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Abstract The regulation of cellular metabolism facilitates robust cellular operation in
the face of changing external conditions. The cellular response to this varying environ-
ment may include the activation or inactivation of appropriate metabolic pathways. Ex-
perimental and numerical observations of sequential timing in pathway activation have
been reported in the literature. It has been argued that such patterns can be rationalized
by means of an underlying optimal metabolic design. In this paper we pose a dynamic
optimization problem that accounts for time-resource minimization in pathway activation
under constrained total enzyme abundance. The optimized variables are time-dependent
enzyme concentrations that drive the pathway to a steady state characterized by a pre-
scribed metabolic flux. The problem formulation addresses unbranched pathways with
irreversible kinetics. Neither specific reaction kinetics nor fixed pathway length are as-
sumed.

In the optimal solution, each enzyme follows a switching profile between zero and
maximum concentration, following a temporal sequence that matches the pathway topol-
ogy. This result provides an analytic justification of the sequential activation previously
described in the literature. In contrast with the existent numerical approaches, the acti-
vation sequence is proven to be optimal for a generic class of monomolecular kinetics.
This class includes, but is not limited to, Mass Action, Michaelis–Menten, Hill, and some
Power-law models. This suggests that sequential enzyme expression may be a common
feature of metabolic regulation, as it is a robust property of optimal pathway activation.
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1. Introduction

The behavior of metabolic pathways depends on the network structure and the kinetics of
the enzymes catalyzing the individual reactions (Savageau, 1976; Heinrich and Schuster,
1996). These systems exhibit diverse dynamic behaviors in terms of stability, steady state
and transient response. Most cellular processes rely on the appropriate operation of some
set of pathways and so metabolic behavior underpins functional requirements for cellu-
lar operation. The existence of alternative metabolic designs for the same function (Sav-
ageau, 1985) together with the major role that metabolic dynamics play in cell fitness indi-
cate that they have been optimized through evolutionary processes (Heinrich et al., 1991;
Cornish-Bowden, 2004b).

The method of Mathematically Controlled Comparisons (MMC) (Savageau, 1976,
1985; Alves and Savageau, 2000) allows the comparison of alternative metabolic de-
signs with respect to specific quantitative criteria. Among other applications, MMC has
been effective in the study of optimal regulatory structures in metabolic pathways (Sav-
ageau, 1974, 1975). Another optimization technique that has been successfully applied to
metabolic networks is Flux Balance Analysis (FBA) (Varma and Palsson, 1994), whereby
the reaction fluxes of a stoichiometric model are chosen to optimize a linear objective
function. FBA has provided useful predictions of metabolic responses in a number of
different organisms under diverse conditions, e.g., Ibarra et al. (2002). Such predictions
depend on the choice of an appropriate objective function, the selection of which is a
subject of active research (Schuetz et al., 2007; Nielsen, 2007; Schuster et al., 2008).
On the other hand, when reaction kinetics are available, a number of different opti-
mization problems have been considered, e.g. flux optimization (Heinrich et al., 1991;
Heinrich and Klipp, 1996; Holzhütter, 2004), minimization of total enzyme concentration
(Klipp and Heinrich, 1999) and maximization of growth rate (Bilu et al., 2006). Since no
single optimality criterion captures all relevant objectives, multicriteria optimization has
also been proposed as a way of taking into account different metabolic objectives within
a single framework (Vera et al., 2003).

Each of the aforementioned studies addresses the network behavior under static en-
zyme concentrations. However, the temporal distribution of enzymatic activity affects
pathway behavior and metabolic responses are modulated by the timing of enzyme ex-
pression. Zaslaver et al. observed well defined temporal patterns in gene expression data
in amino acid biosynthetic pathways of E. coli under extracellular medium shift (Zaslaver
et al., 2004; Campbell, 2004). A sequential or “just-in-time” pattern in enzyme expression
was found in the Serine, Methionine and Arginine pathways. Additional experimental ev-
idence revealing temporal modulation in the Lysine pathway has been recently reported
(Ou et al., 2008). These experiments provide metabolic instances of the generally ac-
cepted fact that specific temporal patterns in gene expression appear in the operation of a
range of cellular functions, including complex molecular assemblies (Kalir et al., 2001)
and organism development (Leng and Müller, 2006).

Rationalizing such temporal patterns by means of optimization principles requires
ideas from dynamic optimization theory. To date, there have been relatively few stud-
ies on dynamic optimization of metabolic pathways (as observed in Torres and Voit,
2002, p. 165). In Varner and Ramkrishna (1999), the authors develop a theoretical
framework where cells are regarded as optimal resource allocators following cybernetic
principles, while extensions of the FBA principle to include dynamic behavior have
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been reported in a number of works (van Riel et al., 2000; Mahadevan et al., 2002;
Uygun et al., 2006).

Dynamic enzyme optimization for the activation of biosynthetic pathways has been
considered recently in Klipp et al. (2002) and Zaslaver et al. (2004). Klipp and co-
workers obtained enzyme profiles that minimize the transition time (Llorens et al., 1999;
Torres, 1994) of a thermodynamically closed unbranched pathway with Mass Action ki-
netics. The problem was posed under a constraint on the total enzyme abundance, which
reflects the fact that cells have limited biosynthetic capability. Numerical solutions for
different pathway lengths led to the conclusion that the optimal enzyme profiles followed
a sequential pattern, in agreement with the experimental findings of Zaslaver et al. (2004).

