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7.7 4 LSTM model for the case of only 5 neon peaks: The MAE for 4-LSTM is

0.04811nm and for traditional third order fitting is 0.11431nm. (a) the neon

spectrum with 5 peaks that was passed as input to the 4-LSTM model; (b)

shows the true wavelength axis as a function of detector pixel position, as

well as the wavelength axes predicted by the 4-LSTM model and traditional

third order polynomial fitting applied to the five neon peaks. Three regions

are highlighted in the figure and magnified in (c), (d) and (e) in which it

can be seen that the accuracy of the two methods varies over the range of

the detector. Interestingly it can be seen that a spectrum with few peaks

that are condensed on one side of the spectrum, the accuracy of the 4-

LSTM model is more accurate that 3rd-order polynomial fitting in regions

that are far away from the reference peaks, while within the region of the

peaks third order fitting is more accurate. In order to elucidate this point

further the wavelength error of both methods is plotted in (d). Overall the

4-LSTM model performs better than 3rd order fitting over the full range. . 223
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Novel Methods for Calibration in Raman Spectroscopy

DONGYUE LIU

Abstract

Raman spectroscopy can probe the chemical structure of a material providing an

optical ’fingerprint’ unique to the sample. Such is the capacity of Raman spectroscopy

to identify different materials, it be to classify biological cells and tissue and can provide

an ’optical biopsy’ for various types of disease. A key component in Raman diagnostics

is the use of multivariate statistical algorithms that can be trained using datasets of

known samples to classify the groups based on the subtle differences between them.

Despite the great progress in this field in recent decades, Raman spectroscopy has
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never been adopted clinically. The key reason for this is the poor resproducibility of

Raman spectroscopy across instruments; in other words the same material can produce

different spectra when recorded using different spectrometers. These differences can

include small movement of the Raman peaks along the wavenumber axis (wavenumber

miscalibration) or modulation in the amplitude of the peaks (intensity calibration). Such

changes can render a multivariate classifier trained on one instrument to be completely

useless in identifying samples recorded from another instrument. The overall goal of

this thesis is to develop new methods for wavenumber and intensity calibration that

can help Raman spectroscopy penetrate into the clinic.
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Chapter 1

Introduction

1.1 Introduction

Spectroscopy relates to the recording of the wavelength (or wavenumber) distribut-

ing of a light field and has many applications in the identification and classification

of different substances, which either absorb or produce spectral irradiance patterns

that contain information on the chemical composition. In order to ensure the accuracy

of the data collected from a spectrometer, it is essential to calibrate the instrument

before the experiment. Even small errors in the position of the components in an optical

system, may result in large errors in the recorded spectral positions. Any such error

can have a significant impact on the accuracy of multivariate statistical classification

algorithms that are applied to the recorded spectrum. It is, therefore, important to

reduce this error using a calibration procedure that precedes the capture of data.

The sources of error in optical spectroscopy are manifold. The misalignment of the

array detector or the diffraction grating can result in error in the wavelength axis. Tem-

perature change in long-term data recording is another key factor in miscalibration [4],

which results in expansion of the optical system and minute positional variation of

the optical elements. A stepper motor is commonly used in modern spectrometers

to rotate the diffraction grating in order to vary the spectral band that is incident on

the detector. Such motors provide limited precision in terms of repeatability of the

rotation angle, even with closed loop control. Even 0.1° error in the angle of rotation
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will result in appreciable error [3]. Another issue that can present when comparing

the results from two different spectrometers that have been applied to investigate the

same sample, is the individual sensitivity response of each spectrometer. This causes

an intensity variation over the bandwidth of the spectrum and can render two spectra

of the same sample recorded by two different spectrometers incomparable. Intensity

variation across instruments is caused by the differing wavelength and polarisation

dependent transmission function of each instrument and possibly differing instrument

resolution.

Of particular interest in this thesis is one specific type of spectroscopy known as

Raman spectroscopy, which is particularly susceptible to issues related to wavelength

and intensity calibration. Raman spectrocopy is based on the inelastic scattering of

monochromatic light. [5] The phenomenon was first discovered by Sir C. V. Raman, for

which he won the 1930 Nobel Prize in physics. Recent technological developments

have made Raman spectroscopy an affordable, non-destructive, and reliable analyti-

cal technique. It is possible to identify a specific substance by inspecting the Raman

spectrum that is recorded from that substance. For this reason, Raman spectra are some-

times referred to as fingerprints. Raman spectroscopy is utilized in many fields, such as

chemistry, physics, biology and medical science. [5–11] Raman spectroscopy has many

advantages over other similar methods, including fast detection-speed, repeatability,

the requirement for low sample volumes, as well as being non-destructive. Traditionally,

Raman systems have been laboratory-based; however, the footprint and cost of optical

Raman spectroscopy systems have significantly reduced in recent years; in aviation

security for example, spatially offset Raman spectroscopy is now used to rapidly identify

material within bottles using a database of spectra recorded from various substances. [6]

Raman spectroscopy probes the vibrational and rotational modes of molecules whereby

laser photons scattered by the material have lost energy related to the energy of cer-

tain Raman-active molecular bonds present within the sample. Raman spectroscopy

can identify biomolecular changes within cells as they progress from a healthy to a

cancerous state [12–14] making it a powerful technique for the identification of can-
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cer cells and tissue. Post-processing such as multivariate statistical analysis [15, 16] is

typically applied to Raman spectra for classification, whereby statistical pattern recogni-

tion algorithms identify subtle changes across datasets that can be used to accurately

differentiate between different pathological groups. [12–14, 17–22]

An application of Raman spectroscopy that is receiving significant attention is the

classification of different cell and tissue types, which produce subtly different Raman

spectra, due to, for example the presence of disease. [8–11] This involves the training

of a statistical algorithm based on known pathological samples. Techniques such as

principal component analysis (PCA) and linear discriminant analysis (LDA) are typ-

ically employed for the classification of spectra. [8, 9] For example, healthy bladder

epithelial cells can be distinguished from low-grade and high-grade bladder cancer cells

with greater accuracy using Raman spectroscopy than using traditional techniques for

cytology and pathology. [23–25] Similarly, Raman spectroscopy combined with multi-

variate statistical analysis can be used as a diagnostic tool to detect biochemical changes

accompanying cervical cancer [26] as well as oral cancer progression. [27] Raman spec-

troscopy has the additional advantage of providing rapid minimally invasive detection

of the disease, which can be fully exploited using fiber optic probes that facilitate endo-

scopic classification of tissue, or identification of tumour margins in-vivo. [28, 29] One

application of particular commercial interest is Raman guided surgery. [30–32] Another

emerging area of clinical research is automated Raman cytology. [33–37]

In order to ensure the accuracy of the collected spectrum, and therefore the accuracy

of the resultant classification that is based on this spectrum, for any of the applications

that have been discussed above, it is of paramount importance to calibrate the instru-

ment. Unfortunately, there exist many sources of error; a small misalignment in the

optical system can result in a significant miscalibration, which can, in turn, lead to

incorrect classification of the sample. It is, therefore, necessary to perform an accurate

wavelength/wavenumber calibration procedure before starting to record data, and it is

often necessary to repeat this calibration step routinely throughout a given experiment;

it may be expected that over time, even a well-calibrated system will deviate from its
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initial specification; even normal handling can adversely affect calibration. Optical

components such as grating, mirrors, lenses and focusing mirror may move slightly over

time resulting in miscalibration. In addition, since Raman scattering is a temperature

dependent process, it may be expected that variation in ambient temperature will also

affect calibration of the recorded spectrum. [5]

Even after wavelength/wavenumber calibration, no two Raman instruments will

produce the same raw spectrum for the same sample unless intensity calibration is per-

formed on both systems, and this has hindered progress in many applications including

disease diagnostics. Many companies that build Raman spectrometers implement their

own internal methods to control the performance and the stability of their own instru-

ments; however, there is no universally accepted method to control the performance

and stability of different instruments. The difficulty in comparing spectra that have been

recorded across different instruments is one of the main obstacles in the development

of Raman spectroscopy for many applications and to its clinical acceptance, and in

recent years a number of different protocols have been proposed to address this key

issue. [38–43] Intensity calibration and wavenumber calibration are the main subjects

of these protocols. This part is concerned only with wavenumber calibration.

Arguably the greatest hindrance to the development of the clinical application of

Raman Spectroscopy is the poor cross-instrument comparability, as highlighted by

two recent multi-site studies, [44, 45] both of which demonstrate inconsistencies in

the wavenumber shift for various materials even following established calibration pro-

tocols provided by the instrument manufacturer. Itoh et al. [45] examined spectra

from polystyrene, benzonitrile, and cyclohexane obtained across 26 different systems

from which they concluded that the wavenumber shift inconsistencies resulted from

the instrumentation and calibration protocols and not from the materials samples.

Guo et al. [44] found similar inconsistencies across 35 different instruments using ac-

etaminophen, polystyrene and cyclohexane. Cross-instrument differences relate to both

wavenumber shift as well as intensity variation for the same sample, the latter being

caused by the differing wavelength and polarisation dependent transmission function
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of each instrument and possibly differing instrument resolution. Wavenumber varia-

tion is generally attributed to small changes in the instrument resulting from thermal

expansion or positional drift; instruments with motorised gratings are particularly sus-

ceptible to miscalibration. These studies have highlighted the need for further research

into the cause of cross-instrument variability and for the availability of open-access

standardised materials and calibration protocols that can be universally adopted.

There has already been some development of consensus standards for Raman in-

strumentation by the American Society for Testing and Materials (ASTM) International

in relation to performance testing, calibration, and relative intensity correction (ASTM

E1683 [46], E1840 [2], E2529 [47], E2911 [48]). An excellent review of these standards is

provided in Refs 49 and 40. In summary, these standards relate to methods for spectral

response correction and wavenumber calibration for a single instrument, and for evalu-

ating performance of the instrument in terms of resolution, stray light, sensitivity etc. In

the context of this thesis, several of these standards are relevant. For example, Chapter

3, 4, 5, and 7 relate to new methods for wavelength/wavenumber calibration in Raman

spectroscopy, and for these chapters, the most relevant of the current set of standards

is ASTM-E1840, [2] most recently updated in 2013, which focuses on Raman shift (or

wavenumber) calibration. Included in this document are the Raman shift values for

eight wavenumber standards including acetaminophen, benzonitrile, which we utilise

in Chapters 3 and 5; these values were determined by eight independent laboratories

and only the most stable peaks (standard deviation < 1cm−1) were included. Interest-

ingly, this guide does not set out a particular method of calibration; two approaches are

commonly used in the literature: (i) wavelength calibration using an atomic spectrum

such as from neon followed by wavenumber conversion making use of the laser wave-

length, and (ii) direct use of a Raman wavenumber standard such as acetaminophen. In

the next chapter, we review both of these approaches in some detail and we conclude

that direct wavenumber standards are preferable as they so not require knowledge of

the laser wavelength and can provide an accuracy and precision at least as good as wave-

length calibration. Chapters 3 and 5 are concerned with novel approaches for direct
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wavenumber calibration, and it is our hope that some of our new methods will find their

way into ASTM-E1840, when it is next revised. In the context of Chapter 6, the most

relevant of the existing standards documents is ASTM-E2911, [48] also most recently

updated in 2013, which focuses on Raman intensity calibration using the NIST Standard

Reference Materials (SRMs) in the 224X series. However, these standard materials are

rarely used in the laboratories due to expense and difficulty in aligning. We hope that

the novel method proposed in Chapter 6, which makes use of an arbitrary white light

(such as that from the Raman microscope itself) for intensity calibration will also be

added to ASTM-E2911 when it is next updated.

The overall goal of this thesis is to develop a range of new methods for wavenumber

and intensity calibration, that outperform the existing state-of-the-art, either in terms

of accuracy or ease/cost of use, that will push Raman spectroscopy one step closer

to clinical adoption. In the next chapter, the background theory relating to Raman

spectroscopy and Raman instrumentation is reviewed, which underpins the various

contributions in the thesis and detailed literature reviews are provided for both wave-

length and wavenumber calibration. Each individual contribution is detailed in a new

chapter. Below, these various contributions are briefly previewed, with reference to the

chapter in which they are fully documented as well as the associated publications.

1.2 Contributions in this thesis

• In Chapter 2, a brief overview of the physics of Raman spectroscopy and Raman

instrumentation is provided; this is not considered to be a contribution. However

this chapter also contains two valuable literature reviews of wavelength calibra-

tion and wavenumber calibration methods, which we believe are contributions to

the field. The review of wavelength calibration has been published as a section

in the journal paper: Liu, Dongyue, and Bryan M. Hennelly, "Improved Wave-

length Calibration by Modeling the Spectrometer," Applied Spectroscopy (2022):

00037028221111796. and the review of wavenumber calibration has been in-

cluded as a section in a recently submitted journal paper: Liu, Dongyue, and
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Bryan M. Hennelly. "Wavenumber Calibration by Modelling the Raman Spectrom-

eter." submitted to Journal of Raman Spectroscopy Sept 2022.

• In Chapter 3 we investigate a new Raman wavenumber reference material in

the form of a commercial plastic. This material is low cost and highly photo-

stable. It is easy to mount on the microscope and these properties compare

favourably with respect to the current standard materials such as benzonitrile

or 4-acetamidophenol. This work was published in a conference paper: Liu,

Dongyue, Hugh J. Byrne, Luke O’Neill, and Bryan Hennelly. "Investigation of wave-

number calibration for Raman spectroscopy using a polymer reference." In Optical

Sensing and Detection V, vol. 10680, pp. 486-497. SPIE, 2018. Although, in that

paper, we demonstrate that the polymer is not as accurate as 4-acetamidophenol

in terms of wavenumber calibration, the accuracy is sufficient for many appli-

cations of Raman, and the advantages in terms of cost, photo-stability and ease

of use will make this material an attractive option in many cases. There is also

the consideration that this material could also be used as part of an intensity

calibration routine as described in Chapter 6, and might therefore provide a dual

use.

• In Chapter 4, we take a step back and focus on wavelength calibration, often

a necessary first step in Raman intensity calibration and also for wavenumber

calibration (via the wavenumber conversion approach). Here we develop a novel

protocol for wavelength conversion, which replaces the less accurate state-of-

the-art of polynomial fitting applied to the lines in an atomic emission spectrum

such as neon. The approach is to model the relationship between wavelength

and the detector pixels using the physics of optical imaging and diffraction. This

work was been published as a journal paper: Liu, Dongyue, and Bryan M. Hen-

nelly, "Improved Wavelength Calibration by Modeling the Spectrometer," Applied

Spectroscopy (2022): 00037028221111796. The advantage of the method over

polynomial fitting is to provide greater accuracy, especially in bands where there

are few neon lines. We consider the work in Chapter 4 (and the related work in
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Chapter 5) to be amongst the most important contributions in the thesis.

• In Chapter 5, the work is an extension of Chapter 4. Here, we take the physical

model that relates wavelength to detector pixel for an arbitrary spectrometer, and

augment it to relate wavenumber to pixel for an arbitrary Raman spectrometer.

With this new relationship, the algorithm developed in Chapter 4 can be repur-

posed to work with a Raman reference spectrum with sharp spectral lines (such

as from 4-acetamidophenol of from the polymer in Chapter 3) instead of the neon

spectrum. This work has been prepared as a journal paper that has recently been

submitted to the Journal of Raman Spectroscopy: Liu, Dongyue, and Bryan M.

Hennelly. "Wavenumber Calibration by Modelling the Raman Spectrometer." sub-

mitted to Journal of Raman Spectroscopy Sept 2022. As in the previous chapter, the

advantage of the method over the state-of-the-art is to provide greater accuracy

in general, and especially in bands where there are few spectral lines.

• In Chapter 6, we change focus and look at intensity calibration. Indeed, this

is the only chapter in the thesis to investigate intensity calibration. Typically,

intensity calibration is implemented using a reference fluorescent material from

NIST (which is rarely used due to expense and difficulties in aligning) or far more

commonly using a known NIST-calibrated white light source. The white-light

lamp is usually expensive to purchase and needs frequent re-calibration, which

is costly and time consuming. In this chapter, we demonstrate how an arbitrary

uncalibrated tungsten halogen lamp can be used to achieve higher accuracy than

a NIST-calibrated lamp. This work as been prepared as a journal paper to be

submitted to the Journal of Raman Spectroscopy with the following title: Liu,

Dongyue, and Bryan M. Hennelly. "Intensity Calibration of Raman Spectrometer

using Arbitrary White Light." to be submitted to Journal of Raman Spectroscopy

Nov 2022. There exists a secondary contribution in this chapter, which should not

be overlooked; in the course of this work we proposed a novel metric that can be

used to quantify the accuracy of an intensity calibration protocol across two or

more instruments. Previous attempts to gauge the performance of an intensity
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calibration protocol have been qualitative in nature.

• In Chapter 7, we return to the subject of wavelength calibration, which was also

the topic of Chapter 4. Here we take a fundamentally different approach using a

machine learning algorithm known as a long-term short-term memory (LSTM)

network. This network has been designed to identify arbitrarily repeating patterns

in a training dataset of 1D time-sequences and can then predict the future occur-

rence of a pattern. This network is the basis of the "Seq2seq" family of machine

learning approaches developed by Google for natural language processing. Here

we take an off-the-shelf implementation of an LSTM network and apply it to

wavelength calibration. The algorithm is trained using hundreds of thousands

of neon spectra and their true wavelength axes. A key feature in this chapter is

the generation of a simulator that can produce simulated neon spectra using

the physical model of a spectrometer developed in Chapter 4. The method is

found to be less accurate than traditional third order fitting, except when there

are five or fewer neon lines in the spectrum. We believe further improvements

can be achieved following this proof-of-concept. This work has been prepared as

a conference proceeding in Liu, Dongyue, and Bryan M. Hennelly. "Wavelength

Calibration using Long Short Term Memory Architectures." to be submitted to the

proceedings of the SPIE in 2023.
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Chapter 2

Physics of Raman Spectroscopy

2.1 The basic theory for Raman spectroscopy

Raman spectroscopy (RS), named after Indian physicist C. V. Raman (1888 – 1970),

is an optical method that probes the molecular structure of a material. Raman spec-

troscopy is based on the scattering of light caused by molecular vibration and rotation.

The wavenumber axis represents the Raman frequency shift, and intensity axis relates

to the concentration of the molecule causing the emission. The Raman effect originates

from molecular vibration (and lattice vibration) and rotation. When light irradiates a

material, both elastic scattering (which is by far the most predominant) and inelastic

scattering occur. Elastic scattering has the same wavelength as the excitation light and

is called Rayleigh scattering after Lord Rayleigh who first described the phenomenon.

Inelastic scattering has components longer and shorter than the wavelength of the

excitation light, which are collectively referred to as Raman scattering after C.V. Raman.

When photons interact with the molecule, the wavelength of most of the scattered light

remains the same, i.e. Rayleigh scattering is abundant. For example, if you point a

green laser pointer at a wall, you will always see a green dot; the color of the scattered

light is noticeably unchanged. However, although less perceptible, inelastic scattering

processes can also occur, resulting in the emission of light of different wavelengths. This

is usually related to molecular vibrations and to a lesser extent rotation.

Figure2.1 shows the Jablonski energy level diagram which relates to quantum me-
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Figure 2.1: Jablonski energy level diagram for Rayleigh and Raman scattering.A Raman
scattering event (or resonance) produces a Lorentzian line shape in the Raman spec-
trum.

chanical energy states. By comparing the energy differences of the photons emitted

during Rayleigh scattering and Raman scattering, it is shown that Raman scattered

photons either lose energy (Stokes) or gain energy (Anti-Stokes) during this scattering

process. The molecule moves from its initial state E0 or E1 up to a virtual state E0 +hv0

or E1 +hv0 due to the energy gained from the incident photon. If the state from virtual

states then drops back to the initial state, the collision is elastic and the released photon

and energy/wavelength are identical to that of the laser. However, in some rarer cases,

the drop will be to a different vibrational/rotational state resulting in the emission of

a photon with a different energy/wavelength. In those cases where the new state has

lesser energy than the initial state, Stokes Raman photons are emitted at H(v0 −∆v),

and in the cases where the new state has higher energy, anti-Stokes Raman photons are

emitted at H(v0 +∆v). The ratio between the Stokes and anti-Stokes emissions relates

to the temperature, and typically at room temperature, the Stokes emission is measured

by a Raman spectrometer.

The physics of Raman scattering should also consider the quantum effect of the

molecule. The molecule has vibrational and rotational degrees of freedom under the
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quantum effect. Even if the molecule stays in a static electric field and is not illuminated

by electromagnetic radiation, the ground state still exists in lots of different energy levels.

Figure 2.1 oonly shows three energy levels in the ground state for brief expression, but

it does not mean there are only two levels. In fact, lots of energy quantum effects are

created by the molecule’s vibration and rotation in the ground state. Usually, the final

state of the Rayleigh scattering has the same electronic energy as the initial state, and

the vibrational energy in Stokes Raman scattering has a higher final state, and lower in

anti-Stokes Raman scattering. Based on the Boltzmann statistics, [50] the intensity ratio

between the Raman Anti-Stokes and Raman Stokes v+vR
v−vR

in the settled temperature T

can be present as:

∆ṽ(cm−1) =
[

1

λi nci dent (nm)
− 1

λscat ter ed (nm)

]
× 109(nm)

102(cm)
(2.1)

The first term is the wavenumber Raman shift in cm−1, λi nci dent is the wavelength of

the excitation laser in nm, and λscat ter ed is the wavelength of the Raman scatter in nm.

The magnitude of the emission is dependent on the rotational and vibrational energies

of the molecules, as will be discussed in more detail in Sections 2.1.1 and 2.1.2.

2.1.1 Rotational Raman spectroscopy

The molecule must be anisotropically polarizable such as for the case of O2, N2,

and H2; molecules that exist in permanent dipole moments will not undergo rotational

Raman scattering. [51] The term "anisotropically polarizable" refers to a property of a

molecule or material that can be polarized to different extents in different directions,

resulting in anisotropic behavior. In other words, the polarizability of the molecule

or material depends on the direction of the electric field to which it is exposed. This

property is particularly relevant in the study of light scattering phenomena, where the

polarizability of the material determines the strength and direction of the scattered light.

Anisotropic polarizability can be described mathematically using a tensor, which relates

the induced dipole moment of the molecule or material to the applied electric field.

The polarizability of the molecule will determine the impact of an externally applied
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electromagnetic field on the electron charge distribution of the molecules. An electric

field such as that produced by laser radiation will induce a dipole moment in molecules

that are polarizable. In such an electrostatic field, inside the molecule the positive

nucleus will move towards the negative pole of the field, and negative electrons move

towards the positive pole of the field. In general, the induced dipole moment of the

molecule is proportional to the effective electric field strength E acting on it, that is:

µi nduced =αE (2.2)

where µi nduced is the size of induced dipole moment, E is the amplitude of the electric

field, and α denotes polarizability of the molecule. The polarizability of the molecule α

can be described as the degree to which the electrons in the molecule can be distorted

in a static electric field.

We now consider the molecule in the electromagnetic field from a monochromatic

incident laser in more detail; the electric field can be described as a time dependent

function, E(t ):

E(t ) = E0 cos(2πv t ) (2.3)

where E0 is the amplitude of the electric field from the laser, v is laser frequency, and t

is time. Thus, the induced dipole moment(µ), in Equation 2.2, can be rewritten as:

µ=αE(t ) =αE0 cos(2πv t ) (2.4)

Most of emitted photons will have the same oscillation frequency v , as the monochro-

matic incident beam, which can be explained by Rayleigh scattering. Molecular rotation

can also affect some of the emitted photons. The polarizability of the molecule can be

related to molecular rotations, and the electric field can therefore produce rotational

oscillation. If a molecule is rotationally oscillating at a frequency of vR , variations in the

polarizability (∆α) will be time dependent:

α(t ) =α0 +∆αcos(2πvR t ) (2.5)
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where α0 is a constant representing the average polarizability in one cycle of a rota-

tional oscillation; ∆α represents the polarizability, which is time-varying in one cycle

of molecular rotation. With α ranging from α0 −∆α to α0 +∆α as the molecule rotates

through 2π. By substituting the expression for polarizability (Equation 2.5) into the

expression for induced dipole moments (Equation 2.4), the induced dipole moment

can be expressed:

µ=αE(t ) = [α0 +∆αcos(2πvR t )]×E0 cos(2πv t )

=α0E0 cos(2πv t )+E0 cos(2πv t )∆αcos(2πvR t )
(2.6)

µ=αE(t ) =α0E0 cos(2πv t )+ 1

2
∆αE0 [cos2π(v − vR )t −cos2π(v + vR )t ] (2.7)

where the first part α0E0 cos(2πv t) represents the Rayleigh scattering, the latter two

terms oscillate at the sum and difference frequencies, representing the Stokes Raman

scattering and anti-Stokes Raman scattering, respectively. If ∆α = 0, the molecule is

not polarizable, which means the anti-Stokes and Stokes components disappear. In

order for rotational Raman scattering to occur a change in the polarizability caused by

molecular rotation is required.

The physics of Raman scattering can also be interpreted in terms of quantum me-

chanics. The molecule will have vibrational and rotational degrees of freedom under the

quantum effect. Even if the molecule stays in a static electric field and is not illuminated

by the electromagnetic radiation, many different energy levels will exist at the ground

state. In Fig. 2.1 only three levels are shown in the ground state for simplicity, but in

general there will exist many more. Based on the Boltzmann statistics, [50] the intensity

ratio between the Raman Anti-Stokes and Raman Stokes v+vR
v−vR

in the settled temperature

T can be present as:

v + vR

v − vR
= exp

(−hvR

kB T

)
(2.8)

where vR is frequency of Raman shift, h is the Planck’s constant, kB is the Boltzmann’s

constant and T is the temperature associated with the scattering species. This equation

is sometimes used to measure the temperature via Raman spectroscopy. [52] It can
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be shown using Equation 2.8, that the Stokes Raman scattering is stronger than the

anti-Stokes Raman scattering at room temperature. [53]

2.1.2 Vibrational Raman spectroscopy

The classical description of vibrational Raman spectroscopy is similar to that pre-

sented for rotational Raman spectroscopy; here, molecular vibration can also lead to

polarizability changes. [51] For polyatomic molecules, vibrational activity is complex,

often requiring the application of group theory to determine if vibrational modes exist

and, therefore, whether a molecule is Raman active or not as described in Reference

54. In general, two rules can be applied to determine whether a polyatomic molecule

undergoes Raman vibrations: (i) if the molecule has no symmetry (e.g. HCl, HCN), then

in general all of its vibrational modes are Raman active; however, these asymmetric

vibrations are weak and usually not observable; (ii) if the polyatomic molecules are

symmetric (such as H2O,CO2), then the corresponding vibrations will produce strong

Raman scattering.

A vibrational Raman spectrum contains the unique and highly resolved vibrational

signature of the scattering that is typically associated with a Raman spectrum. In the

measurements, the Stokes part is commonly much more intense than the anti-Stokes

part in an entire spectrum, [55] as described earlier, and the spectrum is typically

recorded in the Stokes band. The vibrational Raman scattering is similar to the ro-

tational Raman scattering mentioned in Section 2.1.1; however, during the period of

the molecular bond vibration, the electron distribution is stretched and compressed

periodically, which gives an oscillation of the polarizability along the direction of the

electric field. Based on Equation 2.5, it can be shown that the induced dipole oscillates

in phase with the vibrational motion of the molecule:

α(t ) =α0 +∆αcos(2πvvi b t ) (2.9)

where ∆α is the amplitude of the change in the polarizability varying by vibrational

cycle, vvi b is the frequency of the vibrational oscillation, α0 is a constant that represents
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the average polarizability in one cycle of vibrational oscillation, and t is time. Similar to

Equation 2.7 for rotational Raman spectroscopy part, a time dependent induced dipole

moment is described as follows:

µ=αE(t ) =α0E0 cos(2πv t )+ 1

2
∆αE0 [cos2π(v − vvi b)t −cos2π(v + vvi b)t ] (2.10)

where v + vvi b indicates the frequency of the emitted anti-Stokes Raman scattering,

and v − vvi b is the frequency of emitted Stokes Raman scattering. As for the case of

rotational Raman spectroscopy, Rayleigh scattering, α0E0 cos(2πv t ), dominates and has

the same frequency as the incident light.

From the description in Section 2.1.1 and Section 2.1.2, it is clear that Raman scat-

tered photons can be generated in two different ways: by rotation scattering and/or

vibrational scattering. The scattered photons generated by these scattering events are

collected by a spectrometer and manifest as intense peaks at different wavelengths.

Wavenumber shift is the unit of position of the Raman spectrum and can be related to

wavelength relative to the wavelength of the laser according to Equation 2.1.

2.1.3 Some limitations of Raman spectroscopy

Raman spectroscopy has several advantages over other forms of spectroscopy. Firstly,

it is label free and can be applied without damaging the sample. It can be applied non-

invasively to probe the chemistry of living samples as well as testing the purity of chemi-

cals. It can be applied with µm resolution using a microscope objective to deliver/focus

the laser and to collect the scattered photons; it can also be used endoscopically using

optical fibers to do the same. It can provide fingerprint like identification of pharma-

ceutical purity and diseased cells/tissue. However, Raman spectroscopy also has some

well known limitations including the following:

1. It cannot in general be used for metals or alloys.

2. The Raman effect is very weak, and detection requires sensitive and highly opti-

mized instruments. This also necessitates long acquisition times when capturing

a Raman spectrum from a biological specimen and prohibits the capture of hy-
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perspectral images over large areas.

3. Increasing the power of the laser will increase the amount of Raman scattering

proportionally and this approach can be used to reduce the acquisition time but

only up to the point where the sample is damaged by heat.

4. The overlapping of different vibrational peaks and the intensity of Raman scatter-

ing are easily affected by the resolution of the spectrometer, which can complicate

cross-instrument comparability.

5. The fluorescence from impurities in glass and similar materials can result in

strong signals that can dominate the Raman spectrum. Glass lenses can cause

problems especially for excitation in the NIR. The use of a confocal aperture to

spatially resolve the source of the scattering to be matched with the focal point

of the microscope objective (in a Raman microscope) can help to reduce the

presence of background signals.

6. Similar to the previous point, the sample container or substrate (eg glass slide)

can be especially problematic and since it is in close proximity to the sample, the

use of a confocal aperture cannot solve this problem entirely. Various algorithms

have been developed to numerically subtract the glass fluorescence spectrum but

when NIR excitation is used, the Raman spectrum is relatively weak compared to

this signal. This is less of a problem for visible wavelengths. Another solution is

to use substrates that produce a weak background; however, such pure Calcium

Fluoride or quartz crystals are expensive and cannot be used as consumable for

clinical applications. An example is shown in Section 5.5.1 in which the glass

cuvette sample holder is drilled at the base and sealed with a Calcium Fluoride

coverslip to be used with an inverted Raman microscope. This coverslip produces

a negligible Raman/fluorescence spectrum and the chemical with the holder can

be probed in isolation.

7. The highly variable auto-fluorescence from a biological sample can also be prob-

lematic as it adds a variable baseline to the spectrum and makes difficult cross-

instrument comparability. This effect is more pronounced for visible wavelength
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Figure 2.2: A basic Raman Spectrometer

excitation compared with NIR. As for removing the glass spectrum, various meth-

ods have been developed to numerically subtract this baseline, see Chapter 6 on

intensity calibration.

8. Classification/identification of spectra recorded across different instruments is

only possible if careful intensity and wavenumber calibration is performed. This

is the subject of this thesis.

2.2 Optical system of Raman spectroscopy

The probability of Raman scattering is extremely small relative to Rayleigh scattering,

and the strongest Raman scattering only accounts for a few thousandths of the entire

scattered light. Since the Raman effect itself is relatively weak, the optical components

of the Raman spectrometer must be optimized to deliver the laser to the sample, and

the scattered light to the spectrometers with the highest efficiency possible.

Figure 2.2 shows an example of a basic Raman spectroscopy setup, which consists

of four main components: (i) an excitation source (i.e. laser or filtered emission lamp),

(ii) an optical system to deliver the light to the sample with minimum power loss, (iii) a

collection system with highly efficient optics to collect an optimum amount of Raman

scattered light, and (iv) a detection system (i.e. spectrograph and detector). Optical

system design is an essential part of a successful Raman experiment. The laser source

must be efficiently delivered to the sample while simultaneously, an efficient optical
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system must be designed to collect as many Raman photons as possible. To achieve this,

a series of mirrors and lenses are used in the light path for both delivery and collection,

and filters are used to remove unwanted signals. Filters are essential in the collection

path to reduce the dominant Rayleigh scattering signal and other noise sources. Finally,

the spectrum itself is dispersed via a grating and is recorded by a cooled CCD. Noise in

the CCD device is caused by thermal energy. In order to get high signal-to-noise ratio

(SNR), the CCD must be cooled. The slit width at the entrance to the spectrometer is

an additional consideration; a wider width will increase power throughput (and lower

acquisition time) but at the expense of negatively impacting spectral resolution. More

details about the Raman spectrometer designed used in this paper will be shown in

Section 5.2.2. In the next few subsections, I will focus on several important components

of the Raman optical system, including the light source, spectrometer and CCD camera,

and explain how these components affect the performance of Raman spectroscopy.

2.2.1 Light source

There are many types of light sources used in Raman systems. Incoherent light

sources include filtered incandescent lamps (which were used in the earliest experi-

ments) and light emitting diodes (LEDs), and coherent light sources include various

lasers. Lasers can be divided into gas lasers, liquid lasers, solid-state lasers and semi-

conductor lasers. Solid state lasers have become the source of choice in modern Raman

spectroscopy due to their decreasing cost and narrow linewidth. In general, Raman

spectroscopy is independent of the wavelength of the laser; however, the choice of wave-

length can have an impact depending on the sample of interest. If you study biological

proteins, cells, etc., you need excitation using longer wavelengths of near-infrared light

to avoid auto-fluorescence from the sample; however this prohibits the use of glass

substrates or sample containers. Visible wavelengths and glass substrates can be used

for biological samples if the auto-fluorescence and glass signals can be numerically

subtracted by some method (see examples in Chapter 6). In this thesis, two excitation

laser wavelengths were used a 785nm CLDS diode laser with power of 300mW and a 532

nm solid state diode laser with a power of 50 mW.
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An additional consideration with respect to wavelength is the number of Raman

scattered photons. The intensity of the collected Raman photons I is proportional to

the fourth power of the incident laser frequency v in the following equation:

I ∝ v4 (2.11)

The Raman intensity scales linearly with respect to laser power. According to Equa-

tion 2.11, we can determine that the intensity ratio of the collected Raman photons

generated by a 532 nm laser and an 830 nm laser can reach to 5.92. Therefore, for a

camera with uniform quantum efficiently, the acquisiton time using 830 nm excitation

will be six times longer to obtain the same spectrum recorded with 532 nm.

Excessive thermal energy from the laser can damage biological and chemical sam-

ples. It is important to note that both flammability and toxicity are serious considera-

tions when selecting appropriate chemical samples for wavenumber calibration (see

Chapter 3 and Chapter 5). The high temperature generated by the laser can cause chemi-

cal samples or volatile toxic gases to be ignited. Generally such samples are avoided, and

this is certainly true in this thesis. For biological samples, the typical thermal damage is

coagulation, which is manifested by the irreversible transformation of liquids within

cells and proteins into a gel state [56] if the temperature caused by the laser exceeds

approximately 100◦C .

2.2.2 Spectrometer and CCD camera

In a Raman spectroscopy setup, a spectrograph is employed which combines a spec-

trometer and a CCD camera, which is used to record a Raman spectrum. In a typical

Raman spectrometer, Raman scattered light is dispersed using a diffraction grating.

