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a b s t r a c t

In this paper, we consider a remote estimation problem where multiple dynamical systems are
observed by smart sensors, which transmit their local estimates to a remote estimator over channels
prone to packet losses. Unlike previous works, we allow multiple sensors to transmit simultaneously
even though they can cause interference, thanks to the multi-packet reception capability at the remote
estimator. In this setting, the remote estimator can decode multiple sensor transmissions (successful
packet arrivals) as long as their signal-to-interference-and-noise ratios (SINR) are above a certain
threshold. In this setting, we address the problem of optimal sensor transmission scheduling by
minimizing a finite horizon discounted expected estimation error covariance cost across all systems
at the remote estimator, subject to an average transmission cost. While this problem can be posed as
a stochastic control problem, the optimal solution requires solving a Bellman equation for a dynamic
programming (DP) problem, the complexity of which scales exponentially with the number of systems
being measured and their state dimensions. In this paper, we resort to a novel Least Squares Temporal
Difference (LSTD) Approximate Dynamic Programming (ADP) based approach to approximating the
value function. More specifically, an off-policy based LSTD approach, named in short Enhanced-
Exploration Greedy LSTD (EG-LSTD), is proposed. We discuss the convergence analysis of the EG-LSTD
algorithm and its implementation. A Python based program is developed to implement and analyse the
different aspects of the proposed method. Simulation examples are presented to support the results
of the proposed approach both for the exact DP and ADP cases.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Wireless Sensor Networks (WSN) are adopted in numerous
pplications in remote estimation and control due to their advan-
age in reduced wiring, modularity, accuracy in measurements
ith multiple sensors, and better agility (Pezzutto, Schenato,
Dey, 2020). It may not be desirable to have all the sensors

ransmitting their measurements at all time instants due to the
onstraints on communication bandwidth and the sensor battery
ife. Multiple simultaneous sensor transmissions can also cause
nterference with each other and sensor transmissions can be
ost due to collisions. Hence, the problem of defining a proper
ensor scheduling policy arises, where the objective is the acti-
ation of different subsets of sensors at different time slots in

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Luca
Schenato under the direction of Editor Christos G. Cassandras.
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order to obtain an optimal trade-off between estimation accu-
racy and energy use. Unlike the traditional channel multiplex-
ing techniques such as scheduling a single sensor per resource
block (e.g. per time-slot (TDMA) or per frequency slot (FDMA)),
the modern wireless communication systems are equipped with
decoding signals in the presence of interference using a more
complex receiver that employs multi-user detection (mobile
broadband communication such 3G systems), and multipacket
reception (Wireless LAN) (Pezzutto et al., 2020). These receivers,
by allowing multiple transmissions at the transmitters in the
same resource block, make better use of the available resources,
as opposed to TDMA or FDMA. While this is widely researched
in the context of multi-terminal network information theory
involving multiple access/broadcast/interference channels, it has
not been investigated in the context of wireless control systems.

1.1. Literature review on sensor scheduling

As state estimation is crucial to feedback control systems,
efficient processing of sensory data under limited resources is
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mportant (Wu, Jia, Johansson, & Shi, 2013). The quality and the
ccuracy of the estimation can be improved by trading off com-
unication bandwidth, energy budget, and transmissions power

Nourian, Leong, & Dey, 2014; Shi, Cheng, & Chen, 2011a, 2011b).
As communication is expensive in wireless sensor networks,

fficient utilization of online information to reduce communi-
ation rate is another research interest, see Leong, Dey, and
uevedo (2017), Ren, Wu, Johansson, Shi, and Shi (2018) where
vent-triggered transmission strategies can be found. The band-
idth of wireless communication channels can be limited, and
nly a few sensors are allowed to be activated in each time
lot since the sensors can interfere with each other. In Gupta,
hung, Hassibi, and Murray (2006), the authors analysed the
erformance of a stochastic sensor selection algorithm for two
roblems, that is to say, sensor scheduling under channel band-
idth limitation and sensor coverage in a given location. The
eader can also refer to Han, Wu, Zhang, and Shi (2017), Ren,
u, Dey, and Shi (2018) for similar studies.
Sensor scheduling problems have also been investigated in

nfinite time horizon frameworks, e.g., in Zhao, Zhang, Hu, Abate,
nd Tomlin (2014) it has been proven that, under some mild
onditions, both the optimal infinite-horizon average-per-stage
ost and the corresponding optimal sensor scheduling policy are
ndependent of the covariance matrix of the initial state. More
omplex sensor scheduling problem scenarios can be found in
iterature. For instance, in Liu, Quevedo, Johansson, Vucetic, and Li
2021), remote state estimation of multiple systems over multi-
le Markov fading channels has been considered together with
he need of guaranteeing the existence of a stabilizing sensor
cheduling policy. In Leong, Ramaswamy, Quevedo, Karl, and Shi
2020), a deep Q-learning approach has been presented to deal
ith a multi-process multi-channel sensor scheduling problem.
owever, Q learning based approaches have to take into ac-
ount some issues, e.g., instability and convergence problems and
ampling mechanism complexity (Bertsekas, 2012).
In almost all the mentioned works, it is assumed that either
single sensor can be scheduled at each time slot, or there is
o interference caused with simultaneous transmissions. There
re two notable exceptions where interference is taken into ac-
ount: in Gatsis, Ribeiro, and Pappas (2018), the authors proposed
channel-adaptive optimal random access scheme for remote

ontrol of multiple systems, and in Li, Chen, and Wong (2019),
he authors studied the optimal power allocation for remote
stimation. In Pezzutto et al. (2020), the authors have recently
onsidered two types of interference over a wireless transmission
hannel with two sensors deployed for the remote state estima-
ion of a linear time invariant dynamic system. In this work, the
ensitivity of the different parameters on a single stage Dynamic
rogramming (DP) optimization problem has been investigated.

.2. Scope and contribution of the paper

This work addresses the sensor scheduling problem for remote
tate estimation of multiple linear time-invariant Gauss–Markov
rocesses. Each process state is measured by a smart sensor,
hich is able to compute the local state estimate of the process
nd transmit it to a remote estimator. The packet reception
odel accounts both for the interference due to incoming signals

ransmitted by other sensors and the external noise. We consider
multi-packet reception scheme based on the capture property
f the wireless receiver (Zanella & Zorzi, 2012), where any sen-
or state estimate with a Signal-to-Interference-and-Noise Ratio
SINR) above a certain threshold can be successfully decoded by
he remote estimator. In this scheme, each sensor can observe
 t

2

the interference due to the other sensor transmissions and the
external noise.1

Unlike previous works, we consider here computationally ef-
ficient solutions to sensor scheduling problems for linear time
invariant dynamic systems (Single Input-Single Output/ Multi
Input-Multi Output), see Leong, Dey, and Quevedo (2017), Pez-
zutto et al. (2020). We can notice that finding an analytical solu-
tion for the sensor scheduling problems is impractical unless for
special cases with conservative assumptions and small size sys-
tems (see Leong, Dey, & Quevedo, 2017; Pezzutto et al., 2020). We
formulate the scheduling problem of Multiple Sensors-Multiple
Processes (MSMP) over a noisy wireless transmission channel
as an MDP with an error covariance discounted cost function,
computed over a finite time horizon. Our MDP framework differs
from the ones shown in previous works such as Leong, Dey,
and Quevedo (2017), Wu, Ren, Dey, and Shi (2018) in three
main aspects: the modelling assumption and the related problem
formulation, the handling of the MDP scalability issues, and the
proposed solution. Our main objective is to compute an appro-
priate sensor scheduling policy to minimize an expected cost
function which depends on the state estimation error covariance
of each sensor. It is natural to apply Dynamic Programming (DP)
techniques (Bertsekas, 2012; Forootani, Iervolino, & Tipaldi, 2019;
Forootani, Tipaldi, Ghaniee Zarch, Liuzza, & Glielmo, 2020b) to
solve MSMP transmission scheduling problems modelled as MDP.
However, the scalability issues of practical size MSMP problems
call for the usage of ADP based techniques (Bertsekas, 2012).
Recent applications of the ADP can be found in different fields,
such as multi-agent robotic systems (Deng, Chen, & Belta, 2017),
optimal stopping problems (Forootani, Tipaldi, Iervolino, & Dey,
2022), and resource allocation problems (Forootani, Iervolino,
Tipaldi, & Neilson, 2020; Forootani, Liuzza, Tipaldi, & Glielmo,
2019).

In this paper, we approximate the optimal cost function by a
compact parametric representation, which is also referred to as
approximation architecture (Bertsekas, 2011; De Farias & Van Roy,
2003; Forootani et al., 2022; Geist & Pietquin, 2013). A new
algorithm, named in short Enhanced-exploration Greedy Least
Squares Temporal Difference (EG-LSTD), is proposed to compute
such approximation. The EG-LSTD algorithm is a special type
of the classical LSTD method (Tsitsiklis & Van Roy, 1997). It
has been derived from the Multi-trajectories Greedy LSTD (MG-
LSTD) algorithm, presented by the authors in Forootani, Tipaldi,
Ghaniee Zarch, Liuzza, and Glielmo (2020a). The EG-LSTD algo-
rithm can be regarded as an off-policy LSTD approach since the
initial state of each trajectory is selected by applying a proba-
bility distribution different from the frequencies of the MDP at
hand. In general, off-policy LSTD methods may not be convergent
(see Tsitsiklis & Van Roy, 1997, Th. 3). Hence, inspired by Bert-
sekas and Yu (2009), we derive a condition for the selection of
the initial states of each trajectory to guarantee the convergence
of the EG-LSTD algorithm.

