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Abstract

In this paper we show that the problem of optimal mine planning can be cast in the framework of receding horizon control.
Traditional formulations of this problem have cast it in the framework of mixed integer linear programming. In this paper, we
present an alternative formulation of the mine planning problem using the “language” of control engineering. We show that
this alternative formulation gives rise to new insights which have the potential to lead to improved computational procedures.
The advantages are illustrated by an example incorporating many practical features of an actual mine planning problem.

1 Introduction

Mining companies throughout the world have recognised
that considerable economic gains are achievable through
careful planning of mining operations. Indeed, there ex-
ists a substantial, and growing, literature on this topic —
see, for example, [10,7,12,13,16,17,15,14,25,5,6,9]. Also,
several commercial software packages are available which
can be used for mine planning — see [1–4].

Many algorithms have been used for the purpose of mine
planning. Typical procedures, e.g., [24] formulate the
problem as a mixed integer linear programme (MILP).
A variety of solution strategies have been used including
the commercially available software CPLEX, branch and
cut methods [10], genetic algorithms [7,12–17], simulated
annealing [25], etc.

A complete study of mine planning involves a myriad of
diverse issues and constraints, including: plant capacity
constraints; geotechnical constraints on mine wall slopes;
multiple processing plants with variable capacities, pro-
cess rates and operating costs; mine access constraints
(i.e., the need for sufficient flat areas and access roads for
mining equipment); multiple material stockpiles; vari-
able material price; blending and mixing issues to attain
a target material grade; uncertainty in ore-body compo-
sition; evaluation of “real options” (e.g., the ability to
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purchase additional equipment during the mine’s opera-
tion in response to a higher than expected market price).
Necessarily, therefore, with the complexity and size of
such optimisation problems, the problem is subdivided,
and a variety of simplifying assumptions are made to
give a more tractable set of subproblems.

In the current paper we propose an alternative formula-
tion of the mine planning problem under plant capacity
constraints and geotechnical constraints on mine wall
slopes. Specifically, we define the mine state as a collec-
tion of pit depths at a certain number of surface locations
and we represent the evolution of this state via a dynamic
model that uses mining action as control input. We then
use receding horizon optimal control [11,19,8,23,18] to
solve the mine planning problem under constraints. This
leads to several advantages, some of which are explained
in the main body of the paper.

The layout of the remainder of the paper is as follows:
In Section 2 we present the problem formulation. In Sec-
tion 3, we explain how receding horizon control can be
applied to this problem. In Section 4 we describe pre-
liminary results for a realistic example. In Section 5 we
discuss computational issues associated with the reced-
ing horizon solution and make comparisons with a tra-
ditional fixed horizon approach. Finally, in Section 6 we
draw conclusions.
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2 Problem Formulation

To give a “feel” for what a mine actually looks like, we
show in Figure 1 a typical final (ultimate) pit after min-
ing operations have been completed.
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Fig. 1. Ultimate pit

We represent the mine by the three dimensional diagram
shown in Figure 2. The top of the box represents the
mine surface, which we divide into Ny ×Nz rectangles.

PSfrag replacements
x

y
z

Fig. 2. Representation of open pit mine

2.1 Inputs

We denote by uij(k) the action to mine (or not) at time k
in the area ij, i ∈ {1, . . . , Ny}, j ∈ {1, . . . , Nz}. We thus
think of uij(k) as an Ny × Nz input vector.

2.2 States

We denote by xij(k) the mine depth (or profile) at loca-
tion ij at time k. A state model for the system can then
be written as

xij(k + 1) = xij(k) + c1uij(k), k ≥ 1,

xij(1) = 0, i = 1, . . . , Ny, j = 1, . . . , Nz,
(1)

where c1 is a constant that reflects the effect of one unit
of mining action.

2.3 Input Constraints

We note that uij(k) is drawn from a finite alphabet,
that is, uij(k) can be either 0 (absence of mining at
location ij at time k) or 1 (mining at location ij at
time k). Also, only a certain number, determined by the
mining capacity, of uij(k) can be nonzero at any k.