This scattered light is projected onto the long axis of the CCD array. In Figure 2.3(b), a

reflection spectrometer is shown. The Raman scattered light is first focused into the

entrance slit through the lens. After passing through the slit, the scattered light is trans-

formed into parallel light through the collimating concave mirror and hits the diffraction

grating surface; reflective diffraction gratings are reflective plates with periodic arrays of
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Figure 2.3: (a) Basic Raman spectrometer with epi-illumination; (b) A Czerny-Turner
spectrograph with a rotating grating; the parameters shown in the illustration appear in
Equation 5.1 in the text; (c) A transmission spectrograph using a holographic grating.
Both types of spectrographs are used in this study.CM: Collimating mirror; FM: Focusing
Mirror; CL: Collimating Lens; FL: Focusing Lens

grooves on the surface. The concave mirror reflects the light separated from the grating

to different pixel positions of the CCD camera. The CCD detector contains an array of

light sensors capable of detecting light with spatial resolution. It is divided into a large

number of small photosensitive regions called pixels. Because they are extremely sensi-

tive to light, this makes these detectors suitable for analyzing inherently weak Raman

signals. Each pixel in a CCD camera is an individual photodiode, which converts the

collected photons into electrons and outputs a digital signal to represent the collected

intensity. The CCD must be cooled before experiment starts to ensure that thermal

noise generated by thermal energy by the pixels can be suppressed. Figure 2.3(c) shows

the transmission spectrometer system, which employs a holographic diffraction grating

in a transmission architecture to disperse the light. In this cases glass lenses are used to

collimate the light from the slit onto the grating and also to focus the dispersed light to

the camera. Both types of spectrometer are employed in Chapters 4 and 5 and further

details are presented in these chapters on modelling these spectrometers.
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Figure 2.4: QE of BR-DD CCD (red-dotted line). This is the QE of the camera that is
used in the Raman micro-spectrometer in MU biophotonics lab.The QE of the camera
modulates the Raman intensity and therefore two cameras can produce appreciably
different Raman intensities.

The Quantum Efficiency (QE) of the camera is related to the ability of the sensor

to respond to the incoming photon signal wavelength and the conversion of it to a

measurable electron signal, which is shown in Figure. 2.4. It also affects the accuracy

of intensity of the spectrum across the recorded bandwidth, as it highly wavelength

dependent for a given camera.

2.3 Cause of miscalibration in terms of wavelength and

wavenumber

There are many sources of error that can lead to miscalibration of a Raman spectrum.

Slight rotation of the spectrograph diffraction grating or the CCD (for the case of the

CCD we mean in-plane rotation), small lateral displacement of the CCD and small

changes in the laser excitation wavelength due to variation in temperature or current

will all result in errors in terms of wavenumber position of spectral peaks. The most
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potent source of error in many Raman systems is the grating angle. Many spectrographs

allow for rotation of the grating in order to allow for recording different regions of the

spectrum. However, frequent rotation of the motor can lead to error. The best way to

correct for this error is to routinely perform a rigorous calibration procedure. In this

section, we examine these various sources of error and attempt to relate instrument

error to error in the wavenumber axis in the recorded spectrum.

A common feature in a modern spectrograph is the variable rotation of the grating in

order to vary the wavenumber band that is recorded on the CCD camera; this is usually

achieved using a stepper motor. However, no motor can provide precise repeatability in

terms of the rotation angle. As a result, it is difficult to ensure that the expected angle is

obtained. Figure 2.5 illustrates the effect of an error in the angle of 0.1 degrees in terms

of the resulting error in both wavelength, see Fig.2.5 (a), and in wavenumber, which is

shown in Fig.2.5 (b). This calculation is based on the grating equation and the optical

configuration of a Czerny-Turner spectrograph such as that used in the experimental

system described in Section 4.3. The parameters used in this calculation are similar to

those found in the experimental system: source wavelength is 532nm, spectrograph

focal length is 0.8m, CCD pixel size is 26 µm, and grating incidence angle is θi = 11° and

groove density of the grating is 600 lines/mm. Fig.2.5 (a) shows the error in wavelength

that occurs when an expected angle of 11° is used to calculate the wavelength axis for

the spectrum, and the actual grating angle is 11.1°; the resulting error in the wavelength

axis is approximately 2.83 nm for all pixels. In Fig.2.5 (b) the corresponding error is

shown for the wavenumber axis; this error varies from 100 cm−1 to 80 cm−1 across the

spectrum.

The second source of error that is considered here is unexpected displacement of the

camera, which may occur if the camera is replaced. The error in both the wavelength

and wavenumber positions of spectral peaks resulting from a shift of 0.26 mm (10 pixels)

is shown in Fig.2.5 (c) and Fig.2.5 (d), respectively for the same parameters used in

the previous example. This number(10 pixels) is selected arbitrarily. In Fig.2.5 (c) it

can clearly be seen that shift 10 camera pixels will result in approximately 0.5nm error
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Figure 2.5: (a) shows the wavelength error caused by the 0.1-degree rotation in the grat-
ing as a function of pixel number and (b) shows the corresponding error in wavenumber;
(c) shows the error in the wavelength axis as a function of pixel number, caused by a
lateral displacement of the camera by an amount equal to the width of 10 pixels (approx-
imately 0.25mm) and (d) shows the corresponding error in wavenumber; (e) shows the
error in wavelength as function of pixel number caused by an in-plane rotation of the
camera sensor by an angle of 2° and (f) shows the corresponding error in wavenumber.
Finally (g) shows the error in wavenumber caused by a shift in the source laser wave-
length from an expected value of 532 nm to a value of 532.1nm.
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Figure 2.6: Illustration of the error caused by incorrect placement of the CCD camera in
terms of in-plane rotation. The angle of rotation shown in the figure is exaggerated.

for every point in the spectrum; more accurately, the error varies from 0.515nm to

0.525nm across the spectrum. Similarly, in Fig.2.5 (d) it can be seen that in terms of

wavenumber, this corresponds to an error of between 15cm−1 and 18.5cm−1 across

the face of the camera. It can be concluded that a small shift of the camera position

results in a significant miscalibration of the wavenumber position of spectral peaks and

may lead to significant errors in terms of multivariate classification. Another camera

related source of error that may occur is a small unexpected in-plane rotation, which

may occur due to the slight incorrect placement of the camera in the output port of the

spectrograph as illustrated in Figure 2.6. This will reduce the effective width of the CCD

pixels relative to the plane of the diffraction grating.

If the CCD camera is rotated around its center, the wavelength/wavenumber error

at the center pixel number should be zero and will increase at increasing distances from

this point. In Fig.2.5 (e) the error in wavelength is shown as a function of pixel number

for an incorrect placement angle of 2°. The error is zero for the centre pixel but increases

to ±0.02nm at the ends of the camera. The corresponding error in wavenumber is shown

in Fig.2.5 (f); once again, the error is zero for the centre pixel but increases to ±0.5cm−1

at extreme ends of the camera. Although this is not as potent a source of error as grating

rotation or lateral camera displacement, it is, nevertheless, noticeable.

When calculating the wavenumber axis using an already available wavelength axis,

the laser wavelength is a key factor. A slight error of laser wavelength can lead to the large

difference in the resulting wavenumber axis. Modern solid stable lasers are controlled

using highly stabilized laser drivers, which guarantee that a single longitudinal mode is
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produced; however, the wavelength may vary slightly over long periods of time. In Fig.2.5

(g) the resulting error in wavenumber is shown when an expected laser wavelength of

532nm was used to calculate the wavenumber axis, but the actual laser wavelength is

532.1nm; the resulting error varies from 14cm−1 to 18cm−1 across the spectrum. Even a

small change in wavelength of 0.001nm during an experiment will lead to appreciable

changes in the wavenumber axis; to overcome this problem, many of the lasers used for

Raman spectroscopy have picometer wavelength stability over a number of hours.

The process of Raman scattering is dependent on temperature. [4] Significant

changes in temperature can lead to fundamental changes in molecular structure. [4] A

change in temperature can, therefore, change a Raman spectrum in ways that are sample

dependent; peak broadening can occur, as can changes in peak intensity; however, such

changes are not typically reported for the types of samples used in the applications

discussed in Section 3.3, over the range of normal ambient temperatures that can

be expected in a laboratory environment. However, changing temperature may also

result in miscalibration of the wavenumber axis by a few wavenumbers, which may

be due to slight thermal expansion of the optical elements. Sample heating during

Raman spectroscopy can have several impacts on the measurement and interpretation

of Raman spectra:

1. Changes in the sample composition: High temperatures can cause chemical

changes or decomposition of the sample, leading to changes in its Raman spec-

tra. This can lead to incorrect interpretation of the spectra or loss of important

information.

2. Signal intensity changes: Heating the sample can increase the intensity of Raman

signals, making it difficult to distinguish the real signals from noise. This can

result in incorrect peak assignments or overestimation of the concentration of

certain components.

3. Peak shifts: Heating the sample can cause peak shifts due to thermal expansion or

contraction of the sample or changes in its refractive index. This can lead to peak

overlapping and difficulties in peak identification.
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4. Laser-induced heating: The laser used in Raman spectroscopy can also cause

heating of the sample. This can lead to thermal changes in the sample and affect

its Raman spectra.

Therefore, to avoid the impact of sample heating during Raman spectroscopy, it is im-

portant to keep the sample temperature stable and low, and avoid using laser power that

is too high. It is also important to understand the thermal behavior of the sample and

to carefully interpret the Raman spectra obtained under different temperatures. The

problem can be mitigated by controlling room temperature. It is not straightforward to

simulate an error in wavenumber due to temperature change; instead, an experiment

was designed to investigate this effect. A polymer slide, discussed in more detail in

Section 3.3, was illuminated by a 532nm wavelength laser source using the experimental

set-up described below, with no temperature control. The position of one peak was

measured for 1000 consecutive 10s acquisitions. The wavenumber position of this peak

as a function of the sequence number is shown in Fig. 2.7; an increase in the mean

wavenumber position of almost 2cm−1 is measured from the beginning of the experi-

ment to the end; ambient temperature was recorded to have increased by approximately

3°C during this time. We note that this effect may be the result of other sources of error;

a more controlled experiment would be required to conclusively relate temperature

change to instrument miscalibration.
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Figure 2.7: Change in wavenumber position at spectral peak for a polymer sample over
time.
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2.4 Wavelength calibration: Background

We note that the review that follows is included as part of a paper, Liu, Dongyue, and

Bryan M. Hennelly. "Improved Wavelength Calibration by Modeling the Spectrometer."

Applied Spectroscopy (2022): 00037028221111796. recently published.

2.4.1 Wavelength calibration using polynomial fitting

Wavelength calibration of a spectrometer using a detector array is based on exploit-

ing the relationship between wavelength and pixel position across the detector using

wavelength reference standards, such as neon or krypton, which have well defined

peak wavelengths. [57, 58] Typically, this involves fitting a low-order polynomial to

pixel-position and wavelength coordinates for a series of known peaks in the reference.

The use of linear and higher order polynomials have previously been applied for this

purpose; the selection of polynomial order varies in the literature on a case by case

basis. Here, we provide a brief review of the key contributions in this area in recent

decades, and in later sections the contribution proposed in this chapter is described in

the context of this background material.

In the late 1980s, Hamaguchi proposed a method for the calibration of Raman

spectrometers. [59–61] At that time, the use of ’multi-channel detectors’ was relatively

new and included instruments such as silicon-intensified target tubes, intensified photo-

diode arrays (IPDA) and early-stage charge coupled devices (CCD) with limited extent.

The basis of Hamaguchi’s approach was to first perform wavelength calibration using

a wavelength standard such as neon, followed by conversion to wavenumber, making

use of the laser wavelength in this calculation. In the simplest case, in the absence of

distortion, a linear relationship between ’pixel’ and wavelength was assumed and a

least-squares approach was proposed in order to achieve accurate calibration using

only a few neon peaks. However, it was also emphasised in this work that ’optical-

distortion’ caused by spherical aberration in the spectrometer, or by the detector itself,

such as in the case of an electrostatic-type IPDA, could result in a pincushion effect and

a non-linear relationship between wavelength and position in the recorded spectrum.
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Hamaguchi proposed a solution to this problem, whereby a wavelength standard

with many peaks (such as a neon lamp in an appropriate band) could be recorded

and a higher order polynomial could be used to describe the relationship between

the recorded peak (distorted) positions, and the expected peak positions. Thereafter,

recorded spectra would be first corrected for the non-linearity caused by the optical

distortion by using this predetermined higher order polynomial to cast the spectrum

into a ’virtual channel’. Following this, a linear-relationship between wavelength and

position could be assumed, facilitating a least-squares fitting of straight-line approach

to calibration as in the simple case in which no distortion was present. Importantly,

Hamaguchi notes that in the case of a non-linear relationship between wavelength and

position, a large number of reference peaks are required and, furthermore, the reference

spectrum should contain peaks close to each end of the spectrum, since a least squares

approach with higher order terms will often provide erroneous results when the fitted

curves are extrapolated to regions where no data points are available.

In this chapter, we also propose to account for the non-linearity of wavelength and

pixel positions using a non-linear relationship; however, we do not limit ourselves to

the use of fixed order polynomials. Instead, we model the spectrometer using basic

diffraction theory and ray optics in order to derive the non-linear relationship. Like the

Hamaguchi method, we cast the recorded wavelength-pixel positions of several neon

peaks using this non-linear relationship, such that the relationship between wavelength

and position becomes linear, followed by least-squares fitting of a straight-line. This

method accounts for non-linear dispersion by the grating but does not attempt to

account for optical-distortion as for the case of the method described above.

Linear/first order fitting has also been applied to splice together adjacent spectral

bands, [62, 63] and has also been applied as the first-step in intensity calibration using

a calibrated white lamp or florescence standard, which is used to correct for variation in

spectral intensity caused by wavelength variable transmission of the optical elements

in the spectrometer or the wavelength dependent efficiency of the grating. [63] This

method assumes a linear relationship between position and wavelength, which is ap-
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proximately true over narrow spectral bands and for low dispersion gratings. Calibration

using linear regression is known to produce errors as a consequence of the non-linear

relationship between wavelength and pixel position, which becomes more pronounced

for high dispersion gratings. [64–67] For some applications, such as for splicing, and

for intensity calibration, or indeed for calibrating low dispersion systems, these errors

are small enough to have low impact. However, for more accurate characterisation of

wavelength positions, up to fifth-order fitting has been preferred in some cases. [62, 68]

Tseng et al. established possibly the most widely adopted protocol for wavelength

calibration of modern spectrometers. [62] Included in this protocol is the use of first-

order fitting as a means to stitch together adjacent spectral windows, as well as second-

order fitting in order to obtain higher accuracy. This protocol also included a method

to improve results by first interpolating the peak regions in the spectrum in order to

obtain sub-pixel accuracy of peak position. The authors reported a standard-deviation

in the calibrated wavelength positions of the neon peaks < 0.005nm for a 1800 lines/mm

grating and a spectrometer with 0.64m focal length.

Despite the better accuracy provided by second-order fitting, some groups have con-

tinued to use first-order fitting of wavelength and pixel position. Hutsebaut et al. have

established a widely adopted protocol for the calibration of a Raman spectrometer. [39]

For intensity calibration, they record a neon wavelength standard followed by first-order

fitting of the peak wavelengths and pixel positions. This is used as a first step in order to

wavelength-calibrate a white light reference spectrum, which is subsequently used for

the intensity calibration of a Raman spectrum recorded using the same spectrometer.

Since the intensity of this reference is relatively smooth with respect to wavelength, the

accuracy afforded by linear-fitting is sufficient. As an indicative value for the goodness

of fit, the Root-Mean-Square-Error (RMSE) was calculated by the authors to be 0.03nm

for the calibrated neon wavelength values.

Carter et al. proposed three methods of Raman wavenumber calibration, [69] one of

which is based on wavelength calibration using a neon reference with first-order fitting

of peak wavelengths and pixel position, followed by wavenumber conversion using
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the known wavelength of the excitation laser. The authors argue that their approach

is simpler to the protocol in Ref. 62 and is, therefore, more suitable for frequent re-

calibration. First-order fitting of wavelength and pixel is shown to be sufficient for the

calibration of relatively narrow Raman bands ( 100cm−1) and the authors state that

higher-order fitting would be preferable for wider bands as outlined in Ref. 62.

Gaigalas et al. employed first-order fitting of wavelength and pixel position as a

first step for the intensity calibration of a broad spectrum, whereby many spectra are

spliced together following repeated rotation of the grating. [63] The spectra of interest

are produced by a white lamp and a fluorescence standard. Wavelength calibration

using krypton was applied in advance. It was observed that the errors in the wavelength

calibration follow a ’quadratic trend’, although no further investigation is applied since

this has little impact on the accuracy of the intensity calibration.

Martinsen et al. developed a protocol to calibrate a spectrometer with poor resolu-

tion [70] by using a filter to sequentially isolate single peaks in the wavelength reference,

followed by calibration based on the recorded peaks. Of particular interest in the context

of our work, is the use of a ’constrained cubic’ polynomial for wavelength calibration,

whereby the relationship between wavelength and pixel position is assumed to be pre-

dominantly linear with the residual term described by a weak third order polynomial.

In Ref [42] a fifth order polynomial was used to relate wavelength and camera pixel for

a neon–argon-lamp as part of a wavelength/wavenumber/intensity calibration rou-

tine for Raman spectra. To the best of our knowledge, this is the only instance of a

polynomial order > 4 being used in a wavelength calibration routine.

Recently, there have been some efforts to improve the accuracy of wavelength cal-

ibration by first improving the quality of the reference spectrum in advance of cali-

bration. [71, 72] This pre-processing includes denoising, stray-light removal [73], and

deconvolution for the purpose of compensating for the spatial frequency response of

the spectrometer, [74–76] as well as improved estimation of peak positions based on

Voight or Lorenzian fitting. [43, 71, 77]
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2.4.2 Wavelength calibration by modeling the physical system

Recently there has been interest in using a physical model of the optical path in

the spectrometer for the purpose of wavelength calibration [78–84] and this is given

special attention here since it is the core topic of Chapter 4. In the first such method

[78] a wavelength calibration routine was developed based on modelling the optical

system for the case of a Czerny Turner spectrograph using reflective concave mirrors.

Similar to the method proposed in this paper, this method uses the diffraction equation

to derive a relationship between the detector pixel position and the wavelength. A

series expansion is applied to this equation, and only the first three terms are used.

The resulting expression is a second order polynomial, the coefficients of which are

defined in terms of the system parameters, including the grating angle, the deviation

angle, the grating period, the focal length, the camera pixel size, and the tilt of camera.

Assuming a known constant grating period, all of these parameters can be determined

by a simple second order polynomial fit applied and examination of the resulting

coefficients. Effectively, this second order polynomial fitting provides the basis for all

future calibrations; using the parameters from the original second order fitting a single

peak is sufficient to calibrate following thermal expansion, which affects the values of

the focal length or deviation angle. Although this algorithm uses a model of the system,

it is essentially a second order polynomial fitting method and is subject to the same

errors that can result from polynomial fitting, in particular when the reference spectrum

does not have lines that cover the full wavelength bandwidth of the spectrometer. It

should be noted that the proposed algorithm also takes into account changes in the

reference wavelength due to variation in the refractive index of the air taken from Ref. 83.

In Ref. 79 a wavelength calibration approach is proposed that also uses a physical

model of the spectrometer, which replaces the need for polynomial-fitting described

above with a brute-force search. The relationship between pixel position and wave-

length is described as a function of the various system parameters including the grating

angle. A brute-force search over these parameters is applied in order to find the best-fit

for the recorded peaks from a reference neon lamp or similar. The key advantage of this

60



approach is the accuracy of the calibration outside the end-peaks in the reference since

polynomial-fitting does will not extrapolate well in these bands, and also the ability

of the method to be used with reference spectra containing only a small number of

peaks. Liu et al. proposed the first instance of this approach in 2013, [79] and we provide

a brief review of this work here, since it is most similar to the wavelength calibration

algorithm proposed in this paper. A physical model of a Czerny-Turner spectrometer

is used to derive the relationship between the three-dimensional coordinates of the

camera port and the points at which the various wavelengths will come to focus. This

physical model employs several system parameters relating to the four key elements in

the spectrometer: (i) the angle of the collimating mirror, (ii) the angle of the grating, (iii)

the angle and centre position of the imaging mirror, and (iv) angle and centre position

of the detector. All of the aforementioned angles were taken to be one-dimensional,

while the centre locations of the latter two elements were considered in two dimensions.

Of these eight parameters, only four were included in the calibration algorithm as vari-

ables: the angle of the grating, and the angle and centre position of the detector. The

remaining four parameters were assumed to be fixed and their values were measured.

The calibration algorithm is based on a brute-force search in a predefined range over

these four parameters, in order to find the set of parameters that provides the best fit for

the recorded position-wavelength values.

Zhang et al. [80] were particularly interested in developing a model that could also

account for a grating that was mounted on a sine-bar to achieve rotation. The model

included several parameters relating to the mechanical function of the sine-bar. The

authors identified six key parameters, which were functions of the sine-bar mechanical

properties, as well as the grating period, the angle of deviation, and the centre of the

detector. The wavelength calibration algorithm is based on solving a set of simultaneous

equations that are derived from the physical model, in order to estimate the six key

parameters. The authors state that this places a lower limit of five reference peaks for the

algorithm to work. However, it should be noted that such an approach may be adversely

affected by error in estimating a single peak position, whereas the iterative approach
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described earlier [79] would likely be significantly more robust to errors in a single peak

position value.

In Ref. 84 the authors use the diffraction equation to derive a single equation to relate

pixel position and wavelength for a lens based reflection spectrometer. They identify

three coefficients in this equation, each composed of two or more system parameters

including focal length, deviation angle, grating angle, camera centre and pixel size.

Solving for these three unknowns requires only three spectral lines from a mercury

lamp. The authors report superior results compared with first, second, and third order

polynomial fitting as well as two trigonometric methods. They report a ’standard error’

(which is similar in definition to RMSE except that it includes the number of coefficients

used in the model in its definition) of 0.05nm.

In Ref. 81, 82 a number of wavelength calibration algorithms are developed based

on the physical model. This model accounts for all of the system parameters that

are investigated by other researchers, [79, 80] but also accounts for tilt of the detector

both horizontally and vertically, as well as accounting for displacement of the input

irradiance vertically along the slit. As for other papers, the diffraction equation is used

as the basis for deriving a model for the physical system. The algorithm fits up to nine

system parameters to this equation although the method of fitting is not discussed. This

is reduced to eight when the grating angle is known precisely using an optical encoder.

With this encoder, the wavelength accuracy is reported to be 0.005nm and 0.025nm. It

should be noted that the proposed algorithm also takes into account changes in the

reference wavelength due to variation in the refractive index of the air according to

Ref. 85.

We also note that modelling the physical system has also previously been considered

for Echelle spectrometers. [86–88]
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2.5 Wavenumber Calibration: Background

We note that the review that follows in this section (and the Appendix that immedi-

ately proceeds it) is included as part of a paper, Liu, Dongyue, and Bryan M. Hennelly.

"Wavenumber Calibration by Modeling the Raman Spectrometer," submitted to Journal

of Raman Spectroscopy, Sept 2022.

In this section, we provide a detailed review of direct wavenumber calibration in

the literature, and compare with the alternative approach of wavelength calibration

followed by wavenumber conversion. In this review we have compared the various

contributions over several important features including: the reference materials used,

the number of peaks in the reference spectrum, the resolution of the systems, methods

for sub-pixel interpolation, and calibration accuracy. We believe this is the first such

review of its kind in the literature to date. We note that this review is included as part of

a paper, Liu, Dongyue, and Bryan M. Hennelly. "Wavenumber Calibration by Modelling

the Raman Spectrometer." submitted to Journal of Raman Spectroscopy Sept 2022, which

is currently under review.

There are two approaches to wavenumber calibration in Raman spectroscopy: (i)

Initial wavelength calibration using an atomic emission spectrum such as neon (for

a comprehensive review of wavelength calibration we refer the reader to the Ref. 89),

followed by wavenumber conversion making use of the excitation laser wavelength in

this calculation; (ii) Direct wavenumber calibration using a Raman reference standard

such as acetaminophen or indene. Both approaches appear to be equally represented

in the literature and both require the use of a reference standard with a spectrum

containing several well defined narrow peaks, which are subject to polynomial fitting. In

Table 2.1, a non-exhaustive literature review is provided of both approaches. This table

compares the different reference standards, polynomial orders, sub-pixel interpolation

methods, and accuracy of both approaches. To save space, the footnote of Table 2.1 are

given in Appendix 2.6.1.

In the first publication to examine a wavenumber calibration protocol, [59] Ham-

aguchi et al. reported that wavelength calibration followed by wavenumber conversion
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provided higher accuracy. However, our review of the literature reveals that both ap-

proaches provide similar levels of absolute error (accuracy) with a limit of approximately

0-0.1 cm−1 and a standard deviation (or precision) of 0-0.1 cm−1. Direct wavenumber

calibration is a single step approach with the advantage of not requiring a priori knowl-

edge of the laser excitation wavelength, which can be difficult to record using the Raman

system if the spectrograph grating is configured to avoid this wavelength, or if long-pass

or notch filters remove it. Rotating the grating to record the laser also presents prob-

lems in that wavelength calibration must be repeatedly applied following rotation. In

such cases, a separate spectrometer is sometimes used to record the laser wavelength.

Alternatively, the laser wavelength can be estimated by measuring the Raman wavenum-

ber shift of Raman reference standards such as cyclohexane. [68, 90] Error in the laser

wavelength measurement is problematic; for example, in Ref. 91, the authors report an

uncertainty of ±0.005 nm in the laser wavelength introduces an error of 0.18 cm−1 in

the corresponding relative wavenumbers, at 532 nm excitation. Given the similar accu-

racy of the two approaches and the additional difficulties in the two step wavenumber

conversion approach, it can be taken that direct wavenumber calibration is preferable.

Typically the wavenumber conversion approach uses neon as the reference material.

However, the reference standards that have been investigated for direct wavenumber

calibration are far more varied [101] as seen in Table 2.1. In Ref. 69 the authors define the

characteristics of a suitable wavenumber reference standard. In summary, the spectrum

must contain a large number of sharp peaks (of known wavenumber position) that

extend over the full range of the recorded bandwidth; the accuracy of the calibration

outside of the end peaks drops significantly. Since no single standard will provide this, it

is common to see several reference materials combined in a calibration protocol. [39, 97]

The sampling considerations of the standards is also important and should resemble

those of the samples to avoid any change in the recording conditions. Gaseous samples

can be troublesome as these require specialised containers, although these samples

typically provide the sharpest peaks. Also important is the long term stability of the

sample; photo-degradation of the sample or chemical change over time can result
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Ref Peak
Poly-

nomial
order

Reference material Sub-pixel interpolation
Resolution

(cm−1)

Calibration
accuracy

(cm−1)
Wavelength Calibration followed by Wavenumber Conversion

59 21 3-5 neon + laser wavelength - -
SD:0.2-0.4
AE:0.2-0.5

68 39/16†1 5
argon, neon

+ laser wavelength†1 8×FFT 5-7
MAE:0.85

SD:0.257†2

92 5 1 neon + laser wavelength
Apodization + 4×FFT

+ Gaussian fit
10

MAE:1
SD:0.2

93 50 1†3 thorium, neon
+ laser wavelength

Apodization + -×FFT
+ 4th order polynomial fit

4 SD:0.04-0.06

90 59/21†1 1 neon + laser wavelength†1 Apodization + -×FFT
+ polynomial fit

-
RMSE:0.4
SD:0.05

94 9 -†4 neon + laser wavelength Gaussian fit - -

95 28 3 neon + laser wavelength†5 Gaussian fit 1.8 SD:0.6

78 15 2
neon, mercury

+ laser wavelength
8×FFT

+ log-normal function fit
0.87-1.4 SD:0.1

96 18/11†6 1 neon + laser wavelength†6 -×FFT + polynomial fit - SD:0.24/0.04†6

Direct Wavenumber Calibration
59 17 - indene - - -

93 5 1 acetonitrile
8×FFT

+ 4th order polynomial fit
4 -

69 17 1-3 indene 8×FFT -
MAE:(1:0.25,

2:0.2,3:0.16)†7

39 67 4
4-acetamidophenol, benzene,

polystyrenel, acetonitrile
64×FFT

+ 2nd order polynomial fit
4

AE:0-0.1
SD:0.01-0.21†8

97 45 3 H2,HD,D2,O2
Gaussian, Lorentzian,

or Voigt fit
3.5 MAE:0.08-0.11†9

91 20 1
CO2,CO,N2O,

H2O,HC1
4th order polynomial fit 0.06

MAE:0.003-1
SD:0.002

3 15 4 4-acetamidophenol 3rd order polynomial fit 2.5
SD:

0.0374-0.6542†10

98 8 2-4 indene - - -

49 19 2-4 4-acetamidophenol - 4.36-12.03
RMSE:

0.52-3.56†11

99 13 3-5 4-acetamidophenol Gaussian or Lorentz fit - -

45 3 -
polystyrene, benzonitrile,

cyclohexane†12 - - nIQR:0.74†13

44 10/5/5 3
4-acetamidophenol,

cycohexane, polystyrene
Gaussian fit 1-20

MAE:0.45-1.93
SD:0.24-2.16†14

100 - 3
acetone, sodium perchlorate,

potassium perchlorate,
acetonitrile, military C-4.

Gaussian fit 2-5 AE:0-30

Table 2.1: Non-exhaustive literature review of wavenumber calibration for Raman
spectrometers. The two approaches of wavelength calibration followed by wavenumber
conversion, and direct wavenumber calibration are compared in terms of: reference
materials used, number of peaks, polynomial order, method for sub-pixel interpolation
to identify the peak positions on the detector with high accuracy, resolution of the
systems, and the reported accuracy/precision. For the latter, the various metrics given
here as abbreviations are defined later in Section 5.5.2. To save space, footnotes are
provided in Appendix 2.6.1.

65



in errors. One final note on the selection of wavenumber reference standards is on

the use of a single peak standard such as Silicon. Such a standard is sometimes used

to account for a constant offset in the wavenumber axis due to small daily changes

in the system/environment. It has recently been shown that this approach results in

significant error; [45] it is notable that the European Pharmacopoeia describes the

requirement of a minimum of three wavenumber shifts covering the working range of

the instrument. [102]

A common feature in wavenumber calibration using either of the approaches is

the identification of peak position with sub-pixel accuracy, as highlighted in the ’sub-

pixel interpolation’ column in Table 2.1. Any error in identifying these peak positions

will consequently result in a calibration error. A desirable characteristic of the wave-

length/wavenumber standards in the peaks are narrow; however, this presents a prob-

lem for accurately identifying the position of the centre of peak if the sampling interval

of the detector is of similar width or larger than the peak width. An early approach

involved the recording of many spectra with very small shifting of the spectrum between

captures. [103] To overcome the problem for a single spectrum, many authors use a

first step of apodization, [90, 92, 93] whereby the raw spectrum is subject to a discrete

Fourier transform (DFT), followed by multiplication with a Gaussian function or similar

and an inverse DFT. The result is a convolution of the raw spectrum with a symmetrical

blurring function, which broadens the shape of the peaks such that the centre can be

more easily identified. The DFT is implemented with computational-efficiency using

the fast Fourier transform (FFT) algorithm. An additional step of interpolation is com-

monly applied, whereby the DFT of the spectrum is zeropadded to increase the number

of samples n-fold, which provides n times interpolation. In the table this is denoted as

n×FFT. Finally, in order to identify the position of the peak with a resolution smaller

than the sampling interval, the peaks are fitted using a Gaussian, Lorentzian, or Voigt

function; [44, 92, 94, 95, 97, 99, 100] and the centre of the fitted function is taken to be

the peak position. Alternatively, polynomial fitting [3, 39, 90, 91, 93, 96] can be applied

to the few samples around the maximum peak samples; the zero valued derivative of
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the polynomial in this region reveals the local maximum, which is taken as the peak

position.

Once the position on the detector of each peak in the reference spectrum have

been identified with sub-pixel accuracy, these values are then subjected to polynomial

fitting with respect to their known wavelength or wavenumber values. In this way

the wavelength or wavenumber axis for the spectrum is determined. For the former,

the wavelength axis is then converted to wavenumber values making use of the laser

wavelength. Although the first paper to investigate wavenumber calibration employed

a polynomial order of 5 (necessitated by the presence of high levels of distortion in

the imaging system), a low order polynomial is generally preferred in the literature

for both the wavenumber conversion and direct wavenumber calibration approaches,

as seen in Table 2.1. In Ref. 98, the authors compared the use of 2nd , 3r d , and 4th

order polynomial fits. They demonstrate that 4th order fits give significantly worse

results in comparison to 2nd and 3r d order fits. Their data also indicates that better

fits were obtained with a quadratic equation for three (413.1, 487.9, and 514.5 nm)

of the five excitation wavelengths examined. Interestingly, it has been shown that a

quadratic expression is sufficient to model the relationship between wavelength and a

CCD detector based on the physics of dispersion from a diffraction grating and imaging

in the presence of low distortion; the coefficients of the second order polynomial can be

defined in terms of the system parameters. [78] Recently, we have shown that the non-

linearity of this relationship varies considerably as a function of grating period and focal

length. [89] It can be expected that the non-linearity of the wavenumber axis will be more

pronounced given the non-linear relationship between wavelength and wavenumber,

and therefore, a polynomial order > 2 may be mentioned. We examine this point in more

detail in Section 5.2. It is notable that recent large scale cross-instrument investigations

have preferred 3r d order polynomials for direct wavenumber calibration. [44, 49, 100].

Some authors have employed linear interpolation between adjacent reference peaks as

an alternative to polynomial fitting with high levels of accuracy. [93, 96] A key point that

is often overlooked is the accuracy of the points used in the polynomial fitting; while
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great attention is given to finding the position of the peaks on the detector with sub-

pixel accuracy, the accuracy of the true wavelength/wavenumber values associated with

these peaks is rarely discussed. For the case of wavelength calibration, the wavelength of

the peaks in atomic emission spectra is subject to change depending on environmental

conditions; spectral line positions for the reference lamp should be corrected to account

for the refractive index of air. [83, 85] Rarer still is any consideration of the shift in

wavenumber standards due to variation in temperature. It is known, for example, that

the peaks in the cyclohexane spectrum, a commonly employed wavenumber reference

standard, will change both in terms of area and offset. [104] Furthermore, the change in

each peak is different and depends on the nature of the vibrational/rotational mode and

also on the level of depolarisation associated with that peak; some peaks were found

to vary by 25 times more than others. [104] It is difficult to account for such changes

in a wavenumber reference spectrum; however, as noted in Ref. 104, for the case of

cyclohexane, the temperature dependence of the Raman band position is small enough

to be ignored for the calibration requirements of most applications (for example, the 802

cm−1 band shifts 0.12 cm−1 for a 10 degree temperature change). Given the consistency

of measurement in the literature to date, it can be expected that other wavenumber

standards will have similar behavior. One final point of note on polynomial fitting, is

the location of the outermost peaks in the reference spectrum. It is very important that

peaks exists close the ends of the recorded band; this is necessary to avoid high levels

of error with polynomial fitting in bands outside of the range of the reference peaks.

This has necessitated the combined use of several wavenumber reference standards in

order to fully cover the bandwidth of the spectrometer. In this chapter, we develop a

calibration method that is significantly more robust to this problem than polynomial

fitting.

