table 4 Pearson’s r values for the seasonal calibration and verification periods for maximum 
temperatures. 

   
Minimum Temp. DJF MAM JJA SON 
Stations Cal. Ver. Cal. Ver. Cal. Ver. Cal. Ver. 
Valentia Observatory 0.83 0.81 0.82 0.81 0.73 0.74 0.84 0.85 
Shannon Airport 0.84 0.83 0.84 0.86 0.77 0.80 0.88 0.89 
Dublin Airport 0.79 0.81 0.83 0.85 0.75 0.81 0.88 0.89 
Malin Head 0.77 0.80 0.80 0.82 0.72 0.74 0.84 0.83 
Roche's Point 0.85 0.84 0.88 0.89 0.82 0.85 0.90 0.90 
Belmullet 0.81 0.80 0.81 0.82 0.70 0.72 0.81 0.81 
Clones 0.78 0.79 0.82 0.83 0.74 0.77 0.86 0.86 
Rosslare 0.81 0.82 0.86 0.88 0.81 0.84 0.89 0.89 
Claremorris 0.81 0.80 0.82 0.83 0.73 0.75 0.85 0.86 
Mullingar 0.79 0.78 0.83 0.82 0.75 0.76 0.87 0.87 
Kilkenny 0.78 0.77 0.79 0.79 0.71 0.73 0.83 0.85 
Casement Aerodrome 0.80 0.80 0.82 0.82 0.75 0.77 0.87 0.88 
Cork Airport 0.85 0.85 0.87 0.88 0.83 0.84 0.91 0.91 
Birr 0.82 0.82 0.84 0.82 0.74 0.77 0.87 0.88 

Table 5 Pearson’s r values for the seasonal calibration and verification periods for minimum 
temperatures. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Radiation DJF MAM JJA SON 
Stations Cal. Ver. Cal. Ver. Cal. Ver. Cal. Ver. 
Valentia Observatory 0.66 0.67 0.73 0.66 0.62 0.58 0.73 0.72 
Shannon Airport 0.65 0.62 0.77 0.65 0.68 0.62 0.74 0.71 
Dublin Airport 0.61 0.62 0.69 0.68 0.60 0.54 0.73 0.73 
Malin Head 0.70 0.69 0.67 0.66 0.47 0.46 0.73 0.74 
Roche's Point 0.61 0.56 0.71 0.66 0.60 0.58 0.74 0.72 
Belmullet 0.71 0.70 0.73 0.67 0.59 0.56 0.74 0.72 
Clones 0.67 0.69 0.76 0.73 0.67 0.63 0.75 0.71 
Rosslare 0.62 0.57 0.63 0.67 0.42 0.48 0.72 0.71 
Claremorris 0.70 0.69 0.76 0.70 0.66 0.61 0.76 0.72 
Mullingar 0.65  0.75  0.65  0.74  
Kilkenny 0.63 0.63 0.72 0.69 0.65 0.58 0.73 0.70 
Casement Aerodrome 0.63 0.65 0.71 0.71 0.65 0.61 0.74 0.72 
Cork Airport 0.63 0.62 0.75 0.85 0.67 0.64 0.77 0.77 
Birr 0.66 0.63 0.75 0.67 0.67 0.61 0.74 0.72 

Table 6 Pearson’s r values for the seasonal calibration and verification periods for radiation. 

 
 

Potential 
Evapotranspiration DJF MAM JJA SON 
Stations Cal. Ver. Cal. Ver. Cal. Ver. Cal. Ver. 
Valentia Observatory 0.91 0.91 0.94 0.95 0.91 0.92 0.95 0.96 
Shannon Airport 0.91 0.92 0.94 0.94 0.92 0.91 0.95 0.95 
Dublin Airport 0.90 0.91 0.93 0.94 0.90 0.90 0.94 0.95 
Malin Head 0.90 0.92 0.94 0.95 0.91 0.93 0.96 0.97 
Belmullet 0.90 0.91 0.93 0.95 0.89 0.90 0.94 0.96 
Clones 0.91 0.91 0.94 0.94 0.93 0.93 0.94 0.94 
Rosslare 0.91 0.93 0.93 0.95 0.91 0.93 0.95 0.96 
Mullingar 0.92 0.93 0.94 0.94 0.92 0.91 0.95 0.95 
Kilkenny 0.90 0.92 0.92 0.93 0.91 0.92 0.94 0.95 
Casement Aerodrome 0.89 0.92 0.93 0.93 0.90 0.91 0.93 0.94 
Cork Airport 0.91 0.92 0.94 0.94 0.90 0.92 0.95 0.96 
Birr 0.91 0.92 0.94 0.94 0.92 0.91 0.94 0.94 

Table 7 Pearson’s R values for the seasonal calibration and verification periods for potential 
evapotranspiration. 