2.4 State Constraints

Mining strategies need to satisfy a number of con-
straints on the order that material can be mined — see
[10,7,12,13,16,17,15,14,25,5,6,9,24]. In the usual MILP
formulation these constraints are typically included
as a set of precedence constraints. In the alternative
“control engineering” formulation described here, the
constraints are readily incorporated. For example, since
uij(k) is nonnegative then (1) immediately ensures that
the mine depth cannot decrease and that we cannot
“undermine” a given location. Also, “slope” constraints
on the mining depth are readily incorporated by using
state constraints of the form

|x`n(k) − xij(k)| ≤ c2 ∀k ≥ 1,

for

|` − i| = 1

|n − j| = 1. (2)

Note that the constraints represented in (2) are linear
inequalities, and therefore are convex in xij(k).

2.5 Other Constraints

Processing plant constraints can also be modelled by in-
troducing functions to model ore content. The details of
such models will depend on whether or not stockpiling is
considered as well. The methodology described here can
be extended to these more complex scenarios. However,
for simplicity we will restrict ourselves to the special case
outlined above.

2.6 The Value of Ore and Discounted Cost

We assume that we know the value of the body of ore at
location ij at depth xij . This is typically obtained by pre-
liminary drilling work. We denote the associated value
function as Vij(xij). We also introduce time discounting
(to yield net present value) through a time function dk.

The total return from a given mining strategy will then
take the form

J =
T∑

k=1

Ny∑

i=1

Nz∑

j=1

dk Vij(xij(k))uij(k). (3)
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Note that T represents the planning horizon. Also, we
multiply by uij(k) in (3) since the value in the ore is only
liberated when it is mined.

In the formulation described above, there are NyNz con-
tinuous state variables. However, since the input takes
discrete values, this implies that the continuity of the
states variables is fictitious. Indeed, the states can only
take values in a discrete set. Of course, it would be possi-
ble to approximate the input constraints by relaxing the
finite alphabet nature of the input and instead use vari-
ables that take continuous values. Unfortunately, this
does not appear to offer major advantages since an over-
riding issue is the nonconvexity of the cost function (3).
This means that the problem is fundamentally complex
from a computational viewpoint. Thus one has to use
various techniques such as aggregation to reduce com-
plexity. In this regard, the receding horizon idea de-
scribed next is a helpful tool.

3 Application of Receding Horizon Control to
Mine Planning

Receding horizon optimisation has become a very
successful strategy in real time control problems
[11,19,8,23,18]. The basic idea is that one solves a fixed
horizon optimisation problem to compute a sequence of
predicted inputs over some prediction horizon (say T
time steps) but one only implements (or stores) the first
step. Then time is advanced one step and the process is
repeated. This strategy has been enormously successful
in process control applications [20].

Note that various simplifications are known to work well
in the process control case [11,19,8,23,18]. For example,

(1) The input is usually deemed to be constant after
some period. The rationale for this is that the fine
detail of controls in the distant future have minimal
impact on the current optimal action.

(2) Often constraints can be relaxed beyond some
(small) prediction horizon. Again, the rationale is
that fine detail in the distant future has minimal
impact on the current optimal action.

Although receding horizon optimisation was originally
developed to facilitate real-time issues, the idea has also
been used as a way or simplifying computational demand
when there is no real-time constraint, see [21]. In the
sequel, we outline how points (1) and (2) above can be
captured in the context of the mine planning problem.