Any discussion of calibration accuracy of Raman instruments should begin with

mention of the European Pharmacopoeia (Ph. Eur.), [102] which defines the tolerance

for the wavenumber shift in the recording of several peaks of polystyrene, paracetamol,

and cyclohexane to be ±1.5 and ±2.0 for bench-top and handheld instruments respec-
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tively. The accuracy of the various calibration protocols that have been reported in the

literature to date vary considerably, as seen in Table 2.1. Given the different metrics for

’accuracy’ and ’precision’ that have been applied to date, it can be difficult to directly

compare many of these references. We refer the reader to Section 5.5.2 for explicit

definition of these various metrics. It is notable for many papers, only the standard

deviation is reported as a measure of precision while the accuracy of the calibration

with respect to the known reference peaks is not reported. The reason for this is that the

wavenumber shifts of these standards were not yet defined with an agreed upon accu-

racy. Assuming an accurate sub-pixel interpolation method is used, three factors appear

to determine the calibration accuracy: (i) the resolution of the system as evidenced by

the high accuracy for FT-Raman calibration; [91, 93] (ii) the availability of a high number

of known reference peaks over the band of interest; (iii) the sharpness of the peaks; and

(iv) the accuracy of their ’known’ wavenumber shifts. These points are emphasised by

the most accurate calibration protocols reported in the literature to date in Ref. 39 and

Ref. 97. In Ref. 39, the authors use 67 peaks from a combined reference standard and

evaluate accuracy over several months. The standard deviation of the wavenumber

shifts is reported to be in the range 0.01-0.21 cm−1, which is the lowest reported to date

for the specific reference standards used in the study including the values reported by

ASTM. [105] The absolute error with respect to the ASTM wavenumber shifts was zero

for almost all of the peaks reported; however, this should take into account the limted

accuracy for these standards reported by ASTM of 0.1 cm−1. This study highlights the

importance of using a large number of peaks for calibration, but also the limitation in

terms of accuracy afforded by most of the calibration standards published by ASTM. In

Ref. 97, gaseous reference standards are combined, which have extremely sharp peaks

and for which the wavenumber shift are known down to an accuracy in the order of

0.001cm−1. [106–108] In total, 45 peaks are used and the mean absolute error is reported

as 0.08-0.11 cm−1. However, the authors have estimated error by taking the average of

the residual error in wavenumber of the reference peaks and the residual pixel error

subsequently converted into wavenumber error. If the authors had used only residual
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error in the wavenumber shift of the reference peaks to define absolute error, which

is the typical approach in the literature, their reported mean absolute error would be

0.001652-0.000818 cm−1, which would represent the most accurate calibration reported

thus far in the literature, albeit for a single spectrum.

In this chapter, we propose a new direct wavenumber calibration protocol that

advances on the background material reviewed in this section. More specifically, we

propose an alternative to the third-order polynomial fitting step used in existing direct

wavenumber calibration protocols; although the accuracy and precision that have

been reported by the state-of-the-art [39, 97] is very high, we propose to augment

these protocols such that they are more accurate in bands outside of the outermost

peaks; we note that all of the literature to date does not report the accuracy in these

bands. The method proposed here may also enable few peaks to be used and therefore

reduce the number of materials used in the composite reference standard. We will

demonstrate that our method has slightly higher accuracy than second and third-order

fitting inside the band of the reference peaks, and significantly higher accuracy outside

of this band. The proposed method is based on using a physical model of the Raman

spectrometer to derive a relationship between wavenumber and detector pixel. The use

of a physical model of the spectrometer has previously been used in Raman wavenumber

calibration; [78] however, in that case the author relates wavelength to pixel and the

method can therefore not be classified as a direct wavenumber protocol. Furthermore,

the author defines the wavelength/pixel relationship to be governed by a second order

polynomial, the coefficients of which are defined by the parameters of the optical system.

This is done only once and these parameters are fixed for future re-calibration. In this

chapter, we do not impose such a limitation and we assume a general rotating grating,

which can be transmitting or reflecting and which requires frequent calibration.
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2.6 Appendix

2.6.1 More details on Table 2.1

Footnotes for Table 2.1 are provided here: †1: The laser wavelength is estimated

using the wavenumber shift of the cyclohexane and toluene peaks. The first number in

column 2 relates to peaks from the atomic emission lamp, the second number relates

to combined cyclohexane and toluene peaks used to estimate laser wavelength; †2:

The values are calculated from Ref68 Table vii; †3 Different first order polynomials

were used to connect each set of adjacent reference peaks; †4: Polynomial fitting is not

used; A physical model of the system is developed relating wavelength to pixel position,

which is used to determine the wavelength axis; †5: The laser wavelength is estimated

by measuring the wavenumber shift associated with the rotational lines of hydrogen;

†6 18 neon peaks were used for wavelength calibration, and the laser wavelength is

estimated using the wavenumber shift of 11 cyclohexane peaks. The SD values relate to

a single peak of cycolhexane. The smaller value is the result of several hundred separate

calibrations averaged together where the grating is slightly moved between calibrations.

†7: SD values are provided as follows: indene fingerprint region SD:0.4-1 and CH-band

SD:0.5-2. The MAE results given in the table relate to a simulation of calibration taken

from Table I and Table II in Ref 69 using polynomials of orders 1, 2, and 3. †8: Results for

Bis(MSB) and Naphthalene are compared with ASTM E1840-96 [2]. Mean wavenumber

positions over 60 measurements are identical for all peaks except four, each of which had

a difference of 0.1 cm−1; SD for Bis peaks are 0.02-0.21 and for Naphthalene are 0.01-0.13.

†9: The maximal error of residuals in a single (combined) spectrum, 3-sigma, is actually

reported as 0.24, and 0.34 for parallel and perpendicular polarisation, respectively. The

authors have estimated error by taking the average of the residual error in wavenumber

of the reference peaks after third order polynomial fitting (this is the standard approach

by other authors) and the residual pixel error, which is subsequently converted into

wavenumber error. The latter is much larger than the former; if the authors had used

the typical approach their reported errors would be MAE:0.001652 and 0.000818, which
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would represent the most accurate calibration reported thus far in the literature. †10:

SD of 15 peaks from 4-acetamedophenol over 100 spectra ranged from 0.0374-0.5333;

SD of 15 polymer peaks over 100 spectra ranged from 0.0769-0.6542. †11: Three devices,

and three polynomial orders (2,3,4) were evaluated: Device 1:(3.56,3.49,3.47); device

2(0.98,0.92,0.91); device 3(0.76,0.60,0.52). †12: For three chemicals only a single peak was

analysed. These are 1001.3cm−1 for polystyrene, 1001.1cm−1 for benzonitrile, 802.0cm−1

for cyclohexane; †13: The normalised interquartile range (nIQR) is given as an estimate

of the standard deviation; †14: Results are reported separately for a single spectrum of

the three standards: paracetmol(MAE:0.45,SD:0.24); cyclohexane(MAE:1.93,sd2.16);

polystyrene(MAE:1.31,sd 1.52).
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Chapter 3

Wavenumber calibration using a

Polymer Reference standard

The work in this chapter has been published in the following reference: Liu, Dongyue,

Hugh J. Byrne, Luke O’Neill, and Bryan Hennelly. "Investigation of wavenumber calibra-

tion for Raman spectroscopy using a polymer reference." In Optical Sensing and Detection

V, vol. 10680, pp. 486-497. SPIE, 2018. with the following abstract:

"Raman spectroscopy is an optical technique that can be used to evaluate the biomolec-

ular composition of tissue and cell samples in a real-time and non-invasive manner.

Subtle differences between datasets of spectra obtained from related cell groups can be

identified using multivariate statistical algorithms. Such techniques are highly sensitive

to small errors, however, and, therefore, the classification sensitivity of Raman spec-

troscopy can be significantly impacted by miscalibration of the optical system due to

small misalignments of the optical elements and/or variation in ambient temperature.

Wavenumber calibration is often achieved by recording the spectrum from a wavenumber

reference standard, such as 4-acetamidophenol or benzene, which contains numerous

sharp peaks in the fingerprint region. Here, we investigate a commercial polymer slide

as a wavenumber reference standard for the calibration of Raman spectra. The Raman

spectrum of this slide contains numerous sharp peaks in the fingerprint region. Unlike

many other reference standards, the polymer slide is non-hazardous, has an indefinite
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lifetime, and is designed in the shape of a glass slide used for microscopy. We evaluate this

reference in terms of accuracy and repeatability, and we compare with the established

4-Acetamidophenol wavenumber reference."

3.1 Introduction

A number of solutions that perform wavenumber calibration already exist. [109]

One solution uses two steps: (i) a known spectrum from a Neon lamp (or similar)

allows wavelength calibration of the spectrometer to be performed, [39] followed by

(ii) subsequent wavenumber calibration, which is performed using a known standard

such as silicon, which produces a well-known sharp peak at 520 cm−1. A second so-

lution, which uses a single step, is to employ a wavenumber reference standard such

as indene, [98, 110] cyclohexane, [62, 111, 112] benzene, [113] and benzonitrile. [114]

These standards contain numerous sharp peaks in their Raman spectra at well-known

wavenumber locations. A polynomial function can be fitted to these peak positions in

order to calibrate the entire wavenumber axis. Often, many wavenumber standards are

used at the same time in order to increase the range of, and improve the accuracy of,

the calibration.

All of the chemical standards that we reviewed in the literature are hazardous to

human health and must be handled in a controlled manner. In this chapter, we propose

a new wavenumber reference in the form of a commercial polymer slide that is designed

for life science applications, which is inexpensive, safe to handle, and chemically stable

over time. In Section 2.3, the various sources of error in a Raman spectrometer are

discussed and, in Section 3.2, the traditional approach of wavenumber calibration using

a wavenumber reference is reviewed, specifically for the case of 4-Acetamidophenol,

a commonly used wavenumber reference. In Section 3.3, the peak positions of the

polymer are measured and the stability of these peak positions is compared with that of

4-Acetamidophenol. In Section 3.4, a brief conclusion is offered.
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3.2 Wavenumber calibration using a wavenumber refer-

ence

The purpose of this section is two-fold. Firstly, the protocol used for wavenumber

calibration using a wavenumber reference is described in detail and experimental results

are shown describing each step using a sample of 4-Acetamidophenol, a commonly used

wavenumber reference standard. Secondly, the newly calibrated instrument is used to

record the (calibrated) spectrum from a commercial polymer slide that is commonly

used for life science purposes (µ-Slide I Luer, Ibidi GmbH, Munich, Germany). [115] This

slide is designed with a flow channel for imaging adherent cells under flow conditions

as well as 3D cell culture. The base of the slide is made of a transparent polymer with

coverslip thickness to facilitate imaging with an inverted microscope. The properties of

autofluorescence, birefringence, and the refractive index of the Ibidi polymer coverslip

are similar to those of glass, allowing for the use of all kinds of objective lenses including

oil immersion; the specific chemical structure of the polymer material is proprietary,

and could not be ascertained. In Section 3.3, we explore the potential of this polymer

slide to be used as a wavenumber reference by analysing the stability of the peaks in

the polymers Raman spectrum and comparing these results to those obtained from

4-Acetamidophenol.

The protocol for using a wavenumber reference to perform wavenumber calibration

has been developed in many other references. [39–42, 116] The steps involve:

(i) Recording the spectrum from a sample with a pure chemical that has a known Ra-

man spectrum containing a number of sharp peaks at well-defined wavenumber

positions.

(ii) Obtaining the precise wavenumber positions from a reliable source such as the

American Society for Testing Materials (ASTM) or the National Institute of Stan-

dards and Technology.

(iii) Recording the sample (pixel) position of each of these peaks in the spectrum,

and pairing these with their respective wavenumber positions to provide a set of
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two-dimensional coordinates in the form (pixel, wavenumber).

(iv) Applying a polynomial fit to these coordinates using the method of classical least

squares. The resulting polynomial provides the relationship between every pixel

and the corresponding wavenumber.

Further detail on these steps can be found in Ref. 39. The number of peaks that are

needed to perform accurate calibration has been a subject of interest in the literature,

as has the order of the polynomial that should be used in the Step (iv). [39–42, 116] The

accuracy can be shown to be dependent on the number and position. The peaks and a

large number of peaks covering as wide an area of the spectrum should be used. In order

to increase the number and range of peaks used in the calibration, some researchers

have used multiple chemical references in a single calibration. [39] The order of the

polynomial should not be so large as to result in overfitting but not so small to result

in under fitting; a polynomial order of four has been shown to perform well. [39] The

pixel positions that are recorded in Step (iii) can be obtained with sub-pixel accuracy

using a process of interpolation as proposed in Ref. 39. In the experiment that follows,

we perform cubic-spline interpolation in the area of each peak in order to accurately

identify the position of each peak.

Spectra were recorded using a custom built confocal Raman microspectrometer

operating with a 532nm laser (150mW, Torus; Laser Quantum, Cheshire, UK), 10x mi-

croscope objective (10 / 0.3 Olympus MPlanFl; Olympus Corporation, Japan), and 100

µm confocal aperture. Raman scattered photons are collected with a spectrograph

(Shamrock 500; Andor Technology, UK) operating with a 1000 lines/mm grating (spec-

tral resolution of 2.5 cm−1 at the centre), and a cooled CCD camera (Newton 920; Andor

Technology, UK) operating at −80°C. More details on this optical system are available

in Ref. [23]. The chemical used to calibrate our instrument is 4-Acetamidophenol, a

commonly used wavenumber reference standard. A pure sample of this chemical was

obtained from a commercial source (Sigma Aldrich, Wicklow, Ireland) and the wavenum-

ber positions of the peaks were obtained from an international standards organisation

(ASTM International, Pennsylvania, US), which are shown below in Table 3.1.
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Figure 3.1: (a) Raman spectrum of the 4-Acetamidophenol spectrum. (b) Raman spec-
trum of the polymer sample. For both cases, the wavenumber axis has been calibrated
using the calibration protocol described in this section, applied to the peaks positions
of the 4-Acetamidophenol spectrum

Five spectra, each with an acquisition time of 16s, were recorded from the sample

(acetaminophen), contained in a vial with a base made from a Raman grade Calcium

Fluoride (Crystran, UK) coverslip with a thickness of 200µm. This acquisition time was

just less than that which would cause saturation of the camera. These five spectra were

averaged to produce a low noise Raman spectrum with a total acquisition time of 80s,

which completes Step (i). This average spectrum is shown in Fig. 3.1 (a). The sharpest 15

peaks were selected for use in the calibration process and these are numbered from 1-15

in the figure. The wavenumber position of each of these peaks was obtained from Table

3.1, completing Step (ii). In Fig. 3.2 (a), the fifteen coordinates that result from Step (iii)

as well as the fourth order polynomial that was fitted to these coordinates in Step (iv)

are both shown. The positions of the peaks is determined with sub-pixel accuracy using

cubic spline interpolation. [115] The third order polynomial that is associated with each

of the fifteen peaks is isolated and the derivative of this function provides a solution for

an accurate (sub-pixel) position of each peak. This process is illustrated in Fig. 3.2 (b).

These values of the pixel position of the peaks are used to define the coordinates used

for polynomial fitting, shown in Fig. 3.2 (a). The calibrated wavenumber axis, which is

obtained by relating each pixel position to its corresponding wavenumber value using

this polynomial function, is shown in Fig. 3.1 (a).
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Peak Number 4-Acetamidophenol Reference (cm−1) Polymer Spectrum (cm−1)

1 465.1 743.5267
2 651.6 827.9567
3 710.8 857.9544
4 797.2 886.563
5 834.5 923.0671
6 857.9 1005.7366
7 968.7 1041.7295
8 1105.5 1111.6935
9 1168.5 1127.9242

10 1236.8 1168.3634
11 1278.5 1224.6504
12 1323.9 1283.9253
13 1371.5 1297.9906
14 1561.6 1340.9552
15 1648.4 1449.3456

Table 3.1: The reference table of spectral peak positions for a sample of 4-
Acetamidophenol (ASTM E1840-96) and the (calibrated) spectral peak positions of
the polymer sample.

Immediately following calibration of the system, as described above, five spectra,

each with an acquisition time of 16s, were recorded from the polymer slide. In this case

no sample container was necessary; the slide has the same dimensions as a traditional

glass slide used in microscopy (7cm × 2.5cm × 1mm), and can be easily placed on a

microscope translation stage. Once again, these five spectra were averaged to produce a

low noise Raman spectrum with a total acquisition time of 80s.

The fifteen sharpest peaks were selected for further inspection, and once again a pro-

cess of cubic spline interpolation was used to identify the position of the peaks with sub

pixel accuracy. The positions were then related to their corresponding wavenumbers

using the polynomial function returned from the calibration process already described.

The wavenumber position of each of the fifteen peaks is also shown in Table 3.1 . Inter-

estingly, the spectral intensity of the polymer is approximately the same as that from

the 4-Acetamidophenol for the same acquisition time, indicating that, if this sample

were to be used as a reference, similar acquisition times could be used. In terms of

its applicability as a wavenumber reference, it can be seen that the polymer spectrum

contains a large number of sharp peaks, albeit over a smaller range of the wavenumber
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Figure 3.2: (a) Plot of the fifteen coordinates obtained by Step (iii) of the calibration
protocol using 4-Acetamidophenol, as well as the polynomial fit from Step (iv); (b)
Illustration of the interpolation process used to obtain sub-pixel accuracy for one peak
position. The blue asterisk indicates the peak position with and without interpolation.

axis. In Section 3.3, these peaks are investigated further; specifically, we investigate the

stability of the peaks positions across different sets of measurements.
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3.3 Evaluation of polymer wavenumber reference

In order to evaluate the potential for the polymer slide to be used as a wavenumber

reference standard, it is necessary to investigate the stability of the various peaks in

terms of wavenumber position. With any peak measurement in Raman spectroscopy,

there can be expected small deviation in the position of that peak across a set of mea-

surements. The reason for the instability in peak position is due to the presence of noise,

which can affect attempts to accurately measure a peak position. The noise in a Raman

spectrum is primarily comprised of shot noise, dark current, read noise; the latter two

noise sources originate from the camera but are insignificant compared to the shot noise

generated by the types of samples used as wavenumber references. Shot noise is a time-

dependent noise contribution that originates from the signal itself. Shot noise [117] is

the name given to inconsistent levels of irradiance that are incident on a pixel over a

given time, t. Irradiance per pixel, i, is typically modeled as a Poisson distribution. The

signal to noise ratio (SNR) is given by i t/(i t )0.5, which is the signal intensity divided by

the standard deviation of the shot noise. It is clear that the SNR increases as a function

of the square root of the acquisition time. It is, therefore, important to use a sufficiently

long exposure time when recording a reference spectrum. The sharpness of the peak

is also a consideration, since an estimation of peak position using the interpolation

approach outlined in the previous section will make use of neighboring samples and

will, therefore, include their noise contributions in the estimation.

An experiment was conducted to measure the wavenumber stability of the fifteen

4-Acetamidophenol peaks listed in Table 3.1 as well as for the fifteen polymer peaks. The

position of each peak was measured across 100 consecutive recordings, for acquisition

times of 1s, 2s, and 4s. In order to study the effect of reducing the SNR by successively

halving the acquisition time. The position of each peak across the sequence of record-

ings is shown in Fig. 3.3 (a) for 4-Acetamidophenol and in Fig. 3.3 (b) for the polymer

slide.

A comparison of the peaks that appear in the spectrum of 4-Acetamidophenol,

shown in Fig. 3.1 (a), with the variation in the corresponding peak positions shown in
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Figure 3.3: (a) The peak position of the fifteen peaks of 4-Acetamidophenol that are
listed in Table 3.1 for a sequence of 100 spectra with 4s acquisition time. The red line
indicates the mean position of the peak. In all cases the vertical axis has a range of
2cm−1; (b) The peak position of the fifteen peaks of the polymer slide that are listed
in Table 3.1 , also for a sequence of 100 spectra with 4s acquisition time. The red line
indicates the mean position of the peak. In all cases the vertical axis has a range of
2cm−1.
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Peak
number

Standard deviation of peak
positions for 4-Acetamidophenol

Standard deviation of peak
positions for polymer slide

1 second 2 seconds 4 seconds 1 second 2 seconds 4 seconds
1 0.636 0.5704 0.2653 0.5992 0.3988 0.283
2 0.3745 0.0718 0.0562 0.5073 0.3221 0.2523
3 0.422 0.3405 0.2207 0.988 0.6128 0.4502
4 0.398 0.1755 0.1203 0.519 0.3971 0.2721
5 0.5891 0.3302 0.1653 0.1481 0.11 0.0769
6 0.2525 0.0731 0.0447 0.2056 0.117 0.0845
7 0.4598 0.3417 0.1719 0.6429 0.5208 0.342
8 0.91 0.7974 0.5333 1.0037 0.6943 0.5167
9 0.2918 0.0507 0.0374 1.2029 0.7591 0.6542

10 0.2961 0.1478 0.0983 1.0578 0.6561 0.5158
11 0.3817 0.108 0.0694 0.5709 0.4253 0.3002
12 0.4064 0.2349 0.1665 0.8866 0.6989 0.5604
13 0.6736 0.403 0.3238 0.7638 0.6362 0.3891
14 0.6036 0.4034 0.3475 0.9761 0.8536 0.6106
15 0.3693 0.1708 0.1154 0.2701 0.1751 0.1502

Mean 0.4710 0.2813 0.1824 0.6895 0.4918 0.3639

Table 3.2: It shows the standard deviation of the wavenumber position of each peak for
both samples for three different acquisition times. The values for the ‘4 sec’ columns
are standard deviation of the functions shown in Fig. 3.3.

Fig. 3.3 (a) indicates that the height of the peak should not be taken as a measure of

expected peak stability. Peaks 2, 6, and 9 are the three most stable peaks, and none of

these are the highest peaks. It appears from a qualitative inspection that the narrower

peaks are the most stable. The same wavenumber range (2 cm−1) is used for all of the

figures that appear in Fig. 3.3 (a) and it is clear there is significant variability in peak

stability across the fifteen peaks. The equivalent results are shown for the polymer

slide in Fig. 3.3 (a). In this case peaks 5, 6, and 15 are the three most stable. In general,

however, it is clear that the variability of the 4-Acetamidophenol peak positions is

approximately half that of the polymer peak positions. The standard deviation of each

peak position shown in Fig. 3.3, is listed in Table 3.2 , as well as the standard deviations

for the case of a 1s and 2s acquisition time.

To provide a visual comparison, the standard deviation of each peak position is

represented in graphical format in Fig. 3.4. Fig.3.4 (a) shows the standard deviation of

all fifteen peaks in the 4-Acetamidophenol spectrum across each dataset of 100 spectra.
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Figure 3.4: The standard deviation in wavenumber position for each of the fifteen peaks
listed in Table 3.1 for three different acquisition times for (a) 4-Acetamidophenol and
(b) the polymer slide.

The three datasets for the 1s, 2s, and 4s acquisition times are shown in different colours

in the figure. The range of values is (0.25 cm−1 – 0.91 cm−1), (0.05 cm−1 – 0.8 cm−1), and

(0.04 cm−1 – 0.53 cm−1) for the 1s, 2s, and 4s datasets, respectively. As the acquisition

time increases, the SNR increases with a square root relationship to time, and it can,

therefore, be expected that there will be a related improvement in peak stability; the

mean standard deviation of the peak position for the 4s case is 0.1824 cm−1, which is

0.64 times the mean standard deviation for the 2s case, and 0.38 times the standard

deviation for the 1s case. A similar trend can be seen for the polymer slide; Fig.3.4 (b)

shows the standard deviation of all fifteen peaks in the polymer spectrum across each

dataset of 100 spectra. The range of values is (0.21 cm−1 – 1.20 cm−1), (0.11 cm−1 – 0.85

cm−1), and (0.08 cm−1 – 0.61 cm−1) for the 1s, 2s, and 4s datasets, respectively, which

are similar to the values for 4-Acetamidophenol. A reduction in standard deviation is

again observed for increased acquisition time; the mean standard deviation of peak

position for the 4s case is 0.36 cm−1, which is 0.73 times the mean standard deviation

for the 2s case, and 0.52 times the standard deviation for the 1s case. The mean values of

the standard deviation of the peaks in the polymer spectrum are approximately double

the corresponding values for 4-Acetamidophenol for the 2s and 4s case.

83



3.4 Discussion

In this chapter, we propose a novel wavenumber reference for the calibration of

Raman spectra. This material has a number of advantages over existing wavenumber

reference materials. These slides are commercially available for life science applications

and are manufactured to the same specification as a common glass slide used in mi-

croscopy. As such, the slides are ideal for placement on a microscope translation stage.

Traditional reference materials are usually associated with health hazards and must be

handled with care, and housed in sealed containers that use a window made of glass

or a crystal that produces little Raman scattering, such as Quartz or Calcium Fluoride.

The polymer reference material proposed here can be used without any of these con-

siderations. The slide is inexpensive (<€10) and is chemically stable over time, unlike

chemicals such as 4-Acetamidophenol, which will inevitably oxidise over an extended

duration. The polymer slide appears to be robust to focused laser light and no melting

was observed during our experiments using 150mW of a 532nm laser focused using

a 10x/0.3 magnification objective. Melting was observed, however, using a 100x/0.9

magnification but stopped with a 50% reduction in laser power. It should be noted

that a melting polymer material can irreparably damage the surface of a microscope

objective, and care should be taken in this regard.

In Section 2.3 the various sources of error associated with miscalibration of a Raman

spectrum were examined using a series of simulations. Specifically, we investigated an

error in grating angle, lateral and rotational camera displacement, and laser wavelength

instability. The impact of these errors on the wavenumber axis of a Raman spectrum

was simulated using the diffraction grating equation and a simulation of the optical

system within a Czerny-Turner spectrograph. It was clear that even small errors can lead

to errors in the wavenumber axis of up to 100 cm−1. Analysis of a Raman peak that was

analysed over the course of 1000 recordings over a time period of approximately 3 hours,

revealed a movement of the peak by almost 2 cm−1 which could result from a small

change in ambient room temperature. It can be concluded that temperature control

must be applied and frequent wavenumber calibration must be performed throughout

84



daily experiments.

In Section 3.2 the protocol for calibration of a Raman spectrum using a wavenum-

ber reference was discussed in detail and the position of the fifteen most prominent

peaks in the polymer spectrum was found following wavenumber calibration with 4-

Acetamidophenol, a commonly used reference material, the Raman spectrum of which

contains numerous sharp peaks throughout the fingerprint region. This calibration

protocol includes a step to identify the pixel position of the given peak with sub-pixel

accuracy using spline interpolation. The intensity of the polymer spectrum was found

to be approximately the same as the intensity of the 4-Acetamidophenol spectrum,

which indicates that similar acquisition times could be used for the polymer material if

it is used as reference. The results in Section 3.3 indicate that on average the stability

of the peak positions in the polymer spectrum is approximately half that of the peaks

in the 4-Acetamidophenol spectrum; for a 4s acquisition the mean standard deviation

of peak position is 0.18 cm−1 for 4-Acetamidophenol and 0.36 cm−1 for the polymer

slide. Based on trends of peak stability for different signal to noise ratios, it can be

concluded that these values will reduce significantly for a longer acquisition time, for

example 20s. It was not possible to conduct the stability experiment in Section 3.3 for

longer acquisition times because of temperature variability, which has been explained

in Section 2.3.

The accuracy of the wavenumber calibration protocol that is used in Section 3.2

could be questioned due to the limited wavenumber resolution of the peak positions in

the 4-Acetamidophenol spectrum that were provided by ASTM. These peak positions

are accurate to only 0.1 cm−1 and it can be expected that a more accurate calibration of

the polymer spectrum could be obtained given a more accurate set of peak positions for

the reference material that is used to calibrate the polymer spectrum. Furthermore, the

spectrograph used in these experiments had a resolution of 2.5 cm−1 in the centre of the

spectrum, and this increases towards the ends of the spectrum. It can be expected that

more accurate results could be obtained using a spectrograph with better resolution.

A final point of note is the limited range over which the peaks in the polymer spec-
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trum are distributed. The peaks that can be used in the wavenumber calibration proto-

col are distributed over a range from 743 cm−1-1450 cm−1 while 4-Acetamidophenol

spectrum contains peaks over a range 400 cm−1-1650 cm−1. We have found that the fit

of the polynomial that is returned by the calibration protocol is less accurate outside of

the left most and right most available peaks in the reference spectrum. Therefore, it may

be expected that the wavenumber axis that is calibrated using the polymer reference

would only be accurate within the range just mentioned. This may place a limit on the

applicability of this material unless an improved protocol can be developed.

In this chapter, we have investigated a new wavenumber reference standard material

for wavenumber calibration in the form of a photostable polymer. Chapter 5 will once

again make use of the polymer investigated in this chapter as a wavenumber reference

material, this time as part of new wavenumber protocol that will be shown to be superior

to the third order fitting that has been used in this chapter. Chapter 6 will also make

use of the polymer spectrum, but this time as part of a novel intensity calibration

protocol. Before proceeding to these two chapters that will further investigate the

polymer spectrum, in the next chapter, we take a step back and investigate a novel

wavelength calibration protocol that makes use of an atomic emission spectrum. Raman

wavenumber calibration can be achieved by first using wavelength calibration and then

making use of the wavenumber conversion formula as described in Section 2.5; however,

this requires an accurate knowledge of the laser wavelength.

86



Chapter 4

Improved wavelength calibration by

modelling the spectrometer

The work in this chapter has been published in the following reference: Liu, Dongyue,

and Bryan M. Hennelly. "Improved Wavelength Calibration by Modeling the Spectrom-

eter." Applied Spectroscopy (2022): 00037028221111796. with the following abstract:

"Wavelength calibration is a necessary first step for a range of applications in spec-

troscopy. The relationship between wavelength and pixel position on the array detector is

approximately governed by a low order polynomial and traditional wavelength calibra-

tion involves first-, second-, and third order polynomial fitting to the pixel positions of

spectral lines from a well known reference lamp such as neon. However, these methods

lose accuracy for bands outside of the outermost spectral line in the reference spectrum.

We propose a fast and robust wavelength calibration routine based on modelling the

optical system that is the spectrometer. For spectral bands within the range of spectral

lines of the lamp we report similar accuracy to second- and third-order fitting. For bands

that lie outside of the range of spectral lines we report an accuracy 12-121 times greater

than that of third-order fitting and 2.5-6 times more accurate than second-order fitting.

The algorithm is developed for both reflection and transmission spectrometers and tested

for both cases. Compared with similar algorithms in the literature that use the physical

model of the spectrometer, we search over more physical parameters in shorter time, and
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obtain superior accuracy. A secondary contribution in this paper is the introduction

of new evaluation methods for wavelength accuracy that are superior to traditional

evaluation."

4.1 Introduction

In the previous chapter, we examined a new wavenumber reference material for

direct wavenumber calibration in Raman spectroscopy. In this chapter, we change focus

and look at wavelength calibration. Wavelength calibration is an important first step

for various applications including astronomy, [118] multi-spectral imaging, [119, 120]

and optical coherence tomography. [121, 122] Another application, Near-Infrared Spec-

troscopy (NIRS), which has widespread application in the identification of chemicals

and biological materials, [123–125] requires wavelength calibration in order to produce

reliable classification of spectra. [126–128]

Of particular importance in the context of wavelength calibration is Raman spec-

troscopy. Like NIRS, Raman spectra are commonly used to identify and classify materials

based on large datasets of known spectra. Applications include pharmaceutical manu-

facture and bioprocess monitoring, [129, 130] material science, [131] and applications

in clinical biology. [36, 132] Raman spectra have significantly higher resolution than

NIRS spectra and, therefore, spectra must be subject to careful wavenumber and inten-

sity calibration before comparison with a database. In Chapter 3, we looked at Raman

wavenumber calibration using a Raman reference spectrum such as 4-acetamidophenol

or a commercial polymer. However, as discussed in detail in Section 2.5 Chapter 2, which

reviews wavenumber calibration in some detail, there are two classes of wavenumber

calibration methods for Raman spectroscopy. One is to use direct wavenumber calibra-

tion with a reference material as in Chapter 3 and the other is to perform wavelength

calibration followed by wavenumber conversion making use of the laser wavelength. As

well as being a common precursor for wavenumber calibration, wavelength calibration

is also commonly a first step intensity calibration [39, 59, 60], which is the core subject

of Chapter 6 in this thesis.
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Typically wavelength calibration involves polynomial fitting of the two dimensional

dataset that is the known reference lamp spectral lines (wavelengths) and the position

that these are found on the detector (pixels). [59, 60, 62, 63, 133] However, these methods

tend to suffer from high error for regions outside of the spectral lines in the reference

lamp, and this problem may be exacerbated for spectral bands for which there are few

spectral lines available. Recently, there has been interest in using a physical model of

the optical path in the spectrometer for the purpose of wavelength calibration, [78–82]

which overcomes this limitation. All of these methods use the grating equation as the

basis for developing an equation that relates the wavelengths and pixels in terms of the

system parameters such as the grating period, spectrograph deviation angle, grating

angle, camera pixel size and tilt. Some methods develop a system of simultaneous

equations based on a set of wavelength, pixel pairs, and some are based purely on

a brute force search over the various parameters in order to find the best fit of the

equation to an available set of wavelength, pixel pairs. A thorough review of the existing

state-of-the-art for wavelength calibration using both polynomial fitting and modelling

the spectrometer, has been provided in Section 2.4 in Chapter 2.

In this chapter, we propose an algorithm based on the physical model that includes

a brute force search for some of the system parameters, while performing polynomial

fitting within that search to account for others. In doing so, we significantly reduce

the scope of the search and improve the overall accuracy of the method. The reported

accuracy is better than previous papers in this area. In addition, we provide several new

evaluation methods that go much further than any previous publication in the area of

wavelength calibration and we rigorously compare performance against polynomial

fitting methods over large datasets. A more detailed list of the specific contributions in

this chapter is provided in the next section.
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4.2 Contributions in this chapter

In this chapter, a wavelength calibration method is proposed that is similar in design

to that in Ref [79], with several differences:

• Similar to the method in Ref [79], our algorithm also searches over the variable

parameters:

1. The grating angle, which can often be electronically controlled.

2. The centre position of the camera with respect to the optical axis.

However, the physical model presented here also accounts for several more system

parameters, including small errors in:

3. The diffraction grating period and/or dispersion caused by displacement

of the input irradiance spot vertically along the spectrometer slit. Image

curvature is common in off-axis spectrometers [134] and leads to a deviation

in the effective grating period. [81, 82]

4. The angle of the optical axis with respect to a flat grating position.

5. The focal length of the spectrometer .

6. The camera pixel size

7. A rotation of the camera plane.

We note that the latter item relates to in plane rotation of the camera. Rotation of

the detector plane with respect to the optical axis cannot easily be accounted for

in the proposed algorithm, and care must be taken, experimentally, in order to

ensure that slight defocusing of the spectrum irradiance does not occur on the

detector. [88, 135]

• Although seven parameters are listed above, the algorithm proposed in this chap-

ter does not employ a brute-force search over all of these, which would be in-

tractable. Instead, a brute-force search is applied over a limited range of values

for parameters (1), (3), and (4), only. The remaining parameters are all estimated

using a simple ordinary least-squares fitting of a first-order polynomial within the

three-dimensional brute-force search. The first-order is good enough to fix the

possible existing small shift errors. The relationship between the parameters in
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question is given by a simple straight line with unknown slope and zero-crossing.

Therefore a simple linear regression applied to the data is sufficient to model

this relationship. This is facilitated because parameters (2), (5), (6), and (7) will

participate only in a simple shifting and scaling of the spectrum recorded by the

detector. Therefore, the brute-force search space in our algorithm has one di-

mension less than that defined in Ref [79], while effectively searching over several

more dimensions.

• The physical model is extended to account for spectrometers using both:

1. A reflection grating. In this case, the physical model is based on a Czerny-

Turner architecture. The resulting algorithm is tested on an Andor spectrom-

eter with a rotating grating.

2. A transmission grating. In this case the model is adapted for a Kaiser spec-

trometer with fixed volume holographic phase grating.

• The performance of the wavelength calibration algorithm is thoroughly investi-

gated across a variety of gratings with different periods.

• The algorithm is rigorously evaluated using several different methods including

’leave-one-out’ and ’leave-half-out’, which provide a more accurate assessment of

the calibration when compared to traditional approaches, particularly in spectral

regions between the peaks and outside of end-peaks in the reference spectrum.

Similar cross-validation approaches are commonplace in the field of chemomet-

rics [136, 137] but we believe this is the first time they have been applied in the

context of wavelength calibration.

• Finally, and most significantly, we report that the proposed method is significantly

more accurate than any calibration method that we have so far reviewed in the

literature for similar spectrometers. We report a standard deviation of <0.002nm,

which appears to be approximately independent of grating period and resolution.

