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Abstract Lawrence & Rugh (1995), Kaminer et al. (1995)
propose that the realisation for a gain-scheduled controller
should be chosen to satisfy a local li near equivalence
condition.  However, this provides an inadequate basis
selecting an appropriate realisation.  Many realisations
satisfy the local li near equivalence condition yet are not
equivalent and can exhibit quite different dynamic
behaviour.  Furthermore, the condition imposes restrictions
on the controller states and inputs which are not a priori
necessary.

1. Introduction
A gain-scheduled controller is constructed by interpolating
between the members of a family of linear controllers.
However, the dynamic behaviour of the resulting controller,
being nonlinear, can be strongly dependent on the
realisation adopted (see, for example, Leith & Leithead
1996).  Lawrence & Rugh (1995) propose that the
realisation for a gain-scheduled controller should be chosen
to satisfy a local li near equivalence condition; that is, the
linearisation, at an equili brium operating point, of the gain-
scheduled controller should correspond to the associated
member of the family of linear controllers.  A similar
requirement is also considered, in a more restricted context,
by Kaminer et al. (1995).

2. Local linear equivalence at equilibrium operating
points

Consider a SISO gain-scheduled controller described by
the nonlinear differential equation

�

x   =  F(x, r, ρ); y  =  H(x, r, ρ) (1)
where F(•,•,•), H(•,•,•) are differentiable, r denotes the
input to the system, y the output and ρ is a continuous
scalar function of (x, r) corresponding to the scheduling
variable.  The set of equili brium operating points consists
of those points, (xo, ro), for which F(xo, ro, ρo) is zero,
where ρo denotes ρ(xo, ro).  Let Φ: ℜn×ℜ denote the space
{ (x, r)} .  The set of equili brium operating points forms a
locus in Φ parameterised by ρ and the response of the
controller to the general time-varying input, r(t),
corresponds to a trajectory in Φ.  Satisfying local li near
equivalence at the equili brium operating points, as
suggested by Lawrence & Rugh (1995), ensures that the
gain-scheduled controller has similar stabilit y properties to
the appropriate linear controller near a specific equili brium
operating point only if (x, r) (and so also ρ(x,r)) remains
within a suff iciently small neighbourhood of that operating
point.  Outwith each neighbourhood the gain-scheduled
controller can exhibit very different characteristics from the
local li nearisation.  The situation is ill ustrated by Fig. 1a for
a SISO first-order controller: the neighbourhoods, depicted

about specific equili brium operating points, notionally
indicate the respective regions within which linearisation is
valid.

The choice of realisation is, however, not unique and
different realisations are not equivalent.  Although
realisations satisfying the local li near equivalence condition
of Lawrence & Rugh (1995) are not distinguishable at the
equili brium operating points, the size of the
neighbourhoods of the equili brium operating points, within
which they are dynamically similar to the associated linear
systems, can vary substantially.  Indeed, the
neighbourhoods could, in general, be vanishingly small .
Nevertheless, Lawrence & Rugh (1995) do not distinguish
between different controller realisations satisfying the local
linear equivalence condition at equili brium operating
points.

For example, both of the realisations depicted in Fig. 2
satisfy the local li near equivalence condition at equili brium
operating points.  The dynamic behaviour of the second
order nonlinear element in Fig. 2b is described by the
differential equation

� � �

y +  a(u)y + b(u)y =   x (2)

Locally to an equili brium operating point at which the
nominal value of the scheduling variable, u, is uo,
u=uo+δu; x=0+δx; y=0+δy; 

� �

y =  0+ yδ ; 
� � � �

y =  0 + yδ (3)

and equation (2) has the linearisation
δ δ δ δ� � �

y +a(uo) y +  b(uo) y   x≈ (4)

From (4), it is clear that the local li near equivalence
condition is satisfied at the equili brium operating points.
The error, ε, in approximating (2), locally to the
equili brium operating point, by (4) is