The main contributions of this article can be summarized as
follows: (i) modelling MSMP transmission scheduling problems
over a wireless packet dropping channel with SINR as an MDP;
(ii) considering a stochastic discounted DP framework to solve
the resulting MDP with the error covariance matrices of the
state estimation filters (Kalman filters) as the cost per stage;

1 In information theoretic context, for additive Gaussian white noise channels,
he bit error probability is assumed negligible if the signal-to-noise ratio (SNR)
xceeds a certain probability, typically of the order of 10−4 to 10−6 with
uitable modulation and coding. Similar to the SNR case, it can be shown that,
ith a suitable choice of modulation and error control coding, the packet loss
robability can be made negligibly small when the SINR exceeds the required
hreshold (Perez-Neira & Campalans, 2010).
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iii) proposing a novel LSTD based algorithm for cost function ap-
roximation of the MSMP problem over an infinite time horizon
o make use of it for the finite time horizon decision making; (iv)
eveloping a Python based program to implement the different
hases of the MSMP transmission scheduling problem modelling,
esolution, and result analysis. This paper is organized as follows.
ection 2 provides an overview on MDP and projected based
DP techniques applicable to this work. The modelling approach
or the MSMP problem is given in Section 3. Its stochastic DP
ormulation is presented in Section 4. The EG-LSTD algorithm
long with its convergence properties is discussed in Section 5.
umerical simulations and their results are provided in Section 6.
ection 7 concludes the paper. Finally, all proofs of the main
emmas are provided in Appendix A.

. Preliminaries on MDPs and ADP

This section briefly provides an overview of some MDP and
DP concepts used in the paper.

.1. Preliminaries on MDPs

The basic structure of an MDP is defined as follows (Forootani
t al., 2020):

• S: a finite set of states with the cardinality Ω . We denote
by S(k) = S ∈ S and S(k+1) = S ′ ∈ S two generic elements
of this set at the consecutive time slots k and k+ 1.
• U: a finite set of actions. We denote by u(k) = u ∈ U

a generic element of this set at the time slot k, which is
assumed to be an N-dimensional vector with the associated
elements 0 or 1. The cardinality of U is 2N .
• A state transition probability function PSS′ (u) :=

[
P(S ′|S, u)

]
,

P : S × U × S → [0, 1], which is defined as the probability
that an action u, performed in the state S at time slot k, leads
to state S ′ at time slot k+ 1.
• L : S × U → [0,+∞) an instantaneous cost function. It is

denoted as L(S, u) for any generic S ∈ S and u ∈ U .

We define a decision u(S, k) as the mapping between the
whole state space S and the set of actions U , at a given time
slot k. For the sake of simplicity, in the paper we remove the
explicit dependency on the state, i.e., u(S, k) := u(k). By denoting
with π = {u(0), . . . , u(N − 1)} the sequence of decisions as the
policy over the finite time horizon N , the associated expected
cost function starting from the initial state S(0) over N is written
as follows

Jπ
(
S(0)

)
= E

[
N−1∑
k=0

αkL
(
S(k), u(k)

)
+ JN

(
S
(
N

))]
, (1)

where E{·} is the expectation operator calculated over the visited
states when applying the policy π , 0 < α < 1 is the discount
factor, Jπ

(
S(0)

)
is the expected cost function of the policy π , and

JN (·) is a given terminal cost function evaluated at final stage.
The optimal finite time horizon discounted cost function can be
expressed as

J∗
(
S(0)

)
= min

π
E

[
N−1∑
k=0

αkL
(
S(k), u(k)

)
+ JN

(
S
(
N

))]
. (2)

Note that the expressions (1),(2) can be easily extended to
the infinite time horizon case by computing their limit value for
N →∞ and setting JN to zero (Bertsekas, 2012). With a slight
abuse of notation, we can define (1) and (2) for a generic state
S ∈ S as Jπ (S) and J∗

(
S
)
, respectively. When we refer to the whole

state space, we can define the overall cost function J : S → RΩ

as a vector whose components are J (S).
π

3

Definition 2.1. Let us denote the MDP state transition proba-
bility matrix for the optimal stationary policy π∗ = {u∗, u∗, . . . }
with P∗ ∈ RΩ×Ω with elements P∗SS′ = PSS′ (u∗), any given cost
function vector with J ∈ RΩ (with components J(S)), and the
optimal instant cost vector with L∗ ∈ RΩ (with components
L(S, u∗)). We define the mapping F∗ : RΩ

→ RΩ (Bellman
operator)

(F∗J)(S) = min
u∈U

[
L(S, u)+ α

∑
S′∈S

PSS′ (u)J(S ′)
]
. (3)

By using a compact matrix form, we can express the Bellman
operator as: F∗J = L∗ + αP∗J . As stated in Bertsekas (2012),
the mapping (3) provides a convenient shorthand notation in
expressions that would be too complicated to write otherwise.
It can be regarded as the optimal cost function for the one-stage
problem with stage cost L and terminal cost αJ .

When we refer to any stationary policy π = {u, u, . . . , }
(either optimal or not) with corresponding stochastic matrix P ∈
RΩ×Ω (with elements PSS′ = PSS′ (u)) and any given cost function
J , the related Bellman operator becomes: Fπ J = L+αPJ , where,
with a slight abuse of notation, we have removed the explicit
dependency of P and L from the specific stationary policy. As
shown later, the off-policy with respect to the optimal stationary
policy π∗ is denoted with π̄ = {ū, ū, . . . , }. By defining its
state transition probability matrix as P̄ ∈ RΩ×Ω and the instant
cost vector as L̄ (with components L̄(S, ū)), the related Bellman
operator becomes: F̄ J = L̄+ αP̄J .

2.2. Preliminaries on ADP

In general, solving the Bellman equation has an exponential
complexity with respect to the state and action space, and is
computationally prohibitive. The goal is to approximate the cost
function J : S → RΩ of an MDP with a parametric architecture of
the form J̃(S, r), J̃ : S × Rm

→ RΩ , where r ∈ Rm is a parameter
vector that has to be computed. The choice of the architecture is
very significant for the success of the approximation approach.
One possibility is to use the linear form

J̃(S, r) =
m∑
i=1

riφi(S), (4)

where ri is the ith component of parameter vector r ∈ Rm, and
φi(S) are some known scalars that depend on the state S. For
each state S, the approximate value J̃(S, r) is the inner product
of φ(S) and r where φ(S) =

[
φ1(S), . . . , φm(S)

]T . We refer to
φ(S) as the feature vector of S, and components φi(S) as features.
Thus the cost function is approximated by a vector in the feature
subspace ∆ = {Φr|r ∈ Rm

}, where Φ ∈ RΩ×m is called feature
matrix with each row φ(S)T . Note that in general we have m ≪
Ω . The m columns of Φ are viewed as basis functions, and Φr
as a linear combination of basis functions. The vector r can be
computed via the Monte Carlo simulations approaches, e.g., the
LSTD method (Tsitsiklis & Van Roy, 1997). Now we recall some
definitions, assumptions, and results useful for the understanding
of the paper.

Assumption 1. For each admissible stationary policy π∗, π̄ , and
π the underlying Markov chain is irreducible and regular. The
related stochastic matrices P∗, P̄ , and P have unique steady
state probability vectors ξ ∗ ∈ RΩ

+
with components ξ ∗S > 0,

ξ̄ ∈ RΩ
+

with components ξ̄S > 0, and ξ with components ξS > 0
respectively.

Assumption 2. The matrix Φ has rank m.
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Assumption 1 is equivalent to assuming that the Markov chain
is irreducible, i.e., has a single recurrent class and no transient
states. As explained in Bertsekas (2012), thanks to Assumption 1,
the contraction property of the associated Bellman operator in
the feature subspace holds, which implies the existence of the
fixed point of the projected Bellman equation. On the other hand,
Assumption 2 is equivalent to the basis functions (the columns
of Φ) being linearly independent, and is analytically convenient
because it implies that each vector J in the feature subspace ∆

is represented in the form Φr with a unique parameter vector r .
s a result, one can sample according to such steady probability
istribution in order to compute via Monte Carlo simulations
he parameter vector r of linear cost function approximation (4).
hese aspects are exploited in the proposed EG-LSTD algorithm.
We use the weighted Euclidean norm of any cost function

ector J ∈ RΩ with respect to the vector of positive weights ξ

∥ J ∥ξ=
√(

JTΞ J
)
, (5)

where Ξ ∈ RΩ×Ω is the diagonal matrix with the steady state
probabilities ξS , S ∈ S along the diagonal. Let Π denote the
projection operator of any J ∈ RΩ onto ∆ with respect to this
orm. In other words, Π J implies computing the unique vector
n ∆ that minimizes the following

ˆ = arg min
r∈Rm
∥J −Φr∥2ξ . (6)

It can also be written as Π J = Φ r̂ , with

r̂ = (ΦTΞΦ)−1ΦTΞ J, (7)

where Π = Φ(ΦTΞΦ)−1ΦTΞ . Thanks to Assumptions 1 and
2, the inverse (ΦTΞΦ)−1 exists. By using the projection opera-
tor, we can introduce the projected Bellman operator ΠFπ J =
Π (L + αPJ). As mentioned before, thanks to Assumption 1, the
corresponding projected Bellman equation Φr = ΠFπ (Φr) has
a unique fixed point (Bertsekas, 2011). The mapping ΠFπ is
contraction of modulus α with respect to the weighted Euclidean
norm (5). We denote with J̃π = Φrπ the fixed point of ΠFπ ,
.e. Φrπ = ΠFπ (Φrπ ).