High accuracy is maintained outside of the end-peaks of the reference spectrum.
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4.3 Relationship between wavelength and pixel-position

in a spectrometer

4.3.1 Physical model for generalized spectrometer with rotating grat-

ing

In this section, an equation is derived that relates the wavelength of a point-source

at the spectrometer slit, to the position of the image of this point on the array detector.

This derivation will form the basis of the calibration algorithm that is later developed in

the following sections. The derivation is general for both transmission and reflection

gratings, and the calibration algorithm can, therefore, be applied to spectrometers that

employ both types of gratings as demonstrated in the subsequent subsections.

The diffraction grating is the main component of the spectrometer. The grating

equation describes the relationship between the grating structure, the incident angle,

and the angle of the diffracted light:

nλ= d (sinθλ± sinθi ) (4.1)

where d is the grating period, θi represents the angle of the incident ray of wavelength

λ with respect to the grating normal, θλ is the angle at which this ray is diffracted,

and n is the diffraction order. The ± term in the grating equation is negative for a

transmission grating and positive for a reflection grating. Curvature of the slit image in

the detector plane is caused by the displacement of the irradiance spot vertically along

the slit resulting in an oblique angle of the light incident on the grating, and can be

accounted for by adapting the grating equation as follows:

nλ= d cosγ (sinθλ± sinθi )

nλ= d ′ (sinθλ± sinθi )
(4.2)

where γ is the vertical oblique angle subtended by the optical axis and the line connect-
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ing the centre of the collimating lens (or mirror) and the vertical position of the spot on

the slit, [81, 82, 134, 138] and d ′ = d cosγ.

Spectrometers often employ a rotating grating such that different wavelength bands

can be projected onto a fixed detector. In the case that the grating is rotated by an angle

θd , both the incident and diffraction angles will be altered. This is illustrated in Fig. 4.1

in which a reflection grating is mounted on a rotating triangular base; this is similar to

the design of one of the two spectrometers that is investigated later. The blue image

represents the initial state of the spectrometer, without rotation, for which the incident

ray is propagating at an angle α with respect to the grating normal. The zero-order

diffracted ray (also at angle α with respect to the grating normal) propagates through the

centre of a lens of focal length f , and on to the centre of a detector array; for simplicity,

we will later refer to this as the optical axis of the spectrometer. We note that the value

2α is often referred to as the deviation angle of the spectrometer. We also note that the

focusing optic can also take the form of a parabolic mirror as described in the following

section. The black image represents the state of the spectrometer following rotation of

the grating by an angle of θd . For the same incident ray we derive the position of the

resulting nth order diffracted ray on the detector.

The grating equation can be rewritten to describe diffraction by the rotated grating

as follows:

nλ

d
= sin(β−θd )+k sin(−α−θd ) (4.3)

The parameter β in the figure represents the angle of the diffracted ray with respect

to the grating normal for the initial state. The ± symbol has been replaced with the

parameter k, which takes the value of +1 and −1 for transmission and reflection gratings,

respectively. The angle β can be defined in terms of the other parameters as follows:

β= sin−1
[

nλ

d ′ −k sin(−α−θd )

]
+θd (4.4)

The angle between the nth-order diffracted ray and the optical axis is β−α. The position

93



Figure 4.1: Diffraction of a ray by a rotated grating. The blue illustration shows the
zero-order diffraction of an incident ray onto the optical axis of the spectrometer for a
flat grating position. The black image shows the −1 order diffraction of the same ray
following rotation of the grating by an angle θd . We stipulate that the counterclockwise
direction is positive for all angles.

at which this ray will be incident on the detector array is given by:

xT = f tan(β−α)+C (4.5)

where C represents misalignment of the centre of the detector array with respect to the

optical axis, and T is the pixel pitch in the detector. Equation 4.5 can be rewritten as

follows:

x = f

T
tan

{
θd+sin−1

[
nλ

d ′ −k sin(−α−θd )

]
−α

}
+C

T
(4.6)

λ= d ′

n

{
sin

[
tan−1

(
xT −C

f

)
+α−θd

]
+k sin(−α−θd )

}
(4.7)

Equations 4.6 and 4.7 is the basis of the calibration algorithms that are proposed

in later sections. Before these algorithms are described, we first explore the nature of

the relationship between the wavelength, λ, and pixel-position, x, as defined by Equa-
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Parameter Unit
Czerny-
Turner

Trans-
mission

Reflection/
transmission (k)

NA +1 -1

Diffraction
order (n)

NA -1 +1

Grating Period (d) lines/mm
300
600

1000
2455

Half the deviation
angle (α)

Degree 10.94 45

Grating angle (θd ) Degree
4.8

10.2
17.2

0

Focal length ( f ) mm 500 85
Camera pixel
pitch (T )

µm 26 26

Camera width (N ) pixels 1024 1024
Camera centre
position (C )

pixels 0 0

Table 4.1: The parameters for the two spectrometers illustrated in Fig. 4.2, which are
investigated in this study. The parameters correspond to those in Equation 4.6.

tion 4.6, for two spectrometers, which are later the subject of the proposed calibration

algorithms. The first spectrometer of interest is a Czerny-Turner spectrometer employ-

ing parabolic mirrors and three different plane-ruled reflection gratings. The second is

a lens based spectrometer employing a volume-phase holographic transmission grating.

Both spectrometers are described in more detail below, followed by a discussion on the

application of Equation 4.6 to model each system.

4.3.2 Reflection spectrometer

A traditional Czerny-Turner spectrometer with focal length 500mm and with a

motorized rotating grating was utilised for most of the experiments reported in this

chapter (Andor Shamrock 500; SR-500i-A; Andor UK), which is illustrated in Figure 4.2

(a).

Converging light enters the spectrometer slit and is collimated by a parabolic mirror

and directed onto a grating, housed on triple grating turret and mounted on a rotation

stage. The three gratings on the turret are all plane-ruled reflection gratings with the
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following specifications: 1000 lines/mm with blaze at 900nm (Andor SR5-GRT-1000-

0900; Andor UK), 600 lines/mm with blaze at 750nm (Andor SR5-GRT-0600-0750; Andor

UK), and 300 lines/mm with blaze at 760nm (Andor SR5-GRT-0300-0760; Andor UK). The

angled grating directs the n =−1 diffraction order towards a second parabolic mirror,

which focuses the image of slit at the detector plane. The detector is a cooled CCD

(Andor iDus; DU420A-BR-DD; Andor UK) with 256×1024 pixels with a pixel-pitch, T of

26µm. Both parabolic mirrors have a focal length, f of 500mm and the half deviation

angle, α, was measured to be 21.88◦. The values of each parameter in Equation 4.6

for this spectrometer are provided in Table 4.1; grating angles, θd are selected for each

grating.
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Figure 4.2: (a)The Czerny-Tuner spectrometer using parabolic mirrors and a rotating
grating, and (b) A transmission spectrometer utilising glass lens focussing and a holo-
graphic grating. A Holographic diffraction grating is used for holographic grating. The
proposed wavelength calibration algorithm is general such that it can be applied to both
types of spectrometers.

4.3.3 Transmission spectrometer

A transmission spectrometer (HOLOSPEC-F/1.8I-VIS; Andor, UK) is also investigated

in this study, the design of which is illustrated in Figure 4.2 (b). Light is input to a slit

of width 25µm. A first lens collimates the light and is followed by a volume-phase
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holographic transmission grating with 2455 lines/mm (HS-HSG-532-LF; Andor, UK),

which is angled at α= 45◦ with respect to the optical axis. A second lens captures the

n =+1 diffraction order and images the slit onto the detector, a cooled CCD (Newton

DU920P-BVF; Andor, UK) with 256×1024 pixels and pixel-pitch, T , 26µm. Both lenses

have a focal length, f , of 85mm. Notably, in this case, the diffraction grating is fixed and

the grating angle is θ f = 0◦.

4.3.4 Relationship between wavelength, λ, and pixel-position, x, for

both spectrometers

In the sections that follow, a wavelength calibration algorithm is proposed that

exploits the relationship between the wavelength, λ, and pixel-position, x, for a given

spectrometer, based on the model described above in Equation 4.6. Here, we first

explore the nature of this relationship for the reflection and transmission spectrometers

that are described in the proceeding subsections

This relationship is shown in Fig. 4.3, where the values in Table 4.1 are substituted

into Equation 4.6 for all four gratings. For ease of comparison, the wavelength axis

has been normalised such that the minimum and maximum values appearing on the

extreme ends of the CCD are 0 and 1 for all four diffraction gratings. A dashed line

shows a linear relationship between x and λ. Interestingly, the 600 lines/mm grating is

shown to exhibit the most linear relationship between x and λ, while the 300 and 1000

lines/mm gratings are both less linear but appear on opposite sides of the straight line.

The 2455 lines/mm grating is significantly non-linear primarily owing to the shorter

focal length and higher dispersion. The variability in the linearity of the relationship as a

function of grating period and focal length may explain why several different polynomial

orders have previously been proposed to be optimal for fitting as a means of wavelength

calibration by different authors as discussed in the introductory section above.
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Figure 4.3: Investigation of the non-linearity of the (x,λ) relationship for the four differ-
ent gratings that are later used for testing. (a), (b), and (c) show increasingly zoomed in
areas. These plots are based on Equation 4.6 using the parameters listed in Table 2. The
wavelength axis has been normalised for direct comparison.
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4.4 Calibration based on the physical model

Here we describe the sequence of steps that comprise the proposed wavelength cali-

bration algorithm which is general to either the transmission or reflection spectrometer.

We begin by clearly posing the problem and this is followed by describing two algorithms

that can be used to solve this problem. The parameter d ′ is equal to d cos(ang l e) where

d is the grating number and the angle is with respect to the horizontal. Both can be

coupled together in the search. S is the set of parameters that define the system as

described earlier:

S = [ f ,T,C ,d ′,α,θ] (4.8)

The relationship between the pixel coordinates on the detector, and the corresponding

wavelength values that these pixels capture, is predicted by the physical model defined

in Equation 4.6 in terms of the parameter set S. This equation, and its inverse given

by Equation 4.7, which relates wavelength to pixel, are summarised by the following

equations:

x = model (S,λ)

λ= model−1(S, x)
(4.9)

We move now from a continuous model to a discrete one, where the values of x and λ

belong to the two sets of discrete values defined as follows:

X0 = [x0
1 , x0

2 , · · · , x0
N ]

λ0 = [λ0
1,λ0

2, · · · ,λ0
N ]

(4.10)

where λ0 is a set of known neon peak wavelengths of which there are N , and X0 is the

corresponding set of positions in the detector plane at which these peaks are detected;

we note that the values of X0 will not in general be integers; a pre-processing step is first

implemented in order to estimate the sub-pixel position of a peak as described in the

following section.

The goal is, therefore, as follows. We wish to design an algorithm that can determine

the set of parameters, S, that ‘best’ relate the known N wavelength values, λ0, and
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corresponding pixel positions at which these wavelengths were measured, X0, according

to Equation 4.9. We begin by defining a brute-force algorithm based on Equation 4.9

that is conceptually simple but computationally intractable. This algorithm is used as

the basis of a second algorithm, which is significantly more computationally efficient.

4.4.1 Algorithm 1: Brute force

The first algorithm is based on a simple but computationally expensive brute-force

search overall of the parameters in S and is made up of three steps:

1. The first step provides initial estimates of the key parameters in S, which are

defined as S0 = [ f0,T0,C0,d0,α0,θ0] as follows:

• The values of ( f0,T0,d0) can be taken from the manufacturers specifications

for the spectrograph and detector, where we assume d0 = d and γ= 0.

• α0 is measured manually.

• C0 and θ0 are estimated using a brute-force search over only these two

variables for a single peak pair (x0
i ,λ0

i ).

2. The second step is to perform a brute-force search over all six parameters in S

over some range/step-size centred at S0. Each unique set of parameters, S j , in

this range will produce set of pixel positions X j as follows:

X j = model (S j ,λ0) (4.11)

The specific set of parameters, Smi n , that produces the set Xmi n that most closely

match the actual pixel values X0 at which the peaks are detected are taken to be

the true system parameters. This is determined by minimising the error function

defined in Equation 4.12 over all parameter sets j in the range of the search.

er r =
N∑

i=1
(x j

i −x0
i )2 (4.12)

We acknowledge that a tight-grid brute force search over such an error metric

would not normally be applied since more efficient search algorithms are far more

efficient such as steepest descents and simplex searching. Algorithm 1 serves
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only as a natural introduction to Algorithm 2, which must employ a brute force

search albeit over a much smaller range of values, and for this reason it is defined

in terms of a brute force search algorithm.

3. Now that the system parameters Smi n have been found, these can be used to

relate the integer pixel (centre) positions to the corresponding wavelength values,

thereby providing wavelength calibration for the spectrograph. This third and

final step is defined in the equation below:

λcal = model−1[Smi n , [1,2, · · · ,1024]] (4.13)

where λcal represents the set of calibrated wavelength values associated with each

pixel centre position. [1,2,· · · ,1024] denotes the integer set of pixels.

While this algorithm provides for accurate calibration, it requires a brute-force

search over six parameters and is computationally intractable. Even making the some-

what reasonable assumption that the specifications for d ′ = d , and T , the camera

pixel size, are without any error, will require a four-dimensional search, which remains

time-consuming.

4.4.2 Algorithm 2: Speed-Up Using Least-Squares

In this section we attempt to speed-up the running time of Algorithm 1 by using

the classical least-squares algorithm. Referring to Equation 4.7, it is clear that the

parameters f ,T,C perform only scaling and additive functions on the spatial coordinate

x and can, therefore, be accounted for using linear regression. Therefore, a brute-force

search is required only over the remaining parametersα, d , andθ. The second algorithm

also contains three steps as follows:

1. This is identical to Step 1 in Algorithm 1.

2. Here a brute-force search is performed over only a three parameter set, [α,d ′,θ],

over some range of values, centred at [α0,d0,θ0] and using the values f0,T0,C0 in
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order to provide an intermediate result.

X j = model ([α j ,d j ,θ j ,Co , fo ,To],λ) (4.14)

For each unique set of values [α j ,d j ,θ j ] over the search range, the resultant values

X j are linear-regressed with respect to positions at which the peaks were detected,

X0, in order to account for errors in f , T , and C , which provides an updated set

of estimated positions X j . For simplicity, we describe this operation in terms of

the Matlab functions, polyfit and polyval, which are used to implement it as

follows:

P j = pol y f i t (X j , X0,n)

X j = pol y val (X j ,P j )
(4.15)

where the function polyfit returns the coefficients of degree n that is the best

fit (in a least-square sense) to describe the transformation between X j and X0.

This is followed by the function polyval, which applies this transformation to X j

using these coefficients in order to provide the updated values for X j .

The specific set of parameters, Smi n = [αmi n ,dmi n ,θmi n , f0,T0,C0], and linear

regression defined by Pmi n that produces the set Xmi n that most closely match

the actual pixel values X0 at which the peaks are identified and are taken to

be system parameters. Once again, this is determined by minimising the error

function defined in Equation 4.12 over all parameter sets j in the range of the

search.

3. Now that the system parameters Smi n have been found, as well as the coefficient

for the linear regression that accounts for error in f , C , and T , the integer pixel

(centre) positions can be related to the corresponding wavelength values, thereby

providing wavelength calibration for the spectrograph. In this final step, the pixel

position are projected into the wavelength domain by using the opposite process

outline in Step 2:

λ′ = model−1[S , pol y val ([1,2, · · · ,1024],Pmi n)] (4.16)
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Here the camera pixels are defined in terms of integers 1 → 1024.

4.5 Overall calibration procedure

As discussed in the previous sections, the core principle of wavelength calibration

of a spectrometer is to first record a reference spectrum containing some number of

sharp, symmetrical and well defined, known peak wavelengths. The second step is to

identify the pixel positions of the various peaks in the recorded reference spectrum,

which can then be used in the third step, which involves fitting with either a low-order

polynomial or the pixel-wavelength relationship defined by a physical model. In either

case, a matching wavelength value must be assigned to each pixel in the detector. The

minimum number of requisite peaks in the recorded reference spectrum depends on

the fitting method; a first-order polynomial fitting requires only two peaks, with this

number increasing with respect to the polynomial order used. For the two physical

model based methods reviewed earlier, there is also a minimum number of peaks

required; for example the brute-force method in Ref. 79 can work with a minimum of

four peaks, while the method based on simultaneous equations [80] requires a minimum

of five peaks. A simple rule of thumb is that there must be at least as many peaks in the

reference as there are variables in the physical model or coefficients in the polynomial.

In general, however, more accurate results are obtained by increasing the number of

peaks in the reference. As well as requiring a large number of peaks, the distribution of

these peaks must also be considered. As noted by previous authors, [59], wavelength

calibration using a polynomial order greater than one, will result in poor calibration for

bands that lie outside the end peaks at either side of the reference spectrum. This is

because there are no peaks in these extreme regions that can constrain the polynomial

coefficients. However, first-order polynomial fitting (which is rarely accurate to begin

with), and fitting based on the physical model are more robust to these out-of-band

calibration errors.

Typical reference lamps that are used for wavelength calibration include, mercury-

argon, neon, krypton, which are often selected based on the number of peaks available
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in the band of interest. The latter two reference lamps are utilised in this chapter. In

Fig. 4.4 (a) the spectrum of the neon lamp (Spectrum tube-neon gas; Edmund Optics UK)

is shown, recorded using the Czerny-Turner spectrometer described earlier using a 300

lines/mm grating. Also shown in the figure are the bands of peaks that can be captured

by the 600 lines/mm, and 1000 lines/mm grating, which can be moved by rotation of

the grating angle. In Fig. 4.4 (b) the spectrum of the krypton lamp (Spectrum tube-

krypton; Edmund Optics UK) is shown, recorded using the transmission spectrometer

described earlier using a 2615.8 lines/mm grating. In this case the grating angle is fixed

and the spectrometer can record only the band 530-610 nm. The bandwidth of this

spectrometer and the Czerny-Turner spectrometer with the 1000 lines/mm grating are

similar due to the significantly different focal lengths in the two spectrometers. It is

notable that wavelength calibration of this spectrometer with the krypton map with

polynomial fitting with order two or more will result in significant error in the left-most

band 530-556 nm due to the absences of peaks in this band. This ’error band’ would

increase further using the neon lamp since the first useful peak occurs at 585 nm. In

Table 4.2 the exact peak wavelengths for these two sources are shown, which have been

taken from the database of the National Institute of Standards and Technology. [1]

In order to achieve accurate calibration, identification of the peak position requires

sub-pixel resolution even though such a resolution is in general less than the specified

resolution of the spectrometer. Various methods have been proposed in the literature

to achieve such accuracy, including upsampling of the reference spectrum by zero-

padding the discrete Fourier transform of the spectrum [39, 62] as well as fitting a

Lorentzian function, or similar, to the pixel values in the region of the peak. [43, 71, 77]

We have tested these various approaches and determined that fitting with a Lorentzian

function[139] of the following form is slightly more accurate than upsampling:

Peak ′ = P1

(xr ang e −P2)2 +P3
+P4 (4.17)

where Peak means P1, P2, P3 and P4 are fit-parameters, xr ang e represents the pixel range

of the peak, Peak ′ represents the new intensity value in this pixel range.
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Figure 4.4: The spectrum of (a) neon (captured by the Czerrny-Turner spectrometer)
and (b) krypton (captured by the transmission spectrometer). (c) A single krypton peak
is shown illustrating the method of peak fitting for sub-pixel accuracy.

An example of this approach is shown in Fig. 4.4 (c) in which we show a Lorentz

function that has been fit to one peak in the krypton spectrum. In the results section

below, all of the the peak positions in each reference spectrum are estimated with

sub-pixel accuracy using this approach.

The overall procedure can be divided into four steps. The first step is to record

the reference spectrum, and the second step is to identify the sub-pixel position of
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Wavelength / nm
Neon
585.2488±5e-5 588.1895±5e-5 594.4834±5e-5
597.5534±5e-5 602.9997±5e-5 607.4338±5e-5
609.6163±5e-5 614.3063±5e-5 616.3594±5e-5
621.7281±5e-5 626.6495±5e-5 650.6528±5e-5
630.4789±5e-5 633.4428±5e-5 638.2991±5e-5
640.2248±1e-4 653.2882±5e-5 659.8953±5e-5
667.8277±5e-5 671.7043±5e-5 692.9467±4e-5
703.2413±4e-5 717.3938±4e-5 724.5167±4e-5
Krypton
556.2225±4e-5 557.0289±4e-5 558.0387±4e-5
564.9562±5e-5 567.2451±5e-5 570.7513±5e-5
583.2857±5e-5 587.0916±5e-5 587.99 ±5e-5
599.385 ±5e-5 601.2156±5e-5 605.6126±5e-5

Table 4.2: Reference spectral lines used in this chapter (with uncertainties [1])

each spectral peak that is listed in the related reference database as described above.

The third step is the application of Algorithm 2 described earlier, which returns the

parameters for a single equation that relates wavelength to pixel position. The final step

is to apply this equation in order to identify the wavelength associated with the centre of

each pixel. For traditional calibration, the third step would be replaced with polynomial

fitting to find the coefficients of an n-order polynomial and the fourth step would be

application of this polynomial to identify the wavelength for each pixel.
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4.6 Experiment design

4.6.1 Recording of reference spectra

In total, we examine the performance of the proposed algorithm across two spec-

trometer designs and four different gratings periods as described earlier, each with

varying dispersion. For the case of the Czerny-Turner system, only the reference neon

lamp is applied and for the case of the transmission lens spectrometer, only the krypton

lamp is applied; typical spectra are shown in Fig. 4.4 (a) and (b) for both cases and in

(c) an example of fitting the Lorentzian peak is shown; this achieves sub-pixel accuracy

as described in the previous section. The Czerny-Turner spectrometer is investigated

using a 300 lines/mm, 600 lines/mm, and 1000 lines/mm corresponding to different

wavelength bands as illustrated in Fig. 4.4 (a), while the transmission spectrometer

uses a grating with 2455 lines/mm. For each of the three gratings in the Czerny-Turner

spectrometer, 100 different reference spectra are recorded with slight movements of the

grating rotation angle. For these three cases, a rigorous evaluation of the performance

of the calibration is possible by calculating the ensemble average of the error metrics

defined below, across the set of 100 reference spectra.

For all cases, the lamp was first carefully centred on the slit to ensure symmetrical

spectral peaks. Andor Solis software is used to record the raw spectra in the image plane.

Because of the strong irradiance from the lamps, a diffuser was positioned between the

lamp and slit. To reduce the effect of noise, the accumulation time was varied to provide

a photon count that was just less than the saturation level of the CCD. Rather than

use Full Vertical Binning, which can produce error in the presence of image distortion,

images were recorded from the detector as shown in Fig. 4.5 for both the (a) neon and

(b) krypton lamps. The centre row of pixels was cropped as illustrated by the red box

in the figures. This approach was taken instead of Full Vertical Binning, in order to

overcome the problem of image distortion as described earlier. With vertical Vertical

binning, pairs of adjacent pixels from two lines in the sensor are summed. As the read-

out noise of each read operation is now just applied to less resulting pixel information
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Figure 4.5: Imaging the reference spectra in the detector plane: (a) neon-300 lines/mm
(b) krypton-2455 lines/mm; for the latter case clear distortion is observed due to the
effect of the lens. A cropped row of pixels is extracted to mitigate this effect.

the signal-to-noise ratio (SNR) is increased because of the reduced noise at the higher

combined signal.

4.6.2 Error metrics

For comparison with similar methods proposed in the literature, several different

error metrics are reported including, mean absolute error (MAE), the standard deviation

(SD), and the root mean square error (RMSE), all of which have appeared in different

papers. These three metrics are defined below. A calibrated reference peak wavelength

is denoted as (λi ), and assuming N such reference peaks exist in the reference spectrum,

the following error metrics are defined:

er r or (λi ) = cal i br ated(λi )−N I ST (λi ) (4.18)

M AE = 1

N

N∑
i=1

|er r or (λi )| (4.19)

RMSE =
√√√√ 1

N

N∑
i=1

|er r or (λi )|2 (4.20)
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SD =
√√√√ 1

N −1

N∑
i=1

|er r or (λi )−ME |2 (4.21)

In order to provide a more reliable estimate of the error, the above metrics are calculated

for a set of M different spectra where the grating is moved between captures. The

ensemble average of each of the above metrics is calculated over these M reference

spectra as follows:

M AE = 1

M

M∑
k=1

M AE(k) (4.22)

RMSE = 1

M

M∑
k=1

RMSE(k) (4.23)

SD = 1

M

M∑
k=1

SD(k) (4.24)

4.6.3 Evaluation methods

We employ three methods of evaluation that employ the metrics listed above, two of

which are proposed for the first time.

1. All-peaks: Here all of the calibrated peaks from the reference are used in the error

analysis. This is by far the most common approach in the literature.

2. Leave-one-out-cross-validation: in order to remove any bias from the reference

spectrum, we propose for the first time in the field of wavelength calibration

(to the best of our knowledge) the use of cross-validation, an approach that is

borrowed from the field of chemometrics. [136, 137] For the first case, ’leave-one-

out’ cross-validation, one peak is removed from the reference spectrum used in

the calibration process. The error metric is then applied only to this peak after

calibration. This process is repeated for each peak in the spectrum and the average

value for all cases is calculated. We believe that this is the first time that such

an approach has been taken and we expect that it will provide a more accurate

estimate of wavelength accuracy within the band of spectral lines provided by the

reference lamp.

3. Leave-half-out: Similar to the approach taken in Ref [79] we propose an evaluation

based on calibrating using the left-most half of the reference peaks and apply-
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ing the error metric to the right-most peaks of the calibrated spectrum. This is

repeated using the right-most peaks for calibration and the left-most for error cal-

culation. The average of the two values is taken. The advantage of this approach

is that the accuracy of calibration is tested in bands outside of the outermost end

peaks in the reference lamp; the other two methods of evaluation only test for

accuracy within the bounds of the reference spectrum lines.

4.6.4 Comparison with traditional methods of wavelength calibration

In all cases, the proposed algorithm is compared with equivalent results from first-

order, second-order, and third-order polynomial fitting and several interesting con-

clusion are made in the following section concerning the accuracy of these different

methods under different conditions. Fourth-order fitting and higher provided no im-

provement in results and is not presented here.
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4.7 Results

In this section, the results are presented for wavelength calibration using Algorithm

2 and compared with the corresponding set of results from first-, second, and third-

order polynomial fitting. These results are broken down into three sets of evaluations,

corresponding to ’All-Peaks’ (ALL), ’Leave-one-out-cross-validation’ (LOO), and ’Leave-

half-out’ (LHO). Furthermore, to facilitate comparison with other papers, which use

various metrics, these evaluations are performed using three different metrics: M AE ,

RMSE , SD as defined in Equations 5.18, 5.19, and 5.20. For the case of the transmission

spectrometer, the grating angle could not be adjusted and so only a single spectrum was

available. In this case the error metrics used in the evaluation are: M AE , RMSE , SD as

defined in Equations 6.6, 5.16, and 5.17. The results for the Mean Absolute Error metrics

are shown below in Fig. 4.6. It can be seen that the traditional evaluation method of

inspecting all peaks provides approximately 10−20% superior results compared with

LOO, which is proposed for the first time in this chapter, and which we believe is a

more accurate representation of wavelength calibration within the range of wavelength

defined by the outermost reference lamp spectral lines. However, the overall trend of the

results are the same for both ALL and LOO. It can be seen for both of these evaluation

methods, that first-order fitting is the worst method in all cases but provides its best

result for the 600 lines/mm grating, which was earlier shown to produce the most linear

relationship between wavelength and pixel position (see Fig. 4.3). For the case of LOO

evaluation, Algorithm 2 provides equivalent results to second- and third- order fitting

for the 300, 600, and 1000 lines/mm gratings with very little difference between the

three cases: ( 0.016 nm error for the 300 lines/mm case and 0.006 nm error for the other

two). For the case of the 2544 lines/mm grating, which has by far the most non-linear

relationship between wavelength and pixel position, third order fitting provides the

best LOO accuracy with an error of 0.00498 nm, and Algorithm 2 provides the next best

LOO accuracy with an error of 0.00897 nm. However, it should be noted that this case

uses only a single spectrum and only 12 krypton peaks were available. More conclusive

results could not be obtained by rotating the grating into different states as for the other
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Figure 4.6: Evaluation of wavelength calibration accuracy using Mean Absolute Error. A
neon reference lamp is used for the Crezny-Turner reflection spectrometer with three
different gratings: 300, 600 1000 lines/mm and for these three cases the M AE error
metric is applied over 100 spectra with grating movement between capture. A krypton
reference lamp is used for the transmission spectrometer with grating 2455 lines/mm
and for this case, the M AE error metric is applied over a single spectrum. The results of
Algorithm 2, proposed in this chapter, is given in blue and the results for first-, second-,
and third-order polynomial fitting are given in orange, yellow, and green, respectively.
The results of ’All-Peaks’ (ALL), ’Leave-one-out-cross-validation’ (LOO), and ’Leave-half-
out’ (LHO) are shown on different rows. For ease of comparison, the same axis range is
used for all three evaluations. In several cases, the bars have been capped at 0.04 nm to
improve visualisation. The correct values are overlaid on the bars in all cases.
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three gratings.

The superiority of Algorithm 2 is evident for the third evaluation method, LHO,

which provides a more accurate estimate of error in regions that are outside of the

bandwidth of the reference lamp spectral lines. For the case of the 300 lines/mm

reflection grating, Algorithm 2 provides the best LHO accuracy, with an error of 0.01839

nm and first-order fitting is next best with an error of 0.02296 nm; second- and third-

order fitting error are 6-times and 35-times worse than that of Algorithm 2, respectively.

For the 600 lines/mm reflection grating, Algorithm 2 once again provides the best LHO

accuracy with an error of 0.00887 nm; first-, second-, and third- order fitting errors are

2.5-times, 3.5-times, and 24-times greater than that of Algorithm 2, respectively. For

the third reflection grating of period 1000 lines/mm, Algorithm 2 once again returns by

far the best LHO accuracy with an error of 0.0064 nm; first-, second-, and third-order

fitting provide errors that are 10-times, 4-times, and 12-times greater than that of

Algorithm 2, respectively. Notably, when Algorithm 2 is used to calibrate the reflection

spectrometer, leave-half-out evaluation provides similar results when compared with

leave-one-out evaluation; there is only a marginal increase in error of 10-30% for the

former, indicating that Algorithm 2 provides similar results far outside of the reference

lamp spectral lines, as it does within the bandwidth of the lamp. This is not the case for

the polynomial fitting; while third-order fitting provides equivalent results to Algorithm

2 for wavelengths within the bandwidth of the reference lamp (as evidenced by LOO

evaluation), the error increases by a factor of 12-35 in regions outside of the lamp

bandwidth (as evidenced by LHO evaluation).

For the case of the transmission grating with period 2455 lines/mm, all methods

fare worse for LHO evaluation when compared with LOO evaluation; it can be seen

that Algorithm 2, first-, second-, and third-order fitting provide LHO error that are 4-,

2.5-, 2.5-, 121-times greater than the corresponding LOO error. This is likely due to the

small number of peaks available from the krypton lamp in the band of interest, which

is exacerbated for LHO evaluation. Regardless, Algorithm 2 is the most accurate with

an error of 0.03562 nm; first-, second-, and third-order fitting provide errors that are
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51-times, 2-times, and 17-times greater than that of Algorithm 2, respectively.

It is important to record the accuracy of the calibration methods in the context

of the spectrometer resolution. The Czerny-Turner spectrometer with 300, 600, and

1000 lines/m grating is specified to have a resolution of 0.32 nm, 0.15 nm, and 0.09 nm,

respectively and the transmission spectrometer provides a resolution of 2.97 nm. All

of these resolutions are significantly larger than the accuracy provided by Algorithm 2.

Equivalent results are shown in the appendix using standard deviation and RMSE in

place of the MAE metric.
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4.8 Discussion

In terms of Mean Absolute Error, the proposed algorithm is as accurate as polynomial

fitting within the bandwidth of the reference lamp. Outside of this band third-order

fitting has errors that are 12-35 times higher, while our algorithm has only 10-30%

greater error.

It is difficult to directly compare the errors reported in previous papers on wave-

length calibration accuracy. The main reason for this is that the various spectrometers

that were used in other studies have highly varying wavelength resolutions due to dif-

ferent properties in terms of slit width, focal length, grating period, system distortion,

and camera pixel size and noise characteristics. For this reason, we have chosen to

compare the performance of the proposed algorithm directly with first-, second, and

third order polynomial fitting rather than attempt to cross-compare with other studies.

As an example, the (all-peaks) standard deviation error for second-order polynomial

fitting over ten neon spectra reported in one of the most cited papers [62] is given as

0.005 nm. The spectrometer used in that paper was a Czerny-Turner spectrometer

with a reflection grating with a higher resolution than the one used in this chapter

(focal length 0.64m and grating 1800 lines/mm). The most similar result for our chapter

(second-order fitting, all-peaks, 1000 lines/mm) has SD = 0.00596 nm, taken over 100

neon spectra. For the two most similar methods in the literature that wavelength cali-

brate using a physical model, much smaller accuracy is reported: in Ref. 79 an accuracy

of 0.1nm is reported. However, for this case the resolution of the 130mm focal length

spectrometer is signifcantly less than that of our own systems and is reported to be 0.5

nm at the central wavelength and up to 2 nm at the edge wavelengths. In Ref [80], the

Czerny-Turner monochromator had a focal length of 300mm, a grating density of 1200

lines/mm, and a 2160-pixel linear CCD detector with 14 µm pixel size. The authors

report a mean absolute value error of 0.16 nm, and a standard deviation of error of 0.22

nm.

One should note that polynomial fitting algorithms are connected to the instrument

modeling approaches because sine and cosine can be approximated as series expansions,
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and the terms of those expansions are closely approximated by cubic polynomials. This

explains why the accuracy of third-order fitting and the proposed algorithm are similar

for all cases within the region of the reference lines as evidenced by the leave-one-out

evaluation.

4.9 Conclusion

In this chapter a novel wavelength calibration algorithm is proposed, which outper-

forms traditional polynomial fitting based methods, particularly in spectral bands that

lie outside of the range of spectral lines provided by the reference lamp. Our method

was demonstrated to be between 12-121 times more accurate that third-order fitting

in such bands when compared to third-order fitting, and 2.5-6 times more accurate

than second-order fitting. When compared to other recently proposed wavelength

calibration algorithms that make use of a physical model of the system, the proposed

algorithm is significantly faster and simultaneously fits to a larger range of physical

parameters in the system, including distortion of the image plane. This is achieved by

performing linear regression within the brute force search for those parameters which

linearly relate wavelength and pixel position on the detector.

A secondary, but nevertheless important, contribution in this chapter is the intro-

duction of a number of new evaluation methods for wavelength calibration accuracy.

The traditional approach of evaluating error by inspecting each peak in the reference

spectrum (ALL) is augmented with two approaches borrowed from chemometrics:

Leave-one-out-cross-validation (LOO) and leave-half-out (LHO) evaluation. The former

involves performing wavelength calibration using all but one of the reference peaks,

and subsequently calculating error for that one peak. The same process is repeated for

each peak. In this way the error of wavelength calibration for peaks within the spectral

range of the lamp is better estimated since the peaks that are inspected were not part of

the calibration process. LHO on the other hand provides a better estimate of accuracy

outside of the range of spectral peaks in the reference lamp by using only one half side

of the spectral lines for calibration, and the other half to calculate error. We believe that
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these metrics should become the standard in evaluating wavelength calibration going

forward.

In terms of future work we believe there is scope to improve the proposed algorithm

by obtaining a better first guess of the core spectrometer parameters in the search

algorithm. This could be achieved by using the approach of Ref [78] in which a set

of simultaneous equations can be derived from the physical model to approximately

solve for these parameters. Further we believe better accuracy could be obtained if the

spectral line positions for the reference lamp were corrected to account for the refractive

index of air [83, 85] as has been done for other wavelength calibration methods; we

made no attempt to do this in this chapter.

