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Abstract

A Gaussian process functional regression model is proposed for the analysis

of batch data. Covariance structure and mean structure are considered simulta-

neously, with the covariance structure modelled by a Gaussian process regression

model and the mean structure modelled by a functional regression model. The

model allows the inclusion of covariates in both the covariance structure and the

mean structure. It models the nonlinear relationship between a functional output

variable and a set of functional and non-functional covariates. Several applica-

tions and simulation studies are reported and show that the method provides

very good results for curve fitting and prediction.
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1 Introduction

We begin by discussing a motivating example. The application concerns data collected

during standing-up manoeuvres of paraplegic patients. The outputs are the trajectories

of the body centre of mass (COM), required for a simulator control system; for details

see Section 3.3. However, it is very difficult to measure the body position unless some

expensive equipment is used and set up in a laboratory environment. Thus, one of

the aims of the project is to develop a model for reconstructing the trajectory of the

body COM by using some easily measured quantities, such as the forces and torques

under the patient’s feet, under the arm support and under the seat while the body is

in contact with it. More than thirty such input variables are observed in the project.

Figure 1 depicts 40 curves of y(t), the vertical trajectories of the body COM, denoted

by comz. Each curve represents a standing-up manoeuvre. Eight patients participated

in the experiment, and each of them repeated the experiment five times. Our aim is to

find a ‘model’ f to model and predict y(t) given covariates x(t) = (x1(t), . . . , xQ(t))′:

y(t) = f(t, x1(t), . . . , xQ(t)) + ε(t). (1)

In each standing-up, both the output variable y(t) and the input variables {x1(t), . . . , xQ(t)}

are observed at a few hundred time points ti, for i = 1, . . . , N . If we observe M repli-

cations for a given individual, the m-th replication is called the m-th batch (m =

1, . . . ,M). The data collected are called batch data, terminology that is popular in the

engineering community.

We have little information about the physical relationship between the output vari-

able y(t) and the input variables {x1(t), . . . , xQ(t)}. For such data, it is typically not

realistic to use parametric models, or nonparametric linear models such as the func-
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tional linear regression models discussed in Ramsay and Silverman (1997) and the

varying-coefficient linear models described in Fan et al. (2003). Our idea is to treat

the output curve, corresponding to a batch, as a stochastic process and then estimate

the mean and covariance structure simultaneously:

ym(t) = µm(t) + τm(x), (2)

where µm(t) = E(ym(t)) and τm(x) is a stochastic process with zero mean and covari-

ance kernel function C(x,x
′
) with x = x(t).

To be specific, we will use a Gaussian process regression (GPR) model for τm(x)

in (2). The GPR model has been widely used as a nonparametric approach; see for

example O’Hagan (1978), Williams (1998), Neal (1999) and Rasmussen and Williams

(2006). In the model, τ = f(x) is an output curve, where f(·) is a function mapping

an input x ∈ Rq into τ ∈ R, and a Gaussian process prior is assumed for f(·) : f(x)

has a normal distribution with zero mean and covariance kernel C(x,x′). The GPR

approach models the nonlinear relationship between y(t) and x(t) through a Gaussian

process. Since we assume a zero mean or a given mean for the GPR model, we need

first to standardize the data. This is straightforward for a single batch of data, which

can be standardized by simply subtracting the sample mean. However, standardization

is intractable for batch data, especially when it is used to generate predictions for a

completely new batch; see Section 2.2. In Section 3.3, we will show that for the para-

plegia example the performance of the GPR model is very good if we use training data

collected from a particular patient to predict a new standing-up for the same patient;

different standings-up for the same patient have similar mean structures. However,

the performance of predictions for a new patient is not so good; mean structures of

3



batches from different patients are quite variable (see Figure 1), because of differences

in height, weight and other factors for the different patients. Another limitation of

the GPR model is that, although it performs very well in interpolating test data, its

extrapolation performance deteriorates very rapidly when the test data are ‘distant’

from the training data. A typical example is that of multiple-step-ahead forecasting.

For k-step-ahead forecasting, GPR performs very well when k is small; see for example

Girard and Murray-Smith (2005). However, when k is large, GPR usually fails in pre-

diction; see Section 3.2. In this paper, we try to address these problems and improve

the performance of the GPR model by considering the mean structure and covariance

structure simultaneously.

