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1   |   INTRODUCTION

Use of Big Data has exploded thanks to increasing computer processing power, falling storage costs, and improving acces-
sibility to software. This is enabling advances in economic forecasting (Choi & Varian, 2012; Woo & Owen, 2019), disease 
prediction and health care (Arora et al., 2019; Carneiro & Mylonakis, 2009; Ginsberg et al., 2009; Seifter et al., 2010), as 
well as consumer modelling (Du et al., 2015; Silva et al., 2019). Big Data analytics paired with real-time data streaming 
from devices connected to the Internet of Things has the potential for realising the “smart city dream” by improving 
decision-making and reducing costs for public services (Mohamed & Al-Jaroodi, 2014; Silva et al., 2017, 2018). The last 
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Abstract
Google Trends (GT) offers a historical database of global internet searches with 
the potential to complement conventional records of environmental hazards, es-
pecially in regions where formal hydrometeorological data are scarce. We evalu-
ate the extent to which GT can discern heavy rainfall and floods in Kenya and 
Uganda during the period 2014 to 2018. We triangulate counts of flood searches 
from GT with available rainfall records and media reports to build an inventory 
of extreme events. The Spearman rank correlation (ρ) between monthly mean 
search interest for flooding and monthly Climate Hazards Group InfraRed 
Precipitation with Station (CHIRPS) rainfall totals was ρ = +0.38 (p < 0.005) for 
Kenya and ρ = +0.64 (p < 0.001) for Uganda. Media reports of flooding were used 
to specify a threshold of detectability to give the same overall frequency of floods 
based on GT search interest. When the GT search index threshold was set at ≥15 
and ≥29, the correct detection rate was 75% and 64% within a five-day window of 
known flood events in Kenya and Uganda, respectively. From these preliminary 
explorations we conclude that GT has potential as a proxy data source, but greater 
skill may emerge in places with larger search volumes and by linking to historical 
information about environmental hazards at sub-national scales. Wider applica-
bility of the GT platform might be possible if there is greater transparency about 
how Google algorithms determine topics.
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decade saw the price of mobile electronic devices fall, resulting in an exponential rise in the number of smartphone users 
to 3.6 billion in 2020 (Statista, 2021). Meanwhile, Google increased worldwide market share of internet searches to 77% 
in 2019, establishing it as the dominant search engine platform (Statcounter, 2019). Google is a prime example of the 
rapid growth in Big Data processing, with an estimated 76,000 searches per second in 2019 compared with 40,000 in 2012 
(InternetLiveStats, 2019). Twitter is another social media platform that has witnessed rapid growth, with over 320 million 
users (Statista, 2019).

In 2006, Google Trends (GT) was launched. This allows analysis of search terms and topics for specified time periods 
and regions. The tool has been applied in medicine, business, economics, and social science, where there are shared 
interests in real-time data to detect and interpret social trends (Jun et al., 2018). For example, GT data use for research 
expanded after the US Centers for Disease Control and Prevention demonstrated more rapid tracing and predicting of in-
fluenza than traditional surveillance systems (Ginsberg et al., 2009; Jun et al., 2018). GT has also been used to detect signs 
of diabetes by monitoring keywords and search terms (Tkachenko et al., 2017), recognising that citizens are increasingly 
turning to online sources as a means of self-diagnosis. In economics, search data demonstrate better skill than structural 
models at predicting directional changes in exchange rates (Bulut, 2018). Similarly, search information has been used 
in forecasting models to complement consumer sentiment indexes (Woo & Owen, 2019), outperforming survey-based 
measures in predicting private expenditure (Vosen & Schmidt, 2011).

