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Abstract

We propose a model of a loss averse investor who aims to maximize his expected wealth
under certain constraints. The constraints are that he avoids, with high probability,
incurring a (suitably defined) unacceptable loss. The methodology employed comes from
the theory of large deviations. We explore a number of fundamental properties of the
model and illustrate its desirable features. We demonstrate its utility by analyzing assets
that follow some commonly used financial return processes: Fractional Brownian Motion,
Jump Diffusion, Variance Gamma and Truncated Lévy.
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1 Introduction

Risk averse investors are often characterized by a utility function that encodes the values the
investor places on returns from a financial object. With risk measured in terms of a radical of
the return process, risk aversion is then measured as the marginal reward an investor needs
to receive if he takes a given amount of risk.

In this paper we treat a different paradigm. We consider a loss averse investor whose aim is to
invest in a static, single-period portfolio that maximizes his expected return at a trading time
scale while safeguarding, with high probability, the return from falling below an acceptable
level. In this setting an investor is defined by the trading time scale, the threshold that
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determines the unacceptable loss and a specified bound on the probability that such a loss
occurs.

Questions regarding a static portfolio selection, by investors who update their portfolio’s
composition infrequently, are of considerable practical interest. For example, the articles
[1], [2], and references therein, present strong evidence that when US employees invest in
pensions they typically do so with the employer’s recommended portfolio composition and do
not review their options afterwards. Moreover, the article [3] reports that this composition
is often not changed over time by the employer either.

Here we consider a number of constraints: (1) the investor only cares if his portfolio’s value
is less than the unacceptable threshold at the trading time scale; (2) the investor wishes the
portfolio value not to fall below the unacceptable loss at certain observation times prior to
the trading time; (3) the investor wishes the portfolio value not to fall below the unacceptable
loss at any stage in the future.

The main object of our analysis is the so-called large deviation preferences function (LDPF)
introduced in section 2. This function succinctly encapsulates the stochastic nature of the
return process and enters naturally into probabilistic bounds. The LDPF is mathematically
analogous to the effective bandwidth function introduced during the early ’90s in the study
of telecommunications systems (see, for example, Kelly [4]) and closely related to the free
energy in statistical mechanics, as will be explained in the next section. In section 3 we
introduce bounds that enable the investor to identify portfolios satisfying a given constraint,
from which he may choose the one that has the maximum expected return. In section 4 we
calculate explicitly the LDPF for certain commonly used return processes. In sections 5 and
6 we present some examples of portfolios based on the model.

2 Large deviation preferences

Let X(t) denote the monetary value of a financial object at time t ≥ 0 and assume that the
random process {X(t), t ≥ 0} has stationary increments, with all moments E|X(t)|n < ∞.
We define the LDPF ULD (for the process {X(t)}) as a function

(s, t) ∈ R × [0,+∞) 7→ ULD(s, t) ∈ R ∪ {−∞,+∞}

given by

ULD(s, t) = −
1

st
log E(exp(−sX(t))) for s 6= 0 and ULD(0, t) = lim

s↓0
ULD(s, t). (1)

Here t is a time scale and s is a value scale (s−1 is expressed in monetary units, and ULD(s, t)
has units of money per time1). If, for a given t, the function s 7→ ULD(s, t) is finite for

1For a Gaussian return process, the parameter s gives the coefficient of relative risk aversion; cf. Equation
(5) below.
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−s− < s < s+ where s− < 0, s+ > 0, then it completely specifies the distribution of the
random variable X(t) (see, for example, Billingsley [5]). Furthermore, ULD(s, t) is then
infinitely differentiable with respect to s in the interval (−s−, s+).

The LDPF of a financial object is motivated by the free energy and entropy in Statistical
Mechanics. With X denoting the energy level of a system, its free energy is defined to be
−β−1 log E(exp(βX)), where β is inverse temperature and the expectation is taken over a
probabilistic ensemble of energy levels. For fixed time, this suggests identifying β with s, so
that monetary value plays the role of temperature. For financial objects it is natural to look
at collection of systems indexed by time. As we expect value to have a natural drift with
time, we re-scale the LDPF by t.