To model the mean structure we will use a functional regression model (Ramsay and

Silverman, 1997) with functional coefficient parameters and non-functional covariates

(i.e. we use some batch-based information). We will show that using this type of mean

structure within a GPR model can improve the performance substantially.

The idea of modelling the mean and covariance structure simultaneously has been

reported elsewhere. For example, Rice and Silverman (1991) estimated the mean func-

tion using a cubic spline and estimated the covariance structure via smooth nonpara-

metric estimates of the relevant eigen-functions. However, their method is limited to

the case of a one-dimensional input variable. Eubank (2003) dealt with a forecasting

problem by using a linear functional regression (LFR) model with a special covariance

structure.

The paper is organised as follows. Section 2 proposes the Gaussian process func-

tional regression model, and shows how to estimate unknown parameters and predict

new test data. Several applications are reported in Section 3. Some discussion and
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further developments are given in Section 4.

2 The Gaussian process regression model with func-

tional mean structure

2.1 The Gaussian process regression model for batch data

The discrete form of a Gaussian process regression model for a single batch of N

observations is defined as

y = (y1, . . . , yN)′ ∼ N(0,C), (3)

where C is an N ×N covariance matrix, of which the ij-th element Cij = C(xi,xj) is

a function of input covariates xi and xj. An example of such a covariance function is

C(xi,xj) = C(xi,xj;θ)

= v0 exp

(

−1

2

Q
∑

q=1

wq(xiq − xjq)2

)

+ a0 + a1

Q
∑

q=1

xiqxjq + σ0δij, (4)

where θ = (w1, . . . , wQ, v0, a0, a1, σ
2
0) denotes the set of unknown parameters, and δij is

the Kronecker delta. Some other types of covariance function and the related problems

are discussed in MacKay (1999). Models (3) and (4) define a nonlinear model for y,

given x = (x1, . . . , xQ); some recent developments can be found in Rasmussen and

Williams (2006).

To deal with a data-set based on repeated experiments involving similar objects and

processes, i.e. consisting of several batches, Shi et al. (2005) proposed a hierarchical

Gaussian process regression model. Suppose that there are M different batches of data

and that, in the mth batch, Nm observations are recorded. The data collected in the
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m-th batch are

Dm = {(ymi, tmi, xm,1,i, . . . , xm,Q,i) for i = 1, . . . , Nm; and (um1, . . . , ump)}, (5)

where tmi is the time point at which we record the data, ymi = y(tmi) is the output, for

example the body comz position, recorded at tmi and xm,q,i = xq(tmi) is the measure-

ment of the q-th input variable for q = 1, . . . , Q. The elements of um = (um1, . . . , ump)
′

are not functional data, i.e. do not depend on t; they offer information for each curve,

such as the patient’s height and weight and the technique used in a particular standing-

up. In Shi et al.’s hierarchical mixture model we have that

ym|zm = k ∼ GPk(θ), (6)

where ym = (ym1, . . . , ymNm)′, and zm is an unobservable latent indicator variable

corresponding to the m-th batch. If zm = k is given, the model for the Nm correlated

observations in batch m is a Gaussian process regression model GPk(θ); that is, the

process has a normal distribution with zero mean or a given mean µ, and a covariance

kernel function Ck(xi,xj;θ). The association among the different batches is introduced

by the latent variable zm, for which

P (zm = k) = πk, k = 1, . . . , K, (7)

for specified K. This model is used to address the problem of heterogeneity but without

using the batch-based information um. A special case is the model (6) with K = 1:

ym ∼ GP (θ), (8)

independently, for m = 1, . . . ,M . In this model, the heterogeneity among the different

batches is ignored.
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2.2 Gaussian process functional regression model

As already mentioned, the Gaussian process defined in (6) is usually assumed to have

zero mean or a known mean µ. To apply it to batch data, we need to centre the data

by subtracting its sample batch mean, calculated from the training data for each batch.

However, this method has its limitations, as mentioned in Section 1. There are two

main problems. First, if the training data are not distributed uniformly over the whole

time range, if for example only the data corresponding to the first half of a standing-up

were recorded, the batch sample mean calculated from such a data-set would be quite

different from the real mean. Secondly, it is difficult to use this model to predict a new

batch for which there are no training data, in particular for a new patient.