To complement their experimental findings on pathway activation, Zaslaver et al. con-
sidered a model of a thermodynamically open pathway which incorporates a dynamic
description of enzyme abundance with gene expression regulation. Considering an un-
branched pathway with three reactions exhibiting Michaelis–Menten kinetics, the authors
obtained (numerically) optimal enzymatic time profiles that qualitatively agree with the
sequential behavior observed in their experiments.

In this paper we extend these studies on temporal distribution of enzymatic concen-
trations using a rigorous theoretical framework. In contrast to the numerical approaches
previously developed in the literature (Klipp et al., 2002; Zaslaver et al., 2004), the opti-
mization is tackled using analytical tools from optimal control theory (Pontryagin et al.,
1962). We pose a dynamic optimization problem that accounts for time-resource optimal-
ity in the activation of thermodynamically open pathways under a constraint on the total
enzyme abundance. The optimization inputs are the time-dependent enzyme concentra-
tions required to drive the pathway from rest to a steady state characterized by a given
metabolic flux. The analysis addresses unbranched pathways of arbitrary length and ap-
plies to a generic class of monomolecular enzyme kinetics that includes, but is not limited
to, Mass Action, Michaelis–Menten, Hill, and some Power-law models.

The main result is the analytic derivation of an inherent sequential structure in the op-
timal activation. Each enzyme exhibits a profile which switches between zero and maxi-
mum concentration, following a temporal sequence that matches the order of the reaction
steps in the pathway. These findings provide an analytic justification of the sequential be-
havior initially described in Klipp et al. (2002) and observed experimentally in Zaslaver
et al. (2004), thus reinforcing the idea that sequential activation can be rationalized by
means of an underlying optimal metabolic design. The use of an analytic approach allows
the treatment of more general reaction kinetics than previous numerical investigations.
Since the optimal activation sequence is invariant under a broad class of monomolecular
kinetics, our result suggests that sequential enzyme expression may be a common feature
of metabolic regulation, as it is a robust property of optimal pathway activation.

Other features of the optimized activation are also explored. Feasibility is addressed
by deriving a general formula for the upper bound on the achievable target flux in terms
of the saturation velocities of the individual reactions. Sensitivity analysis is performed
by means of numerical solutions obtained from an equivalent nonlinear programming
problem. These numerical results suggest that the optimized response is most sensitive to
reactions located close to the beginning of the pathway, which is consistent with previous
studies on sensitivity analysis (see, e.g., Klipp et al., 2005, p. 189). As a case study, we
also investigate the effect of enzyme production dynamics by adding protein synthesis
and degradation to the metabolic model. The extended model is optimized numerically
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and, although such kind of solution does not allow for generalizations, the result shows a
temporal sequence that agrees with our theoretical analysis.

2. Problem formulation

2.1. Model definition

We consider unbranched metabolic pathways composed of irreversible reactions as in
Fig. 1. In that scheme x0 denotes the concentration of substrate feeding the pathway, xi(t)

is the concentration of the ith intermediate metabolite at time t and vi is the rate of the
ith reaction. We assume that vi = vi(xi(t), ui(t)) ≥ 0, where ui(t) is the concentration at
time t of the enzyme catalyzing the ith reaction.

The pathway activity is presumed to have a negligible effect on the concentration of
substrate, so x0 is considered constant. The rate laws vi characterize the kinetic properties
of the enzymes catalyzing the pathway. These are typically nonlinear in the metabolite
concentrations xi , so a general analysis is often not tractable. In this paper we consider a
class of nonlinear monomolecular enzyme kinetics, namely those satisfying the following
assumptions.

Assumption 1.

(A) The rate laws are linear in the enzyme concentrations, i.e., they can be written as

vi

(
xi(t), ui(t)

) = wi

(
xi(t)

) · ui(t), i = 0,1, . . . , n, (1)

where wi(xi(t)) ≥ 0 is continuous.
(B) The functions wi(xi(t)) in (1) satisfy

wi(0) = 0, i = 0,1, . . . , n, (2)

dwi

dxi

> 0, for xi > 0, i = 0,1, . . . , n. (3)

Assumption 1(A) is satisfied by most enzyme kinetic models (Cornish-Bowden,
2004a; Meléndez-Hevia et al., 1990), while (2) in Assumption 1(B) is trivial since a
nonzero concentration xi(t) is required for the ith reaction to occur. Equation (3) states
that an increase in substrate xi yields an increase in the reaction rate, which can saturate
for large substrate concentrations. This monotonicity condition is satisfied by a broad class
of enzyme dynamics that includes, in particular, the following common kinetic models:

wi(xi) = kixi, (Mass Action)

wi(xi) = kixi

Ki + xi

, (Michaelis–Menten)

wi(xi) = kix
n
i

Ki + xn
i

, (Hill)

wi(xi) = kix
c
i , (Power-law)

where ki > 0, Ki > 0, n ≥ 0 and c > 0.
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Fig. 1 Unbranched metabolic pathway.

The dynamic model for the pathway shown in Fig. 1 is given by mass conservation as

ẋi (t) = vi−1
(
xi−1(t), ui−1(t)

) − vi

(
xi(t), ui(t)

)
, i = 1,2, . . . , n. (4)

In this formulation the state vector of the model in (4) is composed of the metabolite
concentrations, while the enzyme concentrations appear as time-dependent inputs. For
future reference we define the state and input vectors as

x(t) = [x1(t) x2(t) · · · xn(t) ]T ,

u(t) = [u0(t) u1(t) · · · un(t) ]T ,

respectively.