3.1 Time Quantisation

For the mine planning problem, we propose to use
nonuniform discretisation of time (with corresponding
changes in the mining capacity constraint). This aggre-
gates future mining operations based on the hypothesis

that actions taken in the far future do not have a sig-
nificant impact on the best step to take next. Figure 3
shows a possible receding horizon solution strategy us-
ing geometrically quantised time for a planning horizon
T = 15 years. Each plot represents a sequence of pre-
dicted actions of increasing width (corresponding to the
nonuniform time quantisation) obtained as the solu-
tion to a fixed horizon optimisation problem starting at
years 1, 2 and 3, respectively. The shaded areas indicate
the mining actions for years 1, 2 and 3, which are com-
puted as the first step of the corresponding sequences.
Note that only the shaded areas form part of the final
solution. Thus, although nonuniform time quantisation
is used in deriving the solution, only the first steps, of
smallest width, are actually implemented. Hence, the
final mining strategy is actually finely and uniformly
quantised in time. The strategy also implies a constraint
relaxation in the future since the state constraints (of
the type (2)) would only be required to be satisfied at
the end of each time quantised step. An important ad-
vantage of nonuniform time quantisation is complexity
reduction. Indeed, for a planning horizon T and Ns

surface locations, the complexity of the optimisation
problem with uniform time quantisation [1, 2, . . . , T ] is
NT

s whereas using nonuniform time quantisation with,
say, 4 intervals, the complexity is TN 4

s . A specific com-
putational example is given in Section 5.
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Fig. 3. Geometrically quantised time in receding horizon op-
timisation. (Only the shaded inputs are applied.)

In this context we note that the discount factor dk used
in (3) to achieve net present value is necessarily quan-
tised due to the discretisation of time. Nonuniform time
quantisation has an advantage in this regard since it en-
sures that the errors induced in the quantisation of the
discount factor are minimised. This is clarified in the
following lemma.
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Lemma 1 Let d(t) denote an exponentially decaying
discount factor where

d(t) = e−at for t ∈ [0, T ]. (4)

Then the sequence t1, . . . , tN increasing such that

{t1, . . . , tN} = arg min
ti∈[0,T ]

max
i

[d(ti−1) − d(ti)]

where t0 = 0, tN = T , satisfies

ti = −
ln(1 − iα)

a
(5)

where

α =
1 − e−aT

N
. (6)

PROOF. It is readily seen by contradiction that the
times t1, . . . , tN must yield equal steps in the discount
factor. The step in descent factor is then as in (6) and
(5) follows from (4). 2

As an illustration, let a = 0.05, T = 20 and N = 5. Then
the optimal quantisation times are t0 = 0, t1 = 2.7,
t2 = 5.8, t3 = 9.5, t4 = 14 and t5 = 20.

3.2 Constraint Relaxation

Other strategies that may alleviate the computational
burden include constraint relaxation.

One form of constraint relaxation follows from time
quantisation as outlined in Section 3.1. Other possible
relaxations are outlined below.

(1) To further reduce computational complexity it is
possible to parameterise the input in terms of a set
of basis functions. Careful choice of these basis func-
tions can aid the satisfaction of constraints. Thus,
instead of saying that the input belongs to a finite
alphabet, we could constrain the input to be one
of a small set of basis functions. By way of illus-
tration, we show one possible basis function in Fig-
ure 4. This basis function corresponds to digging a
subdivision of the pit called phase or pushback.

(2) Based on the principle enunciated in Section 3.1, we
conjecture that one need not be too precise about
the control action in the distant future since this is
ultimately “washed away” in the receding horizon
solution. This suggests that one could aggregate
basis functions in accordance with the nonuniform
quantisation scale.

Fig. 4. Illustration of mining effort basis function.

4 Example

To illustrate the basic principles involved in applying
receding horizon optimal control to mine planning, we
choose a block model containing 9213 blocks correspond-
ing to an actual mine. Each block has a known weight
(average 60000 tons), dimensions 30× 30× 30m3 and a
pre-defined in-ground value. The mine surface (see Fig-
ure 2) has Ny × Nz = 39 × 43 squares covering an area
of 1170×1290m2. The mining input is measured in tons
and the mining capacity is 4×107 tons per year. We also
apply the constraint that no more than 2 × 107 tons of
ore can be processed per year. We use the state space
model (1), which has dimension 1347 for this example.
The constant c1 in (1) is taken to be (30m)/(60000tons).
The objective is to obtain a yearly mining schedule based
on a cost function of the form (3). The values Vij(xij)
in (3) are interpolated from the in-ground values of the
block model.