Benchmarking the frequency, severity, and impact of environmental hazards is an important step towards the man-
agement of future threats (Wilby, 2019). Hazards including floods, heatwaves, and droughts are expected to increase 
in frequency and severity with climate change (Watts et al., 2015). GT offers an historical database of global searches 
with the potential to complement historical records of environmental hazards. Furthermore, Google affords real-time 
monitoring capabilities that could eventually support emergency responders and strategic planning for hydrological haz-
ards. As the UN Office for Disaster Risk Reduction observes “acquiring qualitative and quantitative baseline informa-
tion in poorly gauged regions should be prioritized to provide the necessary robust foundation for adaptation planning” 
(Ballesteros-Cánovas et al., 2019, p. 2). Historical data are important sources of information about flood frequency that 
contribute to flood risk assessment and management (Longfield et al., 2019).

GT has previously been used to investigate internet search frequency in East Africa for flooding associated with the 
2015/16 El Niño (Gannon et al., 2018; Siderius et al., 2018). We build on such analyses by evaluating the utility of GT 
over a longer timescale in two countries with limited conventional meteorological data. More specifically, we evaluate 
the extent to which GT data can discern heavy rainfall and flood events in Kenya and Uganda at the national scale. We 
triangulate flood search information from GT with rainfall records and media reports to build an inventory of extreme 
events that were so impactful as to be deemed newsworthy. By working through these cases, we uncover a range of con-
founding factors that must be considered when interpreting results. We begin by describing the methods used to acquire 
then process GT and precipitation data. Next, we show comparisons between search interest and reported flood events, 
correlations between search interest and rainfall data, and a flood event search threshold. Finally, we discuss the utility 
of GT data for analysing historical hydrological hazards more generally.

2   |   DATA AND METHODS

Kenya and Uganda were chosen as the study areas because they are both relatively data-sparse nations with rapid popu-
lation and urban growth, with high exposure to seasonal flooding (Weeser et al., 2018). According to the United Nations 
Office for the Coordination of Humanitarian Affairs, nearly 6 million people in East Africa were affected by devastating 
flood episodes in 2020. Meanwhile, the World Bank (2020) estimated that 18% and 24% of the population of Kenya and 
Uganda, respectively, had access to the internet in 2017. Google has a 95% market share in Kenya and Uganda based on 
volume of searches compared with other search engine platforms like Bing, Firefox, and Internet Explorer (Statcounter, 
2019). This means the majority of search traffic from both nations is captured by Google.

Google Trends is a publicly available sample of search data that are anonymised, categorised, and aggregated across all 
Google products, including YouTube (Google Trends, 2019). This allows users to gauge interest in a search term or topic 
by period and domain (even to city-scale for countries with sufficient search volumes). GT has two filters for real-time 
and historical datasets. Real-time gives searches covering the past seven days, compared with non-real time, which is a 
sample of the entire Google dataset from 2004 up to 36 hours ago. Real-time search trends update every minute, high-
lighting trending events within the last 24 hours, by location. Absolute search data would return billions of entries every 
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day, which would be too large to process quickly. Hence, data are presented as a proportion of all searches on all topics 
on Google for the specified period and location. This also accounts for changing numbers of internet users through time.

Google Trends has two search filters: search terms and search topics. Topics were introduced by the company as a way 
of bundling all searches related to a given subject. For example, the topic “flood” would include searches for flooding in 
other languages and searches that Google's algorithm considers to be related to flooding. A drawback is that “flooding 
the market” or other non-flood-related searches could be included in results. Furthermore, it is unclear how exactly these 
topics are defined by Google, which introduces some uncertainty to their interpretation.

Regardless of the period queried, GT always returns around 200 data points. This is a major limitation of the interface 
that constrains the resolution of search interest, especially over long time frames, hindering the detection of flood events 
because daily peaks and troughs in search interests are trimmed. To overcome this, shorter timeframes can be queried 
at higher resolution, but these shorter periods have to be bridged with one another. This was undertaken in four steps.

