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On AIMD Congestion Control in Multiple Bottleneck Networks
Christopher M. Kellett, Richard H. Middleton, and Robert N. Shorten

Abstract— We consider a linear algebraic model of the
Additive-Increase Multiplicative-Decrease congestion control al-
gorithm and present results on average fairness and convergence
for multiple bottleneck networks. Results are presented for
networks of both long-lived and short-lived flows.

Index Terms— Additive-increase multiplicative-decrease
(AIMD), network congestion control, multiple bottlenecks.

I. INTRODUCTION

TCP, in congestion avoidance mode, is based primarily
on Chiu and Jain’s [2] Additive-Increase Multiplicative-

Decrease (AIMD) algorithm for decentralized allocation of
a shared resource (e.g., bandwidth) among competing users.
With some minor modifications, the AIMD algorithm has
served the networking community well over the past two
decades and it continues to provide the basic building block
upon which today’s internet communication is built.

The dynamics of communication networks employing the
AIMD algorithm have been studied extensively; for example,
see [1], [3], [4], [6], [7] and references therein. For networks
where the resource constraint is a bound on the sum of the
resource shares of the users, basic stability and convergence
properties have been determined, both in a deterministic and
in a stochastic setting. In particular, it has been shown that
(with a fixed number of users) such networks possess unique
stable equilibria to which the system converges geometrically
from all starting points.

However, a common assumption is that all sources are
limited by a single bottleneck link. Recently, a number of
authors have reported that in such circumstances, AIMD
dynamics can lead to network oscillations. Our interest here is
to derive results that describe the behavior of AIMD networks
in a quantifiable manner in the presence of multiple-bottleneck
links, and to prove network convergence to well defined
equilibria. The main contribution of this note is to present
a variant of a recently proposed matrix model that allows us
to derive results which predict a degree of fairness in resource
allocation between flows that compete directly with each other,
even in the presence of network oscillations.

II. MATHEMATICAL MODEL

Similar to [6], we denote by xi(k) ∈ R
+ the flow rate

of the ith source at the kth congestion event. Denote the
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additive increase and multiplicative decrease parameters of the
ith source by αi ∈ (0,∞) and βi ∈ (0, 1) respectively.

We assume that the network consists of nn nodes, labeled
j = 1, 2, . . . , nn, and that each flow originates with a source,
i ∈ {1, 2, . . . , ns} and passes through a set of nodes Ni ⊂
{1, 2, . . . , nn}. Denote by Ωj ⊂ {1, 2, . . . , ns} the set of flows
that pass through node j. We assume that each node has a total
capacity Bj > 0, so that the flow rates are constrained as:

Bj ≥
∑
i∈Ωj

xi(k);∀j ∈ {1, 2, . . . , nn}, k ∈ Z≥0. (1)

We denote the stacked vector of source flows by X(k) and
write the constraints (1) in vector form as:

Bj ≥ LT
j X(k);∀j ∈ {1, 2, . . . , nn}, k ∈ Z≥0 (2)

where Lj is a vector with ith element unity if the ith flow
includes node j, and zero otherwise. We assume that all flows
include at least one node and thus all flow rates are bounded.
At the kth congestion event, we assume that at least one node
is congested. We denote by J(k) ⊂ {1, 2, . . . , nn} the set of
nodes congested at k; that is J(k) = {j : Bj = LT

j X(k)}.
For synchronous traffic, the flow rates evolve according to:

X(k + 1) = Aj(k)X(k) + UT (k) (3)

with U a vector of the increase parameters, T (k) the time
between congestion events, and Aj a diagonal matrix with ith

element:

(Aj)ii =
{

βi : i ∈ Ωj

1 : otherwise

}
. (4)

In other words, when node j is congested, all flows that transit
node j (i.e., all flows in Ωj) reduce their rate to βixi(k), while
flows not crossing node j continue to increase their rates.

More generally, we can consider the case of asynchronous
traffic where, at random, one or more flows will experience
congestion rather than all flows being notified simultaneously.
In this case the model of (3) becomes more complex, since
the appropriate A matrix is no longer a deterministic function
of the congested node, j(k). For simplicity, we follow [6]
wherein the probability associated with whether or not source
i experiences congestion is independent1 of other sources and
is given by λi. The equivalent model to (3) becomes:

X(k + 1) = AkX(k) + UT (k) (5)

where Ak is a diagonal random matrix with elements

Ak(ii) =
{

βi w.p. λi for i ∈ Ωj(k)

1 otherwise

}
.