The following proposition summarizes some of the basic properties of ULD(s, t). They are
related to basic properties of free energy.

Proposition 1 The LDPF ULD(s, t) defined in Equation (1) satisfies the following:

(i) If the process {X(t)} has independent increments, then ULD(s, t) does not depend on t.

(ii) If X(t) =
∑n

i=1 Xi(t), where {Xi(t), i = 1, 2, . . . , n} form a sequence of probabilistically
independent financial objects, then the LDPF for X(t) is the sum of the LDPFs for the
Xi(t).

(iii) For fixed t, ULD(s, t) is decreasing in s ≥ 0 and

X(t)

t
≤ ULD(s, t) ≤

E(X(t))

t
,

where X(t) = inf{x : P (X(t) < x) > 0} is the essential infimum of random variable
X(t), possibly equal to −∞.

(iv) If ULD(s, t) < ∞ for some s > 0, then as s → 0

ULD(s, t) =
E(X(t))

t
−

s

2t
Var(X(t)) + o(s).

Proof: The first point follows as E(exp(−sX(t))) = E(exp(−sX(1)))t if X(t) has inde-
pendent increments. The second follows as E(exp(−sX(t))) = E(exp(−s

∑n
i=1 Xi(t))) =∏n

i=1 E(exp(−sXi(t))) if the sequence {Xi(t)} is formed of independent random variables.
The monotonicity in the third point follows immediately from the definition, while the left
hand bound follows as exp(−sX(t)) ≥ E(exp(−sX(t))) and the right hand bound follows
from Jensen’s inequality: E(exp(−sX(t))) ≥ exp(−sE(X(t))). The final point follows from
a Taylor expansion around s = 0.

�
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The function ULD defined in Equation (1) can be motivated in a number of ways. For
example, its form is similar to a cumulant generating function. This introduces the desirable
properties (i), (ii) for independent financial objects in Proposition 1. Most importantly, it
enters naturally into the bounds of the following section.

3 Using LDPFs to choose a portfolio

Assume throughout that at time 0 the investor has initial capital K and the ability to invest
in J ≥ 1 distinct probabilistically independent financial objects. For each t ≥ 0, let Xj(t)

denote the value of return for the financial object j ∈ {1, . . . , J} at time t. Let U
(j)
LD(s, t)

denote the LDPF for Xj. The initial capital constraint ensures that there exists portfolio
weights cj ≥ 0, j ∈ {1, . . . , J}, such that K = c1X1(0) + c2X2(0) + . . . + cJXJ(0). Let X(t)
be the value of the portfolio at time t:

X(t) = c1X1(t) + . . . + cJXJ(t).

Next, fix the value of an unacceptable loss −V , where V ∈ (0,∞), and introduce γ > 0, a
positive number such that the investor wishes to keep the probability of unacceptable loss
below exp(−γ).

Owing to independence, the LDPF for a portfolio X(t) is related to the LDPFs for its
components X1(t), . . ., XJ (t) by:

ULD(s, t) =
−1

st
log E


exp


−s

J∑

j=1

cjXj(t)




 =

J∑

j=1

cjU
(j)
LD(cjs, t). (2)

The investor wishes to identify weights {cj , j ∈ {1, . . . , J}} that maximize E(X(t)) subject
to one of the following conditions:

1. the probability of unacceptable loss at the trading time scale t is bounded above by
exp(−γ), P (X(t) ≤ −V ) ≤ exp(−γ);

2. the probability the portfolio’s value is less than an unacceptable loss at a finite collection of
times, {t1, . . . , tM} where t1 < t2 < . . . < tM = t, prior to and including the trading time
scale t is bounded above by exp(−γ), P (X(t∗) ≤ −V, for all t∗ ∈ {t1, . . . , tM}) ≤ exp(−γ);

3. the probability the portfolio’s value is less than an unacceptable loss at any time in the
future is bounded above by exp(−γ), P (X(t) ≤ −V, for all t ∈ R+) ≤ exp(−γ).

We give explicit bounds for the first two constraints in terms of the LDPFs of the financial
objects. For the third constraint, we employ a large deviation limit theorem using the LDPF.
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The bounds enable an identification of portfolios that satisfy these constraints. Of these
portfolios, the investor then selects the one that maximizes the expected return.