Instead, we model the mean structure as well as the covariance structure. We use

a functional regression model to model the mean structure and a Gaussian process

to model the covariance structure; that is, we use the model given in (2), namely

ym(t) = µm(t)+τm(x) for m = 1, . . . ,M , where τm(x) is a zero-mean Gaussian process

with covariance function C(x,x′), as defined in Section 2.1.

There is a large literature on fitting nonparametric curve µm(t) with a scalar input

variable t. To model the dependence of the mean functions on the batch-based covari-

ates, um, we use a similar idea to that discussed in Ramsay and Silverman (1997) and

take

µm(t) = um
′β(t), (9)

where the coefficient β is functional.

If we have observed data in the dorm of Dm in (5) for the m-th batch, it is natural
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to consider a discrete form of the above model, given by

ymi = µmi + τmi; m = 1, . . . ,M, i = 1, . . . , Nm, (10)

where µmi = µm(tmi) = um
′β(tmi) and τm = (τm1, . . . , τmNm)′ is defined in (6) or

its special case (8). We will refer to this model as the Gaussian process functional

regression (GPFR) model.

This model is quite distinct from the linear functional regression (LFR) model

discussed in Ramsay and Silverman (1997). This is illustrated by the example given in

Figure 2(a), in which the solid line represents the true mean curve whereas the dotted

line represents the curve with a random error, fluctuating around the true mean curve.

The dashed line represents a curve with dependent errors, which is a Gaussian process

depending on a functional input variable x; for details see Section 3.1. This curve

is systematically different from the true mean curve; thirty such sample curves are

presented in Figure 2(b).

2.3 Estimation

It is not difficult to write down a penalized likelihood for model (10), and then esti-

mate the unknown parameters involved in both the mean structure and the covariance

structure. However, the implementation is tedious and there may be computational

problems. We use a two-stage approach in this paper. In the first stage we estimate

the mean structure by using B-spline smoothing; see for example Rice and Silverman

(1991), Faraway (1997, 2001) and Ramsay and Silverman (1997). We approximate

each curve ym(t) (m = 1, . . . ,M) by

ym(t) = AmΦ(t),
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where Φ(t) = (Φ1(t), . . . ,ΦK(t))′ are the B-spline basis functions. The coefficients

A = (Amk) form an M ×K matrix, whose elements are chosen to minimise

∫

(

ym(t)−
K
∑

k=1

AmkΦk(t)

)2

dt.

The functional parameters can be expanded as

β(t) = BΦ(t),

where B is a p×K matrix, which can be estimated by

B̂ = (U
′
U)−1U

′
A,

where U = (u1, . . . ,uM)′ is an M × p matrix. An estimate of the mean function is

given by

µ̂m(t) = um
′B̂Φ(t). (11)

Selection of the form and number of the basis functions is discussed by Faraway (1997,

2001). From our empirical experience, the accuracy of the model depends mainly on

successful modeling of the covariance structure when there is heterogeneity among

different batches and the output curves depend on many input functional covariates.

Thus, we do not need to use many basis functions in this first stage. For the examples

discussed in the next section, we found that 20 basis functions were enough.

In the second stage, we replace µmi in equation (10) by its estimate ûmi = µ̂m(tmi)

from (11). Thus,

τ̂mi = ymi − µ̂mi

is modelled by a Gaussian process as defined in (6) or (8) with covariance function

C(x,x′;θ). A standard method such as a maximum likelihood or a MCMC approach
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can be used to estimate the unknown parameters θ, leading to θ̂ say; see for example

Rasmussen (1996) and Williams (1998). Implementation in the case of batch data is

described by Shi et al. (2005).

2.4 Prediction

We now consider the generation of a prediction y∗ at a new test point (t∗,x∗) with

x∗ = x(t∗). From (2), ŷ∗ = µ̂(t∗) + τ̂(x∗), where τ ∗ = τ(x∗) is predicted by its

conditional mean E(τ ∗|D) through the Gaussian process with estimated covariance

function C(x,x
′
; θ̂). We will discuss two types of prediction in this subsection. First

we suppose that we have already observed some training data in a batch, the (M + 1)-

th batch say, and want to predict the output for a new set of inputs. In addition to

the training data observed in the first M batches, we assume that N observations are

obtained in the new batch, providing data

DM+1 = {(yM+1,i, tM+1,i, xM+1,1,i, . . . , xM+1,Q,i) for i = 1, . . . , N ; and uM+1}.