In the next chapter, the proposed algorithm is adapted for direct wavenumber

calibration of Raman spectrometers using a set of Raman wavenumber standards.

The new metrics are also used to evaluate the approach, this time being applied to

wavenumber values for the peaks in the Raman spectra.
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4.10 Appendix

In this appendix evaluation of the proposed algorithm is shown for the error metric

of standard deviation (Fig. 4.7) and Root Mean Square Error (Fig. 4.8) as defined in

Section 4.6.2. These results correspond to those shown in Fig. 4.6 in the main body of

the paper for the case of the error metric Mean Absolute Error. These additional results

are shown here to help in comparing with results from other papers.
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Figure 4.7: Standard Deviation result for system
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Figure 4.8: RMSE result for system
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Chapter 5

Wavenumber Calibration by Modelling

the Raman Spectrometer

The work in this chapter has been submitted to the Journal of Raman Spectroscopy

with the following reference: Liu, Dongyue, and Bryan M. Hennelly. "Wavenumber

Calibration by Modelling the Raman Spectrometer." submitted to Journal of Raman

Spectroscopy Sept 2022 with the following abstract:

"A direct wavenumber calibration protocol is proposed that replaces polynomial

fitting to relate the detector axis and the wavenumber axis. The physical model of the

Raman spectrometer is used to derive a mathematical expression relating the detector

plane to the wavenumber axis, in terms of the system parameters including the spec-

trograph focal length, the grating angle, and the laser wavelength; the model is general

to both reflection and transmission gratings. A fast search algorithm detects the set of

parameters that best explains the position of spectral lines recorded on the detector for

a known reference standard. Using three different reference standards, four different

systems, and hundreds of spectra recorded with a rotating grating, we demonstrate the

superior accuracy of the technique, especially in bands outside of the outermost reference

peaks when compared with polynomial fitting. Although similar approaches have been

investigated for wavelength calibration, we believe this is the first paper to investigate

direct wavenumber calibration based on physical modeling. We also provide a thorough
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review of wavenumber calibration for Raman spectroscopy and we introduce several new

evaluation metrics to this field borrowed from chemometrics, including leave-one-out

and leave-half-out cross validation."

5.1 Introduction

The overall goal of this thesis is to develop a set of calibration tools that can help

move Raman spectroscopy from the research lab into the clinic. These calibration

tools can be classified as (i) wavenumber calibration tools and (ii) intensity calibration

tools. As for the previous chapter, it is wavenumber calibration that is the subject of

this chapter. In the previous chapter, we investigated a novel method of wavelength

calibration protocol making use of an atomic emission reference spectrum such as neon.

Wavelength calibration can be used as the first in two steps to implement wavenumber

calibration; however, as described below, the second step of measuring the laser excita-

tion wavelength and using this to perform wavenumber conversion on the calibrated

wavelength axis is not always trivial. Arguably it is preferable to apply direct wavenum-

ber calibration by using a Raman wavenumber reference such as 4-acetamidophenol

or the polymer that was investigated in Chapter 3. In this chapter, the wavelength

calibration protocol developed in the previous chapter is used as the basis for a novel

direct wavenumber calibration protocol.

In Section 2.5 a thorough literature review of wavenumber calibration was provided.

In that review we provided a detailed review of direct wavenumber calibration in the

literature, compare with the alternative approach of wavelength calibration followed

by wavenumber conversion. In this review we have also compared the various contri-

butions over several important features including: the reference materials used, the

number of peaks in the reference spectrum, the resolution of the systems, methods for

sub-pixel interpolation, and calibration accuracy. All of the literature to date on the

subject of direct wavenumber calibration employs a low order polynomial (typically of

order 3) to fit the detector pixel and reference wavenumber shift pairs that are recorded

from a reference standard; this polynomial provides the calibrated wavenumber axis. In
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this chapter, we propose an alternative to polynomial fitting, which provides superior

accuracy and precision, particularly in bands outside of the outermost peaks in the

wavenumber reference spectrum. The method is based on deriving the relationship

between wavenumber and detector pixel for an arbitrary Raman spectrometer based

on the physical model, which is defined in terms of the system parameters includ-

ing the spectrometer focal length, grating angle etc. A search algorithm estimates the

set of parameters that are optimal in terms of fitting the detector pixel and reference

wavenumber shift pairs. The method is tested on hundreds of spectra recorded using

four different systems with varying resolution including a reflection Czerny-Turner

spectrometer with a motorised grating as well a low f -number spectrometer with a

holographic transmission grating. In all cases, it is shown that the method is superior to

polynomial fitting and we believe that this method could be considered for inclusion in

future iterations of ASTM-E1840. [2]

The breakdown of this chapter is as follows: In Section 5.2, a physical model of the

general Raman spectrometer is analysed and the relationship between wavenumber

and detector pixel is derived. We note that this naturally builds upon the approach taken

in the previous chapter in which the wavelength axis and pixel axis were related using

the same physical model; in this chapter we also investigate what polynomial order

would best fit this relationship, which has been a subject of debate in previous papers.

Based on this relationship, an algorithm is proposed in Section 5.3 to replace polynomial

fitting. In Section 5.4, the methods are detailed including a description of the overall

calibration routine, and the metrics used for accuracy/precision. In Section 5.6, results

are presented, which are followed by a brief conclusion.
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5.2 Relationship between wavenumber and pixel-position

in a spectrometer

5.2.1 Relationship between wavelength and pixel position for a gener-

alized spectrometer with a rotating grating

Here we simply summarise the result obtained in Section 4.3 in the previous chap-

ter, which derived the relationship between the wavelength of a point-source at the

spectrometer slit, to the position of the image of this point on the array detector. We

recall that the derivation is general for both transmission and reflection gratings, and

the direct wavenumber calibration algorithm that builds on this and which appears in

the next section can, therefore, be applied to Raman spectrometers that employ both

types of gratings. The relationship between the wavelength, λ, and the position, x, on

the detector plane is given by:

x = f

T
tan

{
θd+sin−1

[
nλ

d ′ −k sin(−α−θd )

]
−α

}
+C

T
(5.1)

where n is the diffraction order, f is the focal length of the spectrometer, T is the pixel

pitch of the detector, θd represents the angle of the grating, k is an integer with value −1

for a transmission grating and +1 for a reflection grating, α is half the deviation angle

of the spectrometer, and C represents misalignment of the centre of the detector array

with respect to the optical axis. Curvature of the slit image in the detector plane is often

caused by the displacement of the irradiance spot vertically along the slit resulting in an

oblique angle of the light, γ, incident on the grating [81, 82, 134, 138], and d ′ = d cosγ,

where d is the grating period. We refer the reader to Fig. 4.1 in the previous chapter for

an illustration of the rotating grating, which includes each of these parameters.
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5.2.2 Relationship between wavenumber and pixel position for a gen-

eralized spectrometer with a rotating grating

The wavenumber conversion formula is defined in Equation 5.2 below:

v =
(

1

λL
− 1

λ

)
107 (5.2)

where the wavenumber, v , is defined in units of cm−1 and wavelength is defined in

terms of nm and λL denotes the laser wavelength. To define the relationship between

wavenumber and pixel position this wavenumber conversion formula is applied to Equa-

tion 5.1. The forward and inverse relations are defined in Equation 5.3 and Equation 5.4

as follows:

x = f

T
tan

{
θd + sin−1

[ nλL

d ′(1−102νλL)
−

k sin(−α−θd )
]
−α

}
+ C

T

(5.3)

v = −10−2n

d ′
{

sin
[

tan−1
(

xT−C
f +α−θd

)]
+k sin(−α−θd )

} + 10−2

λL
(5.4)

In these two equations, the position on the detector, x, is defined in units of pixels.

Equation 5.4 is used as the basis of the wavenumber calibration algorithm that is out-

lined in Section 5.3. Before deriving this algorithm, we first explore the relationship

between x and v for two different Raman spectrometers, which are illustrated in Fig. 5.1,

and which are later used for experimental validation of the proposed algorithm. The

purpose here is to examine the non-linearity of this relationship for different systems, in

an effort to elucidate the inconsistent results presented in the literature to date on the

optimal polynomial order to best relate x and v . Full details of these two spectrometers

are provided in the previous chapter in Section 4.3. For the purpose, of this chapter,

it suffices to point out some key details and to provide the set of parameters for each

system in Table 5.1. For ease of reading, there is some repition below in terms of the

description of the spectrometers that appeared in Section 4.3.

The Czerny-Tuner spectrograph (Andor Shamrock 500; SR-500i-A; Andor UK) is
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Figure 5.1: (a) Basic Raman spectrometer with epi-illumination; (b) A Czerny-Tuner
spectrograph with a rotating grating; the parameters shown in the illustration appear in
Equation 5.1 in the text; (c) A transmission spectrograph using a holographic grating.
Both types of spectrographs are used in this study.

illustrated in Fig. 5.1(b); it used parabolic mirrors with focal length of 500mm and

contains a motorized rotating grating with interchangeable reflection gratings of period,

300, 600, and 1000 lines-per-mm. A transmission spectrometer (HOLOSPEC-F/1.8I-VIS;

Andor, UK) is also investigated in this study, illustrated in Figure 5.1(c). This lens based

system used volume-phase holographic transmission grating with 2455 lines/mm. A

same detector is used for both cases: a cooled CCD (Andor iDus; DU420A-BR-DD;

Andor UK) with 256×1024 pixels with a pixel-pitch, T of 26 µm Further details on both

spectrographs are available in the previous chapter in Section 4.3. The set of parameters

that describe the Raman spectrometers are provided in Table 5.1. These parameters are

required for the algorithm that is proposed in Section 5.3.

In order to elucidate the nonlinear relationship between wavenumber and pixel

position for these Raman spectrometers, Equation 5.4 is plotted for integer values of x

in the range −N /2 → N /2−1, as shown in Fig. 5.2. The wavenumber values have been

normalised for comparison in the figure. It is clear that the Raman spectrometer con-

taining the transmission spectrograph with the short focal length and high dispersion
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Parameter Unit Czerny Turner Transmission
Reflection/ transmission (k) NA +1 -1
Diffraction order (n) NA -1 +1

Grating Period (d) lines/mm
300
600

1000
2455

Half the deviation angle (α) degrees 10.94 45

Grating angle (θd ) Degree
4.8

10.2
17.2

0

Focal length ( f ) mm 500 85

Bandwidth cm−1
∼4190.78
∼2696.53
∼1650.80

∼2430

Average resolution cm−1
9.73
5.05
3.19

5.51

Camera pixel pitch (T ) µm 26 26
Camera width (N ) pixels 1024 1024
Camera centre position (C ) pixels 0 0
Laser wavelength (λL) nm 532 532

Table 5.1: The parameters for the two spectrometers illustrated in Fig. 5.1, which are
investigated in this study.

grating (2455 lines/mm) exhibits the most non-linear relationship over the span of the

detector. Interestingly, for the spectrometer with the Czerny-Turner spectrograph, the

most linear profile belongs to the case of the 1000 lines/mm grating, and the profile

becomes more linear as the grating period reduces.

These four profiles (without wavenumber normalisation) were subject to polynomial

fitting with orders from 1-7 and the mean absolute error in wavenumber between the

resultant polynomials and the profile were calculated. These values are presented in

Table 5.2. As polynomial order increases, the fitting error reduces; however, this trend is

different for all four cases and depends on the non-linearity of the x − v relationship.

The polynomial order to use in direct wavenumber calibration has been the subject

of debate in the literature. [3, 39, 44, 49, 69, 91, 93, 99, 100, 140] with various orders

being suggested as optimal for different cases. The polynomial order must be low

in order to avoid high error in bands outside of the outermost spectral lines in the

reference spectrum, and there is general consensus in recent literature that an order 3
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Figure 5.2: Investigation of the non-linearity of the (x, v) relationship for the different
spectrometers. Wavenumber values are normalised over the span of the detector for
comparison.

is preferred. [39, 44, 97]. For this order, we predict a theoretical limit of mean absolute

errors from 0.0043-0.49 depending on which Raman spectrometer is calibrated. It

can be concluded that the accuracy of direct wavenumber calibration using low order

polynomial fitting will be highly variable depending on the x −v relationship for a given

system, which is defined by the system parameters such as the grating period and focal-

length. It should also be noted that this analysis is performed with the assumption of

negligible optical distortion, which may place a further limit on accuracy. Although the

x −v relationship cannot the theoretically perfectly modeled by a low order polynomial,

this is not so for the x −λ relationship, which can be ideally modelled by a second order

polynomial [78, 89] in the absence of distortion as described in Section 4.3, see Fig. 4.3.

This may strengthen the argument that wavelength calibration followed by wavenumber

conversion provides superior accuracy [62] in general; however, recent experimental
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results suggest approximate parity between both approaches as reviewed in Section 2.5.

Polynomial
Order

300
l/mm

600
l/mm

1000
l/mm

2455
l/mm

1 93.1 27.6 10.4 40.9
2 6.8 1.1 2.2E-1 9.8E-1
3 4.9E-1 3.9E-2 4.3E-3 3.2E-2
4 3.6E-2 1.5E-3 8.7E-5 2.0E-3
5 2.6E-3 5.5E-5 1.8E-6 5.6E-5
6 1.9E-4 2.1E-6 3.6E-8 5.6E-6
7 1.4E-5 7.7E-8 7.2E-10 1.1E-7

Table 5.2: The Mean Absolute Error in units of cm−1 following the fitting of the profiles
shown in Fig. 5.2 with polynomials of orders 1-7. In this calculation, the wavenumber
values have not been normalised.
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5.3 Algorithm

In this section, an algorithm is developed that relates the detector pixels, x, to the

corresponding spectral wavenumber values, v , which replaces the step of polynomial

fitting in traditional direct wavenumber calibration algorithms. This algorithm is based

on Equation 5.4, which mathematically relates x and v using the physical model of the

system. Like traditional polynomial fitting, this algorithm requires a set of matching

sub-pixel positions, X0 and reference wavenumber values V0, on which to apply the

fitting algorithm. Following the recording and processing of a reference wavenumber

spectrum, such a set of matching pairs will be available. Explicitly, these are defined as

follows:

X0 = [x1, x2, · · · , xM ]

V0 = [v1, v2, · · · , vM ]
(5.5)

where xi=1:M are the sub-pixel positions of the spectral lines, which have known refer-

ence wavenumber values vi=1:M , where there are M useful spectral lines in the reference

spectrum.

Equation 5.4 contains several system parameters that define the system and knowl-

edge of their precise values enables accurate fitting of Equation 5.4 to the available data

points X0,V0. The algorithm searches over a range of values of these system param-

eters to provide optimal fitting. The set of relevant system parameters, S is given by

Equation 5.6.

S = [ f ,T,C ,d ′,α,θ,λL] (5.6)

Each of these parameters is approximately known based on manufacturer specification

or approximate measurement. However, the precise values cannot easily be determined

at the outset. Even the effective detector pixel size could be slightly reduced by a small

out-of-plane tilt of the detector. To facilitate the discussion that follows, Equations 5.3
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and 5.4 are rewritten using operator notation as follows:

x = model (S, v)

v = model−1(S, x)
(5.7)

The goal is to find values of S that ’best’ match X0 and V0. One naive approach is to

perform a brute-force search over all seven parameters using their approximate values

as a starting point; however, this approach is computationally intractable. It is clear

in Equation 5.3 that parameters C , T , and f are linear in effect, and can, therefore, be

accounted for using linear regression techniques. It is necessary to brute-force search

only over a reduced set of four parameters S′ = [d ′,α,θ,L ], which significantly reduces

the scope of the search. The algorithm is defined as follows:

1. The first step provides initial estimates of the key parameters in S, which are

defined as S0 = [ f0,T0,C0,d ′
0,α0,θ0,λL0] as follows: The values of ( f0,T0,d ′

0,λL0)

can be taken from the manufacturers specifications for the spectrograph detector,

and laser. The value for α0 is approximately measured manually and both C0 and

θ0 are estimated using a brute-force search over only these two variables for a

single peak pair (xi , vi ).

2. A brute-force search is performed over [α,d ′,θ,λL] in a small range, centred at

[α0,d0,θ0,λL0] and using values f0,T0,C0 in order to provide an intermediate

result:

X j = model ([C0, f0,T0,α j ,d ′
j ,θ j ,λL j ]) (5.8)

For each unique set of values [α j ,d ′
j ,θ j λL j ] over the search range, the resultant

values X j are linear-regressed with respect to positions at which the peaks were

detected, X0, in order to account for errors in f , T , and C , which provides an

updated set of estimated positions, X ′
j . For simplicity, we describe this opera-

tion in terms of the Matlab functions, polyfit and polyval, which are used to
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implement it as follows:

P j = polyfit(X j , X0, p)

X ′
j = polyval(X j ,P j )

(5.9)

where the function polyfit returns the coefficients of polynomial degree p = 1

that is the best fit (in a least-square sense) to describe the transformation between

X j and X0. This is followed by the function polyval, which applies this transfor-

mation to X j using these coefficients in order to provide the updated values for

X ′
j .

The specific set of parameters, Smi n = [ f0,T0,C0,αmi n ,d ′
mi n ,θmi n ,λmi n], and lin-

ear regression coefficients defined by Pmi n , which produce the set Xmi n that most

closely match the actual pixel values X0 are taken to be the system parameters.

This is determined by minimising the error function defined in Equation 5.10:

er r =
N∑

i=1
(x j

i −xi )2 (5.10)

where X ′
j = [x j

1 , x j
2 , · · · , x j

M ]. We acknowledge that a tight-grid brute force search

over four parameters would not normally be applied since modern search algo-

rithms are far more efficient such as steepest descents and simplex searching.

However, for the purpose of this chapter, a brute-force search was sufficient.

3. Now that the system parameters Smi n and Pmi n are known, the integer pixel

(centre) positions can be related to the corresponding wavenumber values, V ,

thereby providing wavenumber calibration for the spectrograph. In this final

step, the pixel positions are projected into the wavenumber domain by using the

opposite process outline in Step 2. Taking the centre of the CCD pixels to be given

by XCC D = [1,2, · · · ,1024], the matching wavenumber values are given by:

VCC D = model−1[Smi n ,polyval(XCC D ,Pmi n)] (5.11)

The algorithm is general for any spectrometer; however the constant integer values
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of n and k that are used in Equation 5.4 should be chosen accordingly. In our exper-

iments, the transmission spectrometer uses the n = 1 diffraction order, while for the

Czerny-Turner system uses the n =−1 diffraction order. The value of k depends on the

use of a reflection or transmission grating. Therefore, for the case of the transmission

spectrometer k =−1, while for the Czerny-Turner system k = 1 as shown in Table 5.1.
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5.4 Overall calibration procedure

The overall calibration protocol is similar to that outlined in Algorithm 2 in the pre-

vious chapter, see Section 4.4.2 with some additional steps. Step 1 is to record a Raman

spectrum from a reference material containing some number of sharp, symmetrical

and well defined, known peak wavenumbers. Here, we use three reference materials:

4-acetamidophenol (Sigma, Ireland), benzonitrile (Sigma, Ireland), and a commercial

polymer (Ibidi, GmbH). Recorded spectra are shown in Fig. 5.3, which also illustrates

the different bands that were recorded using the four different spectrometers.

The wavenumber values of the lines that are highlighted in Fig. 5.3 are provided in

Table 5.3. These reference values and uncertainties have been taken from ASTM [2] and

Ref. 3. For the case of the 300 lines/mm grating all of the values shown in Table5.3 were

used for wavenumber calibration and a reduced set were used for the other gratings as

detailed in the caption for Table 5.3. Step 2 is to identify the sub-pixel position of the

lines in the recorded spectrum. Various methods are reviewed in Section 2.5 on how

this can be achieved; here, we fit a Lorentzian function to the intensities of the pixels in

the region of the peak of the following form: [139]

P1

(x −P2)2 +P3
+P4 (5.12)

where P1, P2, P3 and P4 are the fit-parameters. The value of P2 is taken to be the sub-

pixel position of the peak. An example of this approach is given in Fig. 5.3 (d) in which

we show a Lorentzian function that has been fit to one peak in the benzonitrile spectrum.

In the results section below, all of the peak positions in each reference spectrum are

estimated with sub-pixel accuracy using this approach. Step 3 is the application of the

algorithm described in Section 5.3 using these sub-pixel positions and the matching

wavenumber values given in Table 5.3.
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Figure 5.3: Sample spectra recorded from the three different reference materials. The
spectrum of (a) 4-acetamidophenol, (b) benzonitrile and (c) commercial grade poly-
mer. The recorded bands using the four spectrometers are highlighted in different
colour boxes: The black area corresponds to the 2455 lines/mm grating; green is 1000
lines/mm; red 600 lines/mm; blue 300 lines/mm. (d) A single peak from the benzoni-
trile is expanded. A Lorentzian function is fitted to the data points around the peak in
order to detect the peak centre with sub-pixel accuracy as described in Section 5.4. (e)
A further example is given of Lorenzian peak fitting, this time applied to a relatively
broader and weaker peak.
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Wavenumber (cm−1) Standard Deviation
4-acetamidophenol
213.3 1.77 329.2 0.52 465.1 0.30
504 0.60 651.6 0.50 797.2 0.48

857.9 0.50 968.7 0.60 1105.5 0.27
1168.5 0.65 1236.8 0.46 1323.9 0.46
1371.5 0.11 1515.1 0.70 1561.5 0.52
1648.4 0.50 2931.1 0.63 3064.6 0.31
3102.4 0.95 3326.6 2.18
Benzonitrile
460.9 0.73 548.5 0.82 751.3 0.74
767.1 0.59 1000.7 0.98 1026.6 0.81
1177.9 0.82 1192.6 0.56 1598.9 0.70
2229.4 0.39 3072.3 0.41
Polymer
743.5 0.56 828.0 0.90 886.6 0.54
923.1 0.15 1005.7 0.17 1041.7 0.68

1224.6 0.60 1449.3 0.30 2869.0
2914.0

Table 5.3: Reference spectral lines and uncertainties used in this chapter. Values for 4-
acetamidophenol and benzonitrile are taken from ASTM, [2] and values for the polymer
are taken from Reference 3. Different numbers of reference lines were used for the
different spectrometers depending on their bandwidth as illustrated in Fig. 5.3. For
4-acetamidophenol: 300 lines/mm-20 peaks, 600 lines/mm-17 peaks, 1000 lines/mm-14
peaks, 2455 lines/mm-14 peaks; benzonitrile: 300 lines/mm-11 peaks, 600 lines/mm-10
peaks, 1000 lines/mm-9 peaks, 2455 lines/mm-10 peaks, polymer: 300 lines/mm-8
peaks, 600 lines/mm-10 peaks, 1000 lines/mm-8 peaks. The uncertainty for the lines of
the polymer is based on the four seconds recording in Reference 3. The uncertainty for
the latter two lines is not available.
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5.5 Experiment design

5.5.1 Recording of reference spectra

The performance of the proposed wavenumber calibration algorithm is examined

across two Raman spectrometer designs and four different gratings periods as descri-

bed in previous section. For the case of the Czerny-Turner system, all three reference

materials were investigated, while for the transmission spectrometer the polymer was

omitted. For each of the three gratings in the Czerny-Turner spectrometer, and for each

of the three materials, 100 different reference spectra are recorded with changes in the

grating rotation angle. For each of these cases, a rigorous evaluation of the performance

of the calibration is possible by calculating the ensemble average of the error metrics

defined below, across the set of 100 reference spectra.

While the polymer slide has the advantage of requiring no preparation whatsoever,

the 4-acetamidophenol and benzonitrile are in powder and liquid form, respectively.

These were both mounted in an Ibidi chamber slide . The base of the chamber was

drilled to create an open aperture, which was sealed using a Raman grade Calcium

Fluoride coverslip (Crystran, UK), which produces a negligible Raman spectrum except

for a single peak at 321 cm−1.

To minimise the effect of shot noise, the accumulation time was maximised to

provide a photon count just less than the saturation level of the CCD. Rather than use

Full Vertical Binning, which can produce error in the presence of image distortion as

disucssed in the previous chapter, area scan images were recorded by the detector; the

row of pixels containing the spectrum was cropped.

5.5.2 Error metrics

Several different error metrics have been reported in the literature (see Table 2.1)

including, mean absolute error (MAE), the standard deviation (SD), and the root mean

square error (RMSE), all of which are measured in this chapter. These metrics are

defined below using the same notation as used in Section 5.3. Initially, we define the
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error for a single line at known wavenumber vi to be given by:

er r or (vi ) = cal i br ated(vi )− vi (5.13)

where the vi value is taken from Table 5.3 and the calibrated value, cal i br ated(vi ), is

taken from the set Vmi n :

Vmi n = model−1[Smi n ,polyval(Xmi n ,Pmi n)] (5.14)

In some papers, the absolute error (AE) is reported for one peak or for a range of

peaks. More traditionally, the mean error is reported for all of the peaks in the reference

spectrum as follows:

M AE = 1

M

M∑
i=1

|er r or (vi )| (5.15)

RMSE =
√√√√ 1

M

M∑
i=1

|er r or (vi )|2 (5.16)

SD =
√√√√ 1

M −1

M∑
i=1

|er r or (vi )−er r or (vi )|2 (5.17)

where er r or (vi ) denotes the mean error. In order to provide a more reliable estimate of

the error, the above metrics can be calculated for a set of K different spectra where the

grating is moved between captures. The ensemble average of each of the above metrics

is calculated over these K reference spectra as follows:

M AE = 1

K

K∑
k=1

M AE(k) (5.18)

RMSE = 1

K

K∑
k=1

RMSE(k) (5.19)

SD = 1

K

K∑
k=1

SD(k) (5.20)
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5.5.3 Evaluation methods

Here, we describe a number of evaluation methods, making use of the above met-

rics, which were proposed for the evaluation of wavelength calibration in the previous

chapter; see Section 4.6.2. The latter two are borrowed from the area of multivariate

statistical analysis [136, 137] and are used here for the first time (to the best of our

knowledge) in the evaluation of wavenumber calibration:

1. All-peaks: Here all of the calibrated peaks from the reference are used in the

error analysis. This is the typical value reported in the literature to date. Taking

a spectrum of the reference sample 4-acetamidophenol as an example, which

contains 20 reference lines vi for i = 1 → 20, all 20 values of vi and the matching

sub-pixel positions are used to perform the given calibration routine. Using the

resultant calibrated wavenumber axis, the error function for each vi is calculated

according to Equation 5.10, which enables the MAE to be calculated according

to Equation 5.15, and this procedure is repeated for each of the K = 100 spectra

in the dataset; finally the mean MAE is calculated using 100 results as defined in

Equation 5.18. In total a given calibration routine is applied 100 times to calculate

the MAE for ALL peaks.

2. Leave-one-out-cross-validation: in order to remove any bias from the reference

spectrum, we propose the use of ’leave-one-out’ (LOO) cross-validation, whereby

one peak is removed from the reference spectrum used in the calibration process.

The error metric is then applied only to this peak alone following calibration.

This process is repeated for each peak in the spectrum and the average value

for all cases is calculated. This method must provide a more accurate estimate

of wavenumber accuracy inside the bounds of the spectral lines provided by

the reference spectrum. Again taking a spectrum of the reference sample 4-

acetamidophenol as an example, which contains 20 reference lines, the first line

v1 is removed from the spectrum and the given calibration routine is applied to

the remaining 19 lines vi for i = 2 → 20. The resulting calibrated wavenumber

axis is applied to the spectrum and the error function defined in Equation 5.10
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is applied only to v1 to obtain er r or (v1). Then v2 is removed from the dataset

used for calibration followed by calculation of only er r or (v2). This process is

repeated in total 20 times to calculate er r or (vi ) for all i = 1 → 20, and then the

MAE function can be calculated as defined by Equation 5.15. Therefore, LOO

analysis applied to a single 4- acetamidophenol spectrum requires application of

the given calibration routine 20 times using a different set of 19 reference lines

in each instance. This LOO analysis is then applied to all K = 100 spectra in the

dataset and the mean MAE is obtained as defined in Equation 5.18. In total, LOO

analysis of a particular calibration routine requires 2000 applications.

3. Leave-half-out (LHO): We propose an evaluation based on calibrating using the

left-most half of the reference peaks and applying the error metric to the right-

most peaks of the calibrated spectrum. This is repeated using the right-most

peaks for calibration and the left-most for error calculation. The average of the

two values is taken. This provides a more accurate evaluation of the accuracy

of the wavenumber calibration outside the bounds of the reference spectrum

lines. Again taking a spectrum of the reference sample 4-acetamidophenol as an

example, which contains 20 reference lines, the 10 left-most lines in the spectrum

are removed and only the right most 10 lines, vi for i = 11 → 20, are used in

the given calibration routine. The resulting calibrated axis is applied to the full

spectrum and the error function er r or (vi ) is calculated only for the left 10 lines

i = 1 → 10. This overall process is then repeated this time using the left 10 lines

for calibration and the right ten lines to calculate the error function. Thus, two

applications of the given calibration routine, using 10 lines in each instance, will

provide the 20 values of the error function, er r or (vi ) for vi for i = 1 → 20, which

can then be used to calculate the MAE function in Equation 5.15. This LHO

analysis is then applied to all K = 100 spectra in the dataset and the mean MAE

is obtained as defined in Equation 5.18. In total, LHO analysis of a particular

calibration routine requires 200 applications.
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5.5.4 Comparison with traditional methods of wavenumber calibra-

tion

In all cases, the proposed algorithm is compared with equivalent results from first-

order up to a seventh-order polynomial. This analysis relates to the discussion at the

end of Section 5.2.2 on the non-linear relationship between x and v .

5.6 Results

In this section, the results are presented for wavenumber calibration using the pro-

posed algorithm and compared with the corresponding set of results from the first-,

through to seventh-order (where possible) polynomial fitting. As outlined in the previ-

ous section, these results are broken down into three sets of evaluations, corresponding

to ’All-Peaks’ (ALL), ’Leave-one-out’ cross validation (LOO), and ’Leave-half-out’ cross

validation (LHO). Furthermore, to facilitate comparison with other papers, which use

various metrics, these evaluations are performed using three different metrics: M AE ,

RMSE , SD as defined in Equations 5.18, 5.19, and 5.20. For the case of the transmission

spectrometer, the grating angle could not be adjusted and so only a single spectrum

was available. In this case the error metrics used in the evaluation are: M AE , RMSE ,

SD as defined in Equations 5.15, 5.16, and 5.17. The results for the Mean Absolute Error

metrics using the 4-acetamidophenol material are shown below in Fig. 5.4. For the case

of ALL evaluation, first order fitting is the worst performer by a wide margin for all four

systems, which is due to the highly non-linear x − v relationship; the most inaccurate

system is the 300 lines/mm grating, followed by the transmission 2455 lines/mm grating,

which is predicted in Table 5.2. We note that the measured error values differ from those

in Table 5.2 due to the lower number of wavenumber values used to calculate the error

when compared with the theoretical analysis in Section 5.2.2. For each of the four grat-

ings, all of the other polynomial orders, as well as the proposed algorithm, show similar

performance: the accuracy for the 300 lines/mm grating are 0.749-1.772 cm−1; for the

600 lines/mm grating the accuracy is 0.315-0.366 cm−1; for the 1000 lines/mm grating
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Figure 5.4: Evaluation of direct wavenumber calibration accuracy using Mean Absolute
Error applied to 4-acetamidophenol spectra. For the case of the Crezny-Turner reflec-
tion spectrometer three different gratings are investigated: 300, 600 1000 lines/mm and
for these three cases the M AE error metric is applied over 100 spectra with grating move-
ment between capture. The transmission spectrometer with grating 2455 lines/mm
is evaluated using a single M AE error metric applied to single spectrum. The results
of the algorithm proposed in this chapter are given in blue and the results for first-,
second-, third, fourth, fifth, sixth, and seventh-order polynomial fitting are given in
orange, yellow, green, blue, red, and pink, respectively. The results of ’All-Peaks’ (ALL),
’Leave-one-out-cross-validation’ (LOO), and ’Leave-half-out’ (LHO) are shown on differ-
ent rows. For ease of comparison, the same axis range is used for all three evaluations.
In several cases, the bars have been capped at 1.5 cm−1 to improve visualisation. The
correct values are overlaid on the bars in all cases.
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the accuracy is 0.177-0.319 cm−1; and for the 2455 lines/mm grating the accuracy is

0.140-0.201 cm−1. Interestingly, the proposed algorithm provides an accuracy equiva-

lent to that of second and third order fitting and the accuracy is improved slightly as the

polynomial order is increased. The accuracy does not improve by an order of magnitude,

with each increase in polynomial order as predicted by Table 5.2; the limiting factor here

is the positional accuracy afforded by sub-pixel interpolation, as well as the resolution

of the given system.

It is possible that the slightly better accuracy for order > 3 results from over-fitting

of the available data-points. This is suggested by the second evaluation, LOO, which

eliminates the possibility of over-fitting; In this case, it is clear that increasing the

polynomial order will in general result in increased error within the wavenumber band

that is bounded by the reference lines. In all cases, the proposed algorithm provided the

highest accuracy for LOO evaluation, albeit the error is only slightly lower than for the

best polynomial fitting case, which is either the second-, or third-order for each case.

LHO evaluation reveals the strength of the proposed algorithm over traditional

methods. This evaluation indicates that in all cases, the proposed algorithm is by far

the most accurate in wavenumber bands that are outside of the spectral lines in the

reference lamp; indeed the accuracy in these bands is only slightly less (0.04-0.273 cm−1)

than the accuracy inside the bounds according to LOO evaluation. For the case of the 300

lines/mm reflection grating, the proposed algorithm provides the best LHO accuracy,

with an error 1.118 cm−1 and second-order fitting is next best with an error of 24.657

cm−1; second- and third-order fitting error are 22.1-times and 87.5-times worse than the

proposed algorithm, respectively. For the 600 lines/mm reflection grating, the proposed

algorithm once again provides the best LHO accuracy with an error of 0.479 cm−1;

second-, and third- order fitting provide errors are 1.9-times, and 28.5-times greater. For

the third reflection grating of period 1000 lines/mm, the proposed algorithm once again

returns the best LHO accuracy with an error of 0.609 cm−1; second-, and third-order

fitting provide errors that are 5.1-times and 38.5-times greater. For the transmission

grating of period 2455 lines/mm, the proposed algorithm once again returns by far the
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Figure 5.5: Evaluation of direct wavenumber calibration accuracy using Mean Absolute
Error applied to benzonitrile spectra. See caption for Fig. 5.4 for further details. Poly-
nomial order >3 could not be applied for LHO evaluation due to lower peak number.
The results of the algorithm proposed in this chapter is given in blue and the results for
first-, second-, third, fourth, fifth, and sixth-order polynomial fitting are given in orange,
yellow, green, blue, red, and pink, respectively.

best LHO accuracy with an error of 0.295 cm−1; second-, and third-order fitting provide

errors that are 8.4-times and 24.9-times greater.
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Figure 5.6: Evaluation of direct wavenumber calibration accuracy using Mean Absolute
Error applied to commercial polymer spectra. The reference peak position of polymer
is based on the result of our database, which was shown in Table 3.1. In this case the
transmission spectrometer was not tested. Polynomial order >3 could not be applied
for LHO evaluation due to lower peak number. The results of the algorithm proposed
in this chapter are given in blue and the results for first-, second-, third, fourth, fifth,
and sixth-order polynomial fitting are given in orange, yellow, green, blue, red, and pink,
respectively.
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Similar trends are reported for the benzonitrile reference spectrum as shown in

Fig. 5.5. In this case, it was not possible to perform polynomial fitting with order > 3 for

LHO evaluation owing to the availability of a smaller number of lines in the reference

spectrum. Focusing only on LOO and LHO evaluation, which provides the best estimate

of calibration accuracy inside and outside of the reference lines, it is notable that the

proposed algorithm has the best accuracy in all cases, with the most pronounced

improvement over polynomial fitting observed for LHO evaluation. For LOO evaluation

third-order fitting is the second most accurate in all cases; in summary, the proposed

algorithm provides an accuracy of 0.105-0.736 cm−1 for the four spectrometers within

the bounds of the reference lines, while third-order fitting produces errors that are

1.6-2.7 times greater. For LHO evaluation, second-order fitting is the second most

accurate in all cases; in summary, the proposed algorithm provides an accuracy of

0.223-0.967 cm−1 for the four spectrometers outside the bounds of the reference lines,

while second-order fitting produces errors that are 1.8-9.2 times greater, and third order

fitting produces errors that are 23.8-178.8 times greater.