A sufficient condition for a portfolio to satisfy constraint 1 is given by Chernoff’s bound:

P (X(t) ≤ −V ) ≤ exp
(
inf
s

[−s(tULD(s, t) + V )]
)

. (3)

Then a range of acceptable portfolios satisfying constraint 1 is

A1(γ, V ) =



(c1, . . . , cJ ) ∈ R

J
+ : inf

s


−s




J∑

j=1

cjtU
(j)
LD(cjs, t) + V




 ≤ −γ



 .

That is, a portfolio constructed of any (c1, . . . , cJ ) ∈ A1(γ, V ) will meet our investor’s con-
straint. Thus his objective in this case is to maximize

E(X(t))

t
=

J∑

j=1

cjU
(j)
LD(0, t) subject to (c1, . . . , cJ) ∈ A1(γ, V ).

A sufficient condition for a portfolio to satisfy constraint 2 is again given by a union bound
followed by Chernoff’s bound:

P

(
M⋃

i=1

X(ti) ≤ −V

)
≤

M∑

i=1

P (X(ti) ≤ −V ) ≤
M∑

i=1

exp
(
inf
s

[−s(tiULD(s, ti) + V )]
)

.

This bound is loose unless the value V > 0 is large, but becomes tight as V increases. By the
principle of the largest term, when V is large then only a single, most volatile time dominates.
A range of acceptable portfolios satisfying constraint 2 is specified by

A2(γ, V ) =



(c1, . . . , cJ ) ∈ R

J
+ :

M∑

i=1

exp


inf

s


−s




J∑

j=1

cjtiU
(j)
LD(cjs, ti) + V






 ≤ e−γ



 .

As one would expect, the second constraint is more restrictive than the first so that A2(γ, V ) ⊂
A1(γ, V ). Thus the investor’s objective in this case is to maximize

J∑

j=1

cjU
(j)
LD(0, t) subject to (c1, . . . , cJ ) ∈ A2(γ, V ).

Identifying a sufficient condition for a portfolio to satisfy constraint 3 is significantly more
challenging. Dealing with an infinite time horizon introduces non-trivial mathematical dif-
ficulties. For return processes that do not possess long-range dependencies, we adopt an
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approximation based on large deviation theory taken from Ganesh and O’Connell [6]. Pro-
cesses with long-range dependencies must be treated on a case-by-case basis through, for
example, the theory in Duffy, Lewis and Sullivan [7].

Although this approach restricts the result to large values of V (it would be preferable to
obtain a strict bound for all V ), there is an additional benefit of the techniques used in [6]:
this techniques predicts both the “most likely” path to an unacceptable loss and the most
likely time scale for an unacceptable loss.

We start by noting the following equivalence for the value of a given portfolio X(t):

P (X(t) ≤ −V, any t ∈ R+) = P

(
inf

t∈R+

X(t) ≤ −V

)
.

Next, define the following function for s ∈ [0,∞]:

χ(s) = lim
t→∞

−sULD(s, t),

assuming that the limit exists in [−∞,∞]. Furthermore, suppose that

χ′(0) =
d

ds
χ(s)|s=0 = −µ = lim

t→∞
−

E(X(t))

t
< 0.

Note that if X(t) =
∑J

j=1 cjXj(t) and the processes X1(t), . . ., XJ(t) are independent, then

χ(s) = −

J∑

j=1

cjs lim
t→∞

U
(j)
LD(cjs, t),

where U
(j)
LD is the LDPF for {Xj(t)}.

Should a range of technical conditions in [6] and [8] on {X(t)} be satisfied (which is the case
in our examples, apart from Fractional Brownian Motion), then

lim
V →∞

1

V
log P

(
inf

t∈R+

X(t) ≤ −V

)
= − sup{s ≥ 0 : χ(s) ≤ 0} =: −δ, (4)

so that

P

(
inf

t∈R+

X(t) ≤ −V

)
≈ exp(−V δ).