We therefore have training data D = {D1, . . . ,DM ,DM+1}. It is of interest to predict

y∗ at a new test data point t∗ in the (M + 1)-th batch. Let x∗ = x(t∗) be the observed

test inputs. We use the Gaussian process assumption for the (M + 1)-th batch,

(τM+1,1, . . . , τM+1,N , τ
∗) ∼ N(0, Ω) (12)

where τ = y − µ and Ω is an (N + 1)× (N + 1) covariance matrix

Ω =





C C(x∗,xM+1)

C ′(x∗,xM+1) C(x∗,x∗)



 (13)

where C(x∗,xM+1) = (C(x∗,xM+1,1), . . . , C(x∗,xM+1,N))′, is the covariance matrix

between y∗ and yM+1 = (yM+1,1, . . . , yM+1,N)′, and C is the N ×N covariance matrix
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of yM+1 or τM+1, which depends on xM+1. The covariance can be calculated by,

for example, (4) with the parameters estimated as in the previous subsection. Thus,

the predictive distribution of y∗, given training data D and the mean µ(t), is also a

Gaussian distribution. Its mean and variance are given by

E(y∗|D,µ) = µM+1(t∗) +H
′
(yM+1 − µM+1(t)), (14)

σ∗2GP = Var(y∗|D,µ) = C(x∗,x∗)−H ′
CH , (15)

where µM+1(t) = (µM+1(t1), . . . , µM+1(tN))′ is the vector of means at data points

t = (t1, . . . , tN), and H
′
= [C(x∗,xM+1)]′C−1. Thus the prediction for y∗ is given by

ŷ∗M+1 = µ̂M+1(t∗) +H
′
(yM+1 − µ̂M+1(t)), (16)

where µ̂M+1(t∗) and µ̂M+1(t) are given by (11), i.e., µ̂M+1(·) = uM+1
′B̂Φ(·). The

prediction variance can be calculated from the conditional variances in equations (14)

and (15):

σ̂∗2M+1 = Var(y∗|D) = E[Var(y∗|D,µ)] + Var[E(y∗|D,µ)]

= σ̂∗2GP
(

1 + u
′
M+1(U

′
U)−1uM+1

)

, (17)

where σ̂∗2GP is given by (15), in which all the parameters are replaced by their estimators.

The derivation of equation (17) is given in Appendix I.

The second type of prediction is to predict for a completely new batch. We shall still

refer to the new batch as the (M + 1)-th batch, with batch-based covariate uM+1. We

want to predict y∗ at (t∗,x∗). In this case, the training data are D = {D1, . . . ,DM}.

Since we have not observed any data in the (M + 1)-th batch, we cannot use the

predictive mean and covariance matrix discussed above, which is based on the Gaussian

process assumption (12). The argument in Shi et al. (2005) is that batches 1, . . . ,M
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provide an empirical distribution of the set of all possible batches. We will use a similar

idea here but only for the Gaussian process component τM+1(·) = yM+1(·) − µ̂M+1(·).

We assume that, for m = 1, . . . ,M ,

P (τ ∗ belongs to m-th batch) = 1/M.

To say that τ ∗ belongs to the m-th batch means that

(τm,1, . . . , τm,Nm , τ
∗) ∼ N(0,Ωm),

where Ωm is an (Nm + 1) × (Nm + 1) covariance matrix which is defined similarly to

(13). We can therefore calculate ŷ∗m and σ̂∗2m from (16) and (17) respectively, as if the

test data belongs to the mth batch. Since the empirical distribution is relevant to the

Gaussian process component only, ŷ∗m is given by

ŷ∗m = µ̂M+1(t∗) +H
′
(ym − µ̂m(t)). (18)

The value of σ̂∗2m is given by (17) and (15), but the related covariance matrices are

calculated at x∗ and (xm,1, . . . ,xm,Nm).