ε = ( ) ( ) a(u) - a(uo) y +  b(u) -  b(uo) y δ δ�

(5)

When a(•) and b(•) are continuous and non-zero for all
possible values of u, it follows that ε can be made
arbitrarily small for δu suff iciently small (and δy and its
derivative finite); that is, the linearisation accurately
describes the dynamic behaviour of (2) in an arbitrarily
large neighbourhood in state-space about the equili brium
point provided δu is suff iciently small .  Now, consider the
realisation of Fig. 2a.  The differential equation (2) is
superseded by

� � � �

y +  a(u)y + b(u)y +  
da

du
u y =   x (6)

Locally to an equili brium operating point, the differential
equation (6) can again be approximated linearly by (4) and
the local li near equivalence condition is again satisfied at
the equili brium operating points.  The error, ξ, in
approximating (5), locally to the equili brium point, by (4) is



ξ= ( ) ( ) a(u) -a(uo) y + b(u) -  b(uo) y + 
da

du
(u)  u yδ δ δ δ

� �

(7)

In general, δ
�

ucan be arbitrarily large independently of the
magnitude of δu and so, unless δy is confined to an
infinitesimally small neighbourhood about the origin, ξ may
be large even if δu is small .  (Although it is unlikely that
δ

�

u  is unduly large for ideally deterministic systems, to
which Lawrence & Rugh (1995) is restricted, this
possibilit y is not so unlikely for stochastic systems).  In
practice, therefore, the neighbourhoods of the equili brium
operating points, within which (2) and (6) are dynamically
similar to (4), may be quite different.  Indeed, (6) may
exhibit substantially different dynamic behaviour from (2)
and from that indicated by its linearisation local to an
equili brium operating point, even when δu is small and the
states of the system are rather close to their equili brium
values.  By inspection, the realisation of Fig. 2b might seem
to be preferable since the error, ξ, does not involveδ

�

u .
Surprisingly, however, a controller with a realisation
similar to that of Fig. 2a can substantially out-perform one
with a realisation similar to that of Fig. 2b (Leith &
Leithead 1996); that is, the ‘obvious’ choice of realisation
need not be the most appropriate.

Whilst it clearly remains attractive to require local
linear equivalence at the equili brium point, it is evident
from the foregoing discussion that, by itself, this
requirement provides an inadequate basis for the choice of
realisation for gain-scheduled controllers.  In order to
address this deficiency, Leith & Leithead (1996) propose
an extended local li near equivalence requirement.  Whilst
this extended requirement cannot be discussed in detail
here, some salient points are highlighted.

Enclosing each equili brium operating point, there is a
neighbourhood within which the linearisation, obtained by
perturbing the system about the equili brium operating
point, of the dynamics is valid.  The equili brium operating
points and the associated neighbourhoods are parameterised
by the scheduling variable, ρ‡.  The local li near equivalence

                                                          
‡ To avoid misunderstanding, it is emphasised that the
dynamic behaviour of a gain-scheduled system depends, in
general, on the behaviour of every member of the
associated linearisation family.  Unless the trajectories of
the system are confined solely to a single extended
neighbourhood, it is insuff icient to consider a single
member of the linearisation family in isolation.  For
example, consider the system 

�

x =(ρ2-1)x+x2-x3+r which,
when ρ equals x, may be reformulated as 

�

x =-x+x2+r (note,
for this particular choice of ρ the system satisfies the
extended local li near equivalence condition but this is not
the case for arbitrary ρ).  The linearisation of these
dynamics about the equili brium point at which x equals 0 is
stable, but at nearby equili brium points (at which x>½) the
linearisation is unstable.  Hence, unless the input and initial
conditions are constrained such that the solutions to the
system are confined to the stable neighbourhoods the
system is clearly unstable.  (For example, with initial state
x(0)=0 and constant input r=½, the solution of the
linearisation about the equili brium point at which x equals