Then a range of acceptable portfolios satisfying constraint 3 for large V is

A3(γ, V ) =



(c1, . . . , cJ ) ∈ R

J
+ : −V sup{s ≥ 0 : −

J∑

j=1

lim
t→∞

cjU
(j)
LD(cjs, t) ≤ 0} ≤ −γ



 .
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That is, a portfolio constructed of any (c1, . . . , cJ ) ∈ A3(γ, V ) will meet our investor’s con-
straint if V is large. Thus his objective in this case is to maximize

lim
t→∞

J∑

j=1

cjU
(j)
LD(0, t) subject to (c1, . . . , cJ ) ∈ A3(γ, V ).

Moreover, the theory tells us that if χ′(δ) is finite, as V → ∞ the most likely time for an
unacceptable loss is V/χ′(δ) and the most likely path to an unacceptable loss is approximately
piecewise linear:

X(t) ≈





−tχ′(δ) for t ≤ V
χ′(δ)

−V + µ

(
t −

V

χ′(δ)

)
for t ≥ V

χ′(δ) .

Examples of these results will be given later.

4 Example LDPFs

4.1 Gaussian return processes

Consider the process {X(t), t ∈ R+} defined by X(t) = µt + Z(t), with positive drift
µ > 0, where Z(t) is Gaussian with zero mean. Define the covariance function R(t1, t2) =
E[Z(t1)Z(t2)], so that σ2

t = R(t, t). The LDPF is given by

ULD(s, t) = µ −
s

2t
σ2

t . (5)

A commonly used Gaussian model that possesses both self-similarity and long-range depen-
dence is Fractional Brownian Motion (FBM). It was first introduced by Kolmogorov [9] under
the name Wiener spiral to model turbulence in fluid flows and later introduced into finance
by Mandelbrot and Van Ness [10] as a modeling tool suitable for explaining self-similar time
series. Its paths are almost surely continuous functions. Detailed discussion on properties
of FBM can be found in Samorodnitsky and Taqqu [11]. FBM is a Gaussian process with
stationary increments whose covariance function takes the following form

2R(t, s) = t2H + s2H − |t − s|2H , σ2
t = σ2t2H , H ∈ (0, 1),

where H is called the Hurst parameter. When H = 0.5 we get standard Brownian Motion,
also known as the Wiener-Bachelier process, which is short-range dependent and essentially
corresponds to the classical Markowitz setting. Equation (5) gives

ULD(s, t) = µ −
sσ2

2
t2H−1 (6)

for the LDPF of FBM.
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4.2 Jump diffusion return processes

The Gaussian model of the previous section gives continuous sample paths, almost surely.
Merton [12] introduced the Jump Diffusion (JD) model of stock returns which possesses
properties observed in practice: negative skewness and excess kurtosis of the probability
density of log returns. It is constructed as the sum of two independent processes, a continuous
diffusion and a discontinuous jump process, and its paths are almost surely discontinuous.

The continuous diffusion is Brownian Motion with drift µ > 0 corresponding to X(t) with H =
0.5, σ2 = 1 in Section 4.1 and denoted B(t). The discontinuous jump process is a compound

Poisson process,
∑N(t)

i=1 Yi, where the sequence {Yi} is independent and identically distributed
with Y1 having the normal distribution and {N(t), t ≥ 0} is a standard Poisson process with
rate η. Thus the jump process has two elements of randomness: random summands and a
random number of summands. Define

X(t) = µt + B(t) +

N(t)∑

i=1

Yi,

which models the log return process so that the real return process is given by S(t) =
S(0) exp(X(t)). We can bound P (S(t) ≤ V ′) be using the standard bounds on P (X(t) ≤ −V )
and setting V ′ = S(0) exp(−V ), so we focus on calculating LDPF for X(t).

Using property 2 of Proposition 1, calculating ULD for X(t) is straight forward. We know
that ULD for µt + B(t) is given by Equation (6) with H = 0.5: µ − s/2. Moreover it is well
known that

1

t
log E


exp


s

N(t)∑

i=1

Yi




 = η

[
exp

(
s2

2

)
− 1

]
,

so that the LDPF for
∑N(t)

i=1 Yi is −s−1η(exp(s2/2) − 1). Thus for all s ∈ R

ULD(s, t) = µ −
s

2
−

η

s

[
exp

(
s2

2

)
− 1

]
.