Although the polymer material has the advantage of photo-stability and easy mount-

ing, it produces the least accurate wavenumber calibration results across the three

materials tested. Nevertheless, it provides similar trends as for the other two cases as

shown in Fig. 5.6. As for benzonitrile, it was not possible to perform polynomial fitting

with order > 3 for LHO evaluation. Focusing again only on LOO and LHO evaluation, it

is clear that the proposed algorithm has the best accuracy compared with polynomial

fitting of various orders, albeit the improvement over second order fitting is minute for

the 600 lines/mm grating. As before, the most significant improvement over polynomial

fitting is observed for LHO evaluation. For LOO evaluation second-order fitting is the

second most accurate in all cases; in summary, the proposed algorithm provides an accu-

racy of 1.601-2.226 cm−1 for the three spectrometers within the bounds of the reference

lines, while second-order fitting produces errors that are 1.1-3.2 times greater and third

order fitting produces errors that are 1.4-66.2 greater. For LHO evaluation, first-order

fitting is the second most accurate in all cases; in summary, the proposed algorithm
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provides an accuracy of 3.269-15.497 cm−1 for the four spectrometers within the bounds

of the reference lines, while first-order fitting produces errors that are 2.2-6.9.0 times

greater.

In Appendix 5.8.1 we provide the same evaluations for the three materials, where

the underlying metric of mean absolute error is replaced with the standard deviation,

and the root mean square error, which are sometimes preferred in the literature.
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5.7 Conclusion

In this chapter, we have made several important contributions in the area of direct

wavenumber calibration for Raman spectroscopy. The first contribution is the derivation

of the relationship between the detector pixel position x and wavenumber v for a low

distortion Raman spectrometer, in terms of the system parameters including, laser

wavelength, grating period and angle, and spectrograph focal length, which is provided

in Section 5.2.2 and which build on the result in Section 5.6 in the previous chapter. This

relationship was explored for a number of different experimental systems, and it was

demonstrated that the degree of non-linearity was highly variable across the different

systems and depended primarily on focal length and grating period; in some cases a

second order fit could estimate the relationship with high accuracy, while in others this

would result in high error and a third order or higher polynomial order is necessary for

accurate fitting. We believe that this result goes some way to explain the variable results

that have been reported in the literature to date on the optimal polynomial order to be

used in direct wavenumber calibration.

The most significant contribution in the chapter is the algorithm proposed in Sec-

tion 5.3, which can replace the polynomial fitting step applied in traditional wavenum-

ber calibration to relate x and v . This algorithm searches for the optimal set of system

parameters as functions of the x − v expression derived in Section 5.2.2, that can best

explain the positions and wavenumber values for a set of spectral lines in a known

reference spectrum. The algorithm can search over seven system parameters in total in-

cluding the laser wavelength and is demonstrated to outperform traditional polynomial

fitting in terms of a number of metrics.

In order to fully demonstrate the superiority of the proposed algorithm over polyno-

mial fitting, we employ the metrics developed in the previous chapter in Section 5.5.2,

namely leave-one-out and leave-half-out cross validation. Although these are well

known techniques in chemometrics, their applicability to wavenumber calibration has

not previously been reported. We argue that these matrices are more suitable than

traditional approaches as they preclude the possibility of over-fitting in the calibration

149



process; by only allowing the accuracy to be measured on peaks that were not included

in the calibration process, these methods must be considered to be a more accurate

evaluation of the true accuracy of the calibration procedure at wavenumber positions

between the spectral lines in the reference wave and in bands outside of the outermost

peaks in the reference spectrum. Using these evaluations, we conclude that for the

instruments tested here, the proposed algorithm is more accurate than second- or third-

order fitting within the band of the spectral lines in the reference by a factor of up to

2.2 times for 4-acetamidophenol and 5.9 times for benzonitrile. More significantly it

is more accurate than second- or third- order fitting outside of the reference lines by

factors of up to 269.6 times and 176.9 times these two materials.

Another interesting conclusion is that benzonitrile provides for more accurate cali-

bration than 4-acetamidophenol for all four spectrometers tested: the accuracy afforded

by 4-acetamidophenol is LOO:0.254-0.997 cm−1 and LHO:0.295-1.118 cm−1 for the four

systems, while for benzonitrile this drops to LOO:0.105-0.736 cm−1 and LHO: 0.223 -

0.967 cm−1. The latter has significantly fewer peaks; however, these peaks are in general

sharper, which may suggest a greater importance for peak width compared with peak

number for wavenumber calibration. It is important to emphasize that the proposed

algorithm negates the need for a large number of peaks. The accuracy when using only

nine peaks for the case of the 1000 lines/mm grating is ALL:0.072 cm−1, LOO:0.105

cm−1, LHO: 0.223 cm−1. These values compare well with the most accurate calibration

reported to date, [39] which was limited only by the accuracy of the ASTM values for the

reference lines of 0.1 cm−1. In that paper the authors used 67 peaks from a reference

spectrum from a composite of different materials, chosen to cover a wide range in

wavenumber. The proposed algorithm may negate the need for such an approach, and

we believe there is a strong case for it to be included in future iterations of ASTM-E1840,

in particular for wavenumber bands outside the range of lines in the reference spectrum.

In this chapter and the previous two chapters the main subject was wavenumber

(or wavelength) calibration for Raman spectrometers. In the next chapter we change

direction and focus on intensity calibration.
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5.8 Appendix

5.8.1 Results using Standard Deviation and RMSE

In this appendix ALL, LOO, and LHO evaluation of the proposed algorithm is re-

peated for the underlying metrics of standard deviation and root mean square error,

which are sometimes preferred in the literature. The definitions of these metrics are

given in Section 5.5.2. Evaluation using the error metric of standard deviation is given in

Fig. 5.7 ,Fig. 5.9, Fig. 5.11 and using Root Mean Square Error is given in Fig. 5.8, Fig. 5.10,

Fig. 5.12. These results correspond to those shown in Fig. 5.4, Fig. 5.5, and Fig. 5.6 in the

main body of the chapter for the case of the error metric Mean Absolute Error. These

additional results are shown here to help in comparing with results from other papers.

5.8.2 Detailed analysis of peak error

In this section, we examine the wavenumber error for each individual peak across

the three reference spectra using each of the different metrics: ALL, LOO, and LHO.

The goal is to investigate patterns in the wavenumber error when using the different

calibration methods. More explicitly, we calculate the peak mean absolute error (PMAE)

for each reference line vi in the reference spectrum, which is defined as follows:

P M AE(vi ) = 1

K

K∑
k=1

|er r ork (vi )| (5.21)

where er r ork (vi ) is given by the function er r or (vi ) for the k th spectrum as defined in

Equation 5.10 in the main text of the chapter, and again K is the number of reference

spectra that have been recorded, which is K = 100 for the experiments in this chapter.

The P M AE function is calculated for all M spectral lines in the reference spectrum. It

should be noted that the M AE function defined in Equation 5.18 can be rewritten in

terms of this peak error function as follows:

M AE = 1

M

M∑
i=1

P M AE(vi ) (5.22)

151



Figure 5.7: Wavenumber errors for 4-acetamidophenol using the standard deviation.
The results of the algorithm proposed in this chapter are given in blue and the results
for first-, second-, third, fourth, fifth, sixth, and seventh-order polynomial fitting are
given in orange, yellow, green, blue, red, and pink, respectively.
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Figure 5.8: Wavenumber errors for 4-acetamidophenol using the RMSE. The results
of the algorithm proposed in this chapter are given in blue and the results for first-,
second-, third, fourth, fifth, sixth, and seventh-order polynomial fitting are given in
orange, yellow, green, blue, red, and pink, respectively.
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Figure 5.9: Wavenumber errors for benzonitrile using the standard deviation. The results
of the algorithm proposed in this chapter are given in blue and the results for first-,
second-, third, fourth, fifth, sixth, and seventh-order polynomial fitting are given in
orange, yellow, green, blue, red, and pink, respectively.
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Figure 5.10: Wavenumber errors for benzonitrile using the RMSE. The results of the
algorithm proposed in this chapter are given in blue and the results for first-, second-
, third, fourth, fifth, sixth, and seventh-order polynomial fitting are given in orange,
yellow, green, blue, red, and pink, respectively.
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Figure 5.11: Wavenumber errors for commercial polymer using the standard deviation.
The results of the algorithm proposed in this chapter are given in blue and the results
for first-, second-, third, fourth, fifth, sixth, and seventh-order polynomial fitting are
given in orange, yellow, green, blue, red, and pink, respectively.
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Figure 5.12: Wavenumber errors for commercial polymer using the RMSE. The results
of the algorithm proposed in this chapter are given in blue and the results for first-,
second-, third, fourth, fifth, sixth, and seventh-order polynomial fitting are given in
orange, yellow, green, blue, red, and pink, respectively.
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We begin in Fig. 5.13 by calculating the PMAE function for the wavenumber reference

4-acetamidophenol spectra that have been wavenumber calibrated using 2nd order

polynomial fitting, 3rd order polynomial fitting, and using the method proposed in

this chapter. It should be noted that these error functions have been calculated over a

dataset of K = 100 different reference spectra that have been recorded with movements

of the grating angle. In Fig. 5.13 (a1) the PMAE is shown for the 20 reference peaks

in 4-acetamidophenol for the case of using ALL peaks and for the case of using LOO

analysis. For ALL peaks, all 20 peaks were used in the calibration routine, and then the

er r ork (vi ) function for each vi was measured for the calibrated axis. Therefore, for

ALL peaks the calibration routine is applied once for each of the K = 100 spectra. As

described in the chapter, for LOO the er r ork (vi ) function is calculated on a reference

line vi , that has not been included in the calibration protocol; therefore, for a given

spectrum, k, each calibration protocol is applied 20 times, using a different set of 19

peaks in each instance, and the missing wavenumber vi is used to calculate the peak

error defined by Equation 5.10. This is repeated for each of the 100 spectra in the

dataset to obtain the PMAE as defined by Equation 5.21; therefore, each calibration

routine is applied 2000 times for LOO analysis. Results are shown for 2nd and 3rd order

fitting as well as for the proposed calibration method in Fig. 5.13 (a1). For each of the

three calibration protocols it can be seen that LOO is slightly less accurate that the ALL

peaks case, which is to be expected since LOO removes the possibility of overfitting

and provides a more reliable evaluation of how a calibration protocol will perform at

wavenumber values that are not included in the discrete set of reference wavenumber

lines. It is interesting to note the similar pattern of relative error across the different

lines in the spectrum, particularly for 3rd order fitting and for the proposed algorithm.

It is also interesting to note that for both calibration protocols the highest errors occur

for the peaks at 213 cm−1 and 1515 cm−1, which are amongst the broadest and weakest

lines in the spectrum; sharper peaks have lower error, which may point to a difficulty

in accurately determining sub-pixel position for broader peaks in general. Notably,

the peak at 213 cm−1 also has one of the highest uncertainties of all of the peaks (see
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Figure 5.13: Peak Mean Absolute Error (PMAE) calculated for 4-acetamidophenol spec-
tra that have been wavenumber calibrated using 2nd order polynomial fitting, 3rd order
polynomial fitting, and using the method proposed in this chapter. It should be noted
that these error functions have been calculated over a dataset of 100 different reference
spectra that have been recorded with movements of the grating angle. Results for ALL,
LOO and LHO analysis are shown in (a1-a3) for the 300 lines/mm grating; in (b1-b3)
for the 600 lines/mm grating; in (c1-c3) for the 1000 lines/mm grating; and in (d1-d3)
for the 2455 lines/mm grating. For the latter case the dataset contains only a single
spectrum since the grating could not be rotated. See text for more details.
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Table 5.3). Inspection of the standard deviation values in the table reveals that those

peaks with the smallest deviations appear to have the smallest errors in the figure. In

Fig. 5.13 (a2) and (a3) the results of LHO analysis are presented. Fig. 5.13 (a2) shows

the error for the left 10 peaks when calibration has been applied using only the right

10 peaks. Surprisingly, third order fitting performs well in this instance; however, this

appears to be a fortuitous result and when we tested again using the right 9 most peaks

for calibration significant error appeared for the left 11 peaks. In Fig. 5.13 (a3) the error

for the right most 10 peaks is shown when calibration used only the left 10 peaks; in this

case only the proposed method performs well. The disparity in error in Fig. 5.13 (a2)

and (a3) relates to the range and distribution of the 10 peaks used for calibration. The

same set of results are shown for the 600 lines/mm grating in Fig. 5.13 (b1-b3). Once

again the proposed method is the most consistent overall. Interestingly, in this case 3rd

order fitting performs poorly for LHO analysis for both sides, while 2nd order fitting

performs better. Similar results are shown for the 1000 lines/mm grating in Fig. 5.13 (c1-

c3) and for the 2455 grating in Fig. 5.13 (d1-d3); in the later case only a single spectrum

is used in the dataset, i.e. K = 1. It is notable that the same approximate pattern of

error is found for the different gratings in terms of the relative error of each peak in the

4-acetamidophenol spectrum.

A similar set of results are shown in Fig. 5.14 for the benzonitrile reference material

for the 300 lines/mm grating in (a1-a3), 600 lines/mm grating (b1-b3), 1000 lines/mm

grating in (c1-c3) and the 2455 lines/mm grating in (d1-d3). As for the previous case

LOO is slightly worse than ALL for all methods and the proposed method shows slightly

better error performance when compared with third order fitting for both ALL and LOO

for all four gratings. However, the proposed method is clearly superior for LHO analysis

is all cases.

A third set of results are shown in Fig. 5.15 for the polymer reference material for the

300 lines/mm grating in (a1-a3), 600 lines/mm grating (b1-b3), and the 1000 lines/mm

grating in (c1-c3). For the case of the 300 lines/mm grating not all of the lines in Table 5.3

could be used due to the relatively low resolution of that system causing neighbouring
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Figure 5.14: Peak Mean Absolute Error (PMAE) calculated for benzonitrile spectra
that have been wavenumber calibrated using 2nd order polynomial fitting, 3rd order
polynomial fitting, and using the method proposed in this chapter. It should be noted
that these error functions have been calculated over a dataset of 100 different reference
spectra that have been recorded with movements of the grating angle. Results for ALL,
LOO and LHO analysis are shown in (a1-a3) for the 300 lines/mm grating; in (b1-b3)
for the 600 lines/mm grating; in (c1-c3) for the 1000 lines/mm grating; and in (d1-d3)
for the 2455 lines/mm grating. For the latter case the dataset contains only a single
spectrum since the grating could not be rotated. See text for more details.
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Figure 5.15: Peak Mean Absolute Error (PMAE) calculated for the polymer spectra
that have been wavenumber calibrated using 2nd order polynomial fitting, 3rd order
polynomial fitting, and using the method proposed in this chapter. It should be noted
that these error functions have been calculated over a dataset of 100 different reference
spectra that have been recorded with movements of the grating angle. Results for ALL,
LOO and LHO analysis are shown in (a1-a3) for the 300 lines/mm grating; in (b1-b3) for
the 600 lines/mm grating; in (c1-c3) for the 1000 lines/mm grating; See text for more
details.
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peaks to blur and merge. For this reason, the two lines at 743 cm−1 and 2914 cm−1

were omitted. For the other two gratings all peaks listed in the table that were within

the bandwidth of the spectrometer were included in the calibration and error analysis.

There are a number of interesting points in relation to the results. Firstly, the peak at

1005.7 cm−1 consistently has the worst for each of the ALL and LOO analyses in Fig. 5.15

(a1), (b1) and (c1); this is in spite of the fact that this peak is reported to have the lowest

uncertainty of all of the peaks (see Table 5.3); this indicates that there may be a problem

with the values reported by Ref. 3. The second point of interest is the high error for the

right most peak at 2869 cm−1 in the LOO analysis in Fig. 5.15 (a1) and the high error of

two right most peaks at 2869 cm−1 and 2914 cm−1 in the LOO analysis in Fig. 5.15 (b1).

These high errors result from the long distance between these right most peaks and the

other peaks, which appear in the fingerprint region. Such a long distance clearly has a

deleterious effect on the results for 2nd and 3rd order fitting.

163



Chapter 6

Intensity Calibration of Raman

Spectrometer using Arbitrary White

Light

The work in this chapter has been prepared as a journal paper and will be submitted

to the Journal of Raman Spectroscopy with the following reference: Liu, Dongyue,

and Bryan M. Hennelly. "Intensity Calibration of Raman Spectrometer using Arbitrary

White Light." to be submitted to Journal of Raman Spectroscopy Nov 2022 with the

following abstract:

"In this paper, we develop a simple protocol that enables the use of any uncalibrated

white light source for Raman intensity calibration. The basis for this approach is (i) the

assumption that the true white light spectrum can be modeled by a low order polynomial

and (ii) the use of an easily accessible and high purity reference Raman sample such

as glycerol. Unfortunately, the reference glycerol spectrum cannot be used as a single

standard reference material due to its low intensity in large bands. However, when

combined with the arbitrary white light the correction factor can be estimated. Our

results demonstrate that this method performs better than traditional known white light

calibration in almost all cases tested."
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6.1 Introduction

In all of the previous contributory chapters, i.e. Chapters 3, 4, and 5, the core subject

was wavenumber (or wavelength) calibration. In this chapter we change direction and

focus instead on intensity calibration for a given Raman spectrometer. Often, intensity

calibration will require a wavelength calibration protocol, such as that described in

Chapter 4, together with a carefully calibrated white-light lamp. In this chapter we aim

to remove the requirement for the white-light lamp to be be calibrated in advance. A

key component in this approach is the use of a Raman material standard. The polymer

investigated in Chapter 3 is now reinvented as an intensity calibration tool, perhaps

providing a dual purpose.

Raman scattering occurs when an incident laser photon interacts with a molecular

bond and excites a vibration/rotational mode. The consequence of this excitation

is the emission of scattered photons that have lesser energy than the laser photons;

this translates to an increase in wavelength. Since different materials will result in the

scattering of different patterns of wavelengths, it is often possible to identify the material

using the spectrum of light that is emitted from the material following irradiance with a

single mode laser. An exciting area of research is Raman diagnostics, [12–14] whereby

the spectrum from a diseased tissue or cell sample can be distinguished from that of a

healthy sample making use of multivariate statistical methods [12–14, 17–22]. Recently,

there have been a number of significant steps in moving Raman one step closer to the

clinic, including Raman guided surgery [30–32] and automated Raman cytology. [33–37]

However, despite the huge promise of RS as a non-invasive and ubiquitous diag-

nostic platform, clinical progress has been severely hindered by poor cross-instrument

comparability. Two recent multi-site studies, [44, 45] have highlighted inconsistencies

in the spectra recorded from different materials across several different instruments.

Cross-instrument differences relate to both wavenumber shift as well as intensity varia-

tion for the same sample, and it is the latter problem that this chapter aims to address.

Intensity variation across instruments is caused by the differing wavelength and po-

larisation dependent transmission function of each instrument and possibly differing
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instrument resolution. The difference in intensity response from two instruments is

most obvious when recording the Raman spectrum from the same sample using two

different excitation wavelengths such as 532nm and 785nm.

There has already been some development of consensus standards for Raman in-

strumentation by the American Society for Testing and Materials (ASTM) International

in relation to performance testing, calibration, and relative intensity correction (ASTM

E1683 [46], E1840 [2], E2529 [47], E2911 [48]). An excellent review of these standards is

provided in Refs 49 and 40. In the context of this chapter, the most relevant of these

standards documents is ASTM-E2911, [48] most recently updated in 2013, which focuses

on Raman intensity calibration using the NIST Standard Reference Materials (SRMs)

in the 224X series. These luminescent glass materials have been calibrated at NIST for

a variety of particular excitation wavelengths and have high photostablity. The glass

is placed in the Raman spectrometer and illuminated with the laser. The resulting

fluorescent spectrum is recorded and divided by the known spectrum from NIST in

order to obtain the correction factor to be applied to all Raman spectra recorded by the

same instrument.

Despite the fact that Ref. 48 is the only published standards document on intensity

calibration, the most commonly applied method of Raman intensity calibration in the

literature is white-light calibration, whereby a tungsten-halogen with known spectrum

(measured using a reference that can be traced back to NIST or a similar organisation) is

recorded using the spectrometer. Similar to SRMs, the recorded spectrum is divided by

the known spectrum in order to obtain the correction factor to be applied to all Raman

spectra recorded by the same instrument. Perhaps the main reason why white-light

calibration is preferred over fluorescence based SRMs is the ubiquity of the approach.

An SRM must be purchased for a specific excitation wavelength while the calibrated

white light source can be applied to spectrometers with all excitation wavelengths. In

addition, the cost of a single SRM is higher than a white-light lamp. Another reason

may be that SRMs have a positional dependency; the recorded spectrum can change

appreciably if the SRM is not positioned reliably at the laser focus and moves along the
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optical axis. [48]

White light calibration lamps can also be problematic. Although relatively less

expensive than SRMs, they are still high cost and must be regularly re-calibrated after

approximately 50 hours. This re-calibration is also costly and time consuming and it

also begs the question on how accurately the lamp spectrum is known after 50 hours.

Another issue that commonly presents is the positioning of the lamp in the setup. Often

a fiber is used to deliver the light but also can present mounting problems.

In this chapter, we develop a simple protocol that enables the use of any uncalibrated

white light source for Raman intensity calibration. The basis for this approach is (i)

the assumption that the true white light spectrum can be modeled by a low order

polynomial and (ii) the use of an easily accessible and high purity reference Raman

sample such as glycerol. Unfortunately the reference glycerol spectrum cannot be

used as a single SRM material due to its low intensity in large bands. However, when

combined with the arbitrary white light the correction factor can be estimated. Our

results demonstrate that this method performs better than traditional known white light

calibration in almost all cases tested.
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6.2 Spectral Irradiance of an Incandescent Lamp

Tungsten-halogen incandescent lamps are thermal radiators based on the genera-

tion of light of various wavelengths by heating of the filament to a very high temperature.

In contrast to black bodies, which are ideally predictable radiators with known emis-

sivity and spectral constancy, incandescent lamps are not perfect Planckian radiators;

more specifically, the spectral behaviour of Tungsten-halogen lamps varies as a function

of the emissivity, which in turn varies as a function of temperature. [141] The spec-

tral irradiance, E(λ,T ), of a Tungsten-Halogen incandescent lamp is modelled by the

following equation:

E(λ,T ) = B(T )ϵW (λ,T )ϵ△(λ)
2hc2

λ5
[

exp
(

hc
λkT

)
−1

] (6.1)

where λ is the wavelength in vacuum, T is the temperature of the filament, ϵW (λ,T )

is the emissivity of tungsten, ϵ△(λ) is the residual correction factor for the emissivity

of the lamp, h is the Planck constant, c is the speed of light in vacuum, and k is the

Boltzmann constant. The parameter B(T ) is a temperature dependent geometrical

factor that captures the effect of the distance from the lamp and the dimensions of

the filament. This factor varies as a function of temperature due to thermal expansion.

Stable white lights that are typically used for calibration will employ a constant current

or constant power source in order to reduce variability. B(T ) is defined as follows:

B(T ) = B0[1+0.000016K−1(T −T0)] (6.2)

The parameter ϵ△(λ), accounts for all additional effects due to various factors such as

transmittance of the bulb or filling gas. For the case of a quartz bulb this factor will be

smooth over wavelength and will only affect the irradiance by as little as ±2. In Fig. 6.1

we illustrate the irradiance of a Tungsten-Halogen lamp for five values of temperature.

Here, we have selected the paramatars: T0=2770K; B0=0.6; ϵW (λ,T )=0.35; and ϵ△(λ)=1

which are similar to the simulations provided in Ref. 141.
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Figure 6.1: Spectral irradiance of a Tungsten Halogen Lamp modelled for different
temperatures/currents. Also shown in the figure in thicker blue, black and red lines, are
straight line fits to these irradiance profiles in the wavelength bands that correspond to
those recorded by the three Raman spectrometers used in this study. The mean absolute
error for these fits are provided in Table 6.1

.
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T/ K 3045.9 2895.8 2766.7 2635.4 2501.4
532 nm 600 l/mm

1st 0.02769 0.02352 0.04513 0.05283 0.05039
2nd 0.00885 0.00670 0.00488 0.00324 0.00189
3rd 0.00017 0.00007 0.00001 0.00002 0.00004

785nm 300 l/mm
1st 0.61646 0.48175 0.37194 0.27082 0.18225
2nd 0.01672 0.00894 0.00384 0.00048 0.00230
3rd 0.00034 0.00047 0.0005 0.00047 0.00040

785nm 600 l/mm
1st 0.15426 0.11762 0.08863 0.06264 0.04050
2nd 0.0017 0.00077 0.00019 0.00021 0.00044
3rd 0.00003 0.00004 0.00003 0.00003 0.00002

Table 6.1: Mean absolute error for first, second, and third order polynomial fitting
applied to the five temperature dependent lamp irradiance profiles shown in Fig. 6.1 in
the bands of the three Raman spectrometers used in this study. Units are mW m−2nm−1.

An important assumption in this chapter, and one that we seek to validate here, is

that the irradiance of any Tungsten-Halogen lamp with unknown emissivity or tem-

perature can be effectively modeled by a low order polynomial over the bandwidth of

interest for a typical Raman spectrometer. For the three spectrometers that were used

in this study (described in earlier chapters), a straight line fit it applied in the relevant

wavelength bands for all five filament temperature values as shown in Fig. 6.1. In order

to examine the accuracy of this fit in more detail, these same bands are highlighted

in higher resolution in Fig. 6.9. Here, polynomials of order 1, 2, and 3 are fitted to

the irradiance values and the corresponding mean absolute error values for these fits

are provided in Table 6.1. It is clear that in most cases, a straight line is sufficient to

model the irradiance across the spectrometer with low error. Higher accuracy is given

by a second order polynomial, while there is no appreciable improvement by using a

polynomial order of three or more.
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6.3 Traditional Calibration using known White-Light

The classical method for calibrating a Raman spectrum is illustrated in Fig. 6.2;

the Raman spectrometer is illustrated in Fig. 6.2a as well as the various samples and

lamps commonly used for both intensity and wavenumber calibration. For the former,

the first sample of interest is a calibrated white light source. These sources employ

a Tungsten-Halogen lamp with controlled power supply and are typically fed into an

optical fiber via an integrating sphere or a cosine corrector both of which use diffuse

surfaces to couple the light into the fiber. The spectrum of the light that is output

from this fiber must be known in advance of performing calibration of the Raman

spectrum. This involves frequent calibration of the output every ≈ 50-100 hours, usually

performed by a commercial entity, which can be costly and time-consuming. Also, there

is the possibility that the lamp can become miscalibrated unexpectedly. The recorded

spectrum from the fiber, W , is compared with the known spectrum, W ′′ in order to

obtain a correction factor for intensity calibration of Raman spectra. The second sample

of interest is that from an atomic emission source such as neon or krypton, recorded for

wavelength calibration in Chapter 3. This is necessitated in order to accurately compare

W and W ′′, which may both have been recorded over a different wavelength axis. The

third sample of interest is a wavenumber reference standard such as 4-acetamidophenol

or benzonitrile. [2]. The Raman spectrum from this sample is recorded and used to

calibrate the wavenumber axis. This third sample is not required for intensity calibration.

The various steps involved in recording and processing these spectra for both intensity

calibration (Steps 1-3) and wavenumber calibration (Step 4) are detailed in the following

subsections.

6.3.1 Classical Intensity Calibration

The experimental steps taken for the case of traditional white-light calibration are

illustrated in Fig. 6.2b in Steps 1-3 and are described below. We note that all subtraction,

multiplication, and division operations are element-wise.

1. The first step is to record the raw spectrum, W , from the calibrated white light
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(a) Classical method of intensity and wavenumber calibration in Raman spec-
troscopy. Spectra from two samples are required for intensity calibration: a cali-
brated white light source and an atomic emission sample such as neon. Indepen-
dently, for wavenumber calibration a Raman reference standard is used such as
4-acetamidophenol

(b) Flowchart of Traditional Intensity calibration. In total there are three steps includ-
ing wavelength calibration. The fourth step, wavenumber calibration, is not necessary
but is typically applied as part of the overall calibration process. It is included here to
facilitate comparison with the proposed new method described in Fig. 6.3b. See text
for further details.

Figure 6.2: Traditional calibration flowchart
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source, and subsequently to record the background spectrum, B , of equivalent

duration. These are subtracted to remove the influence of the background such

that W ′ =W −B . Here W ′ is a vector of intensity values of length N , where N is

the number of pixels in the detector.

2. The second step is to record a spectrum, λ, from an atomic emission lamp such as

neon which contains a number of prominent spectral lines over the wavelength

bandwidth of the spectrometer. Wavelength calibration is performed on this

spectrum as described in Chapter 3 in order to determine the wavelength axis, Aλ.

Typically, this involves fitting a third-order polynomial to the pixel position of the

spectral lines and their known wavelengths. Following this step, the wavelength

axis for the recorded white light spectrum is known and the latter can now be

denoted as [Aλ,W ′] where Aλ and W ′ are both vectors of length N .

3. The third, and final step for intensity calibration is to obtain the correction factor

to be applied to all subsequent Raman spectra recorded using this system. The

specifications of the calibrated white lamp will include a set of intensity values,

T , corresponding to a set of wavelength values, AT , both vectors of length M .

Interpolation is applied to [AT ,T ] in order to obtain [Aλ,T ′], where T ′ is a vec-

tor of length N , which represents the true white light intensity values over the

wavelength axis Aλ. The correction factor is given by C =W ′/T ′

6.3.2 Wavenumber Calibration

In addition to intensity calibration, it is also necessary to perform wavenumber

calibration in order to fully characterise a Raman spectra recorded from the system.

This can be achieved by applying wavenumber conversion to the neon spectrum λ.

However, this requires measurement of the laser wavelength which can be problematic

as discussed in Chapter 4. More commonly, direct wavenumber conversion is applied

making use of a Raman wavenumber standard with known spectral lines [2, 142] as

described in Chapter 4 and illustrated in Fig. 6.2b Step 4.

4. The spectrum, V from a known wavenumber reference standard such as benzoni-

trile or 4-acetamidophenol is recorded. It is essential that the chosen standard
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contains spectral lines that span the full width of the wavenumber range recorded

by the spectrometer. Several authors have used amalgamated samples in order to

achieve this [39] although we have recently demonstrated that high accuracy is

possible across the full spectrum even using a small number of peaks as described

in Chapter 4. Typically, wavenumber calibration involves third order polynomial

fitting applied to the pixel position of the spectral lines in V and their correspond-

ing known wavenumber. [2] Following this step, the wavenumber axis, AV , is

known for any Raman spectrum that is subsequently recorded, where AV is a

vector of length N . This step must be applied frequently as miscalibration can

occur for a variety of reasons as described in Section 2.3 in Chapter 2.

6.3.3 Correcting a Raman Spectrum

Correction of a raw sample spectrum, S, makes use of the correction factor C for

intensity calibration and the application of the wavenumber axis AV for wavenumber

calibration as illustrated in Fig. 6.2b. It is necessary to first record a background spec-

trum, B , of equivalent duration and to subtract such that S′ = S −B . The corrected

spectrum is given by [AV ,S′×C ].
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(a) Proposed new method of intensity and wavenumber calibration in Raman spec-
troscopy. In this case wavenumber calibratin is a requisite first step. Following this,
spectra from two samples are required for intensity calibration: an arbitrary uncali-
brated white light source and a reference Raman spectrum such as from glycerol.

(b) There are four steps that make up the proposed method of intensity calibrating.
The requisite first step is wavenumber calibration. See text for further details.

Figure 6.3: New calibration flowchart
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6.4 Intensity Calibration using an Arbitrary White-Light

The intensity calibration method described in the previous section can be prob-

lematic. The lamp requires frequent and expensive calibration and unexpected mis-

calibration may lead to erroneous results. In this section, we propose a novel protocol to

perform intensity calibration in Raman Spectroscopy using an arbitrary white light, such

as that from the microscope itself as illustrated in Fig. 6.3a. The ready availability of this

light source also improves the overall applicability of intensity calibration. The method

requires (i) the availability of a (true) reference Raman spectrum from a material with a

known Raman spectrum, [V0,R0] (where R0 denotes the calibrated Raman spectrum of

some appropriate material over a known wavenumber axis V0) and (ii) the availability

of an arbitrary inexpensive Tungsten Halogen white-light source such as that from the

microscope itself.

Ideally, the spectrum R0 would be highly reproducible and have non-zero intensity

across the entire bandwidth. If such a material existed, there would be no need for

a white light source since the correction factor for the system would simply be given

by C = R ′
0/R ′, where R ′ denotes the raw spectrum of the material from the Rama spec-

trometer to be calibrated (following background subtraction), and R ′
0 is the value of R0

interpolated over the same wavenumber axis as R ′. However, the presence of low or

negligible intensity values in regions of most Raman spectra makes this approach diffi-

cult. Some authors have proposed this very approach using materials with sharp well

defined highly reproducible spectral lines in the Raman spectrum such as quinine. [59].

The premise of the approach is to avoid the bands of zero intensity in the calculation

of R ′
0/R ′, and therefore, C is calculated only for a small number of discrete points in

the wavenumber axis from which the values at other wavenumber positions can be

interpolated. However, this approach assumes that C will be slowly varying across the

full bandwidth; this assumption is not valid for many diffraction gratings, which can

exhibit highly non linear diffraction efficiency as a function of wavelength. Another

difficulty with this approach is that the relative intensities of sharp spectral lines from a

given material can vary significantly across spectra recorded from spectrometers with
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varying resolutions, owing to the convolution of the true spectral intensity with the

point-spread function of the spectrometer.

In this chapter, we investigate glycerol and a commercial plastic as reference mate-

rials to provide R0. Both of these samples do not contain significantly sharp spectral

lines, which can present problems as described above. To overcome issues relating to

areas of low intensity in the spectrum, the proposed method also employs a white light

spectrum from the microscope, W , which is known to have non-zero values over the full

bandwidth. Unlike for the case of traditional white-light calibration, the true spectrum

of this source is not known; however, this can be estimated using the values of R0 as

described in the procedure below, which is illustrated in Fig. 6.6 and Fig.6.7.

1. The first step in the proposed protocol is to perform wavenumber calibration

as described in Section 6.3.2. This requires the use of a reference wavenumber

standard such as 4-acetamidophenol or benzonitrile. Unlike classical intensity

calibration using a calibrated white lamp, which was entirely independent of

wavenumber calibration, our method requires that wavenumber calibration be

implemented first. The reader may wonder if this spectrum, V , could perform the

role of the aforementioned reference Raman spectrum, R, which would reduce

the number of steps that follow. We have found that significantly better intensity

calibration results are produced using a smoother reference spectrum such as

that from glycerol.

2. In order to generate a reference Raman spectrum for the purpose of intensity

calibration, it is necessary to record the spectrum, R, from the reference material

as well as the background spectrum, B ; these are subtracted to provide R ′ = R −B .

Given the preceding step this spectrum is wavenumber calibrated and can be

written as [AV ,R ′].

3. The third step is to record the spectrum from any arbitrary white-light source such

as from the microscope lamp. The true spectral irradiance T from an incandescent

lamp has been discussed in Section 6.2. Over the wavelength range of most Raman

spectrometers the shape of T is approximately linear or is described accurately by
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a polynomial of second order. The spectrum of the microscope lamp is recorded

and is denoted by W ; a matching background,B , is recorded and subtracted to

produce the spectrum W ′. Note that the wavelength axis that corresponds to the

spectrum W ′ is not required.