Under the assumption of independence of the probabilities in
the elements of Ak, from (5) the expected value of X(k)
(denoted E{X(k)}) satisfies the recursion:

E{X(k + 1)} = A′
kE{X(k)} + UE{T (k)} (6)

1Here the independence is both serially in time and between different flows.
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where A′
k is a constant diagonal matrix with elements β′

i =
1 − λi + λiβi for i ∈ Ωj(k).

The key to the following results is that we look at com-
petition between flows that take a similar path through the
network. We call a group of such flows parallel flows. From
here on we consider k to be the congestion epochs for the
parallel flow grouping under consideration and denote the flow
rates of the parallel flow group by Xp(k) which evolve as

Xp(k + 1) = ApXp(k) + UpT (k), (7)

where Ap is the Aj(k) of (3) or A′
k of (6) as appropriate.

III. RESULTS

A. Synchronous Flows: Time Averages

Claim 1: Consider any set of parallel flows. Take any U⊥
p

orthogonal to Up and suppose that either

βi1 = βi2 = · · · = βip
=: βp, or (8)

lim
k→∞

T (k) = T∞ (9)

then lim
k→∞

(
U⊥

p (I − Ap)Xp(k)
)

= 0.

Proof: Note that in either case, from (7) that:

Xp(k) = Ak
pXp(0) +

k−1∑
�=0

Ak−1−�
p UpT (�). (10)

The first term in (10) decays exponentially fast to zero, so it
remains to evaluate properties of the remaining term.

First, suppose that (8) holds. Then it follows that Ap = βpI ,
A�

p = β�
pI , and U⊥

p (I −Ap) = (1−βp)U⊥
p . Using these facts

along with (10) and ignoring initial conditions gives:

(
U⊥

p (I − Ap)Xp(k)
)

= (1 − βp)U⊥
p Up

k−1∑
�=0

βk−1−�
p T (�)

and the result follows.
Alternatively, suppose that (9) holds. In this case we note

that as k → ∞, again ignoring initial conditions:

Xp(k) =
k−1∑
�=0

Ak−1−�
p UpT∞ +

k−1∑
�=0

Ak−1−�
p Up(T (�) − T∞)

and the result follows. �
In other words, under the conditions stated in Claim 1, the

states converge to a one dimensional subspace aligned with
(I − Ap)−1Up (the Perron eigenvector in [6, Theorem 2.1])
which has ith element (1 − βi)−1αi. Note however, that this
does not apply in general. However, the following is true:

Claim 2: Consider any set of parallel synchronized flows.
Then, for any k0,

lim
K→∞

(
1
K

k0+K∑
k=k0

U⊥
p (I − Ap)Xp(k)

)
= 0. (11)

Proof: Taking summations of (7) and rearranging yields

(I−Ap)
1
K

k0+K∑
k=k0

Xp(k) =
1
K

(Xp(k0) − Xp(k0 + K + 1))

+ Up
1
K

k0+K∑
k=k0

T (k).

Multiplying from the left by U⊥
p and taking the limit as K →

∞ gives the result since Xp(k) is bounded. �
Remark 3: Since Claim 2 holds for any set of synchronized

flows, including any pair of flows, it represents a kind of
average inter-flow fairness. The time average of the peak flows
represented in Xp(k) lies on a given ray from the origin.
Moreover, for any flows � and m that are parallel, take U⊥

p

as a vector with all elements zero, except the �th element
1/α� and the mth element −1/αm. We then have the long-
term time average (which we denote with an overbar; i.e.,
fk := limK→∞ 1

K

∑K
k=0 fk):(

1 − β�

α�

)
(X(k))� −

(
1 − βm

αm

)
(X(k))m = 0 (12)

and therefore, provided the appropriate time averages exist,(
1 − β�

α�

)
(X(k))� =

(
1 − βm

αm

)
(X(k))m. (13)

In the case where the states do converge, Claim 2 immedi-
ately gives the following corollary.

Corollary 4: Consider any set of parallel synchronized
flows and suppose that Xp(k) converges to a limit denoted
by Xp(∞). Then U⊥

p (I − Ap)−1Xp(∞) = 0.