Given the system model, the LSTD algorithm adopts Monte
arlo simulations to compute the approximate cost function vec-
or J̃π of a given policy in the lower dimensional feature space.
he LSTD is performed as the policy evaluation step of the Policy
teration algorithm (Bertsekas, 2011). For further discussion re-
arding the LSTD method and its convergence analysis, the reader
an refer to the work reported in Tsitsiklis and Van Roy (1997).

. Model description

In this paper, we consider N dynamical systems whose states
ave to be estimated by a remote estimator, for the case of
transmitting sensors through a shared wireless channel. The

entral node is equipped with a receiver capable of multi-packet
eception, thus allowing more than one sensor to transmit simul-
aneously. To avoid confusion, we denote by transmission period
he time interval during which each scheduled sensor transmits
ts encoded information to the remote estimator. For simplicity,
e assume that the transmission periods are contained within
he corresponding sampling periods and are synchronized across
he sensors.

Consider the discrete time processes with the dynamics

i(k+ 1) = Aixi(k)+ ωi(k), (8)

where xi(k) ∈ Rni , with i = 1, . . .N and ni ∈ N, denote the set of
states associated to process i, and ωi(k)s are i.i.d. Gaussian process
oises with zero mean and covariances Q ∈ Rni×ni . There are
i a

4

N sensors, one for each dynamical system,2 with the ith sensor
aving measurements

i(k) = Cixi(k)+ vi(k), i = 1, . . . ,N, (9)

where yi(k) ∈ Rmi , with mi ∈ N, and the measurement noise
vi(k) are i.i.d. Gaussian noises with zero mean and covariance
Ri; ωi(k) and vi(k) are assumed to be mutually independent, and
are also independent of the initial state xi(0). We assume that
the sensors are smart and can run a local Kalman filter. Define
Yi(k) = {yi(0), yi(1), . . . , yi(k)}. Then, the local state estimates
and error covariances are given by

x̂si (k|k− 1) = E
[
xi(k)|Yi(k− 1)

]
, x̂si (k|k) = E

[
xi(k)|Yi(k)

]
,

P s
i (k|k− 1) = E

[ (
xi(k)− x̂si (k|k− 1)

) (
xi(k)

− x̂si (k|k− 1)
) T
|Yi(k− 1)

]
,

s
i (k|k) = E

[(
xi(k)− x̂si (k|k)

)(
xi(k)− x̂si (k|k)

)T
|Yi(k)

]
,

nd can be computed using the standard Kalman filtering equa-
ions at sensors i = 1, . . . ,N for each process i (note that
the superscript s denotes the sensor side measurement). More-
over, we assume that each pair (Ai, Ci) is detectable and the

pair (Ai,Q
1
2
i ) is stabilizable. Let P̄ s

i be the steady state value of
P s
i (k|k− 1) and P̄i be the steady state value of P s

i (k|k), as k→∞,
oth of which exist due to the detectability assumptions.
The Kalman filtering equations at the sensor i are given by

x̂si (k|k− 1) =Aix̂si (k− 1|k− 1)
s
i (k|k− 1) =AiP s

i (k− 1|k− 1)AT
i + Qi

Ks
i (k) =P

s
i (k|k− 1)CT

i

(
CiP s

i (k|k− 1)CT
i + Ri

)−1
x̂si (k|k) =x̂

s
i (k|k− 1)+ Ks

i (k)
(
yi(k)− Cix̂si (k|k− 1)

)
P s
i (k|k) =

(
Ini − Ks

i (k)Ci
)
P s
i (k|k− 1), (10)

here Ks
i (k) is the optimal filter gain, and Ini ∈ Rni×ni is the

dentity matrix.
Let ui(k) ∈ {0, 1}, i = 1, . . . ,N be decision variables such

hat ui(k) = 1 if and only if x̂si (k|k) is to be transmitted to the
emote estimator at time k. Note that transmitting state estimates
hen there are packet drops generally provides better estimation
erformance than transmitting measurements (Schenato, 2008).
e consider the situation where ui(k) are computed at the re-
ote estimator at time k − 1 and communicated to the sensors
ithout error via feedback links before transmission at the next
ime instant k.3 Since our interest lies in decision making at
he remote estimator, we assume that the decisions ui(k) do
ot depend on the current value of xi(k) (or functions of xi(k),
uch as measurements and local state estimates). Specifically,
n this paper we assume that ui(k) depends only on the error
ovariances at the remote estimator. During the kth transmission
eriod, a packet containing the estimated state x̂si (k|k) is com-
unicated according to the decision variable ui(k) to a remote
stimator: if ui(k) = 1, then x̂si (k|k) is transmitted, while it is
ot transmitted if ui(k) = 0. When scheduled, a transmission
ay not be successfully completed due to the interference of
ther transmissions and channel and receiver noise. We represent

2 This setup can be easily extended to consider the scenario where each
rocess is observed by a set of sensors that result in a detectable system, as
onsidered in Pezzutto et al. (2020) for a single process, as long as the sets of
ensors observing different processes are mutually exclusive.
3 Feedback from base stations or wireless access points to the associated
ser equipment is common in wireless systems. These feedback information
arry crucial commands regarding power control, scheduling/routing decisions
nd many other parameters (Pezzutto, Schenato, & Dey, 2021a).
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his process through the variable ηi(k), which is equal to 1 if the
ransmission of x̂i(k|k) is successfully completed, 0 otherwise. The
nformation set available at the fusion centre at the time instant

is I(k) =
N⋃
i=1

Ii(k), with

i(k) =
{
ui(0)ηi(0)x̂si (0|0), ui(1)ηi(1)x̂si (1|1), . . . ,

ui(k− 1)ηi(k− 1)x̂si (k− 1|k− 1)
}
, (11)

here, with a slight abuse of notation, if ui(t)ηi(t) = 0 then,
i(t)ηi(t)x̂si (t|t) = ∅, i.e. x̂si (t|t) is missing, t ∈ {0, 1, . . . , k −
}. We denote the state estimates and error covariances at the
emote estimator for each process by

x̂i(k|k) =E
[
xi(k)|Ii(k)

]
x̂i(k+ 1|k) =E

[
xi(k+ 1)|Ii(k)

]
Pi(k|k) =E

[(
x(k)− x̂(k|k)

)(
xk − x̂(k|k)

)T
|I(k)

]
i(k+ 1|k) =E

[ (
x(k+ 1)− x̂(k+ 1|k)

) (
x(k+ 1)

− x̂(k+ 1|k)
) T
|I(k)

]
,

Based on the above settings on ui and ηi, the remote estimator
pdates its estimation of the states as follows

x̂i(k|k) =
{
x̂si (k|k), ui(k)ηi(k) = 1
Aix̂i(k− 1|k− 1), ui(k)ηi(k) = 0,

Pi(k|k) =
{
P̄i, ui(k)ηi(k) = 1
AiPi(k− 1|k− 1)AT

i + Qi, ui(k)ηi(k) = 0.
(12)

For our subsequent analysis, we introduce the matrix function

fi(X) = AiXAT
i + Qi. (13)

If we define the countably infinite set

Si =
{
P̄i, fi(P̄i), f 2i (P̄i), . . .

}
, i = 1, . . . ,N, (14)

where f l(·) denotes the l−fold composition of f (·). Then it is clear
from (12) that Si consists of all possible values of Pi(k|k) at the
remote estimator. With a slight abuse of notation, hereinafter,
we use Pi(k) in place of Pi(k|k). The affine mapping of symmetric
matrices f li (·) are defined as

f 0i (X) =X, (15)
1
i (X) =AiXAT

i + Qi, (16)

f li (X) =fi ◦ · · · ◦ fi  
l

(X) = Al
iX(A

T
i )

l
+

l−1∑
t=0

At
iQi(AT

i )
t . (17)

In computations, since the state space is (countably) infinite, we
will use a truncated version of Si in (14) to4

Si =
{
P̄i, fi(P̄i), f 2i (P̄i), . . . , f

q−1
i (P̄i)

}
, i = 1, . . . ,N, (18)

which will cover all possible error covariances with up to q − 1
successive packet drops or non-transmissions. Note that it can
be shown that the error due to this truncation decays exponen-
tially with increasing N . The schematic diagram of the sensor
scheduling problem addressed in this paper is shown in Fig. 1.

Remark 1. While transmitting estimates require more computa-
tional effort at the sensors, at the steady state, each sensor only
needs to compute the current estimate using the steady state
Kalman gain and the current measurement innovations, which
is computationally not that expensive, thus justifying this choice
over transmitting measurements. Moreover, if the sensors are

4 With a slight abuse of notation, we say S the truncated version of (14).
i t

5

Fig. 1. Schematic diagram of the sensor scheduling problem.

severely computation-constrained, and are restricted to transmit
measurements only, the resulting error covariance matrices for
the ith process at the remote estimator will belong to the general
set of positive semi-definite matrices, instead of the ordered
countably infinite set Si (Gupta, Hassibi, & Murray, 2007; Xu &
Hespanha, 2005).

Remark 2. It is worth noting it is the remote estimator which
needs to know whether the packets have been received or lost,
whereas the sensors simply perform their local estimates based
on their local measurements only.