condition of Lawrence & Rugh 1995) neglects the
dependence of these neighbourhoods on the choice of
realisation.  However, the neighbourhoods may be
relatively large for some choices of realisation and
vanishingly small for others.  It is, therefore, attractive to
extend the local li near equivalence condition to exclude
realisations for which the neighbourhoods are unnecessarily
small .  In particular, for realisations satisfying the extended
local li near equivalence condition of Leith & Leithead
(1996), the neighbourhoods are suff iciently large that the
union of them encompasses the whole solution space.  In
addition, any point in this space, for which ρ has the value
ρo, is in the neighbourhood associated with the equili brium
operating point for that value of ρo.  Hence, at any non-
equili brium operating point the dynamics can be linearised
by associating them with the linear dynamics at the
equili brium operating point which has the same value of ρ.
(Note, the linearisation is not obtained by perturbing the
system about the non-equili brium operating point and
neglecting the inhomogeneous term, although that would
result in a similar description for those systems satisfying
the extended local li near equivalence condition).  This
linearisation is valid in any neighbourhood of the non-
equili brium operating point which is contained within the
neighbourhood of the corresponding equili brium operating
point.  Since linear analysis is then applicable to any
trajectory for which ρ is constant, the extended condition
corresponds to the natural requirement that, when ρ equals
ρo, the dynamic behaviour is identical to the member,
specified by ρo, of the family of linear controllers.  Local
linear equivalence in this extended sense ensures that the
family of linear systems indicate the local dynamic
behaviour at every point in Φ rather than only in a small
region close to the locus of equili brium operating points.
Since the behaviour of the gain-scheduled controller is
specified at every point in Φ, the extended local li near
equivalence condition leads to an, essentially, unique
choice of controller realisation.  In Fig. 1b, the shaded
region notionally indicates the proposed extended
neighbourhood of linear equivalence about a specific
surface on which ρ equals ρo.  Each surface of constant ρ,
and its corresponding neighbourhood, extends indefinitely
in Φ, and the collection of surfaces and neighbourhoods
covers the whole space, Φ.

The local li near equivalence condition of Lawrence &
Rugh (1995) is, in general, confined to a only a small
neighbourhood of the equili brium operating points.  Hence,
it requires that every trajectory in Φ remains within a
suff iciently small neighbourhood of the locus of
equili brium points.  This requirement does not seem to be a
priori necessary yet it limits the analysis to small (perhaps
vanishingly small ) neighbourhoods of the equili brium

                                                                                                
zero is x(t)=½(1-e-t)≈½t-¼t2 for small t.  In comparison, the
solution of the nonlinear system is x(t)=½(1+tan(t/2-
π/4))≈½t-¼t2 for small t.  Clearly, the solutions agree
initially but eventually diverge once they leave the
neighbourhood within which the linearisation is valid).



operating points and as a consequence, from (1), every
system state must be, in some sense, slowly-varying.  In
general, this implicitly imposes a constraint on the rate of
variation of ρ which is likely to be quite restrictive.  The
extended local li near equivalence condition enables this
restriction to be avoided.  Realisations which satisfy the
extended local li near equivalence condition are derived by
Leith & Leithead (1996) for a wide class of SISO systems
and it is observed that a controller realisation satisfying the
extended condition can substantially out-perform
realisations which only satisfy local li near equivalence
about the equili brium operating points and not the extended
criterion (Leith & Leithead 1996).  The extended local
linear equivalence condition can, therefore, provide
guidance as to what is an appropriate realisation for a gain-
scheduled controller.

3. Conclusions
The approach of Lawrence & Rugh (1995) provides an

inadequate basis for the selection of an appropriate
controller realisation.  Many different controller realisations
satisfy the local li near equivalence condition, yet they are
not equivalent and can, even when close to an equili brium
operating point, exhibit quite different dynamic behaviour.
Furthermore, the condition can lead, in general, to the
imposition of restrictive constraints on the controller states
and inputs which are not a priori necessary.
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Figure 1. (a) Illustration of local li near equivalence
neighbourhoods about equili brium operating points. (b)
Illustration of extended local li near equivalence
neighbourhoods.
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Figure 2. Example of different realisations satisfying local
linear equivalence at equili brium operating points.