B. Synchronous Parallel Flows: Ensemble Averages

Because the rest of the network can influence the detailed
behavior of a set of parallel flows, even in the synchronous
case, it is not possible to guarantee that the parallel flows
converge. The results in Section III-A give time average results
that apply in this case. Here we give some results for ensemble
averages for the synchronous parallel flow case.

In the previous approach, the capacity constraint (1) can
be thought of as a “router view” of congestion. Alternatively,
we may consider the bandwidth a parallel flow group will
obtain at congestion. We observe that this bandwidth will vary
depending on which node is congested as well as how much
capacity is taken by other flow groups. As such, the capacity
constraint seen by any individual flow group will be random
and time-varying. Using Ip to denote the pth parallel flow
group, we can write the capacity constraint at congestion as

Bp(k) =
∑
i∈Ip

xi(k); ∀k ∈ Z≥0. (14)

Note that Bp(k) is necessarily bounded by the minimum
capacity link traversed by the flow group Ip.

Using the previous vector notation, at congestion we have

LT
p Xp(k + 1) = Bp(k + 1), (15)

where Lp is a vector of dimension |Ip| consisting of all ones.
We assume that the process Bp(k) is a stationary random
process; i.e., there exists a finite real number B̄p > 0 such
that E{Bp(k)} = B̄p. Taking expectations on both sides of
(15), and using the evolution equation (7) we obtain

LT
p (ApE{Xp(k)} + UpE{T (k)}) = B̄p. (16)

The expected time between congestion events is then
E{T (k)} = T̄ ∗ = B̄p

LT
p (I−Ap)−1Up

and it is not difficult to
show that the expected flow rate converges exponentially to

E{Xp(k)} = X̄∗
p = (I − Ap)−1UpT̄

∗.
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Fig. 1. Two node, three flow scenario

Remark 5: It is important to note here that we not only
characterize the asymptote but also the dynamics of the
process. Convergence to the equilibrium state is exponential
and bounds on the rate of convergence can be derived. It is
also important to note that the dynamics of the second moment
can be expressed in a similar manner to the above analysis [5].

From a practical viewpoint, we may not know the expected
value of the bandwidth, B̄p. However, the above analysis
indicates how parallel flows will share available bandwidth
within the parallel group. For example, if all flows in the
group have the same increase and decrease parameters, the
(unknown) bandwidth will be shared equally on average.

C. Asynchronous Parallel Flows: Ensemble Averages

We now consider the more general model (5) that allows
randomness in determining which flows experience lost pack-
ets at a congestion event. In this case, by the same arguments
as in Claim 2, applied to (6), we obtain:

lim
K→∞

1
K

k0+K∑
k=k0

U⊥
p (I − Ap)E {Xp(k)} = 0. (17)

Furthermore, if the process is ergodic, then (17) simplifies
to U⊥

p (I − Ap)E {Xp(k)} = 0.

IV. SIMULATIONS

Example 1: Consider the network topology of Figure 1
with C1 = 2.5 units and C2 = 5 units. Drops are generated
so that all nodes contributing to congestion are informed of
congestion; namely, x1 and x2 are informed every time a node
is congested, whereas x3 is informed only when node N2 is
congested.

Here α1 = α2 = α3 = 1 and β1 = 0.5, β2 = 0.75, and
β3 = 0.9. It follows from Claim 3 that X̄(k)1 = 2 X̄(k)2. This
is confirmed from the simulation results depicted in Figure 2.

Example 2: Consider again the network topology of Figure
1. Drops at congestion are generated at each node according
to fixed probabilities (uniform for every source utilizing the
constraint). Again, the flows x1(k) and x2(k) are parallel
flows. In this simulation we observe limK→∞ 1

K

∑K
k=0 Xi(k),

i ∈ 1, 2 over the first 1600 congestion events.
We see from Figure 3 that

lim
K→∞

1
K

K∑
k=0

X1(k) ≈ 2

(
lim

K→∞
1
K

K∑
k=0

X2(k)

)
,

which agrees with Claim 3 and the associated remarks.
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Fig. 2. Predictions of Claim 3: Synchronized network
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Fig. 3. Predictions of Claim 3: Stochastic network

V. CONCLUSIONS

In this note we have demonstrated how network flows oper-
ating the AIMD congestion control protocol share bandwidth
with other flows that have a similar path through the network.
In particular, we have provided expressions in terms of the
AIMD parameters for both the long-term time average and
for ensemble averages, with the former statistic describing
behavior of the network over long time scales, and the latter
describing the network behavior over shorter time-scales.
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