Based on the above empirical assumption, the prediction for the response associated

with a test input x∗ at t∗ in a completely new batch is

ŷ∗ =
M
∑

m=1

ŷ∗m/M, (19)

and the predictive variance is

σ̂∗2 =
M
∑

m=1

σ̂∗2m /M +

(

M
∑

m=1

ŷ∗2m /M − ŷ∗2
)

. (20)
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3 Applications

3.1 Learning and prediction for large batch data-sets

We first consider an example with simulated data. The true model used to generate

the data is ymi(x) = um + sin(0.5xmi)
3 + τmi, where, for each m, xmi ∈ (−4, 4) and

{τmi} is a Gaussian process with zero mean and covariance function

C(xmi, xmj) = v0 exp
(

− 1

2
w0(xmi − xmj)2

)

+ σ0δij,

with v0 = 0.1, w0 = 1.0 and σ0 = 0.0025. In this example, xmi is the same as tmi. Thirty

independent curves are generated and are presented in Figure 2(b), where um = 0 for

batches 1 to 10, um = −1 for batches 11 to 20, and um = 1 for the remaining 10

batches. In each batch, 100 data points are generated. We randomly select half of the

data points as training data.

In this example, only one discrete covariate um is used in the mean structure model

(9). The model is such that µm(t) = β1(t) when um = −1, µm(t) = β2(t) when

um = 0, and µm(t) = β3(t) when um = 1. We use B-spline smoothing and the method

discussed in Section 2.3 to estimate βi(t), for i = 1, 2, 3. We then apply a GPR model

to τ̂m(t) = ym(t) − µ̂m(t) with covariance function (4), depending on the scalar input

variable x as discussed in Section 2.3. Prediction can then be carried out by the method

discussed in Section 2.4.

To assess the performance of the method, we calculate predictions for a new batch

and compare them with the actual output values of the test data. One hundred data

points are generated in a new batch with um = 1. Half of the data are selected as part

of the training data and are used to predict the rest. Two types of training data are
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considered. Type I data are selected randomly from the whole set of 100 points. In

Type II data, data points corresponding to x ∈ (−4, 0) are used as training data and

the rest are used as test data. Thus, Type I prediction is essentially interpolation, while

Type II prediction involves extrapolation, which is obviously harder. For comparison,

GPR and LFR are also applied to the same data-set.

The predictions obtained by the different methods, along with the actual values of

the test data, are plotted in Figure 3 and presented in Table 1, in which rmse is the

root mean squared error between the predictions and the true test values, and r is the

related correlation coefficient. The left-hand panels in Figure 3 report the results for

Type I prediction, i.e., interpolation. Both GPFR and GPR predict the output very

precisely. It is not surprising that the result using LFR is less good, since LFR models

the common mean structure only. The results for Type II prediction are given in the

right-hand panels in Figure 3. GPFR still gives very precise predictions. LFR predicts

the common mean structure, so that its performance is quite similar for both types of

test data. GPR fails to predict this type of test data well except for a few points close

to 0. GPR models the covariance structure only, and does not reliably predict the test

data if they are ‘far away’ from the training data. When test data are ‘close’ to training

data, the GPFR model uses both the mean structure and the covariance structure to

calculate predictions, and gives a very precise result; when test data are distant from

the training data, GPFR would rely mainly on the mean structure to predict test data

and could still give a reasonable good result. This is confirmed by the simulation study,

based on 50 replications, reported in Table 1. The overall performance of GPFR for

Type II prediction is better than LFR and GPR. In the range [0,1], which is close to the

training data, GPFR (rmse = 0.1321) is much better than LFR (rmse = 0.2847) and
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GPR (rmse = 0.2271). In the range [1,4], which is further away from the training data,

GPFR (rmse = 0.3116) is slightly better than LFR (rmse = 0.3352), as expected, and

GPR fails in the prediction of output in this range (rmse = 0.6843, see also Figure

3(f)).

3.2 Multiple-step-ahead forecasting

If, in a discrete-time dynamic system, we have available data up to time t, we may

wish to predict the output at time t+k. This is called k-step-ahead forecasting. Many

dynamic systems are periodic in real-life problems, and data collected in each period

form a batch. We may refer to the data collected in previous periods as historical data.