RESPONSE TO LAWRENCE AND RUGH

In their response to Leith & Leithead (1998), Lawrence & Rugh make a number of comments regarding the results in Leith
& Leithead (1996).  We consider their remarks in turn.

1. Gain-scheduling is sometimes applied in conditions when it is not a priori warranted; that is, when the response of the
system is not confined locally to a specific equili brium operating point and/or the system is not slowly varying, e.g. wind
turbine regulation as in Leith & Leithead (1996). It is observed that, in these circumstances, the choice of realisation of the
controller contributes significantly to the performance of the nonlinear gain-scheduled controller and the choice of
realisation must be considered with some care. The work of Lawrence & Rugh is discussed since it also considers the
choice of realisation of the controller. However, in the context considered in Leith & Leithead, the work of Lawrence &
Rugh does not assist in distinguishing between those controllers, of the many which meet their requirement, that perform
well and those that perform less well . The inadequacy is in this lack of guidance rather than the lack of uniqueness.

2.  Some restrictions on the performance attained by a gain-scheduled controller are inherent to the design task itself; for
example, the restrictions induced by the degree of variation of the local plant dynamics along the locus of equili brium
operating points.  Other restrictions arise from the choice of controller realisation; for example, the nonlinear nature of the
controller away from the locus of equili brium operating points.  In particular, suppose that the neighbourhoods of each
equili brium operating point, within which the linearised dynamics are considered to be an adequate representation of the
nonlinear gain-scheduled controller, are small then the solution trajectories must remain close to the equili brium operating
points. By choosing a realisation which satisfies an extended local li near equivalence condition, the latter unnecessary
restriction is avoided but of course the inherent restrictions are not.  Lawrence & Rugh comment that the analysis in Leith
& Leithead (1996) contains no mathematical proof that the realisations satisfying the extended linear equivalence condition
realise their purpose.  However, the chosen realisations self-evidently achieve the stated aim since they ensure unbounded
linearisation neighbourhoods the union of which covers the entire space; no proof is required.
      Requiring the controllers to be of the form proposed in Leith & Leithead (1996), certainly eliminates the worst
realisations, specifically, those with excessively small li nearisation neighbourhoods, and should generally provide some
guidance in identifying the better ones. It is not claimed that controllers not satisfying the condition can never out-perform
controllers satisfying it.  Indeed, controller designs which exploit full knowledge of the plant dynamics can lead to
improved performance in comparison to the situation considered in Leith & Leithead (1996) where equili brium information
only is utili sed.

3.  Lawrence & Rugh quote short sections from Leith & Leithead (1996) out of context.  Such “sound bites” are potentially
misleading, particularly with regard to the quotation from the Conclusions section of Leith & Leithead (1996).   The
linearisation associated with a non-equili brium operating point is explicitly addressed in both Leith & Leithead (1996) and
Leith & Leithead (1998) and there is nothing “vague” about this concept.  Specifically,  the scheduling variable can be
evaluated at any operating point. For the class of plants considered it has the same value at some equili brium operating
point. Furthermore, the neighbourhood, within which the linearised dynamics at the corresponding equili brium operating
point are valid, encloses the initially considered operating point. Hence, locally to the operating point the dynamics of the
nonlinear gain-scheduled controller are described by the linear dynamics corresponding to the value of the scheduling
variable. Since the neighbourhoods are unbounded, all operating points along any trajectory, even those far from the locus
of equili brium operating points, exhibit this dynamical equivalence. In other words, this dynamical equivalence does not
require slow variation or confinement to the equili brium operating points. A fuller quotation of the text in Leith & Leithead
(1996) would have made this intended meaning clear.
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