2.2. Dynamic optimization problem

We are interested in optimizing the transient dynamics of pathway activation. For clarity,
we first give a precise definition of pathway activation and then we describe each element
of the optimization problem itself: the cost function, the input constraints, and the terminal
condition.

2.2.1. Metabolic pathway activation
Assuming that the pathway is initially inactive, i.e., u(0) = 0, x(0) = 0, we aim at obtain-
ing temporal enzymatic profiles that drive the pathway to a steady state characterized by
a prescribed constant flux V > 0. From Fig. 1 and Eq. (4), the pathway reaches a steady
state when

vi(t) = V, for t ≥ tf , i = 0,1, . . . , n, (5)

where tf is the duration of the activation process whose value is left unspecified and
regarded as an outcome of the optimization.

2.2.2. Cost function
If the pathway to be activated has a critical impact on cellular fitness, then the activation
must build the metabolic product rapidly and with efficient enzyme usage. To quantita-
tively express this principle, u(t) should minimize a cost function of the form

J =
∫ tf

0

(
1 + αT u(t)

)
dt, (6)

where the vector of weights α is entry-wise nonnegative. The minimization of J implies
a combined optimization of: (i) the time taken to reach the new steady state, and (ii) a
measure of the enzyme usage. The weight vector α can be appropriately tuned to reflect
the relative biosynthetic cost of specific enzymes. If we choose α = 0 then J = tf , which
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corresponds to the total activation time. This measure of cost as the “true” time taken
by the pathway activation contrasts with the approach in Klipp et al. (2002) whereby the
activation duration for a thermodynamically closed pathway was measured by an averaged
quantity known as the transition time (Llorens et al., 1999; Torres, 1994). The problem of
minimizing the transition time within the framework of dynamic optimization has been
addressed in Oyarzún et al. (2007).

2.2.3. Input constraints
The cell can expend only a limited set of resources on the activation of any given pathway.
A simple and convenient way of taking those limitations into account is to consider an
upper bound on the total enzyme abundance (Brown, 1991; Klipp et al., 2002). For that
purpose, we impose the constraint that the components of the piece-wise continuous input
functions u(t) lie in the simplex U defined by

U :
{∑n

i=0 ui ≤ ET ,

ui ≥ 0, i = 0,1, . . . , n,
(7)

where ET denotes the upper bound on enzymatic concentration. Potential important dif-
ferences in the enzyme masses could be addressed by including weighting factors in the
sum (7). To improve readability, such factors have not been incorporated in the subsequent
analysis. Their inclusion has no impact on the main results, and leads to a straightforward
scaling of the optimal solution.

2.2.4. Terminal condition
In principle, the terminal condition for the optimization problem is specified solely by
enforcing the steady state after time tf , which is described by (5). Once the pathway
has reached the final metabolite levels (i.e., after time tf ), the steady state flux must be
maintained by appropriate enzyme concentrations. From (1) and (5), it follows that the
required steady state enzyme levels are

ui(t) = V

wi(x
f

i )
, for t ≥ tf , i = 0,1, . . . , n, (8)

where x
f

i = xi(tf ) is the ith component of the final state. Equation (8) specifies the steady
state enzymatic concentrations that are needed to sustain the target flux. However, this
condition alone does not ensure that the enzymatic levels are within the constraint region
U after the optimization period. We need to ensure that the concentrations in (8) are
feasible and thus, using (7) it follows that

S:
n∑

i=0

V

wi(x
f

i )
≤ ET , x

f

i > 0, i = 0,1, . . . , n. (9)

Terminal condition (9) guarantees that the steady state is compatible with the upper bound
on total enzyme abundance. Rather than specifying the steady state as a single point, (9)
defines a surface where the terminal steady state metabolite concentrations must lie.

In summary, the dynamic optimization problem reads as follows.
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Problem 1 (Optimal pathway activation). Consider the system (4) with vi satisfying As-
sumption 1, x(0) = 0 and V > 0. The problem is to find a terminal time tf > 0 and a
piecewise continuous function u: [0, tf ] → U , that minimizes the cost

J =
∫ tf

0

(
1 + αT u(t)

)
dt,

and drives the system to a steady state x(tf ) ∈ S .

3. Optimal pathway activation

In this section we present the sequential form of the solution to Problem 1 and illustrate
it with an example.

3.1. Form of the optimal activation

Problem 1 is a nonlinear optimal control problem with free final time. A suitable frame-
work for solving this kind of dynamic optimization problem is provided by Pontryagin’s
Minimum Principle (PMP) (Pontryagin et al., 1962). Application of PMP typically results
in the statement of a two-point boundary value problem (BVP), so that any solution of the
original optimization problem also solves the BVP. In general, solving this BVP can be
very challenging and the analysis is typically carried out on a case-by-case basis.

Our main result describes qualitative features of the solution which can be obtained
without solving the associated BVP. An explicit solution to Problem 1 is not attainable
through PMP since the BVP does not admit a general solution. Even in a particular in-
stance of the problem in which the pathway length and kinetics were specified, the re-
sulting nonlinear dynamics would typically lead to a BVP which could only be treated
numerically.