4.3 Variance Gamma return processes

This model, its history and many of its properties are described in detail by Madan, Carr
and Chang [13]. A Variance Gamma (VG) process is defined by subordinating a Brownian
Motion with drift by a gamma process with unit rate (see, for example, Feller [14]). Let
{g(t), t ∈ R} denote a gamma process with unit rate; that is, a process with independent
increments, whose increments over a length h are distributed by a gamma distribution with
mean h and variance νh, ν > 0. Let σB(t) denote a Brownian Motion, where σ denotes its
volatility, and let it have drift µ > 0, then the VG model of returns is given by

X(t) = µ(g(t)) + σB(g(t)).
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That is, X(t) is Brownian Motion with drift evaluated at random time determined by the
gamma process. Again, X(t) is often treated as the log return process, so that the return
process is given by S(t) = S(0) exp(X(t)).

Due to the nature of the gamma process, the VG process has infinitely many small jumps
and a finite number of large jumps. The introduction of the extra parameter to the Brownian
Motion by the subordination enables the VG model to capture the negative skewness and
excess kurtosis of the log returns which is often reported in empirical investigation. The vari-
ance parameter ν of the gamma process controls the degree of randomness of subordination.
Large values of ν result in fatter tails of the log return density. The drift parameter of the
subordinated Brownian Motion process µ captures skewness of the log returns.

Equation (7) of [13] gives an explicit expression for the characteristic function, of X(t)

φX(t)(s) = E(exp(isX(t)) =

(
1

1 − µνis + (σ2ν/2)s2

)t/ν

, s ∈ R.

The function φX(t)(s) can be analytically continued, having poles at

s = i(µν +
√

µ2ν2 + 2σ2ν)/(σ2ν) and s = i(µν −
√

µ2ν2 + 2σ2ν)/(σ2ν),

which, as ν > 0, are positive and negative respectively. Thus the moment generating function
MX(t)(s) = E(exp(sX(t)) = φX(t)(−is) for s in a neighborhood of the origin and the LDPF
for X(t) is given by:

ULD(s, t) = −
1

st
log φX(t)(is) =

1

sν
log

(
1 + µνs −

σ2ν

2
s2

)
,

s ∈

(
µν −

√
µ2ν2 + 2σ2ν

σ2ν
,
µν +

√
µ2ν2 + 2σ2ν

σ2ν

)
.

(7)

Note that the LDPF in Equation (7) can be rewritten as

1

sν
log
(
1 + sνUBM

LD (s, t)
)
,

where UBM
LD is the LDPF for Brownian Motion, so that for small s we have ULD(s, t) ≈

UBM
LD (s, t).

4.4 Truncated Lévy return processes

For certain financial objects it has been suggested that while on short time scales fluctuations
in value are large, in the longer term they are not. This has led to the proposal of the truncated
Lévy (TL) process as a model for the dynamics of mature financial markets. For an overview
see Mantegna and Stanley [15]. The TL process can explain large fluctuations in value at

9



short time scales, as well as convergence to a Gaussian process at longer time scales. Here,
as suggested by Matacz [16], we focus on symmetric distributions.

Let X be a random variable with a symmetric Lévy distribution. The distribution is most
conveniently defined by the characteristic function of X

φX(t)(s) = E(exp(isX(t)) = exp(−cα|s|α),

where c is a scale parameter and α ∈ (0, 2]. This characteristic function is not explicitly
invertible unless α = 2, which gives a Gaussian, or α = 1, which gives a Cauchy distribution.
When α < 2, the Lévy distribution has infinite variance. When α ≤ 1, it also has infinite
mean. A Lévy process is a process {Sn, n ∈ N} of partial sums Sn = X1 + · · · + Xn, where
{Xn, n ∈ N} are independent and identically distributed (i.i.d.) with a Lévy distribution.
Thus when α < 2, the central limit theorem does not apply to {Sn, n ∈ N}.