First, monthly search interest in the topic “flood” was queried between 2014 and 2018 in Kenya and Uganda. Second, 
the month with the highest search interest was identified for both nations during the time period, then used to rescale 
interest in all other months. For example, the month with the highest search interest is indexed at a value of 100 by GT, 
giving a weighting of 1. Third, daily data on search interest under the topic of “flood” was acquired on a single month-by-
month basis for 2014–2018 for each nation. Fourth, daily data were scaled by multiplying every search interest value by 
the corresponding monthly weighted value. This procedure was applied to all months to create a daily series of search in-
terest between 2014 and 2018 (with data retrieved on 29 September 2019). Additionally, monthly series were expressed as 
anomalies from the monthly five-year mean search interest to enable comparison of the series between the two countries.

Precipitation data were obtained from the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) 
archive (Funk et al., 2014). These data provide monthly precipitation series representing Kenya and Uganda between 
1981 and 2020. Monthly totals were extracted for both countries within our study period 2014–2018. This source and time 
period were chosen to demonstrate what can be achieved with publicly available data alone.

A flood inventory was assembled from multiple media sources, including the Dartmouth Flood Observatory,1 
FloodList,2 DesInventar,3 and Emergency Events Database (EM-DAT),4 to triangulate known events (see Table 1 and 
Supplementary Information). The lists were then compared with the search interest series compiled independently for 
the topic of “Flood” for both countries. Spearman rank correlations (ρ) were calculated between the two national anom-
aly series in search interest, as well as between monthly mean search interest and monthly precipitation for Kenya and 
Uganda. The flood inventory was also used to eliminate background “noise” in searches by calibrating a threshold of 
search interest against known events. This was achieved by identifying thresholds of search interest that give the same 
number of above-threshold events as the frequency of observed floods in each country, during the study period.

Finally, using daily data, we test the sensitivity of GT correct and false detection rates to the length of the search win-
dow (spanning the actual day and up to five days after the date of a known flood) against events recorded by DesInventar. 
A correct detection is when the search threshold and daily interest value signal a flood within a specified number of days 
of the observed flood; false detection is when the search interest is above the threshold, suggesting a flood, yet none was 
captured by the media within the specified period.

T A B L E  1   Media reports and disaster records of flooding in Kenya and Uganda between 2014 and 2018

Year

Media reports of flooding DesInventar reports of flooding
EM-DAT reports of 
flooding

Kenya Uganda Kenya Uganda Kenya Uganda

2014 2 1 6 60 0 0

2015 17 0 80 38 3 0

2016 9 1 6 38 1 1

2017 3 1 NA 93 1 1

2018 7 4 NA 113 1 0

Notes: Media reports refer to FloodList, Dartmouth Flood Observatory, and media outlets covering floods, details of which are available in the Supplementary 
Information. DesInventar (2019) is sponsored by the UN Office for Disaster Risk Reduction. This disaster database applies a geographical resolution equivalent 
to a municipality so is, therefore, more likely to detect localised events than the country-level granularity of EM-DAT (see Panwar & Sen, 2020). Note that the 
criteria required for an event to be logged by EM-DAT and DesInventar differ. EM-DAT specifies that an event must meet at least one of four criteria before 
being recorded: equal to or greater than 10 deaths; equal to or greater than 100 people affected; state-level declaration of emergency; a call for international 
help. At least one of the following must be met to be recorded in DesInventar: one or more death; one US dollar of economic loss.
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3   |   RESULTS

Comparison of daily search interest (Figure 1) with media reports of flooding had mixed success. In Kenya, peaks in search 
interest coincided with notable floods then decayed over time as flood waters receded. For instance, high search inter-
est on 10 May 2015 coincided with nine fatalities after a mosque collapsed amid flooding in Nairobi (see Supplementary 
Information). Peaks in December 2015 followed reports of heavy rain across the country, with hundreds of thousands of 
people reportedly displaced (FloodList, 2019; ReliefWeb, 2019). Search interest again peaked in late April 2016 after at 
least ten people were killed by another building collapse during flooding in Nairobi (FloodList, 2019). High search inter-
est in early and mid-March 2018 matched with flooding in the capital that killed an estimated 13 people following heavy 
rain on 2 March (FloodList, 2019). Further peaks on 14 March 2018 were likely associated with heavy rainfall across 
much of the country that resulted in 11 reported fatalities (FloodList, 2019). Multiple flood events were recorded between 
mid-April and early May 2018, resulting in 112 reported dead (see Supplementary Information) and tracked by the GT 
peak in Kenya in April–June 2018. Unsurprisingly, events with multiple fatalities tend to receive more search interest. 
Additionally, floods in neighbouring Ethiopia and Rwanda appeared to be reflected in heightened search interest in both 
Kenya and Uganda during May 2018 (FloodList, 2019) (see Supplementary Information).