In the current period, we use the data up to time t as well as the historical data to

train the model and forecast the output at time t+ k.

We use the artificial model used in Section 3.1 to generate a set of batch data. Values

for 30 curves are generated, each at 50 equally-spaced points. For the k-step-ahead

forecasting problem, we assume that there are two functional input variables associated

with each output yi, namely xi and yi−k. We first use the data for those 30 curves and

the related input variables to train the model, and then do k-step-ahead forecasting

after one third of the data in a new batch has been observed. For comparison, the

GPFR, LFR and GPR methods are applied to the same data-set. A simulation study

with 50 replications was conducted. The results from the simulation study and the

result from one typical replication, for 1−, 3− and 6-step-ahead forecasts, are reported

in Table 2. The results for the single replication are also presented in Figure 4. The

values of rmse and r are calculated by comparing the forecast values with the actual

simulated values. The GPFR model performs very well in all the cases and becomes
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more and more accurate as the end of the period is approached, by which time more

observations have been obtained. The LFR model gives reasonably good predictions in

all the cases. The precision achieved does not vary much with k. As expect, LFR does

not give very accurate predictions since only the common mean structure is modelled.

When k is small, GPR gives good predictions; see for example the 1-step-ahead results

reported in Table 2. However, the precision decreases very rapidly as k increases. It

fails when k is larger than six in this example. Of course, the precision of the forecasting

obtained by GPFR also decreases as k increases, but the rate of decrease is much slower

than for the GPR model. When k is very large, the forecast obtained by GPFR will

be close to that given by LFR, i.e. it will give a forecast based on a common mean

structure. This is still a useful forecast.

3.3 Modelling of standing-up manoeuvres by paraplegic pa-

tients

Our application, as introduced in Section 1, involves the analysis of the standing-up

manoeuvre in the context of paraplegia; for operational details see Kamnik et al. (1999,

2005). Here we model the vertical trajectory of the body COM as output, and select 14

input variables. In one standing-up, output and inputs are recorded for a few hundred

time points. The experiment was repeated several times for each patient. The vertical

trajectories of the body COM are presented in Figure 1 for 40 standings-up, 5 for each

of 8 patients.

For modeling the mean structure in the GPFR model, we use three covariates for

um, namely the patient’s height, weight and sex. These are natural covariates for
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the mean structure model. Figure 1 indicates that the time scale may be different

for different standings-up. Some registration methods are used before estimating the

mean structure; see Ramsay and Silverman (1997) and Ramsay and Li (1998). We

then estimate the mean structure and covariance structure by the method discussed

in Section 2 with the covariance function (4), and use this model to predict a new

standing-up. For comparison, results from GPR models are also obtained.

We consider two important types of prediction here. Type A uses the data which

have already been observed for one patient to predict a new standing-up for the same

patient, whereas Type B predicts a standing-up for a new patient. For Type A predic-

tion, we use the training data from the same patient, which should have similar mean

structure, so that GPR should predict well. However, it may be less satisfactory for

Type B prediction. This is confirmed by the numerical results. Figures 5 (a) and (b)

present the Type A prediction by GPFR and GPR respectively, both giving very good

results. Figures 5 (c)-(f) show Type B predictions. Figures 5 (c) and (d) present the

prediction for a single standing-up for a new patient by using the GPFR and GPR

models respectively. The values of rmse are 18.6180 and 47.8120 respectively, which

shows that GPFR performs much better than GPR. Figures 5 (e) and (f) show the

predictions for all five standings-up for this new patient. The average value of rmse is

14.6661 for GPFR and 40.95550 for GPR, showing that GPFR performs consistently

better than GPR.

We selected one of the eight patients as the new patient in turn, and used the

data obtained from the rest as the training data. The results are very similar to

those reported in Figure 5 except for one patient. However, that patient is atypical,

being a thin (59kg) and very tall (178cm) woman. She is an outlier in terms of the

17



mean structure model, and thus the GPFR model fails to improve much on the result

obtaining by GPR. For this patient, the average value of rmse for five standings-up is

62.8 for the GPFR and 51.74 for the GPR model.