4. The fourth step is to calculate the correction factor C using the two recorded

spectra W ′ and [V ,R ′], as well as the true reference spectrum, [A0,R0] which is

first interpolated to provide, [AV ,R ′
0], where R ′

0 denotes the intensity values of the

reference over the same wavenumber range as R ′. The details of the algorithm

that we propose to do this are provided in the following section. Once C has been

obtained, any Raman spectrum recorded from the system can be calibrated as

described in Section 6.3.3 and Fig. 6.2b.

6.4.1 Algorithm to calculate the correction factor

The goal of this algorithm is to find the correction factor, C , for which R ′
0 ≈C ×R ′. As

mentioned earlier, it is not possible to simply calculate C = R ′
0/R ′ as several problems

exist with this approach listed below:

• R ′ will typically have large bands of zero intensity which makes division difficult.

• R ′
0 and R ′ can have different baselines (resulting from auto-fluorescence, Mie scat-

tering or some other form of photoluminesence), which are typically described

by variable low order polynomials. [143] The relationship between R ′ and R ′
0 is

therefore more generally described as:

R ′
0 +P1 = R ′×C (6.3)

where P1 is a low order polynomial that accounts for the difference in baseline

between R ′ and R ′
0

• If the two spectra R ′
0 and R ′ have different resolution, this may significantly affect

the spectral line shapes and may render the equality in Equation 6.3 to be inaccu-

rate. This problem can be mitigated by using a reference sample with spectrum R0

that does not contain sharp spectral lines; smoother spectra will be more robust
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to the blurring associated with lower resolution systems. A more accurate method

to deal with this problem is proposed in the discussion section.

The baseline in Raman spectroscopy can be variable due to several reasons, includ-

ing:

• Fluorescence: Fluorescence emission from the sample can contribute to the

background signal and cause a variable baseline. Fluorescence often arises from

impurities or other materials in the sample, and can be reduced by using appro-

priate excitation wavelengths or by filtering out the fluorescence signal.

• Sample inhomogeneity: Samples can have areas with different optical properties,

resulting in varying intensities of the Raman signal and a variable baseline. This

can be addressed by ensuring that the laser spot size covers a representative area

of the sample and by averaging multiple measurements.

• Instrument noise: Instrument noise, such as electronic noise, can also cause

a variable baseline. This can be minimized by optimizing the measurement

conditions, such as reducing the laser power or optimizing the detector settings.

• Scattering from the substrate: The substrate on which the sample is placed can

also contribute to the background signal and cause a variable baseline. This

can be addressed by using substrates with low Raman scattering or by using a

substrate that does not interfere with the Raman spectra.

• Drift: Temperature changes or mechanical instability in the measurement setup

can cause drift in the baseline over time. This can be minimized by ensuring that

the measurement conditions are stable and by measuring the baseline periodically

to correct for any drift.

Overall, it is important to carefully consider the measurement conditions and poten-

tial sources of variability when interpreting Raman spectra and to take appropriate

measures to minimize the impact of these factors on the baseline.

The solution to the difficulty in calculating R ′
0/R ′ is to include the white-light spec-

trum from the microscope lamp. The true spectrum of the white light is not known but

can be approximated by a low order polynomial. Therefore, the recorded white light
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spectrum from the system, W ′ can be described in terms of C and P2 as follows:

C = P2/W ′ (6.4)

Substituting Equation 6.3 into Equation 6.4 provides a simple expression:

R ′
0 = P2 ×R ′/W ′−P1 (6.5)

For low orders of P1 and P2 given by N1 and N2, respectively, it is possible to use the

method of ordinary least squares to determine values for the N1 +1 coefficients of P1

and the N2 +1 coefficients of P2. The Matlab code for this is provided in the appendix,

where the orders N1 and N2 can be selected as input arguments. For the baseline we

have found a third order polynomial is sufficient and we set N1 = 3 for all of the results

presented in this chapter. To model the white light spectrum we investigate both a first

order (N2 = 1) and second order (N2 = 2) polynomial for P2 and have found that both

cases provide high quality results.
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6.5 Methods

6.5.1 Recording of Spectra

An Horiba Jobin Yvon LabRAM HR 800 Spectroscopy system was used to record

spectra from a number of samples for subsequent calibration and testing. In total,

two excitation laser wavelengths were used and two gratings, which amounts to four

different systems. The two lasers were a 785 nm CLDS point mode diode laser with

power of 300mW and a 532 nm solid state diode laser with a power of 50 mW and the two

gratings were 300 lines/mm and 600 lines/mm. Given the significantly larger bandwidth

and resolution of the (532 nm - 300 lines/mm) system when compared with the other

three, all of which lie within the fingerprint region, this system was omitted from the

analysis. This facilitated straightforward comparison of calibration results from the

three systems, which had similar bandwidth and resolution. The various parameters of

the three systems used to record spectra are summarised in Table 6.2. The resolution

of equivalent systems with 532 nm and 785 nm excitation differs significantly [144]; in

order to further simplify the comparison of calibration results across the three systems,

the confocal aperture was varied such that the effective resolution of all three systems

was approximately the same. The confocal aperture size and resultant resolutions are

provided in Table 6.2.

In total two acquisitions were recorded from each sample in order to facilitate

cosmic ray removal using the algorithm defined in Ref. 145. In summary this method

compares two subsequently captured spectra and averages them except at points where

the intensity varies by more than the noise floor; in such case the lower intensity value

is taken. The acquisition time was chosen to be just less than the time of saturation

in order to maximise the signal-to-noise ratio in each spectrum. The acquisition time

that was used varied across material depending on this saturation point. In all cases

a background spectrum of equivalent duration was recorded and subtracted from the

sample spectrum.
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Laser 532 nm 785 nm
Laser Power 50 mW 300 mW

Grating 600 l/mm 300 l/mm 600 l/mm
Accumulations 2 2 2

Microscope
Objective

x10 x10 x10

Confocal
aperture

100 200 100

Effective resolution
(cm−1)

7.7 6.5 6.8

Table 6.2: Parameters used in spectral recording.

6.5.2 Materials and Lamps

In total, spectra were recorded from eight different chemicals on the three systems

described in the previous section. These chemicals were in powder form: glucose, 4-

acetamidophenol, urea and lactic acid; liquid form: benzonitrile, ethanol, and glycerol;

and a solid form: polymer slide from (µ-Slide I Luer; Ibidi GmbH). We note that this

polymer material has previously been investigated as a reference sample for Raman

wavenumber calibration in Chapter 3. All chemicals, except for the polymer slide, were

purchased from Sigma-Aldrich, Ireland.

For wavelength calibration, a Neon lamp (60910; Edmund Optics, GmbH) and a

Krypton lamp (60915; Edmund Optics, GmbH) were both used to calibrate each system

as described in Chapter 3. For wavenumber calibration, 14 peaks from acetaminophen

were used to calibrate each system as described in Chapter 4. For traditional white light

calibration, a NIST calibrated lamp was used (LS-1-CAL-INT; Ocean Optics), which was

integrated with an integrating sphere (FOIS-1; Ocean Optics), which was coupled into

a broadband optical fiber (QP600-2-VIS/BX; Ocean Optics). The output spectrum of

this fiber was calibrated (Ocean Optics) using a NIST-traceable light source; the spec-

trum is sampled at a number of wavelength values and can be interpolated to provide

the full irradiance over the wavelength axis of interest. For the proposed calibration

method, the microscope lamp from the Bx41 microscope that is a component in the

spectroscopy system was used; all filters in the illumination path were removed. In all

cases a background spectrum of equivalent duration was recorded and subtracted from
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the white-light spectrum.

6.5.3 Evaluation

In order to evaluate and compare the performance of the different methods for

intensity calibration, we devised a quantitative metric. This metric calculates the mean

absolute error (MAE) between the intensity calibrated spectrum recorded from a given

material on the (532 nm - 600 lines/mm) system and the intensity calibrated spectra

recorded from the other two systems with 785 nm excitation. Thus for each material,

we calculate two numbers that gauge the performance of each intensity calibration

method.

The mean absolute error between two intensity calibrated spectra is defined as

follows:

M AE(X532, X785) = 1

M

M∑
i=1

|X532(vi )−X785(vi )| (6.6)

Here, X532 and X785 are both 1D vectors that contain the values of the two intensity

calibrated spectra at the discrete wavenumber values given by vi . In total there are M

samples in these two spectra. It is essential that the two spectra are defined at the same

wavenumber values. It is, therefore, necessary as a first step to interpolate X785 onto the

same wavenumber axis as X532. The number of samples that overlap will determine the

value of M . Two difficulties that present when using this metric are (i) the presence of

differing baselines in the two spectra caused by fluorescent signals or stray light due to

Mie scattering, [144] and (ii) the different relative scaling of both spectra. Both problems

are solved by using a variant of the the Extended Multiplicative Scattering Correction

(EMSC) Algorithm defined in Ref. 143. The goal of the algorithm is to subtract a low order

polynomial baseline from the X785 spectrum such that the baselines for both spectra are

closely matched, and secondly to scale the X785 spectrum such that the amplitudes of

both spectra are closely matched. The basis of the approach is a least squares algorithm

that can be understood as a minimisation of the error function defined in Equation 6.7

as follows:

er r or (vi ) = X785(vi )−
(

A×X532(vi )+
N∑

m=0
am vm

i

)
(6.7)

183



Figure 6.4: Results of the three steps for traditional intensity calibration using a known
white-light source: (a) raw spectra recorded from the lamp overlaid with the known
spectrum; (b) neon and krypton spectra atomic emission spectra(the properties of these
two noble gas are similar, and they are all colorless and odorless monatomic gases at
normal temperature and pressure, and it is difficult to carry out chemical reactions.)
spectra recorded for wavelength calibration and (c) the resulting correction factors.
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The goal of the algorithm is to find the weights A and am : m = 0 → N , which minimise

the square of this error function. In summary, the algorithm takes in as function argu-

ments, X785, X532, and the integer N , and returns the weights described above. In our

analysis, a value of N = 2 was used to avoid any possibility of overfitting that might be

caused by the use of higher order polynomials. The Matlab code for this algorithm is

provided in Appendix 6.9. Once the weights have been determined, the spectrum X785

can be baseline subtracted and normalised (with respect to X532) as follows:

X ′
785 =

X785 −∑N
m=0 am vm

i

A
(6.8)

The performance metric, M AE(X532, X ′
785), can now be calculated and used as an esti-

mate of the quality of the intensity calibration method that produced the two spectra

X532 and X785. For each material two such numbers are calculated, one for each of the

two 785 nm excitation systems. One final point is that the spectrum X532 should be first

normalised before application of Equations 6.7, 6.8, and 6.6 such that the MAE results

can be quantitatively compared across the different intensity calibration methods.
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6.6 Results

6.6.1 Correction factors using known white-light

The results of the three steps (see Fig. 6.2b) involved in traditional white-light cali-

bration are shown in Fig. 6.4. The raw white-light spectra (with background subtraction)

recorded for the calibrated white light source are shown for the three systems in Fig. 6.4a.

Also shown in this figure is the known spectrum of the calibrated white-light source. The

distortion of this spectrum by the sensitivity response of the systems is clearly evident,

particularly for the two 785 nm excitation cases. In Fig. 6.4b the Neon and Krypton

spectra are shown for each case. There were sufficient peaks available from both lamps

combined in all three cases to obtain a wavelength calibration accuracy of < 0.02 nm

over the bandwidth of all three cases using the method outlined in Chapter 3. The final

correction factors for the three systems are shown in Fig. 6.4c.

6.6.2 Correction factor using arbitrary white-light

The results of the four steps (see Fig. 6.2b) involved in the proposed arbitrary

white-light calibration are shown in Fig. 6.5. The raw spectra recorded from the 4-

acetamidophenol wavenumber reference material are shown in Fig. 6.5a. The peak

positions were used to implement wavenumber calibration as described in Chapter 5

providing an accuracy of < 0.3 cm over the bandwidth for all three cases. The raw Raman

spectra of glycerol (with background subtraction) are shown for the three systems in

Fig. 6.5b. The raw white-light spectra (with background subtraction) recorded from the

uncalibrated microscope lamp is shown for the three systems in Fig. 6.4c. Also shown in

this figure is the known spectrum of the calibrated white-light source for comparison.

In this case, however, we do not have any knowledge of the true spectrum of the lamp.

The final correction factors for the three systems are shown in Fig. 6.4d having been

calculated using the lamp spectrum and glycerol spectrum as described in Section 6.4.1.

We note the strong similarity in the form of these correction factors with respect to the

same results from the calibrated white light shown in Fig. 6.4c. Although similar there

are some subtle differences, which results in more accuracy when using the microscope
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Figure 6.5: Results of the four steps for the intensity calibration method proposed in
this chapter: (a) the spectra of 4-acetamidopenol used for wavenumber calibration of
the three systems; (b) wavenumber calibrated raw glycerol spectra; (c) the spectrum
of the unknown microscope lamp recorded using the three systems, overlaid with the
same known spectrum shown in Fig. 6.5(a) for comparison; (d) the correction factors
generated using the proposed method for N1 = 3, N2 = 1, see Section 6.4.1 for further
details.

lamp for most cases.

6.6.3 Comparison of calibration methods

In this section, the results of three different intensity calibration methods are pre-

sented across eight different chemical spectra. These methods are (i) traditional inten-

sity calibration using a calibrated white light source, (ii) calibration using the method

proposed in this chapter with the microscope lamp and a reference Raman spectrum

from glycerol, and (iii) calibration using the method proposed in this chapter with the

microscope lamp and a reference Raman spectrum from a commercial polymer. The

results presented here are for the case of approximating the white light profile (P2) as
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Figure 6.6: Results of the various intensity calibration protocols applied to four pow-
dered chemicals (a) 4-acetamindophenol; (b) glucose; (c) urea; and (d) lactic acid. In
all cases the red spectrum is the raw or calibrated spectrum for 532 nm excitation. For
all cases the 785 nm excitation spectra have been fitted to the corresponding 532 nm
spectrum in terms of normalisation and baseline subtraction, in order to facilitate quan-
titative comparison using the MAE as described in Section 6.7. MAE results are shown
at the right of each spectrum.
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Figure 6.7: Results of the various intensity calibration protocols applied to four liq-
uid/solid chemicals (a) benzonitrile; (b) ethanol; (c) glycerol; and (d) polymer. In all
cases the red spectrum is the raw or calibrated spectrum for 532 nm excitation. For
all cases the 785 nm excitation spectra have been fitted to the corresponding 532 nm
spectrum in terms of normalisation and baseline subtraction, in order to facilitate quan-
titative comparison using the MAE as described in Section 6.7. MAE results are shown
at the right of each spectrum.
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a straight line, i.e. N2 = 1 and the baseline (P1) as a third order polynomial, i.e N1 = 3.

The raw and calibrated spectra for the three different systems (532nm-600lines/mm),

(785nm-300lines/mm), and (785nm-600lines/mm), are shown in Fig. 6.6 for four solid

powder chemicals: (a) 4-acetamidophenol, (b) glucose, (c) urea, and (d) lactic acid. For

all cases the raw spectra recorded by the three systems show obvious differences in in-

tensity due to the differing sensitivity responses. In order to highlight these differences,

circular markers have been added to the peak maxima.

Following calibration with each of the three methods, there is clearly closer agree-

ment between the intensity values of the spectra. Qualitatively, there appears to be

little difference between the performance of the three calibration methods for all four

chemicals. However, quantitatively, the MAE evaluation metric that was defined in

section 6.5.3 indicates that the proposed intensity calibration method with glycerol

outperforms traditional white-light calibration in all but one case: (glucose, 785nm

excitation - 600 lines/mm), and in that case there were clear issues with the quality of

one of the recorded spectra with unexpected peaks that we believe can be attributed to a

background light source(the rest experiments data have contained enough information

to support the experiment keep going). The proposed intensity calibration method

with the commercial polymer also outperforms traditional white-light calibration in

all but two cases: (glucose, 785nm excitation - 600 lines/mm) and (lactic acid, 785nm

excitation - 600 lines/mm).

The raw and calibrated spectra for the three different systems are shown in Fig. 6.7

for three liquid chemicals: (a) benzonitrile, (b) ethanol, (c) glycerol and (d) for the solid

polymer. As for the powder chemicals, the raw spectra recorded by the three systems

have clear differences in intensity and following intensity calibration, these differences

are appreciably reduced. Once again, the results of calibration using the three methods

produce qualitatively similar results. Quantitatively, calibration with the microscope

lamp and glycerol produce very similar MAE values when compared with known white

light calibration; the latter performs slightly better for the case of (benzonitrile, 785nm

excitation - 300 lines/mm) and (ethanol, 785nm excitation - 600 lines/mm), while the
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former is slightly more accurate for the other cases, with the exception of the final two

cases (polymer, 785nm excitation - 600 lines/mm) and (polymer, 785nm excitation -

300 lines/mm) for which the microscope lamp/glycerol method is significantly more

accurate. Calibration with the microscope lamp and polymer produces mixed results.

On the one hand the MAE results are similar or better than known white light calibration

for some cases eg. (ethanol, 785nm excitation - 300 lines/mm) and (glycerol, 785nm ex-

citation - 300 lines/mm) and for other cases the results are markedly worse eg. (ethanol,

785nm excitation - 600 lines/mm) and (glycerol, 785nm excitation - 600 lines/mm)

In order to gain further insight into the the relative performance of the three calibra-

tion methods, the results were tabulated (see Table 6.3 Appending) and a bar chart is

provided in Fig. 6.8, which is discussed further in the next section.
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6.7 Discussion

The bar chart in Fig. 6.8 reveals several interesting points. Firstly, and most impor-

tantly, the proposed method using glycerol (with N2 = 1 or N2 = 2) provides equivalent

or better intensity calibration when compared with traditional known white-light cali-

bration in almost all cases. We believe that the reason for this is that the known white

light is not perfect; it cannot be expected to produce an exactly reproducible spectrum

in all cases. This is evidenced by the fact that such lamps require frequent and costly

re-calibration. As discussed in section 6.2, small changes in the temperature of the lamp,

brought about by unexpected variation in the current, can result in appreciable changes

in the spectrum, such that it will differ from the ’known’ spectrum that is provided

by the manufacturer or calibration company. The method proposed in this chapter

is robust to this problem as there is no assumption made about the true spectrum of

the lamp other than it can be modeled as a low order polynomial over the bandwidth

of the spectrometer. A second point of note is that not all reference materials can be

expected to perform well. Using the polymer as a reference material provided less

consistent results when compared with glycerol. While the polymer produces equiv-

alent or better results than traditional known white light calibration for one (785nm

excitation 300 lines/mm) system the results are slightly worse for the second system.

We believe that this is due to the nature of the polymer spectrum containing several

sharp peaks, which can vary considerably as a function of the system resolution. This

affects the utility of this spectrum as a reproducible Raman reference spectrum to be

included in the algorithm presented in Section 6.4.1. As further evidence of this issue,

4-acetamidophenol, whose spectrum contains even sharper peaks than the polymer

spectrum, was also tested as a reference Raman material but the results, not shown

here, were poor. Glycerol, in contrast, has a spectrum that is relatively slowly varying

and the shape of the spectrum is more robust to variation in system resolution. If the

method could be enhanced such that the polymer or 4-acetamidophenol produced

reliable results for intensity calibration, this would be advantageous as these could also

be used as wavenumber reference standards in step 1 of the calibration process shown
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Figure 6.8: This bar chart reveals the proposed method using glycerol (N2 = 1 or N2 = 2)
provides an equivalent or better intensity calibration than traditional known white light
calibration in almost all cases.
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in Fig. 6.3b, as described in Chapter 3, which would reduce the overall number of steps

to three.

Another point of discussion is the disparity between the peaks in the calibrated

spectra in Fig 6.6 and Fig 6.7. One may enquire why the peaks in these spectra do not

perfectly match up following calibration. We believe the reasons for this are two fold:

firstly differences in resolution can affect relative peak amplitudes, and these differences

are more pronounced for narrow lines. Secondly, polarisation can be a major factor in

the accuracy of intensity calibration. The depolarisation ratios of the various vibrational

resonances that make up a single spectrum can vary significantly. In practical terms, this

means that each spectral line in the spectrum can have different ratios of horizontal and

vertical polarisation. Since the sensitivity response of the Raman system is polarisation

dependent, owing to the different diffraction efficiency for s- and p- polarised light,

varying states of polarisation across the spectrum presents a significant problem for

intensity calibration methods. Solutions to this problem include: (i) performing the

overall calibration routine separately for vertically and horizontally polarised light

making use of a linear polariser at the input to the spectrograph. This would either

reduce the intensity of recorded spectra by half or necessitate two captures for each

spectrum and two calibration correction factors; (ii) Insertion of a quarter waveplate

or a random polariser, which could serve to approximately equalise the light power in

both orthogonal polarisations such that a single intensity calibration routine can be

more accurately applied. Alternatively a mirror system could be inserted to flip the

polarisation by 45 degrees to produce the same effect. [146]

One avenue for improving the proposed intensity calibration method could be the

use of a Gaussian convolution applied to the reference Raman spectrum in order to

match the resolution of the system undergoing calibration with that of the reference

spectrum. Such an approach might render the polymer, or even 4-acetamidophenol, as a

reproducible reference Raman spectra with the aforementioned advantages. This could

also improve the accuracy of the method for any given reference material including

glycerol. Another advantage of this approach is that there would be no requirement
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to physically vary the slit/pinhole in the spectrometer such that the resolution of the

reference spectrum and system undergoing calibration are matched. A further extension

of the method might be to use several reference materials and to take an average of the

correction factors produced using each one.
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6.8 Conclusion

In this chapter, a novel method of intensity calibration of Raman spectrometers is

proposed. This method is based on using an arbitrary white light with unknown spectral

profile together with a reference Raman material with known Raman spectrum. The

white-light spectrum combined with the Raman spectrum of the reference enables the

true spectrum of the white light to be estimated, and therefore, the sensitivity response

of the system to be obtained for the purpose of calibration. Inherent in this algorithm is

the principle that the white light spectrum can be modelled by a low order polynomial

over the bandwidth of the spectrometer. We have demonstrated that this assumption is

valid based on modelling the spectral output from a Tungsten-Halogen lamp.

In order to prove the accuracy of the approach, a metric was developed that enables

direct quantitative comparison between two intensity calibrated Raman spectra of the

same material recorded from different systems with approximately similar resolution,

which can take into account the variable baseline in both spectra. Applying this metric

to spectra recorded from eight materials with 785 nm and 532 nm excitation systems,

demonstrates that the proposed method, making use of a microscope lamp and glycerol

reference spectrum, produces intensity calibration that is equivalent or more accurate

than traditional known white-light calibration in almost all cases.

Although the results presented in this chapter are promising, further work is required

to fully develop the method into an established Raman intensity calibration protocol.

Further testing of the method is required over more systems and over wider bandwidths;

in this chapter only the fingerprint region was analysed. Several extensions and improve-

ments are suggested in the previous sections including development of the numerical

algorithm to work with systems of any spectral resolution, which is a necessary step for

ubiquitous application of the method. Given the inexpensive and simple approach of

recording an arbitrary white light spectrum and a glycerol Raman spectrum, we believe

the proposed protocol may offer a much needed calibration protocol to replace the

current standards of known-white light calibration and fluorescence standards. The

classical methods are often not applied at all due to their expense, difficulty in mounting
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the sources, issues with long-term maintenance, and/or lack of transferability across

systems. A simple inexpensive approach is far more likely to be applied regularly by

Raman users.

The core topic of this chapter is the development of a new intensity calibration

protocol. There exists a secondary contribution, which should not be overlooked; in

the course of this work we proposed a novel metric that can be used to quantify the

accuracy of an intensity calibration protocol across two or more instruments. Previous

attempts to gauge the performance of an intensity calibration protocol have been

qualitative in nature. One reason for this is the variable baseline that can occur when

recording spectra from the same material on different instruments, especially with

different excitation wavelengths. The metric proposed here can subtract this baseline

difference and measures accuracy only on the spontaneous Raman resonance.

In this chapter, we have investigated a novel method for intensity calibration of

a Raman spectrometer. In the next chapter, we return to the subject of wavelength

calibration, this time making use of machine learning methods.
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6.9 Appendix

Material
System

(785 nm)
Uncali-
brated

NIST
Calibrated

Glycerol
1st

Glycerol
2rd

Polymer
1st

Polymer
2rd

ACE 785/300 2.99E-02 1.34e-02 1.13E-02 1.12E-02 1.13E-02 1.12E-02
785/600 1.75E-02 1.69E-02 1.41E-02 1.41E-02 1.54E-02 1.55E-02

Ben 785/300 5.54E-03 1.91E-03 2.19E-03 2.19E-03 2.09E-03 2.16E-03
785/600 7.79E-03 7.21E-03 7.15E-03 7.18E-03 7.18E-03 7.20E-03

Ethanol 785/300 1.09E-02 7.08E-03 7.20E-03 7.08E-03 7.13E-03 6.85E-03
785/600 6.26E-03 2.92E-03 3.06E-03 3.09E-03 3.60E-03 3.68E-03

Glucose 785/300 2.54E-02 1.46E-02 1.36E-02 1.38E-02 1.37E-02 1.41E-02
785/600 3.17E-02 1.57E-02 1.66E-02 1.65E-02 1.90E-02 1.91E-02

Glycerol 785/300 2.50E-02 7.20E-03 X X 4.52E-03 4.80E-03
785/600 2.23E-02 6.96E-03 X X 9.68E-03 9.99E-03

Lactic acid 785/300 1.84E-02 1.15E-02 1.09E-02 1.09E-02 1.10E-02 1.10E-02
785/600 1.49E-02 1.15E-02 1.15E-02 1.15E-02 1.20E-02 1.20E-02

Polymer 785/300 2.11E-02 5.62E-03 4.23E-03 4.43E-03 X X
785/600 1.02E-02 7.68E-03 6.80E-03 6.83E-03 X X

Urea 785/300 7.42E-03 6.56E-03 6.52E-03 6.46E-03 6.53E-03 6.41E-03
785/600 5.52E-03 6.09E-03 5.87E-03 5.94E-03 5.53E-03 5.54E-03

Table 6.3: Table of all results, red means the best value
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Figure 6.9: First (red), second (green), and third (black) order polynomial fits applied to
the five temperature dependent lamp irradiance profiles shown in Fig. 6.1 in the bands
of the three Raman spectrometers used in this study. The mean absolute error for these
fits are provided in Table 6.1. While first order fitting provides low error, second order
provides a closer fit with negligible improvement for third order fitting.
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Figure 6.10: Code for proposed method
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Chapter 7

Wavelength Calibration using Long Short

Term Memory Architectures

The work in this chapter has been prepared as a conference proceeding and will be

submitted to an appropriate SPIE conference at the next convenience: Liu, Dongyue,

and Bryan M. Hennelly. "Wavelength Calibration using Long Short Term Memory

Architectures." to be submitted to the proceedings of the SPIE in 2023 with the following

abstract:

"In this paper, the long-term short-term memory (LSTM) architecture is investigated

as a tool for wavelength calibration of a spectrometer. Polynomial fitting is the most

common method of wavelength calibration, whereby wavelength standards, such as neon

and krypton are recorded and the position of the spectral lines on the detector together

with the known wavelengths are used for fitting. The method performs poorly when only

a small number of lines appear within the bandwidth recorded by the spectrometer. We

demonstrate how the basic encoder-decoder LSTM architecture can be used to provide

superior wavelength calibration accuracy when five or less lines are present. We believe

with further development, machine learning could outperform the traditional methods

in all cases"
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7.1 Introduction

In this chapter, we return to the subject of wavelength calibration, which was re-

viewed in Section 2.4 in Chapter 2 and discussed in more detail in Chapter 4. This time

we investigate machine learning applied directly to the atomic emission spectrum, as a

means to obtain the calibrated wavelength axis. Like all machine learning methods, the

availability of a large dataset for training is essential. The derivation in Chapter 4 relating

the detector to the wavelength axis plays a key role in this chapter as a component for

the simulation of experimental neon spectra recorded from a variety of spectrometers

with variable physical parameters such as the grating period and the slit width.

Polynomial fitting is a traditional calibration method for wavelength calibration. It

is the most popular and widely used method because of its efficiency and simplicity.

Wavelength standards, such as neon and krypton are well characterised and provide

excellent references for wavelength calibration using polynomial fitting [58, 147, 148]. A

low-order (first, second or third order) polynomial is fit to a series of pixel positions and

associated known reference wavelength coordinates [39, 59, 61–63, 69–72, 98, 149–153].

Polynomial fitting, however, has limitations in terms of accuracy, which is sensitive

to the spectrograph slit width, and is especially sensitive to the number, sharpness,

and distribution range of the peaks in the reference standard. It is also highly sensitive

to the presence of noise, which can significantly impact the perceived peak position

in the reference spectrum. Another limitation of significance relates to the bands at

the ends of the spectrum. If no peaks exist at the ends of the spectrum, polynomial

fitting is likely to produce significant errors in these bands. This necessitates the use of

reference standards that have a large number of peaks across the entire bandwidth of

the spectrum, which are generally not available for many grating angles.

With the limitations of polynomial fitting in mind, we set out to investigate alterna-

tive methods. Machine learning has been the subject of rapid advancements in recent

years. Deep learning [154] is a technology that can extract data features with multiple

processing layers. [148] By training on extensive training sets deep learning has already

been established as a useful technology for processing spectra. [155–160]. Of particular
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interest in this chapter is the long-term short-term memory (LSTM) network. An LSTM

is a sub class of Recurrent Neural Network (RNN), where the network is trained by

looping through sequences of data as functions of time. While convolutional neural

networks, which are more commonly applied in processing tasks including denoising,

employ filters within convolutional layers to transform data, LSTMs/RNNs are pre-

dictive in nature, reusing activation functions from other data points in the sequence

in order to generate the next output in a series. LSTM is sometimes preferred over

other deep learning architectures because it is well-suited for handling sequential data

with long-term dependencies. Traditional neural networks, such as feedforward neural

networks, are not very effective at modeling sequences of data because they treat each

input as independent and do not account for the order in which the data points are

presented.

LSTMs, on the other hand, are a type of recurrent neural network (RNN) that can

process sequences of data and remember past inputs over long time periods. They use

a gating mechanism to selectively update and forget information from previous time

steps, allowing them to effectively handle sequences with long-term dependencies. This

makes them particularly useful for tasks such as language modeling, speech recognition,

and time series prediction.

In addition, LSTMs can also handle variable-length input sequences and can learn

to extract relevant features from the input data automatically, reducing the need for

manual feature engineering. Overall, the ability of LSTMs to handle sequential data with

long-term dependencies, along with their flexibility and automatic feature extraction

capabilities, make them a popular choice for a wide range of deep learning applications.

Given the repeatable pattern that is a calibration spectrum, we believe the LSTM is

a suitable choice of architecture. LSTM also solves the gradient disappearance and

explosion problems of RNN. The gradient disappearance and explosion problems of

RNN are mainly caused by the cyclic multiplication of the weight matrix of RNN. LSTM

can solve the above problems well through its own complex structure. In this chapter, a

network architecture based on LSTMs, commonly referred to as an encoder-decoder is
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investigated as a method to perform wavelength calibration. The concept is that this

network could be taken in a neon spectrum recorded by an arbitrary Czerny-Turner

spectrometer, and could return an estimate of the wavelength axis.

To achieve this, a large dataset is required. Given the difficulty in recording such a

large and varied dataset, it is preferable to build a simulator that can accurately emulate

the behaviour of the spectrometer and can produce many spectra in a short time,

together with the known ’true’ wavelength axis. In section 7.3, we will present a method

to generate the simulated neon spectra and wavelength axis with different parameters

including different spectrometer focal length, grating period, slit width, grating angle,

and detector size and noise. This method is based on the physical model developed

in section 4.3 in Chapter 4, which is augmented to include the effect of the slit width.

We demonstrate that this method can provide superior results when compared with

third order polynomial fitting, when only a few neon peaks are captured within the

bandwidth of the spectrometer.

204



7.2 Long Term Short Term Memory - Encoder/Decoder

Model

A second type of deep learning architecture was also investigated for wavelength

calibration using a similar dataset based on simulated Neon spectra, based on the

Long-Term Short-Term Memory (LSTM) architecture, illustrated in Fig. 7.1 which is a

sub-class of the more general Recurrent Neural Network [161] (RNN), typically applied

to process sequential data. LSTMs [162–164] contain feedback connections, which

differ from the principle of the feed-forward/propagate-backwards used by CNNs like

VECTOR; LSTMs were developed to overcome the vanishing gradient problem often

encountered with RNNs and are particularly useful for processing 1-D sequences of

data by learning from recurring patterns in datasets that appear sporadically in time.

The connection weights and biases in the LSTM adjust with each epoch, in a similar

manner to the storage of long-term memories via synaptic strengthening in the brain;

whereas activation patterns in the network change once per time-step, in a similar

manner to short-term memory. The LSTM, illustrated in Fig. 7.1 is composed of cells,

Figure 7.1: Diagram of the Long Short-Term Memory network. LSTM is formed using
four main gates; the input gate, the forget gate, the output gate and the cell state. These
gates are connected in a particular way to learn the long term dependencies.

which contain an input gate, an output gate and a forget gate as shown in the figure.

The cell ’remembers’ values over arbitrary time intervals and the three gates control the

flow of information into and out of the cell. The LSTM has two transmission states, ct
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(the cell state), and ht (the hidden state). The ht state is passed down slowly whereby

the output ht depends on the previous state ht−1 plus some additional values. The ct

is more susceptible to change due to the effect of the forget gate. Using the current

input into the cell xt , and the ht−1 passed down from the previous state, the four layers

can be trained: the forget gate ft ; the input gate it ; a vector of new candidate values c̃t

sometimes referred to as the input modulation gate; and the output gate ot , which are

represented by blue diagrams in the figure. Therefore, ft , it ,ot are often implemented

using sigmoid activation functions which map the input beween 0 and 1, while c̃t uses

an tanh activation function to convert the result into a value between -1 and 1. The light

orange circles in the figure represent matrix addition or multiplication.

There are three main stages inside the LSTM cell. The first stage is given by the

blue lines and relate to the forget gate, which controls the degree to which ct−1 of the

previous state will be ’remembered’ or ’forgotten’.

ft =σ(W f · [ht−1, xt ]+b f ) (7.1)

where σ is the sigmoid function, W f ,i ,o,c and b f ,i ,o,c are the weight matrices and the

bias vector parameters for each of the four layers, respectively. Secondly, the red lines

relate to the the input gate and represent the select memory stage. This stage selectively

’memorizes’ the inputs of this stage. The current input content is represented by c̃t and

the selected gating signal is controlled by it :

it =σ(Wi · [ht−1, xt ]+bi ) (7.2)

c̃t = tanh(Wc · [ht−1, xt ]+bc ) (7.3)

The values are multiplied and added to the old cell state ct−1 which has been forget

gated as previously described:

ct = ft · ct−1 + it · c̃t (7.4)
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Figure 7.2: Illustration of the three networks that were investigated in this study. The first
network shown in (a) contains a single encoder/decoder pair with a variable number of
LSTMs in the encoder and decoder. This model was found to work poorly because the
loss function prioritised the larger coefficient a0. As a result we investigated tow other
networks shown in (b) and (c). For the second network, two encoder/decoder pairs
were used where the first is trained to produce the first coefficient, and the second pair
is trained to produce the latter three coefficients. The third architecture uses a separate
encoder/decoder pair for each coefficient.
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This stage is represented as the green lines in the figure. Finally the output stage is

represented by the orange lines and this stage determines the output of the current

state, mainly controlled by ot . It also scales the ct obtained in the previous stage via a

tanh activation function to get the ht .

ot =σ(Wo · [ht−1, xt ]+bo) (7.5)

ht = ot · tanh(ct ) (7.6)

To solve sequence problems in which there are a different number of input and

output sequence values, the encoder-decoder model has been designed, based on an

architecture with two LSTM layers. It is specifically this type of architecture that we

use here, where the input is the neon spectrum of length 1000 samples and the output

is the four coefficients that uniquely define a third order polynomial that accurately

represents the wavelength-pixel relationship. The first LSTM layer works as an encoder

layer and encodes the input sequence into hidden vectors. The decoder is also an

LSTM layer, which accepts three inputs: the encoded sequence from the encoder LSTM,

the previous hidden state, and the current input. During training the output at each

time-step is used to train the encoder-decoder model. While making predictions, the

encoder output, the current hidden state, and the previous output are used as input to

make the prediction at each time-step. As with the standard LSTM network, a dense

layer is used to produce the output for the network.