3.1. Channel model

Denote by Ptx
i the transmitted power of the ith sensor, while

i denotes the slow fading component of the channel power
ain from the ith sensor to the remote estimator (usually due to
istance based attenuation and shadow fading, and hi(k) is the

fast fading component (due to multipath effects and mobility)
of the same channel during the kth transmission period. We
assume that Ptx

i and gi are constant, while hi(k) is modelled
s a temporally independent identically distributed exponential
andom variable (Rayleigh fading) with unity mean, i.e. hi(k) ∼
xp(1), with hi(k), hj(t) being mutually statistically independent
or ∀i ̸= j (Pezzutto et al., 2020). It follows that the received
ower at the remote estimator from the ith sensor Prc

i (k) during
he kth transmission interval is

rc
i (k) =

{
Ptx
i gihi(k), if ui(k) = 1

0, if ui(k) = 0.
(19)

iven ui(k) = 1, the received power is an exponential random
ariable with mean λi = (giPtx

i )
−1, i.e. Prc

i (k) ∼ Exp(λi). Due to
he intrinsic nature of the wireless medium, background channel
nd/or receiver noise is also present. We model it as an Addi-
ive White Gaussian Noise (AWGN) whose average power at the
emote estimator is δ2 (Pezzutto et al., 2020).

Without Successive Interference Cancellation (SIC) at the re-
ote estimator (which imposes an optimized decoding order by
ecoding the strongest signal and removing its contribution from
he received signal iteratively Pezzutto et al., 2020), the Signal-to-
nterference-and-Noise Ratio (SINR) corresponding to the packet
ontaining x̂si (k|k) is

INRi(k) =
ui(k)Ptx

i gihi(k)∑
j̸=i uj(k)Ptx

j gjhj(k)+ δ2
. (20)

ote that SIC can further improve the performance at the remote
stimator, but for simplicity, we do not consider it in this work.
A packet from the ith sensor at the kth time slot can be

ecoded without error if SINRi(k) > γ , where γ > 0 is a threshold
hat is chosen based on the modulation and coding schemes used.
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e need to have γ ∈ (0, 1), which is necessary to enable multi-
acket reception, and can be achieved via clever modulation and
oding schemes at the transmitters. It follows that the packet
rrival process from the ith sensor can be expressed as

i(k) =
{
1, if SINRi(k) > γ

0, otherwise.
(21)

Since the channel gains are independent across time slots,
i(k) is also an i.i.d. Bernoulli process. However ηi(k), ηj(k) for
̸= i may be dependent on each other due to interference
ithin a given time slot. Arrival probabilities P(ηi(k) = 1) can be
omputed for fixed transmission powers and scheduling policies,
sing the joint distribution of the fast fading gains, as shown
n Papandriopoulos, Evans, and Dey (2005), and are not repeated
ere.

. Dynamic programming formulation of sensor scheduling
roblems

In Section 3, we have provided a model description for MSMP
ransmission scheduling problem over a noisy wireless commu-
ication channel. Each sensor i is equipped with a local Kalman
ilter characterized by the corresponding steady state error co-
ariance matrix P̄i. In this section, we formulate formally the
SMP sensor scheduling problem as an MDP with the associated
P framework. If we define the finite set

i =
{
P̄i, fi(P̄i), f 2i (P̄i), . . . , f

q−1
i (P̄i)

}
, i = 1, . . . ,N, (22)

here the local state at the i-the sensor is Si(k) = Pi(k), and
clearly Si(k) ∈ Si. Similarly, the scheduling/control action at
ensor i is given by ui ∈ Ui = {1, 0}, where ui = 1 represents
‘transmit ’’ and ui = 0 denotes the action of ‘‘do not transmit ’’.
he decision at time k for the state Si(k) = Pi(k) is denoted as
i(k) ∈ Ui(Si(k)). Based on these definitions, one can then define
combined time-homogeneous MDP at the remote estimator as
tuple Q = ⟨S,U, T ,L⟩.

.1. MDP formulation of multiple sensors multiple processes schedul-
ng problems

The various components of the combined MDP are defined as
ollows.

• S is the entire state space, that is S =
⨂N

i=1 Si, where⨂
denotes the Cartesian product. The cardinality of S is

denoted by Ω , i.e. |S| = Ω . Moreover, we denote with
S(k) = S and S(k+1) = S ′ two generic states at consecutive
time slots.
• U =

⨂N
i=1 Ui is the overall action set. We denote with U(S)

the set of actions at state S. We denote by u
(
S(k)

)
: S → U

as the mapping between the whole state space S and the
set of actions U , at a given time slot k.
• T is the state transition mapping, represented by the state

transition probability matrix with the elements PSS′
(
u
)
:=

P[S ′|S, u], i.e. P : S × U × S → [0, 1], which is formally
defined as the probability that an action u in state S at the
time slot k will led to state S ′ at time slot k+ 1.
• L : S × U → [0,+∞) is the instantaneous cost. In our case

L(S, u) =
∑N

i=1

(
Tr(Si)+ µ ui

)
.

here recall that Si(k) = Pi(k). We denote by π = {ui(k), i =
1, . . . ,N, k = 0, . . . ,N − 1} the policy, that is to say, the
sequence of control functions applied over the finite time horizon
N − 1. DP techniques aim at computing the optimal policy
π∗

(
S(0)

)
∈ argminπ Jπ

(
S(0)

)
. Under the assumption of having

a relative small number of states, we can apply the exact DP
6

algorithm, which exploits Bellman’s principle of optimality. In
particular, the optimal cost function can be recursively expressed
as

J∗k
(
S(k)

)
= min

u∈U
E
{ N∑

i=1

Tr
(
Si(k)

)
+ µ

N∑
i=1

ui(k)+ αJ∗k+1
(
S(k+ 1)

)}

= min
u∈U

{ N∑
i=1

Tr
(
Si(k)

)
+ µ

N∑
i=1

ui(k)+ α
∑
S′∈S

PSS′ (u)J∗k+1(S
′)
}
.

(23)

Solving the above cost function for different values of µ means
minimizing the sum of the trace of the expected error covari-
ances across the sensors for different average number of total
transmissions (across the sensors). Thanks to Bellman’s principle
of optimality, the generated cost function J∗k (·) at each time slot
k is equal to the optimal cost function for the tail sub-problem
from time k to time N − 1. It is worth noting that the control
chosen at the time slot k affects the state transitions from S(k)
to S(k + 1), and thus the expected cost function J∗k+1(·). The cost
generated at the last step is equal to the optimal cost function
J∗

(
S(0)

)
starting from S(0). Note that the terminal cost function

has to be defined to compute J∗
(
S(0)

)
. To do that, one can choose,

e.g., the instantaneous cost calculated at the terminal stage or the
cost function computed over an infinite time horizon (Bertsekas,
2011, 2012; Forootani, Liuzza, et al., 2019). Moreover, µ is the
weighting parameter that can be interpreted as the cost of trans-
mission, e.g. transmission power. This can be easily extended to
the case by considering different weighting parameters µi, for
the ith sensor. More details can be found in Pezzutto, Schenato,
and Dey (2021b), however for single sensor and using traditional
dynamic programming techniques.

Remark 3. The results of this paper can be transferable to the
case where there is a feedback control loop to each of the pro-
cesses, provided the control signals are received without error at
the actuators for each process, that is there is no link error in the
feedback link for the control messages. As proved in Schenato, Si-
nopoli, Franceschetti, Poolla, and Sastry (2007) the estimator and
controller can be designed separately and the resulted controller
can be considered as a linear function of the state estimate given
by the modified time-varying Kalman filter with packet losses.
As a result, an optimal remote Linear Quadratic (LQ) control of
our multi-process multi-sensor system can be implemented by
using the optimal transmission scheduling policies derived by
minimizing a finite/infinite horizon weighted sum of the error
covariance matrices summed over all the processes, along with
linear optimal LQ control signals for individual processes, that
can be fed back without error to the corresponding actuators (see
also Leong, Quevedo, Tanaka, Dey, & Ahlen, 2017).

4.2. Approximation architectures

We use linear feature-based parametric architectures to ap-
proximate cost functions. In particular, in case of stationary
systems, the cost function of a policy Jπ (S) and the optimal cost
function J∗(S) can be approximated respectively as ˜Jπ (S, r) =
φ(S)T rπ and J̃∗(S, r) = φ(S)T r∗. More specifically, φ(S)T =
[φ1(S), φ2(S), . . . , φm(S)] is a vector of feature (or basis) functions
evaluated for a given S, while r is a vector of m parameters
to be tuned by training the selected architecture. Training the
architecture means computing a suitable r̂∗ (or r̂π ) by some
simulation based mechanisms to further approximate J∗(S) (or

Jπ (S)).
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In this paper, for each state S = (S1, S2, . . . , SN ), we define the
following feature vector

φ(S)T = [1, log2
(
Tr(S1)

)
, . . . , log2

(
Tr(SN )

)
]. (24)

The number of features m is equal to N + 1 and the features
are defined as the logarithm of the trace of the error covariance
matrix Si. The reason of such feature vector definition basically
lies in the nature of the problem since the range of values Tr(Pi(k))
can vary widely for independent variables, i.e., in our case we
deal with quantities with different order of magnitude. In order to
make them comparable, we opted for logarithmic basis functions
to scale down the range of independent variables and in addition
to limit the growth rate of the feature functions. This paper does
not address the construction of the feature functions, which is
indeed an important research area, see Bertsekas and Yu (2009),
Busoniu, Ernst, De Schutter, and Babuska (2011). A limited num-
ber of well-crafted feature functions can capture the dominant
non-linearities of cost functions for complex systems, and thus
their linear combination can work well as an approximation
architecture, see Bertsekas (2012), Busoniu et al. (2011).