The main result of this paper is presented next. The proof can be found in Appendix A.

Theorem 1 (Form of the optimal activation). The optimal enzyme concentration profile
u∗(t) for Problem 1 satisfies the following:

• At each time t ∈ [0, tf ), only one enzyme is active (i.e., has nonzero concentration);
• The active enzyme is present at maximum concentration;
• Each enzyme is active over a single time interval;
• The order of enzyme activation matches the order of reactions in the pathway.

Formally, these conditions can be described as follows: There exists a set of switching
times {t0, t1, . . . , tn−1}, with 0 < ti < tj for i < j and tn−1 = tf which partition the op-
timization interval as [0, tf ) = [0, t0) ∪ [t0, t1) ∪ · · · ∪ [tn−2, tn−1), such that the optimal
profile of the ith enzyme satisfies

u∗
i (t) =

{
ET , for t ∈ Ti ,

0, for t /∈ Ti ,
(10)

where T0 = [0, t0) and Ti = [ti−1, ti) for i = 1,2, . . . , n − 1.
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Equation (10) shows that the optimal enzyme profiles switch between 0 and the maxi-
mal level ET . Such profiles are called “bang-bang” inputs in control engineering, and are
a common feature of solutions in classical time optimal control (Pontryagin et al., 1962).
The bang-bang quality of the solutions to Problem 1 is a consequence of the geometry
of the constraint region U and the fact that the dynamics and the cost depend linearly
on the input u(t). We emphasize that the optimization is carried out over all piece-wise
continuous concentration profiles. The piece-wise constant form of the optimal input is
a consequence of the optimization, not an a priori constraint on the inputs. It is also ob-
served that the form of the optimal solution does not depend on the weight α. Therefore,
variations in the biosynthetic costs for enzyme production will be reflected only in the ac-
tivation duration of the individual reactions, without any effect in the activation sequence.
The value of α will also affect the final time tf which is not prespecified, but is an outcome
of the optimization procedure.

The sequential nature of the activation profile has been shown numerically in Klipp
et al. (2002) for thermodynamically closed pathways with linear kinetics and specific
lengths. Theorem 1 extends this finding of sequential behavior to a much broader class
of reaction kinetics. Moreover, the proof reveals how the sequential property emerges
from the optimality principle. We find that the activation sequence is a consequence of
both the pathway structure and the reaction kinetics. From an intuitive point of view, the
“pipeline” structure of the pathway implies the ith metabolite cannot be produced un-
less the upstream portion of the pathway has been activated. Moreover, the monotonicity
condition on the kinetics (3) precludes the optimality of activating an upstream reaction
after the ith one has already been activated (a fact that arises from (A.24) and (A.25)).
The generality of Theorem 1 indicates that this sequential behavior is a robust feature of
time-resource optimal pathway activation.

Before presenting a concrete example, we observe that the qualitative description of
the optimal solution provided by Theorem 1 considerably simplifies the computation
of the optimal solutions, since one needs only to optimize over the n switching times
{t0, t1, . . . , tn−1}, rather than over the whole class of admissible inputs.

3.2. Example

As an illustrative example, we consider a pathway as in Fig. 1 of length n = 3, where all
the reactions exhibit Michaelis–Menten kinetics of the form

vi(xi) = kcat ixi(t)

Kmi + xi(t)
ui(t). (11)

The model parameters are kcat 1 = 1 s−1, kcat 2 = 2 s−1, kcat 3 = 4 s−1, kcat 4 = 3 s−1,
Kmi = 1 mM, x0 = 5 mM and we set the enzymatic weights to αi = 1 mM−1 s. The
optimal enzyme and metabolite profiles for Problem 1 with V = 0.2 mM s−1 are shown in
Fig. 2. The optimal control problem was recast as a nonlinear optimization program and
solved with the gradient-based routine fmincon available in the Optimization Toolbox
for Matlab.1 Enzyme levels are in units of ET = 1 mM and metabolites are in units of
Km = 1 mM. The optimal switchings occur at t0 = 1.5 s, t1 = 2.1 s and t2 = 2.4 s, and

1Matlab® is a registered trademark of The Mathworks.
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Fig. 2 Optimal activation for pathway of length n = 3 with Michaelis–Menten kinetics.

the steady state concentrations of the metabolites are x
f

1 = 0.65 mM, x
f

2 = 0.32 mM and
x

f

3 = 0.29 mM. The enzyme profiles satisfy all the properties in Theorem 1 and guarantee
that the steady state is maintained after the activation time t ≥ tf = t2. The terminal steady
state enzyme levels are computed directly from (8). We also notice that the last enzyme
needs to be present only after the activation period, which is required to achieve the steady
state flux.