In the first attempt illustrated in Fig. 7.2 (a) a single LSTM encoder decoder pair

were trained to take a Neon spectrum as input (of length 1000) and to produce the four

coefficients; the loss function used to train the network is given below:

L1 = 1

4

3∑
i=0

∣∣ f (X;θ; i )−Yi
∣∣ , (7.7)

where X is the input neon spectrum, Y is the set of four coefficients that define the

third order polynomial that has been fit to the true wavelength axis. This third order

polynomial represents the wavelength-pixel relationship with a high level of accuracy,
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f (X;θ; i ) represents the four part tuple that is output by the network when X is input

and i has four index values from 0 to 3 which relate to the four coefficients, θ represents

all of the network parameters, which have been optimised by the training process

with no a priori knowledge. However, a problem presented whereby the values of

f (X;θ; i ) for i = 0 → 3 had a significantly different range of values. Going forward we

will refer to these values as (a0, a1, a2, a3), which are the coefficients for (1, x, x2, x3),

respectively. For the neon spectra that were processed we found that a0 would have a

value of approximately 0.5 (units of µm), while a1, a2, a3 would have smaller values of

approximately 1×10−4,1×10−4,1×9−13. This created a problem when using the MAE

as defined in Equation 7.7, whereby an error in a0 carried significantly more weight in

the loss function than errors in the other four variables. While accurate results were

obtained for the value of a0, poor results were obtained for the other variables. The

decision was taken to try two LSTM encoder/decoder pairs as illustrated in Fig. 7.2(b),

whereby the first LSTM was designed/trained to take the Neon spectrum as input and

produce a single output in the form of the largest coefficient a0, and the second LSTM

encoder/decoder pair was trained to take the Neon spectrum as input and produce a

single output in the form of the other three coefficients a1, a2, a3. The loss functions for

these two networks are defined as follows:

L1 =
∣∣ f (X;θ;0)−Y0

∣∣ ,L1 = 1

3

3∑
i=1

∣∣ f (X;θ; i )−Yi
∣∣ , (7.8)

A third design was also investigated using four LSTM encoder/decoder pairs, where

each one takes the neon spectrum as input and outputs a single coefficient. The loss

function for each case is similar to the first part of Equation 7.8. Results for the latter

two networks are provided in Section 7.4.
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7.3 Training Sets: Simulating a Neon Spectrum

In order to generate a deep learning model that can predict the wavelength or

wavenumber axis from a recorded (uncalibrated) reference spectrum, it is necessary to

generate a large dataset of pairs of one dimensional vectors in the form of a reference

spectral intensity (such as neon) and its corresponding wavelength axis as might be

expected from a real world spectrometer. In this subsection, we discuss how this is

accomplished for the case of a neon spectrum and a typical Czerny-Turner Spectro-

graph with a variable slit aperture. We begin by reviewing the ideal neon spectrum in

terms of its known emission lines as defined by the National Institute of Standards and

Technology (NIST), and how these lines can be modelled using Lorenzian functions.

This is followed by a discussion of how the spectrograph can be modelled in terms of

the basic optical components such that the spectral intensity pattern can be predicted

on the array detector, which is subject to change with variation in the parameters of

the optical system such as the diffraction grating period and/or angle as well as the slit

aperture width.

7.3.1 Ideal Neon Spectrum

In this section, we review the reference Neon spectrum in terms of the known

emission lines. Emission occurs at particular wavelengths relating to transitions in

quantum states caused by electrical stimulation. A list of well known emission lines

are provided in Table 7.1 and an example spectrum of Neon recorded on an Andor

Shamrock 500 spectrometer with 300 lines/mm is shown in Fig. 7.3(b). Also shown

in the figure are the bands that are recorded by two other dispersive gratings, a 600

lines/mm and a 1000 lines/mm grating. An Andor Idus camera was used to record the

spectrum shown in this figure. We note that the three spectral windows shown in Fig. 7.3

in the black, blue, and red boxes correspond to specific values of θd , the grating rotation

angle, which were chosen arbitrarily when recording the spectra; f , the focal length of

the spectrograph, and α, the half deviation angle are fixed for a given spectrometer.

The spectral line shape of each emission line in the reference Neon spectrum can be
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Figure 7.3: (a) The common Czerny-Tuner spectrometer, which is the basis of the calibra-
tion algorithm developed in this chapter. We note, however, the methods proposed here
can be extended to other spectrometer architectures if a mathematical model is availble
to relate wavelength to pixel position on the detector; (b) Experimentally recorded neon
spectra recorded using a 300 lines/mm grating in a 0.5 m focal length Czerny-Turner
Spectrometer. A slit width of 25 µm was used which is equal to the width of the pixel in
the detector. Highlighted in the figure are the bands that would be recorded by three
different dispersive gratings for arbitrary value of θd .

ideally modelled using a Lorentzian function [165, 166] as described by the equation

below:

f (λ,λi ) = ( 1
2Γ)2

(λ−λi )2 + ( 1
2Γ)2

(7.9)

where the centre is denoted by λi , and full width half maximum is given by Γ. An

ideal Neon spectrum can, therefore, be modelled by a superposition of several such

Lorentzian functions as defined by the equation below:

Neon(λ) =
24∑

i=1
Ai f (λ,λi ) (7.10)

where Ai denotes the relative intensity or amplitude of the given line. We note that

for this model, we have assumed that all of the peaks have the same full width half

maximum, which may not necessarily be true. Furthermore, these widths are subject to

change depending on temperature, pressure and phase [165, 166]. However, we have

found that modelling the spectrum to contain peaks all of line width 0.01 nm to 0.02

nm is sufficiently accurate for the purposes of our work. It appears that selecting a line

width less than this provides no difference in the simulated spectra that are discussed in

section 7.3.4 because the slit function is the dominating factor in producing the actual

peak width in the intensity pattern at the detector; further, selecting a Lorentzian width
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Peak No. Wavelength / nm Relative Intensity
1 585.24878 20000
2 588.18950 10000
3 594.48340 5000
4 597.55343 6000
5 602.99968 10000
6 607.43376 10000
7 609.61630 3000
8 614.30627 10000
9 616.35937 10000

10 621.72812 10000
11 626.64952 10000
12 630.47893 1000
13 633.44276 10000
14 638.29914 10000
15 640.22480 20000
16 650.65277 15000
17 653.28824 1000
18 659.89528 10000
19 667.82766 5000
20 671.70430 700
21 692.94672 100000
22 703.24128 85000
23 717.39380 77000
24 724.51665 77000

Table 7.1: List of emission lines for neon taken from Reference 1 in the range 585 nm to
725 nm. Also shown in the Table are the approximate relative intensities of the peaks as
provided by NIST[1]

less than this range also forces a high level of sampling which becomes computationally

intractable. The role of the slit function is discussed further in Section 7.3.3.

7.3.2 Modelling the Spectrometer

In this section, we briefly review the traditional Czerny-Turner Spectrometer, and

discuss how this architecture can be modelled such that the spectral intensity incident

on the array detector can be predicted, given a known light field input to the slit. This

work is based on the derivation in Section 4.3 in Chapter 4. In summary, the parameters

of interest that define the relationship between the wavelength axis λ, and the detector

pixel axis(x, include the diffraction grating period d , the focal length of the parabolic

mirrors f , the pixel width of detector T , the grating rotation angle θd , the angle of the

212



optical axis α, the misalignment of the centre of the detector array with respect to the

optical axis C . The relationship between wavelength and pixel is given as follows:

λ= d

n

{
sin

[
tan−1

(
xT −C

f

)
+α−θd

]
+k sin(−α−θd )

}
(7.11)

A typical Czerny-Turner architecture such as the one illustrated in Fig. 7.3 (a) will in

general be provided from the manufacturer with a set of specifications that define the

values of the aforementioned parameters; however, the accuracy of these parameters

is rarely provided. Moreover, some of these parameters cannot be known with high

accuracy; examples of this are the angle α defined by the angle of the optical axis, which

can be estimated using a protractor or similar method of measuring angle; the angle of

rotation of the grating, θd , which is commonly variable; and the slit width, which is also

variable, and which is covered in the subsection that follows.

7.3.3 Varying The Slit Width

The point spread function (or impulse response) of the imaging system that is the

spectrometer, i.e. the two parabolic mirrors, will have a point spread function that can

be approximated by a Gaussian function; as such we can assume that a ideally narrow

slit will produce an image on the spectrograph that is the neon spectrum convolved

with this point spread function. In general this Gaussian function has a width that is

smaller than the pixel size of the detector and we can ignore the effect. More interesting

is the effect of slit width on the image when the slit is not ideally narrow. Assuming that

there exists uniform illumination of the neon lamp across a wide area at the entrance

slit to the spectrograph, the light at the input to the spectrograph can be modelled as a

rectangle function. The effect on the image is once again a convolution, whereby the

neon spectrum is convolved in one dimension with a rect function that approximates

the slit:

Neon′(λ′) =Neon′(λ)∗ r ectW =
∫

Neon′(λ)r ectW (λ′ =λ)dλ

r ectW (λ) =1 ∀ |λ| <W /2

(7.12)
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Parameter Unit Range of uniform distribution
Reflection(k) NA +1
Diffraction Order(n) NA -1
Grating Period (d) lines/mm 1000 ± 5
Half the deviation angle (α) degree 10.94 ± 2
Grating angle (θd ) degree 16.5 ± 9.5
Focal length (f) mm 500 ± 1
Camera pixel pitch (T) µm 26
Camera width (N) pixels 1000
Camera centre position (C) pixels 0
Slit width (W) pixels 1-4
Neon line width (Γ) nm 0.01-0.02

Table 7.2: The relationship between the pixel detectors and the wavelength axis for a
Czerny-Tunrer spectrometer can be modelled using Equation 7.11. In order to simulate
an arbitrary spectrometer, these parameters are randomised over a uniform distribution
for the training set. The range of the uniform distribution is defined in the table. Also
shown in the table is the slit which is allowed to vary continuously over a range of 1-4
times the width of the detector pixel, T . We note that narrowing the range of any of
these variable would likely improve the accuracy of the trained networks.

In order to build in a variable slit into the simulation process, it is necessary to

perform this convolution with the rect function of variable width W . Convolution can

be implemented in a numerically efficient manner using the fast Fourier transform. This

approach is based on the property of the Fourier transform, whereby the convolution

of two functions in space is equivalent to the product of the Fourier transforms in the

Fourier domain. Therefore, in order to compute Equation 7.12 we implement a DFT

of the ideal neon function Neon(λ), multiply by a discretised function (the Fourier

transform of a function is a r ect function and vice versa) and performing an inverse

DFT. In this way a variable slit can be built into the simulation model

7.3.4 Generating Training and Validation Datasets

The datasets used for training and validation were generated using Equation 7.10,

Equation 7.11 and Equation 7.12. The first step is to randomly select the parameters that

specify the physical spectrograph to be simulated. These parameters were slected from a

uniform distribution as defined in Table 7.2. Once the parameters were selected, values

of x =−500 → 499 were input to Equation 7.11 in order to calculate the ’true wavelength

axis’ of length 1000 samples. Once the true wavelength axis has been calculated, the
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neon spectrum can now be simulated for that spectrograph. The wavelength axis is

upsampled by a factor of 10 and these wavelength values are input to Equation 7.10

to produce a neon spectrum of 10000 samples. In this equation the amplitude of

the neon peaks is uniformly randomly varied between 90% to 110% from the relative

intensity values in Table 7.1 and line width Γ is uniformly randomly varied between

0.01 nm to 0.02 nm for each peak in an attempt to capture the experimental variability

in capturing a neon spectrum. For each simulated spectrum, normalization should

be applied to make sure all the intensity is at the range of 0 to 1. The final step is

application of a DFT to the 10000 long Neon spectrum followed by multiplication with

the function (defined by width slit width W ) and followed by an inverse DFT. The DFT

operations were implemented using the fast Fourier transform. The next step is to

downsample the output from the DFT to length of 1000 in order to match the size of

the detector and the length of the original wavelength axis and the final step is the

addition of a weak gaussian noise to simulate the effect of camera noise. Shot noise can

be approximated as a Gaussian noise with high accuracy for high standard deviations.

The upsampling/downsampling step is required by the DFT; in order to generate an

accurate representation of the neon spectrum Fourier transform, a high sampling rate is

required due to the the very narrow lineshape of the neon lines. The overall simulation

process is implemented using the scipy python module.

Some examples of the simulated neon spectra that were generated using the above

approach are shown in Fig. 7.4. It is clear significantly different wavelength axes will be

used for each neon spectrum. The difference in the neon axes is more significant than a

simple shifting, and could also be described by a non-linear warping.

In addition to the neon spectra, the LSTMs also require the wavelength axis for

training. As described earlier, we do not train the LSTMs with true wavelength axis,

rather they are trained to produce the four coefficients of the third order polynomial

that approximates the true wavelength axis. These four coefficients are paired together

with the matching neon spectrum as input to train the networks. It is important to

emphasize that the third order polynomial fitting that is used here is not the same as the
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Figure 7.4: Examples of five different neon spectra that were simulated using the ap-
proach described in this chapter. Depending on the parameters for the spectrograph
used in simulation, most notably the grating angle θ the spectra will be recorded from
different wavelength bands.

traditional third order fitting used for wavelength calibration using some finite number

of neon peaks. Here the third order fitting is applied to the 1000 samples that make up

the true wavelength axis described earlier. As such it can be assumed to be significantly

more accurate than traditional calibration polynomial fitting.
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7.4 Results

In Fig. 7.5 the loss functions for the training and validation set are shown for the

four encoder/decoder pairs that make up the 4-LSTM model. Different epoch numbers

were used for the different cases as shown in the figure and further epochs did not

improve any of the individual cases appreciably. Each encoder/decoder pair is trained

to produce a single coefficient of the third-order polynomial that approximates the

wavelength axis. In Fig. 7.6 the two loss functions for the training and validation sets are

shown for the two encoder/decoder pairs that make of the 2-LSTM model. As for the

previous case. Further epochs did not improve any of the individual cases appreciably.

For the 2-LSTM model the first encoder/decoder pair is trained to produce a a0, while

the second encoder/decoder pair produces the other three coefficients that describe the

third-order polynomial that approximates the wavelength axis. We note that the time

taken to train the 2-LSTM model was less than half that required to train the 4-LSTM

model case and there is only a marginal improvement as described below for the case of

the 4-LSTM model.

In Fig. 7.7, Fig. 7.8, and Fig. 7.9 results are shown for three different reference spectra

that are calibrated with the trained 4-LSTM model. These three cases differ in terms

of the number of neon peaks that are contained within the reference spectrum, and in

each case the results are found to differ appreciably. In Fig. 7.7 the result of applying the

trained 4 LSTM model is shown for the case of a neon spectrum containing only five

neon peaks shown in Fig. 7.7 (a). In Fig. 7.7 (b) the true wavelength axis as a function

of detector pixel position is plotted, as well as the wavelength axes predicted by the

4-LSTM model and traditional third order polynomial fitting applied to the five neon

peaks. The MAE for the 4-LSTM result is 0.04811nm and for traditional third order fitting

it is 0.11431nm. Three regions are highlighted in the figure and magnified in Fig. 7.7

(c), (d) and (e) in which it can be seen that the accuracy of the two methods varies over

the range of the detector. Interestingly, it can be seen that a spectrum with few peaks

that are condensed on one side of the spectrum, the accuracy of the 4-LSTM model is

more accurate than third order polynomial fitting in regions that are far away from the
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Figure 7.5: Loss functions for training and validation sets used over various epoch num-
bers for the four encoder/decoder pairs that make use of the 4-LSTM model. Further
epochs did not improve any of the individual cases appreciably.

Figure 7.6: Loss functions for validation sets used over various epoch numbers for the
four encoder/decoder pairs that make use of the 2-LSTM model. Further epochs did
not improve any of the individual cases appreciably.
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reference peaks, while within the region of the peaks, third order fitting is more accurate.

In order to elucidate this point further the wavelength error of both methods is plotted

in Fig. 7.7 (d). Overall the 4-LSTM model performs better than 3rd order fitting over the

full range. A similar set of results is shown in Fig. 7.8 for the case of a neon spectrum

containing seven peaks, as shown in Fig. 7.8 (a). In this case the MAE for the 4-LSTM

network is 0.07067 nm. In Fig. 7.8 (b) the true wavelength axis is shown together with the

wavelength axes predicted by the 4-LSTM model and traditional third order polynomial

fitting. The three regions are highlighted in the figure and magnified in Fig. 7.8 (c), (d)

and (e) in which it can be seen that the accuracy of the 4-LSTM model appears to reduce

with distance from the region in which the peaks are condensed but the 3rd order fitting

method is more accurate over the full range. We continue this analysis with a neon

spectrum containing 12 neon peaks in Fig. 7.9(a). The result of inputting this spectrum

to the 4-LSTM model is shown in Fig. 7.9(a) together with the true wavelength axis and

the result of traditional third order polynomial fitting applied to the twelve neon peaks.

The MAE for the 4-LSTM network is 0.02542 nm and for traditional third order fitting is

0.00134 nm. The wavelength error of both methods is plotted in (d) and it is clear that

3rd order fitting is significantly more accurate than the 4-LSTM model.

A matching set of results are shown in Fig. 7.10, Fig. 7.11, and Fig. 7.12 and the

same set of conclusions can be drawn: both the 2-LSTM model and the 4-LSTM model

can provide higher wavelength calibration accuracy than traditional third order fitting

of the neon peaks, if there are five or less peaks in the spectrum. Similar accuracy is

obtained for six peaks and as the number of peaks increases, the accuracy of third

order fitting improves, while there is no improvement in either LSTM approach. In

order to further examine dependence of accuracy on peak number, three tests sets

were generated of size 1000 and passed as input to the 4-LSTM network and another

set of three datasets were passed to the 2-LSTM network. The same parameters were

used to model the spectrograph in the simulation process to generate these six test

sets as defined in Table 7.2 except for case of the grating angle, which was varied over

three different ranges as defined in this table. The effect of using these ranges is to
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Model Type Theta(degree) LTSM(nm) Trad3(nm)

2-LSTM Model
16.5±0.9 0.014186 0.006438
16.5±1 0.044101 0.015023

16.5±1.1 0.045389 0.07701

4-LSTM Model
16.5±0.9 0.044067 0.006114
16.5±1 0.043551 0.029205

16.5±1.1 0.043171 0.046269

Table 7.3: This table shows the MAE results for three different test sets that were applied
to the trained network. For these test sets, the parameters of the spectrograph were
varied according to the values given in Table 7.2 except for case of the grating angle,
which was varied over three different ranges as defined in this table. The effect of using
these ranges is to control approximately the number of neon peaks that will appear in
the window of the spectrum. The first test set with the smallest range of θ will have
the largest number of peaks on average, and this number will drop statistically across
the test set as the range of θ is increased. The result is that the accuracy of third order
polynomial fitting drops significantly as the test sets can contain spectra with fewer
peaks, while the two LSTM models provide more consistent results and outperform
third order fitting for the less populated test sets. It is notable that the 4-LSTM model
is three times more accurate than the 2-LSTM model for the most dense test set, but
the accuracy is similar for the lesser populated ones. The performance of the two LSTM
models for reference spectra with fewer peaks is further examined in Table 7.4

control approximately the number of neon peaks that will appear in the window of the

spectrum. The first test set with the smallest range of θ will have the largest number of

peaks on average, and this number will drop statistically across the test set as the range

of θ is increased. The result is that the accuracy of third order polynomial fitting drops

significantly as the test sets can contain spectra with fewer peaks, while the two LSTM

models provide more consistent results and outperform third order fitting for the less

populated test sets. It is notable that the 4-LSTM model is three times more accurate

than the 2-LSTM model for the most dense test set, but the accuracy is similar for the

lesser populated ones. The performance of the two LSTM models for reference spectra

with fewer peaks is further examined in Table 7.4, which shows the MAE results for

several test sets that were carefully controlled to produce the same number of peaks for

all spectra in the test set, and subsequently applied to the trained network. To achieve

this fine-grained control, the parameters of the spectrograph were fixed as indicated in

the left column except for the case of the grating angle, which was varied over different

ranges as defined in this table in order to provide some degree of variability across the
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1000 spectra in the test sets. The number of peaks shown in the test sets are shown

in the right most column. It is clear that third order polynomial fitting has superior

accuracy than both LSTM models when the reference spectrum contains six peaks or

more but the superiority of third order fitting is clearly less pronounced as the number

of peaks reduces and two LSTM models out-perform third order fitting for five peaks

and lower. The 4-LSTM model performs only marginally better than the 2-LSTM model

over all cases. The values in this table are presented graphically in two bar charts in

Fig. 7.13 and Fig. 7.14 and it is clear that the 4-LSTM model outperforms third order

fitting when there are only five peaks or less in the neon spectrum for both cases.
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Model

type

Theta range

(min,max)
LTSM(nm) Trad3(nm)

Peak

Number

Model 2

(f=0.499m,

alpha=8.94,

d=995 l/mm,

c=-10)

15.4 15.53 0.121998 0.189281 4

15.57 15.66 0.078472 0.102979 5

15.7 15.73 0.059564 0.022343 6

15.77 15.87 0.044975 0.016788 7

15.91 15.93 0.035537 0.005322 8

15.97 16.1 0.032531 0.006146 9

16.14 16.25 0.025616 0.002172 10

16.29 16.36 0.025983 0.001137 11

16.4 16.45 0.029315 0.001166 12

Model 4

(f=0.499m,

alpha=8.94,

d=995 l/mm,

c=-10)

15.4 15.53 0.118675 0.171513 4

15.57 15.66 0.07807 0.121962 5

15.7 15.73 0.057178 0.021853 6

15.77 15.87 0.046206 0.017122 7

15.91 15.93 0.037208 0.004854 8

15.97 16.1 0.029686 0.00506 9

16.14 16.25 0.025398 0.001782 10

16.29 16.36 0.024269 0.00134 11

16.4 16.45 0.025753 0.00127 12

Table 7.4: This table shows the MAE results for several test sets that were carefully
controlled to produce the same number of peaks for all spectra in the test set, and
subsequently applied to the trained network. To achieve this fine-grained control, the
parameters of the spectrograph were fixed as indicated in the left column except for
the case of the grating angle, which was varied over different ranges as defined in this
table in order to provide some degree of variability across the 1000 spectra in the test
sets. The number of peaks shown in the test sets is shown in the right most column.
It is clear that third order polynomial fitting has superior accuracy than both LSTM
models when the reference spectrum contains six peaks or more but the superiority of
third order fitting is clearly less pronounced as the number of peaks reduces and two
LSTM models out-perform third order fitting for five peaks and lower. The 4-model
LSTM model performs only marginally better than the 2-LSTM model over all cases. The
values in this table are presented graphically in two bar charts in Fig. 7.13 and Fig. 7.14
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Figure 7.13: Comparison of MAE results for the 4-LSTM model when applied to test sets
containing different numbers of peaks. These values are related to those provided in
Table 7.4. The 4-LSTM model outperforms third order fitting when there are only five
peaks or less in the neon spectrum.

Figure 7.14: Comparison of MAE results for the 2-LSTM model when applied to test sets
containing different numbers of peaks. These values are related to those provided in
Table 7.4. The 2-LSTM model outperforms third order fitting when there are only five
peaks or less in the neon spectrum. The results for the 2-LSTM model are similar to
those for the 4-LSTM model.
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7.5 Conclusion

In this chapter, we have investigated the use of the long term short term neural

network (LSTM) for the wavelength calibration of spectrometers. LSTMs are a versatile

machine learning tools that are a sub class of the broader recurrent neural network.

LSTMs are particularly useful in learning time sequence patterns that recur, but do so at

irregular time intervals. In particular we use the encoder/decoder LSTM architecture

as developed by Google, which facilitates the use of different lengths for the input and

output sequences. Like all deep learning methods, training with many thousands of

examples is required. Here we train with neon spectra and the matching wavelength axis

in the form of four coefficients that describe the 3rd order polynomial that (accurately)

approximates the true wavelength axis. It is important to emphasise that this is not

the same as traditional third order polynomial fitting used for wavelength calibration,

which makes use for only a small number of peaks. Here we use the entire wavelength

axis at every point for fitting.

A key contribution in this chapter is the development of a simulation method ca-

pable of generating thousands of simulated neon spectra. This simulation is based on

modelling a Raman spectrometer in terms of the spectrograph parameters, including

the focal length, the grating angles, slit width, and the detector specifications. The

simulator can produce hundreds of thousands of simulated neon spectra in a short time,

together with the correct (non-linear) wavelength axis, which can then be used for train-

ing with machine learning. It is possible that other researchers will make further use of

this simulator as better methods in deep learning are developed for this application.

This chapter marks the first effort in using deep learning to directly calibrate a spec-

trometer using a reference atomic emission spectrum. These initial results indicate

that the approach can provide superior results when compared with polynomial fitting

if there are a low number of peaks within the bandwidth of the spectrometer. How-

ever, as the number of peaks increases, polynomial fitting outperforms the proposed

method. We believe that further work may show that machine learning can outperform

polynomial fitting in all cases.
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For the case of Raman spectroscopy, several wavenumber reference standards are

also available for use with polynomial fitting, such as 4-acetamidophenol or benzonit-

role [3]. Raman spectra can be calibrated using polynomial fitting of either a wavenum-

ber reference or a wavelength reference standard, with the latter requiring the additional

step of acquiring an accurate measurement of the laser wavelength. We believe that

the approach proposed in this chapter could also be applied to wavenumber reference

standards. This would require the simulator to include the conversion of the wavelength

to wavenumber and would also require the use of the laser wavelength. This offers

another possible avenue of research for this work.

When it comes to machine learning models, repeatability and generality are im-

portant factors to consider. Repeatability refers to the ability of a model to produce

consistent and reproducible results when presented with the same input data multiple

times. This is crucial for ensuring that the model can be relied upon for consistent pre-

dictions and decision making. To achieve repeatability, it is important to use consistent

data preprocessing and feature engineering methods, as well as to tune the hyperparam-

eters of the model carefully. Generality refers to the ability of a model to generalize well

to new, unseen data that was not used during training. This is important for ensuring

that the model can be applied to real-world scenarios and is not simply overfitting to

the training data. To achieve generality, it is important to use a diverse range of training

data that is representative of the real-world data that the model is intended to be used

on. Additionally, regularization techniques such as dropout or weight decay can be

used to prevent overfitting. It is true that, in some cases, training a machine learning

model can be seen as simply trading calibrating a machine for calibrating a machine

learning model. However, there are important differences between the two approaches.

For example, machine learning models can potentially learn more complex relation-

ships between inputs and outputs than traditional calibration methods, allowing for

more accurate and precise predictions. Additionally, machine learning models can be

updated and retrained with new data, allowing them to continually improve over time.

However, it is important to note that machine learning models can also be subject
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to biases and limitations, and may not always be appropriate for every application.

It is important to carefully evaluate the performance and limitations of any machine

learning model before applying it in a real-world setting.
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Chapter 8

Conclusion

Raman spectroscopy can probe the chemical structure of a material. The uniqueness of

the spectrum from various materials has resulted in the term ’fingerprint’ being used to

describe the Raman spectrum. Indeed, such is the capacity of Raman spectroscopy to

identify different materials, it can be used to classify biological cells and tissue as they

change from a healthy state into a diseased state. Such a form of diagnosis is sometimes

called an ’optical biopsy’ and various research groups have proved the potential of the

technique for a range of different cancers. Recent progress includes the mounting of

Raman probes onto hypodermic needles and automated cytology systems that can

probe individual cells taken non-invasively from the mouth, bladder or cervix. The

Raman spectrum from a healthy cell and diseased cells are subtly different. A key

component in Raman diagnostics is the use of multivariate statistical algorithms that

can be trained using datasets of known samples to classify the groups based on the

subtle differences between them.

Despite the many hundreds of millions of euros, the thousands of journal paper

proving the usefulness of Raman diagnostics, and the significant reduction in cost of

Raman spectrometers in recent decades, Raman spectroscopy has never been adopted

clinically. The key reason for this is the poor resproducibility of Raman spectroscopy

across instruments; in other words the same material can produce different spectra

when recorded using different spectrometers. These differences can include small move-

ment of the Raman peaks along the wavenumber axis (wavenumber miscalibration) or
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random changes in the amplitude of the peaks (intensity calibration). Such changes

can render a multivariate classifier trained on one instrument to be completely useless

in identifying samples recorded from another instrument. This poor cross-instrument

comparability has been highlighted by two recent multi-site studies involving 26 and 35

instruments respectively, both of which demonstrated inconsistencies in the wavenum-

ber shift for various materials even following established calibration protocols provided

by the instrument manufacturer. There is clearly a growing need for a set of calibration

protocols, that are inexpensive, accessible to, and easy to implement by, all Raman

researchers, and above all are accurate enough to ensure reliable cross-instrument

comparability.

The overall goal of this thesis is to develop a new method for wavenumber and inten-

sity calibration that can help Raman spectroscopy penetrate into the clinic. To this end

several contributions have been made. Firstly the reviews of wavelength and wavenum-

ber calibration in Chapter 2 can be considered valuable contributions. Secondly, The

core topic of Chapters 4 and 7 is the development of new methods of wavelength cal-

ibration, often a precursor of both wavenumber and intensity calibration in Raman

spectroscopy. The approach proposed in Chapter 4 is to develop an algorithm that takes

in a neon spectrum as input and outputs the true wavelength axis; this algorithm is

based on a model that relates the wavelength and the detector pixels using the physics of

optical imaging and diffraction and provides greater accuracy than traditional methods,

especially in bands where there are few neon lines. The approach in Chapter 7 is to

use the same model build a simulator that can generate hundreds of thousands of fake

neon spectra (with their matched true wavelength axis) to train a machine learning

network based on the recently proposed LSTM, which is designed to learn patterns in

1D sequences of data. This method does not provide greater accuracy than traditional

methods except when there are five or fewer neon lines in the spectrum, which can

happen experimentally for some spectrometer configurations. In this proof-of-concept

study we examined a very basic ’off-the-shelf’ LSTM architecture and we believe that

better results could be obtained with further development of the idea and further ex-
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ploration of more complex machine learning architectures. The method could also

be extended to work for direct wavenumber calibration using a reference material like

benzonitrile or similar; this would require an extension of the simulator in the same

way that Chapter 5 extends the physical model developed in Chapter 4.

While wavelength calibration is the subject of Chapters 4 and 7, direct wavenumber

calibration is the subject of Chapter 3 and 5. Direct wave calibration makes use of a

reference Raman material containing several sharp spectral lines such an benzonitrile

or 4-acetamidophenol and is preferable over the wavelength/conversion approach as it

is single step and does not require measurement of the laser wavelength while providing

a similar level of accuracy. In Chapter 3 we investigate a new Raman wavenumber

reference material in the form of a commercial plastic, which has several advantages

over commmonly used reference materials in terms of low cost, simple mounting, and

high photo-stability. Although the accuracy afforded by the polymer does not match that

of 4-acetamidophenol or benzonitrile, the accuracy is sufficient for many applications

and may be an attractive option in many cases. There is also the consideration that this

material could also be used as part of an intensity calibration routine as described in

Chapter 6, and might therefore provide a dual use. The work in Chapter 5 is an extension

of Chapter 4, whereby the physical model that relates wavelength to detector pixel for

an arbitrary spectrometer is extended to relate wavenumber to pixel for an arbitrary

Raman spectrometer. The resulting algorithm is demonstrated on hundreds of spectra

to provide greater accuracy than traditional polynomial fitting in general, and especially

in bands where there are few spectral lines.

The remaining chapter, Chapter 6, is the only chapter to focus on intensity calibra-

tion. Although wavenumber calibration is commonly applied by Raman researchers,

intensity calibration if far less commonly applied in the literature. We believe there

are several reasons for this: firstly wavenumber calibration is always required if there

is any attempt is to be made on wavenumber assignment; for example a sharp peak

in a biological spectrum at 1004 cm−1 is known to relate to phenylalanine. However,

most research papers use only a single system to record results and cross instrument
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comparability is not a concern; therefore, intensity calibration is deemed superfluous

to requirements since it requires expensive equipment that is often difficult to mount

or align. The consequence is that datasets that are acquired over these hundreds of

studies cannot be easily shared or combined. If a simple, inexpensive, and accurate

method existed for intensity calibration it would be far more likely all researchers would

adopt it and the overall research area would be far better off. Even those studies that

have attempted to demonstrate cross-instrument comparability and have employed

intensity calibration have shown that the results are not ideal. In most cases of inten-

sity calibration in the literature, a NIST-calibrated white light lamp is preferred, which

appears to be far more popular than the NIST fluorescent materials that must be pur-

chased separately (and expensively) for each excitation wavelength and are tricky to

align. However, these lamps must be frequently re-calibrated which is both expensive

and time consuming and the laboratory may be without the lamp for several months

while it sent away for re-calibration. In Chapter 6 we demonstrated how an arbitrary

un-calibrated tungsten halogen lamp can be used to achieve higher accuracy than a

NIST-calibrated lamp. Since most Raman microscopes are built around an existing

Olympus microscope or similar, a tungsten halogen lamp is readily available and there

is no reason to mount any sample holder or fiber to deliver the light. Furthermore, there

is no need to worry about miscalibration of the lamp, which is obviously a factor for

NIST-calibrated sources. Indeed, this latter point may explain why the results for our

approach outperform those for a NIST calibrated lamp is most cases. There exists a

secondary contribution in Chapter 6 that should not be overlooked; in it we propose a

novel metric that can be used to quantify the accuracy of an intensity calibration proto-

col across two more instruments which takes into account the variable background that

can occur in Raman spectroscopy. Previous attempts to gauge the performance of an

intensity calibration protocol have been qualitative in nature.

If there was one subject that could be chosen by this author for future work it would

be the intensity calibration protocol in Chapter 6. There is little doubt that intensity

calibration is the single most significant problem hindering clinical adoption of Raman
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today. Further experimental evidence is required to conclusively demonstrate that our

method could become a standard across the Raman community. One limitation in

Chapter 6 is that the spectra were limited to the fingerprint region, while spectra that

cover the full band up to 4000cm−1 will likely suffer from the greatest need for sensitivity

correction. Secondly, Chapter 6 did not consider the effect of polarisation and more

accurate results can be expected by both NIST-calibrated white light correction and our

own arbitrary white light correction if polarisation is taken into account.

A final note in this conclusion relates to the concensus standards that already ex-

ists for Raman instrumentation published by the American Society for Testing and

Materials (ASTM) international in relation to performance testing, calibration, and

relative intensity correction (ASTM E1683 [46], E1840 [2], E2529 [47], E2911 [48]). In the

context of this thesis, several of these standards are relevant. For example, Chapter 3,

4, 5, and 7 relate to new methods for wavelength/wavenumber calibration in Raman

spectroscopy, and for these chapters, the most relevant of the current set of standards

is ASTM-E1840, [2] most recently updated in 2013, which focuses on Raman shift (or

wavenumber) calibration. In the context of Chapter 6, the most relevant of the existing

standards documents is ASTM-E2911, [48] also most recently updated in 2013, which

focuses on Raman intensity calibration using the NIST Standard Reference Materials

(SRMs) in the 224X series. It is my great hope that when these two standards documents

are next revised, one or more of the methods developed in this thesis will be adopted.
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