Overall, there is a weak correlation (ρ = 0.18, p < 0.1) between normalised GT search interest in Kenya and Uganda 
(Figure 2). This suggests that, for most of the time, search interest in flooding occurs independently in the two countries. 
However, the two highest values in search interest in Kenya (November–December 2015 and May 2018) correspond with 
peaks in Uganda, confirming the view that these particular flood episodes affected East Africa more generally. Average 
interest in flooding also follows the seasonal rainfall regime of each country (Figure 3, left panels). In both cases, search 
interest peaks during April–May (long rains period), falls to a minimum during the drier summer months, then rises to a 
second peak in November in Kenya and September to November in Uganda (during the short rains). Monthly series show 
on average more search interest in floods coinciding with periods of unusually heavy rainfall (Figure 3, right panels). 
The correlation between search interest and CHIRPS is significant in both countries but stronger in Uganda (ρ = 0.64, 
p < 0.0001) than in Kenya (ρ = 0.38, p < 0.005).

DesInventar (2019) only lists floods up to 2016 in Kenya. Here, there were 92 days with reported floods between 2014 
and 2016. The nearest equivalent frequency (87 days) requires a GT search index ≥15 (Figure 4). This GT interest thresh-
old achieves a 38% correct and 60% false detection rate for the same day as the observed flood, rising to 75% correct and 

F I G U R E  1   Daily search index for the topic “flood” between 2014 and 2018 in Kenya (upper panel) and Uganda (lower panel)
Note: On 1 January 2016, Google notes an improvement in the GT data collection system. Daily search interest for the topic of “flood” is 
measured as a proportion of all searches on Google for Kenya and Uganda between 2014 and 2019.
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21% false within a five-day window (Figure 5). For Uganda, there were 342 days with reported floods between 2014 and 
2018, and closest frequency (350 days) from a GT search index ≥29 (Figure 4). This yields 48% correct and 53% false de-
tection rates for the same day of the observed flood (Figure 5). As with Kenya, this improves with longer windows up to 
five days, for which the detection rates are 64% correct and 37% false.

4   |   DISCUSSION

Google Trends tracks search interest during floods. Interest tends to spike for events with widespread media cover-
age, or where fatalities are reported. This is unsurprising as news stories appear online in the aftermath of floods 
and internet users would likely see these in their timelines. Additionally, as flood reports are posted online, users are 
more likely to share these across social networks, further increasing search interest in the topic (Bakshy et al., 2012). 

F I G U R E  2   Search index expressed as a monthly anomaly relative to the respective 2014–2018 means for Kenya and Uganda

F I G U R E  3   Monthly mean search index for topic “flood” compared with monthly rainfall totals for Kenya and Uganda between 2014 
and 2018
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Compared with nations with more internet infrastructure, Kenya and Uganda have relatively low search volumes, 
limiting the amount of information at regional scales, especially in Kenya. This is reflected by the lower baseline 
search interest scores in Kenya.

Search interest expressed as monthly anomalies gives further insights (see Figure 2). In Kenya, high search interest 
during November 2015 coincided with heavy rainfall, flash floods, and multiple fatalities. This was the same in May 2018, 
when heavy rainfall caused flash flooding with over 100 fatalities and an estimated 200,000 people displaced. For Uganda, 
an anomaly in August 2017 overlapped with severe flooding in the north that killed two people and displaced over 2000 
(see Supplementary Information). Similarly, search interest anomalies in March, May, and October 2018 are explained 
by reported flood events.