Other methods have been used to attack this mine plan-
ning problem (see e.g., [10,24,25]). Here we use some
of the ideas described in Section 3, namely, nonuniform
time quantisation and aggregation by means of basis
functions, to give a simplified solution for this problem.

The following specifications were used:

(1) Planning horizon T = 13 years.
(2) Discount function dk = (1/1.1)(k−1) in the cost

function (3).
(3) Time quantisation (as in Section 3.1) of 1, 1, 1, 10

years for the first step, followed by 1, 1, 1, 9 years,
etc., that is, the horizon recedes 1 year in each of
the 13 steps.

(4) Use of 7 input basis functions (one of which is shown
in Figure 4) with variable quantisation; namely, in
each of the 13 steps, the number of basis functions
chosen was 3 for the 1-year long periods and 7 for
the last period.

(5) A slope constraint of 1.

The optimisation was performed by evaluating all pos-
sibilities, which, on the one hand, is computationally
tractable due to the strategy used and, on the other
hand, guarantees that the solution is the global op-
timum for the problem formulation. The computa-
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Fig. 5. Yearly schedule obtained via receding horizon control

tional complexity is 13 × 33 × 7 = 2457 (compare with
713 ≈ 1011 if we used 7 basis functions over 13 years
with uniform—yearly—quantisation). The total return
achieved is $740 million (compare with $750 million
achieved using CPLEX with finer aggregation).

Figure 5 shows the yearly schedule over the first 4 years.
These plots represent the actual states of the mine
needed in yearly intervals. The final 13th year is the ul-
timate pit. This was actually shown earlier in Figure 1.

5 Some Computational Issues

The connection between optimal mine planning and re-
ceding horizon control has led to results of practical rel-
evance to the industrial partner involved in this project.
Specifically, the idea of receding horizon control, includ-
ing nonuniform time quantisation, has enabled signifi-
cantly larger planning problems to be tackled than was
previously possible. Also, note that the formulation of
the problem presented here allows any appropriate so-
lution method, including standard MILP solvers. This
is further discussed in [22]. Specifically, the results pre-
sented below were obtained using the commercial pack-
age CPLEX. Seven tests were carried out for a practi-
cal mine planning problem, each test using a different
number of units of aggregation. Care was taken during
the aggregation process to ensure that conditions were
equivalent. The total return is denoted here as NPV (net
present value). All NPVs presented below are within
0.1 % of their respective optimal value, save for the case
where the number of aggregation units was 1632. In
the latter case, the NPV is within 0.57 % of the opti-
mal value.

Figure 6 shows computation times, in seconds, as a func-
tion of aggregation units. Notice that there is an order of
magnitude difference in computation time for aggrega-
tion units 1632 and the gap is growing. Interestingly, the

receding horizon approach results in only a very small
loss in NPV as shown in Figure 7. Moreover, at aggre-
gation units of 1632, the receding horizon approach has
resulted in a larger NPV due to computational difficul-
ties with the fixed horizon solution.
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Fig. 6. Computation time of CPLEX to find the optimal
solutions with receding horizon and fixed horizon
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Fig. 7. Column plot of the NPV achieved by CPLEX with
receding horizon and fixed horizon

6 Conclusions

This paper has described an alternative formulation of
optimal mine planning as a receding horizon optimal
control problem. It has been argued that this formula-
tion yields advantages in terms of insight and computa-
tional complexity. Future work in this area will further
exploit the control engineering formulation. For exam-
ple, in recent work we have applied stochastic optimal

5



control theory to problems of current interest in this in-
dustry sector including pricing flexibility.
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