5. The enhanced exploration Greedy LSTD algorithm and its
convergence properties

This section describes the EG-LSTD algorithm, which stems
from the MG-LSTD algorithm presented in Forootani et al. (2020a),
where its convergence properties were discussed qualitatively
and supported by experimental verification. The EG-LSTD algo-
rithm is employed for computing the cost function approximation
of the MSMP problem over an infinite time horizon, which can
be used for the finite time horizon decision making process, see
Section 6. Unlike the basic LSTD algorithm (Bertsekas, 2012),
the EG-LSTD directly focuses on the approximate optimal cost
function by calculating the vector r̂ with the policy improvement
within multi-trajectory Monte Carlo simulations. For more de-
tails, the reader can refer to Bertsekas (2012), Forootani et al.
(2020a). As shown in this section, the EG-LSTD algorithm is an
off-policy method since: (i) it chooses the initial state of each
trajectory by an off-policy mechanism; (ii) it embeds the policy
improvement step within the LSTD iterations. The first aspect
enhances the EG-LSTD exploration capabilities, while the second
one its exploitation means. On the other hand, the conventional
LSTD algorithm is an on-policy method, and its basic drawback
comes from the fact that it learns the state value function of
the fixed policy learnt via single trajectory Monte Carlo simu-
lations (Bertsekas, 2011; Forootani et al., 2020a, 2022), thus it
cannot be used for control problems.

It is worth highlighting that the main differences of the EG-
LSTD and the MG-LSTD are as follows: (i) MG-LSTD is a multi-
trajectory Monte Carlo simulation method where the length of
each trajectory is considered long enough so that the Markov
chain forgets it initial state. However, in EG-LSTD, the length
of each trajectory is 1, (ii) the EG-LSTD is an off policy Monte
Carlo simulation method, whereas the MG-LSTD is categorized
as an on-policy method since the total length of trajectories are
significantly greater than number of initial states. Unlike the MG-
LSTD where the selection of the initial state of each trajectory
does not affect the convergence property, in the EG-LSTD, we
have to provide sufficient conditions to guarantee convergence.
Therefore in this paper we provide a condition for choosing the
initial state of each trajectory in such a way that convergence of
the proposed method can be guaranteed.

Algorithm 1 shows the pseudo code of the EG-LSTD. It com-
putes the approximate parameter vector r̂∗ by embedding the
policy improvement step within the LSTD iterations and by using
Monte Carlo simulations. The following initial conditions are set:
C−1 = 0, d−1 = 0, and r0 = r̄ , with r̄ an initial guess. Moreover,
Σ is selected as a symmetric positive definite matrix and σ is a
positive scalar.
7

Algorithm 1 EG-LSTD pseudo code
While l ≤ H, l ∈ {0, 1, . . . ,H}

1. For ∀u ∈ U
(
S(l)

)
(a) Generate a candidate new state S ′u(l) from S(l) by

Monte Carlo simulation and by applying to the
system model the admissible control action u and
transition probability PSS′ (u)

(b) Compute the corresponding features vector φ
(
S ′u(l)

)
(c) Compute the cost L

(
S(l), u

)
(d) Calculate the candidate matrix Cl(u)

Cl(u) = (1−
1

l+ 1
)Cl−1

+ (
1

l+ 1
)φ

(
S(l)

)(
φ
(
S(l)

)
− αφ

(
S ′u(l)

))T

(e) Calculate the vector dj

dl = (1−
1

l+ 1
)dl−1 +

1
l+ 1

φ
(
S(l)

)
P

(
S(l)

)
(f) Having Cl(u) and dl(u), compute the candidate

parameters vector update r̂l(u) as follows

r̂l+1(u) =
(
Cl(u)TΣ−1Cl(u)+σ I

)−1(Cl(u)TΣ−1dl+σ r̂l
)

2. Choose the pair
(
r̂l+1, S ′u(l)

)
and the corresponding control

action û∗ by

û∗(S(l)) : arg min
u∈U(S(l))

(
L(S(l), u)+ φ

(
S ′u(l))

T r̂l+1(u)
)

,

3. Set l← l+ 1, Cl−1 ← Cl(u), and dl−1 ← dl
4. Generate the new initial state S(l) from S(l−1) based on P̄

in (25) (and hence P∗).

5.1. Convergence analysis of EG-LSTD

Inspired by the work reported in Bertsekas and Yu (2009),
we discuss hereafter the convergence properties of the EG-LSTD.
Such algorithm chooses the initial state of each trajectory with
the probability distribution ξ̄ associated to an irreducible state
transition probability matrix

P̄ = (I − B)P∗ + BE, (25)

here B is a diagonal matrix with diagonal components βS ∈

(0, 1) and E is another state transition probability matrix. In this
framework, at state S, the next state is generated with probability
1 − βS according to state transition probabilities P∗SS′ , and with
probability βS according to the state transition probabilities ESS′ .
Here pairs (S, S ′) with ESS′ > 0 need not correspond to physically
plausible state transitions. Now consider to find the fixed point
of the following projected equation

Φr = Π̄F∗(Φr), (26)

where Π̄ is projection with respect to the norm ∥·∥ξ̄ correspond-
ing to the steady state distribution ξ̄ of P̄ . More specifically, we
desire to solve the following least squares minimization problem:
r∗ = argminr∈Rm ∥Φr−F∗(Φr)∥ξ̄ . The following lemma provides
a condition on the selection of distribution ξ̄ and diagonal ele-
ments of the matrix B, i.e. βi, to ensure the contraction property

with respect to ∥ · ∥ξ̄ .
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emma 5.1. Assume that P̄ is irreducible and ξ̄ is its unique
nvariant distribution (see Assumption 1). Then F∗ and Π̄F∗ are
ontraction with respect to ∥ · ∥ξ̄ , provided ᾱ < 1, where ᾱ =

/
√
1− β . The associated modulus of contraction is at most equal

o ᾱ, with β = maxS∈S βS .

The next lemma gives an estimate of the error in estimating
J∗ with the fixed point of Π̄F∗.

emma 5.2. Consider the fixed point Φr∗ of Π̄F∗, then we have
he error bound: ∥J∗ −Φr∗∥ξ̄ ≤ 1/

√
1− ᾱ2 ∥J∗ − Π̄ J∗∥ξ̄ .

The main concept regarding convergence result is that if the
nitial state of each trajectory is chosen slightly differently from
he frequencies natural to the underlying MDP, then we can
uarantee ᾱ < 1, hence convergence can be preserved. In the
ollowing, we discuss the construction of simulation based ap-
roximations to the projected Φr = Π̄F∗(Φr). In this regard
et us consider the iterative estimation of the parameter vector
given by Φrl+1 = Π̄F∗(Φrl). By expressing the projection as a

east squares minimization, we see that rl+1 is given by

l+1 = arg min
r∈Rm
∥Φr − F∗(Φrl)∥2ξ̄ , (27)

r equivalently

l+1 = arg min
r∈Rm

∑
S∈S

ξ̄S

(
φ(S)T r −

{
L(S, u∗)+ α

∑
S′∈S

P∗SS′φ(S
′)T rl

})2

where
∑

S′∈S P∗SS′ = 1, P∗ is a row stochastic matrix, φ(S)T and
φ(S ′)T are features corresponding to states S and S ′, respectively.
By setting the gradient of the minimized expression above to 0
we have

rl+1 =
(∑

S∈S

ξ̄Sφ(S)φ(S)T
)−1

(∑
S∈S

ξ̄Sφ(S)
{
L(S, u∗)+ α

∑
S′∈S

P∗SS′φ(S
′)T rl

})
.

Since we do not have the probability distribution ξ̄S and
P∗SS′ we try to calculate them by simulation. The basic simu-
lation methodology consists of generating a sequence of states{
S(0), S(1), . . .

}
according to the distribution ξ̄ , and a sequence of

state transitions
{(

S(0), S ′(0)
)
,
(
S(1), S ′(1)

)
, . . .

}
with probabili-

ties P∗SS′ . We add that this scenario is different with generating
single trajectory according to the distribution ξ ∗. In this sense
we try to estimate the above recursive equation by using the
following relation

rl+1 =
( l∑

t=0

φ
(
S(t)

)
φ
(
S(t)

)T)−1
( l∑

t=0

φ
(
S(t)

)(
L
(
S(t), u∗

)
+ αφ

(
S ′(t)

)T rt))
. (28)

The probabilistic mechanism in (28) is subject to the following
conditions:

1. The sequence
{
S(0), S(1), . . .

}
is generated based on the

distribution ξ̄ associated to P̄ , which defines projection
norm ∥ · ∥ξ̄ , in the sense that with probability 1,

lim
l→∞

l∑
t=0

δ
(
S(t) = S

)
/l+ 1 = ξ̄S, ∀S ∈ S, (29)

where δ(·) denotes the indicator function.
 d

8

2. The sequence
{(

S(0), S ′(0)
)
,
(
S(1), S ′(1)

)
, . . .