4 Discussion

Nonparametric and nonlinear regression analysis for batch data (functional data or

longitudinal data) is a difficult problem with a large literature. However, most methods

are limited to scenarios with one- or two-dimensional covariates (Lin and Carroll, 2000;

Yao et al., 2005), or the nonparametric linear regression model (Fan et al., 2003;

Ramsay and Silverman, 1997). However, for our motivating example discussed in

Section 1 and Section 3.3 and many other applications, one needs a nonparametric

nonlinear model that copes with high-dimensional input functional covariates.

Rice and Silverman (1991) treat the output curve (batch) as a stochastic process

and then estimate both the mean and covariance structure: ym(t) = µm(t) + τm(t),

where µm(t) = E(ym(t)) and τm(t) is a stochastic process with zero mean and kernel

covariance function C(t, t′) = Cov(y(t), y(t′)). If there is an orthogonal expansion (in

the L2 sense) C(t, t′) =
∑

v λvφv(t)φv(t
′) in terms of eigen-functions φv(t) and non-

increasing eigenvalues λv, τm(t) can be expanded as τm(t) =
∑

v ξmvφv(t) and thus

ym(t) = µm(t) +
∑

v

ξmvφv(t), (21)

where the ξmv are uncorrelated random variables with zero means and variances λv.

The first term on the right-hand side of the above equation is the overall mean for the

different curves (batches), and the second term describes the covariance structure for

the different data points in the same curve. In our method the covariance kernel C for
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the second term is a function of input variables x, i.e. Cov(y(t), y(t′)) = C(x,x
′
), as

in model (2). Similarly to (21), model (2) can be expanded as

ym(t) = µm(t) + τm(x) = µm(t) +
∑

v

ξmvφv(x), (22)

where φv(x) are the eigen-functions of C(x,x
′
). Thus, model (2) or (22) gives a

nonparametric nonlinear regression model for y(t) in terms of a set of functional co-

variates x(t) = (x1(t), . . . , xQ(t))′ and t also, through the eigen-functions {φv(x)}. If

we assume that p(x) is the density function of the input vector x, we have the fol-

lowing results, with the subscript m omitted. The covariance kernel function can be

expanded as C(x,x
′
) =

∑

v λvφv(x)φv(x
′
), where λ1 ≥ λ2 ≥ . . . ≥ 0 are the eigenval-

ues and φ1, φ2, . . . are the corresponding eigen-functions of the operator whose kernel

is C(x,x
′
), so that

∫

C(x,x
′
)φv(x)p(x)dx = λvφv(x

′
).

The eigen-functions are p-orthogonal, and ξv is given by

ξv =

∫

φv(x)τ(x)p(x)dx.

Yao et al. (2005) approximated the covariance matrix C(t, t′) by a smooth surface

estimate and then estimated ξmv and φv(t) in (21). It is very difficult to extend their

method to model (22) which involves C(x,x′) when the dimension of x is larger than

one.

For the problem of curve fitting and prediction with high-dimensional input vari-

ables, neural network models are another popular approach; see Cheng and Titterington

(1994) for a review. Shi et al. (2005) and Kamnik et al. (2005) showed that the GPR

model gives a better fit for the paraplegia data than did the neural network models.

However, the GPR model models the covariance structure only.
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In future work it would be worthwhile to explore a unified Bayesian approach to

the GPFR model; see for example DiMatteo et al. (2001) and Shi et al. (2005).
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Appendix I. Derivation of equation (17)

From (14), we have

Var[E(y∗|D,µ)] = Var[µM+1(t∗)|D] +H
′
Var[µM+1(t)|D]H

−2H
′
Cov[µM+1(t), µM+1(t∗)|D]. (23)

From the results in Section 2.3, the estimator of the functional mean at a single data

point t is given by

µ̂M+1(t) = uM+1
′B̂Φ(t) = uM+1

′(U ′U)−1U ′AΦ(t)

= uM+1
′(U ′U)−1U ′Y (t), (24)

where Y (t) = (y1(t), . . . , yM(t))′, and ym(t) is the output response variable at data

point t in the m-th batch, for m = 1, . . . ,M . Since the data in different batches are

independent, it follows that

Var[Y (t)] = Var[(y1(t), . . . , yM(t))′] = C(x,x)IM ,
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where IM is an M×M identity matrix, and C(x,x) is the variance of y(t) at x(t) = x.