In contrast to the Lévy distribution, originally suggested by Mandelbrot as a useful model
for financial objects, the TL distribution has all moments finite. With the TL process defined
as a partial sum process of i.i.d. random variables, each with the TL distribution, one can
account for both observed excess kurtosis at short time scales and a slow convergence to a
Gaussian at longer time scales.

The TL distribution is defined so that it behaves as a Lévy distribution in the central part
of its support, but has tails that decay no slower than exponentially. This ensures that the
variance of the TL distribution is finite. Therefore the TL process satisfies the central limit
theorem. Depending on the point at which the Lévy behavior no longer dominates, there
emerges a characteristic time scale which separates the Lévy and Gaussian regimes. This
time scale can be made arbitrary long. In [15], the tail of the Lévy distribution is truncated
by setting it to zero beyond a threshold. Here we adopt the strategy from Koponen [17]
where the truncation arises as an exponential decay with rate β.

Restricting Equation (3) of [17] to symmetric distributions gives the following characteristic
function for a random variable X distributed with a TLD:

φX(s) = exp

(
−

cα

cos(πα/2)

((
s2 + β2

)α/2
cos(α arctan(s/β)) − βα

))
, s ∈ R,

so long as α 6= 1, 2. This characteristic function can be analytically continued with poles
at s = ±iβ, so that the moment generating function MX(s) = E(exp(sX)) = φX(−is) for
s ∈ (−β, β). This is as we would expect, as the distribution is truncated by a two-sided
exponential. We define for any n ∈ N, X(n) = X1 + . . . + Xn where {Xt, t ∈ N} are i.i.d
distributed as a TLD. As, for any z ∈ C, cos(z) = (exp(iz) + exp(−iz))/2 and, for any z ∈ C

such that |z| < 1, arctan(z) = (log(1 − iz) − log(1 + iz))i/2, the LDPF for X(n) is

ULD(s, n) =
cα

s cos(πα/2)



(
β2 − s2

)α/2

((
1 − s

β

)α

2
(
1 + s

β

)−α

2
+
(
1 − s

β

)−α

2
(
1 + s

β

)α

2

)

2
− βα


 ,
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for n ∈ N, α ∈ (0, 2), and s ∈ (−β, β).

4.5 Summary

For the FBM process, µ is the drift, σ2 ≥ 0 the variance and H ∈ (0, 1) is the Hurst
parameter. For the JD process, µ is again the drift, while η > 0 is the rate of the Poisson
process of jumps. For the VG process, µ is the drift and σ the volatility of the underlying
Brownian Motion, while ν > 0 is the variance rate of the Gamma process (which is assumed
to have mean rate 1). For the TL process, c is a scale constant, α ∈ (0, 2), α 6= 1, is the Lévy
parameter and β > 0 is the exponential cut-off parameter.

(log) Return Process ULD(s, t)

FBM (µ, σ2,H) µ − sσ2t2H−1/2
(log) JD (µ, η) µ − s/2 − (exp(s2/2) − 1)η/s

(log) VG (µ, ν, σ) log(1 + µνs − σ2νs2/2)/(sν)

(log) TL (c, α, β)
cα

s cos(πα/2)

[(
β2 − s2

)α/2(
kα/2k̂−α/2 + k−α/2k̂α/2

)
/2 − βα

]

where k = 1 − s/β and k̂ = 1 + s/β

For the FBM and the JD processes, the variable s is allowed to vary in the whole of R. For
the VG process, ULD is infinite for s outside of the range defined in (7). For the TL process,
ULD is infinite for s /∈ (−β, β).

5 Portfolio examples: finite trading time scale

5.1 Single unit of Fractional Brownian Motion returns

A calculation of the Chernoff bound in Equation (3) corresponding to constraint 1 reveals
for a portfolio consisting of single unit of this financial object at trading time t

P (X(t) ≤ −V ) ≤ exp

(
−

(µt + V )2

2σ2t2H

)
.