4. Further analysis

4.1. Maximal steady state flux

The flux achievable by the pathway is constrained by the bound on the total enzyme
abundance (7) and the saturating velocities of the reaction steps. From (1), we define the
saturating velocities, denoted ŵi , as

ŵi = sup
xi>0

wi(xi) = sup
xi>0

vi(xi,1). (12)

From (9) it follows that the achievable flux is upper-bounded by

V̂ = ET

(
n∑

i=0

1

ŵi

)−1

, (13)

where we interpret 1
∞ = 0 for the case of non-saturating kinetics (e.g., Mass Action

steps—such reactions do not constrain the achievable flux). Equation (13) gives the max-
imal flux under which the optimization problem is feasible. This formula also indicates
how the total enzyme pool should be distributed to achieve maximal flux. Flux V̂ will
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only be reached if ET

ŵi
(
∑n

i=0
1
ŵi

)−1 enzymatic activity is dedicated to enzyme ui . In the
typical case that the saturating velocities in (12) are not attained at finite metabolite con-
centrations, the upper bound V̂ is not an achievable target. In such cases it can be shown
that as the target flux V approaches the value V̂ the optimal cost grows unbounded. The
supremal flux V̂ could only be reached by saturating all the reactions in the pathway,
which in turn would require an infinite activation period.

4.2. Solution sensitivity

The sensitivity properties of the optimal solution are presented through case studies. We
consider pathways of length n = 6 with x0 = 1 mM and assume that all the reactions fol-
low Michaelis–Menten kinetics of the form (11). We adopt as nominal model parameters
kcat i = 1 s−1 and Kmi = 1 mM. The nominal values for the enzyme weights are chosen as
αi = 5 mM−1 s and the numerical solutions are obtained as in Section 3.2.

4.2.1. Sensitivity to kinetic parameters
In order to study the effect of kinetic parameters on the optimal activation, we compare the
sensitivity of the optimal cost with respect to parameters kcat i and Kmi of each reaction.
Varying one constant at a time and setting the others to their nominal values, we obtain
optimal solutions for different values of kcat i and Kmi in a range of ±90% of their nominal
values. The target flux is chosen as 80% of the maximal flux V̂ (see Eq. (13)) for the
parameter range. The results are shown in Fig. 3, where the optimal cost normalized with
respect to its nominal value is shown for kcat i between 10% and 25% of the nominal value,
and Kmi from 10% to 100% of its nominal value.

As expected the optimal activation takes longer as parameters kcat i decrease. As shown
in Fig. 3, the optimal activation is less sensitive to the kcat parameter of those reactions
that are located toward the end of the pathway. For example, reducing kcat 6 to 10% of its
nominal value yields a five-fold increase in the optimal cost, whereas the same reduction
in kcat 1 yields almost an eight-fold increase. This is a consequence of the fact that early
reactions must process more material in order to reach steady state. The overall trend is
consistent with the commonly accepted assertion (Klipp et al., 2005) in the literature on

Fig. 3 Normalized optimal cost as a function of the kinetic parameters (in units of their nominal values).
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Metabolic Control Analysis that the sensitivity of the steady state flux with respect to a
particular kcat i decreases as the reaction is located toward the end of the pathway.

The sensitivity with respect to parameters Kmi follows the opposite trend, with in-
creased sensitivity later in the pathway. This conclusion has more to do with individual
kinetics than with the behavior of the system as a whole. As mentioned, the first reactions
process more material and so operate at higher substrate concentrations than those down-
stream. The saturating nature of the Michaelis–Menten kinetic means that those reactions
operating at high substrate concentrations are less susceptible to variation in Km.

4.2.2. Sensitivity to enzyme weighting
As mentioned in Section 2.2, the weighting vector α allows the optimization procedure
to reflect the relative biosynthetic costs of the enzymes in the pathway. To explore the
sensitivity of the optimal activation with respect to the enzyme weighting, we consider
the effect of αi on the pulse width of enzyme ui : the length of the time interval during
which enzyme ui is active. Changing one enzyme weight at a time, we compute optimal
solutions for αi in the range ±50% of the nominal value with a target flux of 80% of the
maximum V̂ . The optimal pulse width normalized with respect to its nominal value is
shown in Fig. 4.

It can be observed that as an enzyme is more strongly penalized, its optimal pulse
width is reduced. The reduction is larger for those enzymes acting close to the end of
the pathway. This implies that significant reductions in the use of early enzymes can be
only be achieved with very large weights, while more freedom is available for the ones
toward the end of the pathway. For example, for enzyme u1 only a marginal reduction
can be achieved with a 50% increase in the weight, while for u5 a reduction over 10%
can be attained. This is a consequence of the pathway structure and suggests, as in the
previous case study, that the importance of a specific enzyme in the activation dynamics
is a decreasing function of its position in the pathway.

Fig. 4 Normalized optimal pulse width of each enzyme as a function of the enzyme weight αi (in units
of their nominal values).
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4.3. Effect of enzyme production dynamics

Enzyme synthesis cannot be as fast as required by the switching profiles that solve Prob-
lem 1. More realistic solutions can be obtained by extending the model to include enzyme
production dynamics. The production of enzyme ui can be described by

u̇i (t) = ri(t) − λui(t), (14)

where ri(t) is the expression rate of ui(t) and λ accounts for dilution by cell growth
and the constituent protein degradation rate. As an illustration, we review the example
of Section 3.2 with this extended formulation. Instead of optimizing with respect to the
enzymatic levels, we consider the metabolic model extended with the enzyme production
model shown in (14), and optimize over the enzyme expression rates. The expression
rates are bounded as 0 ≤ ri(t) ≤ 1 mM s−1 and we set λ = 0.5 s−1. The constraint in total
enzyme abundance is replaced by box constraints of the form 0 ≤ ui(t) ≤ ET and we fix
the steady state to match the one shown in Fig. 2. The model parameters and the cost
function are chosen identical to the ones in Section 3.2.