 
 

Season 2020 2050 2080 
djf 0.7 1.4 2.1 
mam 0.8 1.4 2.0 
jja 0.7 1.5 2.4 
son 1.0 1.8 2.7 

Table 8 Mean temperature increases for each season and time period 

 
 
 
 
 
 



Temperature indices of extremes  
Tmax 90th percentile Hot-day threshold 
Tmin 90th percentile Cold-night threshold 
Number of frost days Frost days 
Heat wave duration Longest heat wave 

Table 9 Indices of extremes employed in analysis 

 
 

 



 
Figure 1 Projected global surface warming for the 21st century for six emissions scenarios  

(IPCC, 2007) 
 

 
Figure 2 Location of synoptic stations employed in the analysis. 

 

 
Figure 3 Comparison of observed and modelled maximum temperatures from Valentia, for the 

independent verification period 1979-1993. 



 
Figure 4 Comparison of observed and modelled maximum temperatures from Kilkenny, for the 

independent verification period 1979-1993. 
 

 
Figure 5 Comparison of mean daily radiation derived from sun hours from Malin Head and 

modelled radiation for an independent verification period of 1961-1970. 
 

 
Figure 6 Comparison of mean daily radiation derived from sun hours from Rosslare and 

modelled radiation for an independent verification period of 1961-1970. 
 
 
 



 
Figure 7 Comparison of observed mean daily radiation from Valentia and modelled radiation, 
calculated from sun hours employing the Angstrom formula, for an independent verification 

period of 1961-1970. 
 

 
Figure 8 Comparison of calculated mean monthly potential evapotranspiration from Valentia 

and modelled potential evapotranspiration for an independent verification period of 1991-2000. 
 

 
Figure 9 Comparison of calculated mean monthly potential evapotranspiration from Kilkenny 
and modelled potential evapotranspiration for an independent verification period of 1991-2000. 

 
 
 



 
Figure 10 Ensemble mean temperature for the 2020s produced from the weighted ensemble of all 

GCMs and emissions scenarios (bars). Upper and lower ranges (lines) are the results from the 
individual GCMs and emissions scenarios. Ensemble A2 scenario (■) and B2 scenario (▲). 

 

 
Figure 11 Ensemble mean temperature for the 2050s produced from the weighted ensemble of all 

GCMs and emissions scenarios (bars). Upper and lower ranges (lines) are the results from the 
individual GCMs and emissions scenarios. Ensemble A2 scenario (■) and B2 scenario (▲). 

 
 
 
 
 



 
Figure 12 Ensemble mean temperature for the 2080s produced from the weighted ensemble of all 

GCMs and emissions scenarios (bars). Upper and lower ranges (lines) are the results from the 
individual GCMs and emissions scenarios. Ensemble A2 scenario (■) and B2 scenario (▲). 

 



 
Figure 13 Ensemble mean seasonal temperature increase for the 2020s, 2050s and 2080s 

 
 
 
 
 
 
 



 
Figure 14 Ensemble radiation for the 2020s produced from the weighted ensemble of all GCMs 

and emissions scenarios (bars). Upper and lower ranges (lines) are the results from the individual 
GCMs and emissions scenarios. Ensemble A2 scenario (■) and B2 scenario (▲). 

 

 
Figure 15 Ensemble radiation for the 2050s produced from the weighted ensemble of all GCMs 

and emissions scenarios (bars). Upper and lower ranges (lines) are the results from the individual 
GCMs and emissions scenarios. Ensemble A2 scenario (■) and B2 scenario (▲). 

 

 
Figure 16 Ensemble radiation for the 2080s produced from the weighted ensemble of all GCMs 

and emissions scenarios (bars). Upper and lower ranges (lines) are the results from the individual 
GCMs and emissions scenarios. Ensemble A2 scenario (■) and B2 scenario (▲). 

 
 
 
 



 
Figure 17 Ensemble PE for the 2020s produced from the weighted ensemble of all GCMs and 
emissions scenarios (bars). Upper and lower ranges (lines) are the results from the individual 

GCMs and emissions scenarios. Ensemble A2 scenario (■) and B2 scenario (▲). 
 

 
Figure 18 Ensemble PE for the 2050s produced from the weighted ensemble of all GCMs and 
emissions scenarios (bars). Upper and lower ranges (lines) are the results from the individual 

GCMs and emissions scenarios. Ensemble A2 scenario (■) and B2 scenario (▲). 
 

 
Figure 19 Ensemble PE for the 2080s produced from the weighted ensemble of all GCMs and 
emissions scenarios (bars). Upper and lower ranges (lines) are the results from the individual 

GCMs and emissions scenarios. Ensemble A2 scenario (■) and B2 scenario (▲). 
 
 



 
Figure 20 Trend/Decade in the temperature indices for the A2 ensemble over the 1961-2099 

period. All trends significant at 0.01 level 
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