One can then turn this around and ask: given a probabilistic tolerance γ, what value must
V (t) take to ensure that P (X(t) ≤ −V (t)) ≤ exp(−γ)? The Chernoff bound answers this
question with the inequality

V (t) ≥ tH
√

2σ2γ − tµ. (8)

That is, for given γ and t, a single unit of this financial object will satisfy constraint 1 if
the unacceptable loss is bounded as in (8). From (8) one can identify the most volatile
trading time. That is, the trading time t∗ at which the lower bound on V (t∗) is greatest (the
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Figure 1: FBM with σ2 = 1 and µ = 10. Plot of maximum acceptable loss determined by
the Chernoff bound at the most volatile trading time as a function of γ and H.

unacceptable loss is highest) by maximizing the right hand side of (8) with respect to time,
which gives

t∗ =

(
H
√

2σ2γ

µ

)1/(1−H)

corresponding to a minimum unacceptable loss of

(2σ2γ)1/(2(1−H))

(
H

µ

)1/(1−H)

µ

(
1

H
− 1

)
. (9)

For given µ and σ2, Figure 1 plots the highest value of −V that satisfies the most volatile
time bound for a range of γ and H. As one would expect, there is a strong dependence on
the Hurst parameter H.

5.2 Single unit of Jump Diffusion returns

Consider a portfolio consisting of a single unit of stock whose stochastic nature is that of a JD
process. The point at which infs(−stULD(s, t)−sV ) is obtained is found by differentiating the
argument with respect to s and setting it equal to zero. This gives a transcendental equation
that cannot be solved explicitly, but can be solved readily by computer. For example, Figure
2 plots − infs(−stULD(s, t) − sV ). To put it another way, for given V , Figure 2 plots the
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Figure 2: Jump Diffusion process with µ = 1 and η = 10. Plot of γ(t) against t, for a range
of V .

smallest γ(t) such that the Chernoff bound says P (S(t) ≤ −V ) ≤ exp(−γ(t)). Note the
emergence of a most volatile time for given V .

5.3 Single unit of Variance Gamma returns

Consider a portfolio consisting of a single unit of stock whose stochastic nature is that of a
Variance Gamma process. The positive argument at which inf s(−stULD(s, t)−sV ) is obtained
can be determined explicitly to be

µνV − tσ2 +
√

t2(σ2)2 + µ2ν2V 2 + 2σ2νV 2

σ2νV
.

For example Figure 3 plots − infs(−stULD(s, t)−sV ). Again note the emergence of a volatile
trading time for given V .

5.4 Single unit of Truncated Lévy returns

Consider a portfolio consisting of a single unit of stock whose stochastic nature is that of a TL
process, but with drift µ, so that X(t) = µ(t)+L(t) for t ∈ N, where L(t) is a truncated Lévy
return. The argument at which infs(−stULD(s, t)−sV ) is obtained is found by differentiating
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Figure 3: Variance Gamma process with µ = 1, ν = 1 and σ2 = 1. Plot of γ(t) against t, for
a range of V .

the argument with respect to s and setting it equal to zero. This gives an equation can be
solved readily by computer. For example Figure 2 plots − inf s(−stULD(s, t) − sV ).

5.5 Tradeoff between a risk-free asset and FBM returns

Consider an investor that can divide an initial investment between a risky asset whose statis-
tics are governed by FBM and a non-risky asset. The non-risky asset’s value at time t is
µ1t, while the FBM has parameters (µ2, σ

2,H), where µ2 is assumed greater than µ1. If
the proportion of initial capital invested in the non-risky asset is 1 − c and the proportion
invested in the risky asset is c, then the LDPF for the portfolio is given by (2):

ULD(s, t) = µ1 + c(µ2 − µ1) −
c2sσ2t2H−1

2
.

This corresponds to FBM with (µ1 + c(µ2 − µ1), c
2σ2,H). Thus for trading time scale t and

unacceptable loss −V the Chernoff bound gives

P (X(t) ≤ −V ) ≤ exp

(
−

((µ1t + c(µ2 − µ1))t + V )2

2c2σ2t2H

)
.

The investor wishes to decide the split c that maximizes the portfolio’s expected at time t
subject to P (X(t) ≤ −V ) ≤ exp(−γ). As for given split c, E(X(t)) = µ1 + c(µ2 − µ1), and
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Figure 4: Truncated Lévy process with c = 100, µ = 1, α = 0.5 and β = 1. Plot of γ(t)
against t, for a range of V .