The dynamic optimization problem was numerically solved with the pseudospectral
optimal control solver Tomlab/PROPT (Rutquist and Edvall, 2009). The optimal ex-
pression rates are shown in Fig. 5, whereas the corresponding enzyme and metabolite
profiles are shown in Fig. 6. To facilitate the comparison with the results of Section 3.2,
the enzyme profiles of Fig. 2 are included in dashed line in Fig. 6. The optimal expression
rates follow a switching pattern that matches the pathway topology, which lead to enzyme
profiles that follow a sequential activation similar to the one discussed in this paper. The
ON/OFF behavior seen in the expression rates is consistent with boolean models for ge-
netic networks. Such models have been widely used for the analysis of gene expression
networks (Chaves et al., 2005). On the other hand, from Fig. 6 we see that by including the
enzyme production model, the switching profiles of Fig. 2 become continuous functions
of time and hence lead to more realistic optimal responses.

5. Discussion

Metabolic activity is regulated to accommodate resource allocation and product formation
in the face of varying external conditions. This regulation is implemented through the

Fig. 5 Optimal expression rates for pathway of Section 3.2 extended with enzyme production dynamics.
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Fig. 6 Optimal enzyme and metabolite concentrations for pathway of Section 3.2 extended with enzyme
production dynamics. Enzyme profiles of Fig. 2 are shown in dashed line.

genetic control of enzyme expression. In this paper we study such a control policy for the
case of pathway activation under the premise that it satisfies a time-resource optimality
criterion. Under constraints on the total enzyme availability, we optimize a set of time-
dependent enzyme concentrations that drive the pathway to a target steady state flux.

As a consequence of both reaction kinetics and pathway topology, a well defined tem-
poral program in the optimal enzyme levels is revealed. The profile of each enzyme
switches between zero and maximum concentration following a temporal ordering that
matches the pathway topology. The problem is stated in a control theoretic framework
and the analysis is performed with tools from Optimal Control Theory (Pontryagin et al.,
1962). This allows treatment of more general reaction kinetics than previously considered
in the literature (Klipp et al., 2002; Zaslaver et al., 2004). Our analytical results assume no
specific kinetics or pathway length, and hold independently of the parameter values. Since
standard kinetics (Mass Action, Michaelis–Menten, Hill, and some Power-law) satisfy the
required assumptions, the results presented here extend those in Klipp et al. (2002).

The switching nature of the optimal enzymatic profiles allows us to recast the dy-
namic optimization as a static nonlinear programming problem which can be solved with
available numerical algorithms. The decision variables in this nonlinear program are the
switching times of each optimal profile, and the optimization is carried out under the
positivity constraints in both enzyme and metabolite concentrations. The terminal con-
dition (9) defines the set of feasible steady states compatible with the constraint on the
total amount of enzyme. In other optimization approaches, such as Flux Balance Analy-
sis (Varma and Palsson, 1994) and multiobjective optimization (Vera et al., 2003), the
constraints on steady state concentrations and metabolic fluxes are specified individually.
A distinctive feature of a constraint such as (9) is that, in accounting for the limitation
in total enzyme abundance, the steady state of the metabolites and flux are considered
simultaneously.

Despite the ability of this framework to account for more general kinetics than previ-
ous efforts (Klipp et al., 2002; Zaslaver et al., 2004), at present we have only been able
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to complete this analysis with a very simplified description of enzyme dynamics. An im-
proved framework was considered for Michalis–Menten kinetics in Zaslaver et al. (2004)
by including transcriptional feedback in the model. Enzyme levels were set to be depen-
dent on the metabolic product and thus the optimization was carried out over the feedback
strengths. In our case the enzyme profiles are considered as independent functions of time
and optimized over the class of piece-wise continuous functions. This allows discontin-
uous profiles to be identified as optimal. The result is an activation scheme in which the
enzyme concentrations vary more quickly than the metabolite concentrations, when in fact
the reverse is a more accurate description of cellular events. This could be addressed by
including the rate of change of the enzyme concentrations u̇(t) in the cost function. This
is a standard approach in control engineering and has recently been used in the context of
homeostatic regulation as well (Uygun et al., 2006).

Another way to account for this is by extending the model with enzyme production
dynamics. Pathway optimization can then be carried out by finding expression rates that
minimize a meaningful metabolic objective. The optimization is not only subject to con-
straints in enzyme and metabolite levels, but bounds on the expression rates should also
be included. As suggested by the example of Section 4.3, the optimal activation of the ex-
tended model can follow the same temporal pattern as the one obtained from our theoreti-
cal analysis. However, the numerical nature of the solution prevents us from characterizing
this behavior as a general principle. This extended formulation allows the derivation of
numerical solutions, but presents major challenges for a general analysis and is the subject
of ongoing research. Similar considerations arise when considering pathways with more
complicated metabolic interactions such as product inhibition or allostery.

In our efforts to develop a theoretical foundation for the sequential activation of
metabolic pathways, the analysis has been limited to unbranched pathways. Sequential
activation was experimentally shown in Zaslaver et al. (2004) for the Arginine pathway in
E. coli. It was detected in each branch of the pathway, but no clear relation between the ac-
tivation of adjacent branches was identified. Extensions of our methodology to branched
pathways are not straightforward; in our formulation all the available protein is allocated
to a single reaction at a time, which is not realistic when different branches are work-
ing simultaneously. It seems that the study of branched pathways should consider differ-
ent enzymatic constraints and, possibly, a different cost function. Nevertheless, complex
topologies are a challenging scenario for other cellular processes in which optimization
may play an important role, such as cellular growth (Mahadevan et al., 2002) and home-
ostatic regulation (Uygun et al., 2006).