}
is generated

according to stochastic matrix P∗ with state transition
probabilities P∗SS′ , that is

lim
l→∞

∑l
t=0 δ

(
S(t) = S, S ′(t) = S ′

)∑l
t=0 δ

(
S(t) = S

) = P∗SS′ , ∀S, S
′
∈ S. (30)

3. The policy improvement is embedded into the LSTD steps:
given a generic initial state S(l) along the current Monte
Carlo trajectory, we generate a set of possible next state
S ′u(l), one for each admissible action u ∈ U

(
S(l)

)
. This set

is created from the state transition probabilities PSS′ (u).
The corresponding parameter vector update r̂l+1(u) is cal-
culated at each candidate next state (note that the same
definitions used in the recursive LSTD are applied). Then,
we choose the control action by minimizing the sampled
approximate cost function shown in Algorithm 1 step (2).

he iteration (28) can be written equivalently as

l̂+1 =

(∑
S∈S

ˆ̄ξl,S φ
(
S
)
φ
(
S
)T)−1

(∑
S∈S

ˆ̄ξl,Sφ
(
S
)(

L
(
S, u∗

)
+ α

∑
S′∈S

P̂∗l,SS′φ
(
S ′

)T r̂l))
, (31)

here

ˆ̄
l,S =

∑l
t=0 δ

(
S(t) = S

)
l+ 1

, ∀S ∈ S, (32)

ˆ ∗l,SS′ =

∑l
t=0 δ

(
S(t) = S, S ′(t) = S ′

)∑l
t=0 δ

(
S(t) = S

) , ∀S, S ′ ∈ S. (33)

Thanks to Assumption 1, we have ˆ̄ξl,S → ξ̄S, P̂∗l,SS′ → P∗SS′ . Let
us consider again the fixed point mapping Φr∗ = Π̄F∗(Φr∗), we
can write ΦT Ξ̄

(
Φr∗−αP∗Φr∗−L∗

)
= 0 where Ξ̄ is the matrix

having diagonal elements equal to steady-state distribution of ξ̄ .
This condition can be written in matrix form as Cr∗ = d, where

C = ΦT Ξ̄ (I − αP∗)Φ, d = ΦT Ξ̄L∗, (34)

e approximate the matrix C and vector d by:5

l = 1/(l+ 1)
l∑

t=0

φ
(
S(t)

)(
φ
(
S(t)

)
− αφ

(
S ′(t)

))T
,

nd

l = 1/(l+ 1)
l∑

t=0

φ
(
S(t)

)
L
(
S(t), u∗

)
,

he corresponding approximation then is r∗l = C−1l dl, with

l =
∑
S∈S

∑l
t=0 δ

(
S(t) = S

)
l+ 1

φ
(
S
) (

φ
(
S
)

−α
∑
S′∈S

∑l
t=0 δ

(
S(t) = S, S ′(t) = S ′

)∑l
t=0 δ

(
S(t) = S

) φ
(
S ′

) )
T

and finally: Cl =
∑

S∈S
ˆ̄ξl,Sφ(S)

(
φ(S) − α

∑
S′∈S P̂∗l,SS′φ(S

′)
)
.

imilarly we can write: dl =
∑

S∈S
ˆ̄ξl,Sφ(S)L(S, u∗). Since the em-

irical frequencies ˆ̄ξl,S and P̂∗l,SS′ asymptotically converge to the

5 We can compute matrix C recursively as noted in Algorithm 1 where the
ependency to the control input is shown.
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robabilities ξ̄S and P∗SS′ respectively, we have with probability
(Bertsekas, 2011; Nedic & Bertsekas, 2003)

l −→
∑
S∈S

ξ̄Sφ(S)
(

φ(S)− α
∑
S′∈S

P∗SS′φ(S
′)
)T

= ΦT Ξ̄ (I − αP∗)Φ = C,

and we have

dl −→
∑
S∈S

ξ̄Sφ(S)
∑
S′∈S

PSS′L(S, u∗) = ΦT Ξ̄L∗ = d.

In the following we introduce some useful lemmas applicable for
the convergence results of the proposed algorithm.

Lemma 5.3. For any stochastic matrix P∗ ∈ RΩ×Ω , the matrix
Ξ̄ (I − αP∗) is positive definite.6

Lemma 5.4. Matrix C is positive definite.

Consider again

rl+1 = arg min
r∈Rm
∥Φr − F∗(Φrl)∥2ξ̄ . (35)

By setting to 0 the gradient with respect to r of the above
quadratic expression, we obtain the orthogonality condition

ΦT Ξ̄
(
Φrl+1 − (L∗ + αP∗Φrl)

)
= 0,

which yields

rl+1 = rl − G−1(Crl − d), G = ΦT Ξ̄Φ. (36)

Lemma 5.5. G−1 = (ΦT Ξ̄Φ)−1 exists and it is symmetric positive
definite.

Theorem 5.6. If matrix C is positive definite (but not symmetric in
general) then the following holds: (i) Eigenvalues of C have positive
real parts, (ii) det(G−1C) < 1, (iii) G−1C is positive definite, (iv)
I − G−1C has the eigenvalues strictly within unit circle, hence the
iteration (36) is convergent.

Note that a similar proof can be found in Bertsekas (2011).
However, in our case the approach is different since we consid-
ered the projection with respect to a weighted Euclidean norm
different from the natural frequencies of the MDP. The recursive
equation (36) in the more general form can be written as follows

rl = rl−1 − G−1l (Clrl−1 − dl), (37)

where rl → r∗ (it is convergent), provided that Cl → C , dl → d,
and Gl → G with probability 1 and the matrix I − G−1C is
contraction (see Bertsekas, 2011 for a similar iterative equation).
In Theorem 5.6, we have proved matrix C is invertible and pos-
itive definite. However, this property may not hold for Cl until a
sufficient number of samples in the Monte Carlo simulation are
acquired for its calculation. To resolve this issue, a regularization
term is introduced. More specifically, in each iteration along the
Monte Carlo trajectory, we compute r̂l by solving the following
least squares problem

min
r

{(
dl − Clr

)T
Σ−1

(
dl − Clr

)
+ σ ∥ r − r̂l ∥2

}
.

By setting the objective function gradient to 0, we have

r̂l+1 =
(
CT
l Σ−1CT

l + σ I
)−1(CT

l Σ−1dl + σ r̂l
)
, (38)

here the quadratic term σ∥r− r̂l∥2 is known as a regularization
erm (here, ∥ · ∥ denotes the L2-norm), and has the effect of

6 Positive definiteness of a matrix refers to its symmetric part.
9

biasing the estimate r̂l+1 towards the previous parameter vector
stimation r̂l. We consider the heuristic guess r̄ for the parameter
ector r̂0. It is based on some intuition about the problem at hand.

Moreover, the matrix Σ and the coefficient σ are respectively
positive definite and positive (Hoffman, Lazaric, Ghavamzadeh, &
Munos, 2012). To see more discussion on the selection of matrix
Σ , we refer the reader to Bertsekas (2011), Wang, Polydorides,
and Bertsekas (2009), and for an empirical study, to Forootani
et al. (2020a). The convergence of the iteration (38) follows from
Cl → C , dl → d and the following result, the proof of which can
be found in Appendix A.

Lemma 5.7. The recursive iteration r̂l+1 =
(
CTΣ−1CT

+ σ I
)−1(

CTΣ−1d+ σ r̂l
)
is convergent.

. Numerical results

In this section, some numerical examples are presented to
how the effectiveness of the proposed approach for MSMP trans-
ission scheduling problems, both for the exact DP and ADP
ases. A Python based program is developed to implement and
emonstrate the different performance related aspects of the
roposed method. In the reported examples, we limit ourselves
o the case of N = 3 and N = 5 processes. It can be shown
that the state space explosion can occur even with relatively
small values of N and q. Indeed, increasing such parameters
causes an exponential growth in the size of the state space. In
the following examples, we assume (for simplicity) that all the
slow fading channel gains and the sensor transmission powers
are identical for all the processes (see Pezzutto et al., 2020 for a
similar assumption).

Let us consider the following MIMO dynamic systems

A1 =

⎡⎢⎣1.16 −1 0.2 0.1
0.1 1.8 0.2 0.5
1.5 0.2 0.1 0.6
0.1 0.7 −0.3 1

⎤⎥⎦ , C1 =

[
1 2 1 0
0 1 0 0

]
,

Q1 =

⎡⎢⎣0.4 0 0 0
0 1 0 0
0 0 0.5 0
0 0 0 0.3

⎤⎥⎦ , R1 =

[
0.2 0
0 0.3

]

A2 =

⎡⎢⎣ −1.8 −0.2 −0.1 0
−0.65 −0.45 0 −0.3
−0.8 −0.8 −0.3 −0.4
0.3 0.2 −0.3 0.4

⎤⎥⎦ , C2 =

[
2 0 0 1
0 0 2 0

]
,

Q2 =

⎡⎢⎣1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎦ , R2 =

[
2 0
0 0.15

]

A3 =

⎡⎢⎣0.16 −0.17 2.8 1.2
0.8 0.5 0.2 1.6
1.9 0.25 −0.15 0.5
0.6 0.4 −0.3 0.7

⎤⎥⎦ , C3 =

[
1 0 1 0
0 1 0 0.5

]
,

Q3 =

⎡⎢⎣1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎦ , R3 =

[
0.1 0
0 0.2

]

A4 =

⎡⎢⎣−0.16 0.12 0.2 0.1
0.1 0.3 −0.2 −0.6
0.3 0.2 0.1 0.5

⎤⎥⎦ , C4 =

[
1 1 1 0
0 1 0 0

]
,

−1 0.5 0.9 1.2
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4 =

⎡⎢⎣0.4 0 0 0
0 1 0 0
0 0 0.5 0
0 0 0 0.2

⎤⎥⎦ , R4 =

[
1 0
0 0.3

]
,

A5 =

⎡⎢⎣−0.1 0.8 0.2 1.3
0.2 0.3 −0.2 0.7
0.4 0.1 0.05 0
0.6 0.5 −0.3 0.9

⎤⎥⎦ , C5 =

[
0 1 1 0
0 1 0 0.2

]
,

Q5 =

⎡⎢⎣0.6 0 0 0
0 0.8 0 0
0 0 1 0
0 0 0 0.4

⎤⎥⎦ , R5 =

[
2 0
0 0.1

]
.