Applying the above equation to (24) gives the variance of µ̂M+1(t) as

Var[µ̂M+1(t)|D] = C(x,x)γ, with γ = uM+1
′(U ′U)−1uM+1. (25)

Similarly, the covariance between the estimated means at two data points t and t∗ is

given by

Cov[µ̂M+1(t∗), µ̂M+1(t)|D] = C(x∗,x)γ. (26)

Applying equations (25) and (26) to data points (t1, . . . , tN) and t∗ and using the

notation around (14) and (15), we have

H
′
Var[µM+1(t)|D]H = γH

′
CH ,

H
′
Cov[µM+1(t), µM+1(t∗)|D] = γH

′
C(x∗,x) = γH

′
CH .

Substituting the related items in (23) by the above equations results in (17).
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Table 1: The values of rmse and r between true and predicted responses

Model Type I Type II

Results corresponding to Figure 3

rmse r rmse r

GPFR 0.0900 0.9917 0.1073 0.9894

LFR 0.4570 0.7770 0.4150 0.9838

GPR 0.0820 0.9934 0.6675 -0.0149

Average values from simulation study

rmse r rmse1 r rmse2 rmse3

GPFR 0.0588 0.9954 0.2802 0.9270 0.1321 0.3116

LFR 0.3244 0.9068 0.3318 0.9143 0.2874 0.3352

GPR 0.0830 0.9911 0.6044 0.1246 0.2271 0.6843

1 The overall rmse comparing true and predicted responses in range [0,4]

2 The rmse comparing true and predicted responses in range [0,1]

3 The rmse comparing true and predicted responses in range [1,4]

Table 2: Numerical results of rmse and r for k-step-ahead forecasting

model 1 step 3 step 6 step

rmse r rmse r rmse r

Results corresponding to Figure 4

GPFR 0.0893 0.9911 0.1448 0.9766 0.3084 0.9057

FDA 0.3368 0.8660 0.3937 0.8351 0.4324 0.8122

GPR 0.1621 0.9723 0.4498 0.7568 0.6424 0.2706

Average values from simulation study

GPFR 0.0785 0.9896 0.1229 0.9769 0.2169 0.9360

FDA 0.3013 0.8989 0.3097 0.8820 0.3242 0.8172

GPR 0.1487 0.9670 0.4375 0.6640 0.5994 0.0021
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Figure 1: Paraplegia Data for 8 patients: vertical trajectory of the body COM comz

coordinate (Y-axis, in mm) against time (X-axis, in seconds). Each curve corresponds

to one standing-up.
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Figure 2: The sample curves. (a) Solid line—the true mean curve; dotted line—the

curve with random errors; dashed line—the curve with errors having GP covariance

structure depending on x. (b) 30 sample curves with GP errors.
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(a) By GPFR, Type I
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(b) By GPFR, Type II
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(c) By LFR, Type I
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(d) By LFR, Type II
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(e) By GPR, Type I
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(f) By GPR, Type II

Figure 3: The predictions obtained by the different methods, where the solid line

represents the true curve, the dashed line represents the predictions, and the dotted

lines represent 95% prediction intervals.
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(a) 1-step, GPFR
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(b) 1-step, LFR
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(c) 1-step, GPR
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(d) 3-step, GPFR

−4 −3 −2 −1 0 1 2 3 4
−0.5

0

0.5

1

1.5

2

2.5

3

x

y

(e) 3-step, LFR
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(f) 3-step, GPR
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(g) 6-step, GPFR
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(h) 6-step, LFR
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Figure 4: The k-step-ahead forecasts and the associated 95% prediction intervals
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(a) GPFR, same patient
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(b) GPR, same patient
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(c) GPFR, new patient
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(d) GPR, new patient

0 100 200 300 400 500 600 700 800
−50

0

50

100

150

200

250

300

350

400

450

co
m

z

(e) GPFR, new patient
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(f) GPR, new patient

Figure 5: Paraplegia data: the true test data (solid line), the prediction (dashed line)

and the 95% prediction intervals (dotted line). (a)-(b) Prediction of a new standing-up

as for the same patient. (c)-(d) Prediction of a new standing-up as for a new patient.

(e)-(f) Prediction of 5 new standings-up for a new patient.
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