6. Conclusions

In this paper we have presented a theoretical analysis of a dynamic optimization prob-
lem arising from the activation of metabolic pathways. Unlike numerical approaches, the
theoretical nature of this study allows us to identify the optimal responses as features un-
derpinning the dynamics of the metabolic model. This line of study holds promise for
the identification of design principles in metabolic regulation, mainly because a theoret-
ical approach reveals them as structural properties of the network, rather than attributes
achieved through fine tuning of the model parameters. A major obstacle is that the op-
timization becomes analytically intractable for many cases of practical importance, and
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therefore one must usually resort to numerical solutions. Nonetheless, despite a number of
simplifications in the considered model, the ideas presented here reveal principles behind
the dynamics of metabolic regulation.

Static optimization methods such as Flux Balance Analysis have had great success in
aiding both scientific investigations and engineering applications in metabolism. These
techniques could be complemented with a sound theory of dynamic optimization to pro-
vide deeper insights into metabolic dynamics. Such a combination can be conceived as a
two-stage optimization process: Once optimal steady state fluxes are identified, the tran-
sient responses are optimized to meet additional metabolic objectives under the con-
straint of reaching the optimal flux distribution. Since the optimality criteria used in
both stages are of different nature, this synergy can yield a more comprehensive ap-
proach to the investigation of metabolic pathways. However, it must be pointed out
that given the large scale of real metabolic networks, the use of dynamic optimiza-
tion as a practical tool still requires the development of appropriate computational tech-
niques that can efficiently cope with high-dimensional problems, perhaps in the spirit
of some of the recent work in the field (Mahadevan et al., 2002; Uygun et al., 2006;
Banga et al., 2005).
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Appendix A: Proof of Theorem 1

Pontryagin’s Minimum Principle (Pontryagin et al., 1962) provides a set of necessary
conditions that must be satisfied by the solution of the optimal control problem. For that
purpose, the scalar Hamiltonian is defined as

H
(
x(t),u(t),p(t)

) = 1 + αT u(t) + p(t)T ẋ(t), (A.1)

where the vector p(t) = [p1(t),p2(t), . . . , pn(t)]T is called the system’s co-state and ẋ(t)

denotes the dynamics (4) in vector form. From (1) and (4), the Hamiltonian function can
be written as

H
(
x(t),u(t),p(t)

) = 1 +
n∑

i=0

hi(t)ui(t), (A.2)

where the function hi(t) is called the ith switching function and is given by

hi(t) = αi + (
pi+1(t) − pi(t)

)
wi

(
xi(t)

)
, ∀i = 0,1, . . . , n, (A.3)

where we define, for convenience of notation, p0(t) = 0 and pn+1(t) = 0. The proof
hinges in the following statements of PMP:
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• The optimal control input u∗(t) minimizes the Hamiltonian for all t ∈ [0, tf ), i.e.,

H
(
x∗(t),u∗(t),p∗(t)

) = min
u(t)∈U

H
(
x∗(t),u(t),p∗(t)

)
. (A.4)

• The trajectory of the optimal co-state vector satisfies

ṗ∗(t) = −∂H(x∗(t),u∗(t),p∗(t))
∂x

, ∀t ∈ [0, tf ). (A.5)

From (4) and (A.1), using (A.5) the optimal trajectory of the ith co-state is given by

ṗi(t) = (
pi(t) − pi+1(t)

)∂wi

∂xi

ui(t), ∀i = 1,2, . . . , n. (A.6)

• The Hamiltonian evaluated along the optimal trajectory is zero for all t ∈ [0, tf ), that
is,

H
(
x∗(t),u∗(t),p∗(t)

) = 0, ∀t ∈ [0, tf ]. (A.7)

Denote the set of vertices of U as V = {e0, e1, . . . , en} ∪ {0}, where ei has ET in its
(i + 1)st entry and 0 elsewhere. Similarly, the set of n-dimensional faces of U is defined
as F = {F0, F1, . . . , Fn} ∪ {P}, where Fi and P are the faces defined by the hyperplanes
Fi = {u(t) ∈ U : ui(t) = 0} and P = {u(t) ∈ U : ∑n

i=0 ui(t) = ET }, respectively. We no-
tice from (A.2) that H(x(t),u(t),p(t)) is a linear function defined over the simplex U .
Therefore, from (A.4) it follows that the optimal control is located in the boundary of U
for all t ∈ [0, tf ) and, moreover, it holds that u∗(t) ∈ V, ∀t ∈ [0, tf ). This means that the
optimal control can always be found in the set of vertices of U . However, if the optimal
control is not unique then it will lie in a face of the simplex U , that is, in the convex hull
of a subset of V . We next present a simple fact that will be needed later to show that the
optimal control is indeed located only in one vertex at a time.

Fact 1. Let f (u) : U → R be a linear function of u with U defined in (7). Then, if vertex
ej is not minimal, then any point where f (u) attains its minimum cannot be located in a
face of U that contains ej .