It is straightforward to calculate P̄i for each dynamic system by
using (10). In the first two examples, due to the computational
load of the DP algorithm, we use a relatively low value for the
discount factor α = 0.7.

Example 1. Consider the systems 1, 2; N = 30; q = 10.

In this example, the maximum number of packet drops is
q = 10, hence the cardinality of the state space is Ω = q2 = 100
(see (18)). We compare the exact DP algorithm results with two
other non-optimal policies, i.e., the myopic policy and the max-
imum covariance policy. The myopic policy and the maximum
covariance policy are defined as follows for the sensor scheduling
problem with N dynamic systems.

Myopic policy: At the kth time slot, we generate random
(h1, h2, . . . , hN ) as independent exponentially distributed random
variables. We choose the sensor with the maximum hi as the
candidate that is likely to be scheduled. The received SNR for
this sensor is then compared with γ . If the SNR exceeds γ , the
sensor is scheduled, its packet will be received and the total
error covariance at the receiver will be P̄i +

∑
j̸=i fj

(
Pj(k − 1)

)
,

where the ith sensor had the maximum channel gain. The cost
of transmission will be µ since only one sensor is transmitting.
Therefore the total cost for that time slot is

P̄i +
∑
j̸=i

fj
(
Pj(k− 1)

)
+ µ. (39)

If the sensor is not scheduled (even though it had the best channel
gain), the total cost is

N∑
i=1

f
(
Pi(k− 1)

)
. (40)

We then decide whether the sensor with the best channel should
be scheduled or not, depending on whether (39) is less than (40).

Maximum Covariance Policy: It is defined similarly to myopic
policy, however at the kth time slot we schedule the sensor
corresponding to the process that has maximum error covariance
at the remote estimator. Then by using (39) and (40) we evaluate
whether or not it is beneficial to schedule a sensor.

We perform 100 experiments each having the horizon length
of N = 30 corresponding to different values of µ. In Fig. 2,
the average discounted total error-covariance vs. the average
discounted total transmissions is shown. As expected, the curve is
monotonically decreasing as more transmissions are allowed on
average (i.e., µ is reduced). Fig. 3 shows the comparison among
the exact DP, the myopic policy and the maximum covariance
policy. To make the curves comparable in a single figure, we
have reported the Logarithmic scale with base 10 of the average
discounted total error covariance along the vertical axis. The error
covariance corresponding to the DP is significantly less than its
counterparts in the myopic and the maximum covariance policy
(for the same µ). It can be noticed that myopic policy has the
worst performance with respect to the others.
10
Fig. 2. Exact DP result, average discounted total error-covariance vs. discounted
total number of transmissions in Example 1 corresponding to different values
of µ (decreasing from left to right).

Fig. 3. Comparing the exact DP with myopic policy, and maximum covariance
policy, average error-covariance vs. average discounted total transmissions per
sensor in Example 1 corresponding to different values of µ (decreasing from left
to right).

Example 2. Consider the systems 1,2,3; N = 30; q = 8.

In this example, we compare the result of the exact DP algo-
rithm with our EG-LSTD method and the maximum covariance
policy. The maximum number of packet drops is q = 8, hence
the cardinality of the state space is Ω = q3 = 512 (see (18)).
or the EG-LSTD, we consider an arbitrary initial value r̄ for the

parameter vector, σ = 0.2, and Σ = 0.2I (i.e., a diagonal matrix
with 0.2 on its diagonal). We set H = 200. Moreover, βi =

1
Ω

for
all i and α = 0.7 to satisfy the condition βi ≤ (1 − α2) required
by Lemma 5.1 to guarantee the convergence. The cost function
approximation J̃∗ = Φ r̂∗ of the MSMP problem for different
values of µ over an infinite time horizon is computed via the
proposed EG-LSTD algorithm, and then used over the finite time
horizon N . More specifically, we can calculate the (stationary)
EG-LSTD approximate optimal policy ũ∗(·) by replacing J̃∗ as the
erminal cost function in the Bellman optimality operator

˜
∗(S) = arg min

u(k)∈U

[
L(S, u)+ α

∑
S′∈S

PSS′
(
u
)
φ(S ′)T r̂∗

]
. (41)

As for the exact DP, the expression (23) is recursively em-
loyed in order to compute the optimal policy π∗ = {u∗(0), . . . ,
∗(N−1)}. A total number of 100 experiments over the finite time
orizon N are performed by applying both the exact DP and the
G-LSTD policies. As we increase the value of the coefficient µ,
e give more importance to the transmission (see (23)), therefore
he expected cost increases accordingly. Fig. 4 shows the com-
arison of the average discounted total error-covariance vs. the
verage discounted total transmission for the exact DP and the
G-LSTD. As expected, all the curves are monotonically decreasing
ith respect to the discounted total number of transmissions. The
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Fig. 4. Comparing the exact DP with the EG-LSTD, the average discounted
error-covariance vs. average discounted total transmission in Example 2.

Fig. 5. Comparing the exact DP with the EG-LSTD and the maximum covariance,
average discounted total error covariance vs. average discounted transmission
per sensor Example 2.

DP policy always exhibits a lower average discounted total error
covariance compared to the EG-LSTD policy. In particular for dif-
ferent values of µ, the average discounted total error covariance
s plotted vs. the average discounted transmissions per sensor.
or a fixed value of µ, the DP has the lowest average discounted
otal error-covariance and average discounted transmissions per
ensor. In Fig. 5, the comparison of the exact DP, the EG-LSTD,
nd the maximum covariance is shown. Considering that the
ogarithmic values are reported on the vertical axis, the maximum
ovariance policy performs significantly worse with respect to the
thers.

xample 3. Consider the systems 1,2,3,4,5; N = 30; q = 10.

The cardinality of the state space is Ω = q5 = 105, hence
applying exact DP is not practical. We choose βi =

1
Ω

for all i
nd α = 0.9 to satisfy the condition βi ≤ (1 − α2) required

by Lemma 5.1 to guarantee the convergence. In this example,
we consider different values for the parameter µ and we use the
EG-LSTD to compute the corresponding parameter vector r̂∗. An
arbitrary initial value r̄ , σ = 0.1, and Σ = 0.2I are set.

For H = 800, they are

1. r̂∗
T
= [235.7, 3.3, 3.6, 2.48, 1.9, 2.6] for µ = 0

2. r̂∗
T
= [987.2, 2.94, 3.3, 2.5, 1.9, 3.9] for µ = 2

3. r̂∗
T
= [1729.9, 2.8, 3.2, 2.5, 2.3, 3] for µ = 4

4. r̂∗
T
= [2482, 3, 3, 2.7, 2.1, 2.6] for µ = 6

5. r̂∗
T
= [3231, 3.5, 3.2, 2.5, 1.8, 3.4] for µ = 8.

orm-2 of the computed parameter vectors during the EG-
STD algorithm iterations is shown in Fig. 6 for the selected
11
Fig. 6. Evolution of the Norm-2 of the computed parameter vectors within
Monte Carlo simulation for Example 3: µ = 0 (blue), µ = 2 (violet), µ = 4
(red), µ = 6 (green), µ = 8 (cyan). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 7. EG-LSTD result and maximum covariance, average discounted total error
covariance vs. average discounted total transmissions in Example 3.

values of µ. We make use of (41) for the computation of the
EG-LSTD approximate optimal policy, which is then employed
over the finite time horizon N . Fig. 7 compares our proposed
ADP method with the greedy maximum covariance policy. The
average discounted total error-covariance vs. the average dis-
counted transmission per sensor for different values of µ and r̂∗
or both methods are shown. As we increase the parameter µ, the
expected error covariance increases, while average discounted
transmissions per sensor decreases. It is evident that EG-LSTD
significantly outperforms the maximum covariance policy.