µ2 is assumed greater than µ1, he wishes to find

c∗ = sup

{
c ∈ [0, 1] :

((µ1 + c(µ2 − µ1))t + V )2

2c2σ2t2H
≥ γ

}
. (10)

Define

t∗ =

(
2σ2γ

(µ2 − µ1)2

) 1
2(1−H)

.

If t ≥ t∗, then c∗ = 1. If t < t∗, then

c∗ = min

{
µ1t + V√

2σ2γtH − (µ2 − µ1)t
, 1

}
.

Figure 5 plots c∗ as a function of t for a particular parameterization. If the trading time
scale is short or long, c∗ can be large, but is smaller in an interim regime, demonstrating the
importance of the trading time scale.
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Figure 5: For γ = 100 and V = 100, optimal split c∗ for a bond with µ1 = 1 and stock
following FBM with σ2 = 1, µ2 = 1.01 and H = 0.6

6 Portfolio examples: infinite trading time scale

6.1 Single unit of Brownian Motion or VG returns

For a single unit of returns following Brownian Motion using (5) we can readily calculate

χ(s) = lim
t→∞

−sULD(s, t) =
s2σ2

2
− sµ,

δ = sup{s : χ(s) ≤ 0} =
2µ

σ2

and χ′(δ) = µ.

Thus for large V large deviation theory predicts that

P (X(t) ≤ −V, any t) ≈ exp

(
−V

2µ

σ2

)
.

It also predicts that the most likely time for an unacceptable loss is V/µ. This matches with
intuition, the higher the drift µ is, the less likely an unacceptable loss is to occur at a long
time scale. Finally, it predicts that the most likely path to an unacceptable loss is:

X(t) ≈





−tµ for t ≤ V
µ

−V + µ

(
t −

V

µ

)
for t ≥ V

µ .
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Figure 6: Path of Brownian Motion with σ2 = 2 and µ = 0.1. Broken line with slope −µ and
then µ shown for comparison.

To illustrate the path result, a simulation of Brownian Motion with µ = 0.1 and σ2 = 2 was
constructed. Paths of length t = 4000 were constructed. Figure 6 is the first path observed
that dropped below −140. As seeing paths that go below lower levels is exponentially less
likely, straight simulation is not feasible. However, as the level is dropped lower, the piecewise
linear character of the observed paths becomes more prominent.

Interestingly, for a single unit of VG returns with ULD given in (7),

χ(s) =
−1

ν
log

(
1 + µνs −

σ2ν

2
s2

)
,

but all the above statements hold. As the VG process is a time transformed Brownian
Motion, subordination cannot increase the density of paths for which an unacceptable loss
occurs. Thus, as the subordination has mean drift 1, an unacceptable loss is most likely to
occur at the same time, and in the same way, as Brownian Motion, even though the statistics
of the processes are quite different.

6.2 Single unit of Jump Diffusion or Truncated Lévy returns

For a portfolio of either JD or TL returns, the function χ(s) is readily calculable, but deter-
mining δ and χ′(δ) requires the solution of a transcendental equation. Although this means
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Figure 7: Single unit of JD returns with µ = 1. Plot of δ and 1/χ′(δ) as a function of η, the
mean arrival rate of jumps

there are no closed-form solutions, in practice it does not pose a problem. For a single unit
of JD returns

χ(s) =
s2

2
+ η(es2/2 − 1) − sµ.

For a single unit of TL returns with positive drift µ

χ(s) = −sµ−
cα

cos(πα/2)



(
β2 − s2

)α/2

((
1 − s

β

)α

2
(
1 + s

β

)−α

2
+
(
1 − s

β

)−α

2
(
1 + s

β

)α

2

)

2
− βα


 .

As an illustration, for a single unit of JD process, Figure 7 shows δ and χ′(δ) as a function
of the mean jump inter-arrival time 1/η. Note that as η → 0, δ → 2µ, as can be seen in the
graph. Note that the rescaled time to an unacceptable loss χ′(δ) behaves quite differently to
the exponent δ.
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