There were statistically significant correlations between monthly mean search interest and monthly precipitation in 
both Kenya and Uganda during the five-year study period (ρ = 0.38 and 0.64 respectively). The long and short rainfall 
periods are also reflected by intra-annual variations in flood search interest (Figure 3), indicating that GT can be used as 
a proxy for heavy rainfall. This could be a valuable source of information for countries that are relatively data sparse in 
terms of historical rainfall and flood records. Moreover, GT could offer additional information about the impacts of ex-
treme events, thus yielding more robust estimates of flood frequencies. Similar techniques have been used with historical 
archives to reconstruct flood frequencies elsewhere (e.g., Kjeldsen et al., 2014; Macdonald et al., 2006; Neppel et al., 2010). 
As flood records improve, GT search interest could be re-visited to better specify local thresholds for flood detection.

In the absence of historical and consistent rainfall time series for Kenya and Uganda, satellite data products like 
CHIRPS are critical for climate analyses and monitoring changes in precipitation patterns (Dinku et al., 2018). The 

F I G U R E  4   Inverse cumulative frequency of search index values between 2014 and 2018 for Kenya and Uganda

F I G U R E  5   Correct and false detection rates for known floods in Kenya (2014–2016) and Uganda (2014–2018) when the GT interest 
thresholds are ≥15 and ≥29, respectively.
Note: The “correct” rate is given by the ratio of the number of days with floods detected by GT, divided by the number of days with observed 
floods. The “false” rate is the proportion of days with floods detected by GT that did not coincide with an observed flood. Window length 1 is 
the day of the known flood, 2 is the day of the flood as well as the one following, and so forth
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quality of CHIRPS data, therefore, underpins any comparative analysis. Recent evaluations of satellite-derived rainfall 
products for eastern Africa, including Kenya and Uganda, showed that CHIRPS performs better than similar products 
like ARC2 and TAMSAT3 (Dinku et al., 2018; Macharia et al., 2020; Maidment et al., 2017). Validation against existing 
networks of rain gauges in Kenya and Uganda reveals that CHIRPS accurately predicts rainfall over low-lying regions but 
may underestimate precipitation in high elevation areas (such as Mt. Kenya) (Macharia et al., 2020).

Google search data, like hydrological measurements, are prone to errors and biases (Wilby et al., 2017). Although data 
gathered by GT can be referenced by geographical area, searches made by users may be for events that are occurring (or 
have happened) in places remote from the physical location of the browser. This effect may confound associations be-
tween local rainfall and search interest, since rainfall data relate to specific places through time, whereas search interest 
is aggregated by where a search occurs, not where the search is about. For example, by researching the utility of GT for 
this paper we have been adding to the UK count of searches on the topic of flood, yet our interest has been about floods 
in East Africa. These uncertainties may account for some of the false alarms.

Hence, detection of extreme rainfall and flood events is challenging for GT. Previous applications to the spread of dis-
ease or consumption patterns benefit from large-scale population behaviour or phenomena that are not physically con-
strained. Other work also shows that GT can track drought awareness at national and regional scales (Kam et al., 2019; 
Kim et al., 2019). Perhaps regular dissemination of forecasts by meteorological agencies like the Kenya Meteorological 
Department or seasonal outlooks from the Intergovernmental Climate Prediction and Applications Centre (ICPAC) 
stimulate search interest. In comparison, floods tend to be more localised and with rapid onset when compared with 
droughts, which generally affect larger areas and can persist for years (Dutra et al., 2013). Nonetheless, we assert that 
there is sufficient information to triangulate data sources for flood events even in data sparse regions and for quality-
assuring historical events. Utility of GT may be greatest at a regional level where flood events cause multiple fatalities – as 
in Ethiopia and Rwanda during May 2017. Regional events will likely have greater media coverage due to their impacts 
and thus receive higher volumes of search interest too.