7. Conclusion

A novel Least Squares Temporal Difference (LSTD) Approx-
imate Dynamic Programming (ADP) based algorithm has been
applied to the value function approximation in a Multi-Sensor
Multi-Process (MSMP) transmission scheduling problem. This ap-
proach, named Enhanced-Exploration Greedy LSTD (EG-LSTD),
adopts Monte Carlo simulations to generate state samples by us-
ing probability distributions different from the frequencies natu-
ral to the underlying Markov Decision Process (MDP). The conver-
gence properties of the EG-LSTD algorithm have also been anal-
ysed and proved. Numerical simulations have been performed
to verify the convergence of the EG-LSTD algorithm as well as
its applicability to MSMP transmission scheduling problems of
practical size, illustrating the efficacy of our method compared
with the exact DP (for small number of states) and two different
greedy suboptimal policies (for larger number of states). As for
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he future work we consider the scenarios where the control
ignals are present and can suffer from packet losses in the
eedback link.

ppendix A. Proof of Lemma 5.1

∀J ∈ Rn with J ̸= 0, we have

∥αP∗J∥2
ξ̄
=

∑
S∈S

ξ̄S

(∑
S′∈S

αP∗SS′ J(S
′)
)2

= α2
∑
S∈S

ξ̄S

(∑
S′∈S

P∗SS′ J(S
′)
)2

≤ α2
∑
S∈S

ξ̄S
∑
S′∈S

P∗SS′ J
2(S ′) ≤ α2

∑
S∈S

ξ̄S
∑
S′∈S

P̄SS′

1− βS
J2(S ′)

≤
α2

1− β

∑
S′∈S

∑
S∈S

ξ̄S P̄SS′ J2(S ′) = ᾱ2
∑
S′∈S

ξ̄S′ J2(S ′) = ᾱ2
∥J∥2

ξ̄
,

where the first inequality follows from the convexity of the
quadratic function, the second inequality follows from the fact
(1 − βS)P∗SS′ ≤ P̄SS′ , and the next two last equalities follow from
the property

∑
S∈S ξ̄S P̄SS′ = ξ̄S′ , of the invariant distribution

and the definition of weighted Euclidean norm. Thus, αP∗ is a
contraction with respect to ∥ · ∥ξ̄ with modulus at most ᾱ. The
sufficient range of values for the exploration probabilities in order
for Π̄F∗ to be a contraction is βS < 1− α2, S ∈ S.

Appendix B. Proof of Lemma 5.2

The proof can be easily derived from

∥J∗ −Φr∗∥2
ξ̄
= ∥J∗ − Π̄ J∗∥2

ξ̄
+ ∥Π̄ J∗ −Φr∗∥2

ξ̄

= ∥J∗ − Π̄ J∗∥2
ξ̄
+ ∥Π̄F∗J∗ − Π̄F∗(Φr∗)∥2

ξ̄

≤ ∥J∗ − Π̄ J∗∥2
ξ̄
+ ᾱ2
∥J∗ −Φr∗∥2

ξ̄

where the first equality uses the orthogonality of the projection,
the second equality holds because J∗ is the fixed point of F∗

and Φr∗ is the fixed point of Π̄F∗, and the inequality uses the
contraction property of Π̄F∗.

Appendix C. Proof of Lemma 5.3

For any vector J ∈ RΩ , J ̸= 0, it can be written

JT Ξ̄ (I − αP∗)J = ∥J∥2
ξ̄
− αJT Ξ̄P∗J ≥ ∥J∥2

ξ̄
− α∥J∥ξ̄∥P

∗J∥ξ̄
≥ ∥J∥2

ξ̄
− ᾱ∥J∥ξ̄∥J∥ξ̄ = (1− ᾱ)∥J∥2

ξ̄
> 0,

here for the second inequality we used Lemma 5.1, which
mplies that Ξ̄ (I − αP∗) is positive definite.

ppendix D. Proof of Lemma 5.4

For all r ∈ Rm, r ̸= 0, we have

αΠ̄P∗Φr∥ξ̄ ≤ ∥αP
∗Φr∥ξ̄ ≤ ∥ᾱΦr∥ξ̄ . (D.1)

rom properties of the orthogonal projection Π̄ we have

P∗Φr∥2 = ∥Π̄P∗Φr∥2 + ∥(I − Π̄ )P∗Φr∥2. (D.2)

ξ̄ ξ̄ ξ̄

12
Moreover, from properties of projections, all vectors of the form
Φr are orthogonal to all vectors of the form J − Π̄ J , i.e.

rTΦT Ξ̄ (I − Π̄ )J = 0, ∀r ∈ Rm, ∀J ∈ RΩ . (D.3)

Hence we have

rTCr = rTΦT Ξ̄ (I − αP∗)Φr

= rTΦT Ξ̄
(
I − αΠ̄P∗ + α(Π̄ − I)P∗

)
Φr

= rTΦT Ξ̄ (I − αΠ̄P∗)Φr = ∥Φr∥2
ξ̄
− αrTΦT Ξ̄Π̄P∗Φr

≥ ∥Φr∥2
ξ̄
− α∥Φr∥ξ̄∥Π̄P∗Φr∥ξ̄ ≥ ∥Φr∥2

ξ̄
− ᾱ∥Φr∥ξ̄∥Π̄P∗Φr∥ξ̄

≥ ∥Φr∥2
ξ̄
− ᾱ∥Φr∥2

ξ̄
≥ (1− ᾱ)∥Φr∥2

ξ̄
> 0,

here the third equality follows from (D.3), the first inequality
ollows from the Cauchy Schwartz inequality, and the second
nequality follows from (D.1).

ppendix E. Proof of Lemma 5.5

Obviously ΦT Ξ̄Φ is symmetric and it is also positive definite
ince, for all r ∈ Rm, r ̸= 0, we have rTΦT Ξ̄Φr = ∥Φr∥2

ξ̄
> 0. As

result, (ΦT Ξ̄Φ)−1 exists and it is symmetric positive definite,
oo.

ppendix F. Proof of Theorem 5.6

By following the same arguments in Lemma 5.3, we can simply
rove that Ξ̄

1
2 (I−αP∗)Ξ̄

1
2 is a positive definite matrix, which has

the same eigenvalues of Ξ̄ (I − αP∗). Similarly, Ξ̄
1
2 (I − αP∗

T
)Ξ̄

1
2

s positive definite, and it has the same eigenvalues of Ξ̄ (I−αP∗).
n this regard we can say

¯
1
2

(
2I − α(P∗ + P∗

T
)
)
Ξ̄

1
2 > 0, (F.1)

and the eigenvalues of (F.1) are the sum of the eigenvalues of
Ξ̄ (I − αP∗) and of Ξ̄ (I − αP∗

T
), they are real and positive.

he conclusion is that the eigenvalues of ΦT Ξ̄ (I − αP∗)Φ have
ositive real parts. From the other side the eigenvalues of ΦT Ξ̄Φ

re real, and positive (see Lemma 5.5). From Assumptions 1 and
, it is

det(G) = det(ΦT Ξ̄Φ) = det(ΦTΦ)det(Ξ̄ )

det(C) = det
(
ΦT Ξ̄ (I − αP∗)Φ

)
= det(ΦTΦ)det

(
Ξ̄ (I − αP∗)

)
et

(
G−1C

)
= det(G−1)det(C) =

det(C)
det(G)

=
det(ΦTΦ)det

(
Ξ̄ (I − αP)

)
det(ΦTΦ)det(Ξ̄ )

=
det(Ξ̄ )det(I − αP∗)

det(Ξ̄ )
= det(I − αP∗) < 1,

here the eigenvalues of αP∗ are strictly within the unit circle.
To show the last claim we construct I − G−1C

I − G−1C = I −
(
ΦT Ξ̄Φ

)−1(
ΦT Ξ̄Φ − αΦT Ξ̄P∗Φ

)
= I −

(
ΦT Ξ̄Φ

)−1(
ΦT Ξ̄Φ

)
+

(
ΦT Ξ̄Φ

)−1(
αΦT Ξ̄P∗Φ

)
= I − I +

(
ΦT Ξ̄Φ

)−1(
αΦT Ξ̄P∗Φ

)
=

(
ΦT Ξ̄Φ

)−1(
αΦT Ξ̄P∗Φ

)
,

since C > 0, then we have αΦT Ξ̄P∗Φ < ΦT Ξ̄Φ , hence it is

I−G−1C =
(
ΦT Ξ̄Φ

)−1(
αΦT Ξ̄P∗Φ

)
<

(
ΦT Ξ̄Φ

)−1(
ΦT Ξ̄Φ

)
= I,
(F.2)
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herefore the spectral radius ρ(I − G−1C) < 1 which implies that
igenvalues of I − G−1C are strictly within unit circle. From (F.2)
e have I−G−1C < I → G−1C > 0, i.e., G−1C is positive definite.

ppendix G. Proof of Lemma 5.7

Once again consider Eq. (36), one choice is to assume G−1 =
(CTΣ−1C + σ I)−1CTΣ−1 then we have

r̂l+1 = r̂l − (CTΣ−1C + σ I)−1(CTΣ−1Cr̂l − CTΣ−1d), (G.1)

by expanding and adding/subtracting σ r̂l in the second parenthe-
sis we have

r̂l+1 = r̂l − (CTΣ−1C + σ rl)−1(CTΣ−1Cr̂l + σ r̂l − σ r̂l − CTΣ−1d)

=

(
I − (CTΣ−1C + σ I)−1(CTΣ−1C + σ I)

)
r̂l

+ (CTΣ−1C + σ I)−1(CTΣ−1d+ σ r̂l)

= (CTΣ−1C + σ I)−1(CTΣ−1d+ σ r̂l), (G.2)

which is the same as (38) except that matrices are not depen-
dent on iteration steps. To prove that recursive iteration (G.2)
is convergent it is enough to show that the eigenvalues of I −
G−1C = I − (CTΣ−1C + σ I)−1CTΣ−1C are strictly within unit
circle (see (G.1)). To see this let λ1, . . . , λm be the eigenvalues
of CTΣ−1C and let UΛUT be its singular value decomposition,
where Λ = diag{λ1, . . . , λm} and U is a unitary matrix (UUT

= I).
It is (CTΣ−1C + σ I) = U(Λ + σ I)UT , so G−1C =

(
U(Λ +

σ I)UT
)−1

UΛUT
= U(Λ + σ I)−1ΛUT . The eigenvalues of G−1C

are then λi
(λi+σ ) , i = 1, . . . ,m, and lie in the interval (0, 1) which

mplies that the eigenvalues of I −G−1C also lie in the unit circle
nd the proof is complete.
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