Google Trends offers a freely available and expanding dataset that could augment conventional data streams and be 
applied to other weather-related hazards. Moreover, words like “landslide” have greater specificity than “flood,” because 
there is less ambiguity about the term. Hence, GT could provide an invaluable data source for hazard and impact assess-
ment with the possibility of real-time monitoring as Google continues to develop the platform. When considering the 
context of expected increases in climatic variability for many parts of the world, especially East Africa (Nicholson, 2017), 
a region impacted by frequent drought and flooding, the value of baseline data cannot be over-stated.

GT search data could be interpreted as a “social hydrograph.” Interest is likely to be highest either on or after the day 
of a flood event as a result of surges in media reporting, followed by a decay in attention as flood waters recede. By ana-
lysing this trace, the type of flood could be determined by discriminating between a flash-flood, short-, or long-rains flood 
signatures. Furthermore, it could help distinguish the seasonality of some flood types. By analysing this in the long term, 
it may be possible to categorise the dominant flood type(s) for a region and how these change through time.

Twitter also gives insight to hazard impacts, such as temperature-related mortality during heatwaves (Cecinati et al., 
2019). However, a major limitation of Twitter data is that tweets do not have a linked geolocation and there is currently 
no openly accessible platform to analyse Tweets, unlike GT. It is estimated that 15% of all Twitter accounts (48 million) 
are automated. For example, some bots automatically post breaking news or emergency information, while others have 
been used to disseminate fake news, manipulate Twitter trends, or steer public perception (Jones, 2019; Rodríguez-Ruiz 
et al., 2020). Despite these limitations, Twitter has the potential to be a complementary tool for GT data since individual 
tweets can be analysed and time-stamped.

As search volumes increase with growing access to mobile and electronic devices with internet support, as well as im-
proved internet access, there could be potential in analysing search interest on district scales. This is already feasible for 
the USA and offers the possibility of matching search interest with locally recorded rainfall data, potentially supporting 
flood event detection on a district scale. However, this presumes good internet connectivity (despite potential outages 
of IT services during extreme weather) and additional support from Google through data visualisation at a district level 
across East Africa.

5   |   CONCLUSIONS

We investigated the feasibility of using GT to analyse historical floods. Preliminary findings for Kenya and Uganda show 
promise – associations were found between the volume of GT searches, seasonal patterns of rainfall, and incidence of 
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significant flood episodes at national scales. We found that search interest correctly detects a newsworthy flood within a 
five-day window for 75% of events in Kenya and 64% in Uganda. These detection statistics partly depend on the criteria 
followed by online media and DesInventar when reporting floods in each country, which influence the number of days 
with floods in the news. Some reports, such as on the television or radio, may be overlooked.

The correct detection rate is expected to improve as search volumes grow. However, querying search interest for the 
topic “flood” also captures non-flood-related searches and, until Google releases detailed information about how topics 
are determined, this will remain an uncertainty. Furthermore, removal of background noise or non-flood event-related 
queries is not straightforward via the current platform. We tested various thresholds of search interest in flooding 
matched to the number of days with official records and news articles about flooding, and people and property affected, 
recognising that there is a level of background searches from browsers in neighbouring countries. Hence, there is un-
certainty in both the true number of days with floods and the true amount of national, flood-related search interest.

Google Trends is a unique dataset that could be explored in more exacting ways to gain deeper insights into societal 
search behaviour during extreme events such as floods, droughts, heatwaves, wildfires, and landslides. This study illus-
trates the potential for GT to complement official hydrological records in data-scarce regions, with mixed success in areas 
that have limited internet infrastructure. Future studies could apply GT in places with more detailed hydrological records 
to evaluate the factors affecting thresholds of detectability within search metrics. Additionally, future research for East 
Africa might evaluate rising lake levels and associated flood events via concurrent and lagged correlation analysis of 
Google data. Insights from GT will only become more powerful and accurate as the dataset continues to grow with every 
search we make.
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