Proof: The proof follows by contradiction. Let Q be any r-dimensional face of U with
vertex set VQ ⊆ V . Suppose VQ is partitioned in sets containing the minimal and non-
minimal vertices, VQ+ and VQ−, respectively. Let ej ∈ VQ− and assume that there exists
y ∈ Q such that y is minimal. Then, if we define the index sets IQ+ = {i ∈ {0, 1, . . . , n} :
ei ∈ VQ+} and IQ− = {i : ei ∈ VQ−}, there exists λi ≥ 0 such that

y =
∑

i∈IQ−
λiei +

∑

i∈IQ+
λiei , (A.8)

where
∑

i∈IQ−∪IQ+ λi = 1. Linearity of f (u) implies that f (y) = f (ei ), ∀i ∈ IQ+, and
(A.8) yields

(
1 − ∑

i∈IQ+ λi

)
f (y) = ∑

i∈IQ− λif (ei ),

∑
i∈IQ− λif (y) = ∑

i∈IQ− λif (ei ),

(A.9)
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which is a contradiction since by hypothesis f (y) < f (ei ) for all i ∈ IQ−. �

From (A.7) we have that H must vanish along the optimal trajectory, which together
with (A.2) implies that u∗(t) �= 0, ∀t ∈ [0, tf ). This precludes the optimality of the origin,
and thus we can use Fact 1 and (A.4) to conclude that u∗(t) /∈ Fi \ V , ∀i, so that u∗(t) ∈ P
and therefore the optimal solution satisfies

n∑

i=0

u∗
i (t) = ET . (A.10)

Suppose {T0, T1, . . . , Tq} is a partition of the interval [0, tf ) such that T0 = [0, t0) and
Ti = [ti−1, ti), ∀i = 1,2, . . . , q , with ti < tj , ∀i < j and tq = tf . Let U ∗

� = {ui}, i ∈ I�, be
the set of nonzero enzymes of the optimal solution in the interval T�, that is, the optimal
control u∗(t) lies in the convex hull of vertexes {ej }, j ∈ I�, ∀t ∈ T�. This implies that the
nonzero enzymes satisfy

∑

i∈I�

ui(t) = ET , ∀t ∈ T�. (A.11)

We consider a partition {T0, T1, . . . , Tq} such that U ∗
i �= U ∗

i+1,∀i = 0,1, . . . , q − 1. In
this setup, the proof follows by showing that

U ∗
� = {u�}, ∀� = 0,1, . . . , q, (A.12)

q = n − 1. (A.13)

The general idea behind the proof is that the system structure and dynamics force well
defined behaviors in the time courses of the switching functions in (A.2). As a first step,
we can see that by using (A.7) and (A.2) it follows that for all t ∈ [0, tf ) there exists
i ∈ {0,1, . . . , n} such that hi(t) < 0, which together with (A.4) implies that

hj (t) = min
{
h0(t), h1(t), . . . , hn(t)

}
, ∀j ∈ I�, ∀ t ∈ T�. (A.14)

Combining (A.2), (A.7), (A.11), and (A.14) implies that the switching function corre-
sponding to each nonzero enzyme is given by

hj (t) = − 1

ET

< 0, ∀j ∈ I�, ∀t ∈ T�. (A.15)

We note from (2) and (9) that x(tf ) �= 0, which using the fact that x(0) = 0 implies that
each ui(t) must be active for some nonempty interval, i.e., for each ui, i = 0,1, . . . , n,

there exists an interval Ri �= ∅ such that

ui(t) �= 0, ∀t ∈ Ri. (A.16)

The proof follows using an inductive procedure based on the following result.
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Fact 2. Consider interval T�, � ≥ 2, and assume that

xi(t�) = 0, ∀i > � + 1, (A.17)

U ∗
j = {uj }, ∀j ≤ �. (A.18)

Then,

U ∗
�+1 = {u�+1}. (A.19)

Proof:
We first note that since x(0) = 0 and wi(0) = 0, then (A.18) implies

xj (t) = 0, ∀t ∈
j−2⋃

i=0

Ti, ∀2 ≤ j ≤ �,

which combined with (A.3) yields

hj (t) = αj , ∀t ∈
j−2⋃

i=0

Ti, ∀2 ≤ j ≤ �. (A.20)

From (4), (A.3), and (A.6), for all j it holds

ḣj (t) = (
ṗj+1(t) − ṗj (t)

)
wj

(
xj (t)

) + (
pj+1(t) − pj (t)

)∂wj

∂xj

ẋj (t)

= (
pj+1(t) − pj+2(t)

)∂wj+1

∂xj+1
wj

(
xj (t)

)
uj+1(t)

− (
pj (t) − pj+1(t)

)∂wj

∂xj

wj−1
(
xj−1(t)

)
uj−1(t), (A.21)

where we define w−1 = 0. Since uj (t) = 0, ∀ j �= �, ∀t ∈ T�, (A.21) yields

ḣj (t) = 0, ∀j /∈ {� − 1, � + 1}, ∀t ∈ T�. (A.22)

On the other hand, if j = � − 1 then uj+1(t) = ET , ∀ t ∈ T� and uj−1(t) = 0, which
after substituting in (A.21) yields

ḣ�−1(t) = (
p�(t) − p�+1(t)

)∂w�

∂x�

w�−1

(
x�−1(t)

)
ET , ∀t ∈ T�. (A.23)

Combining (A.23) and (A.3) with i = � leads to

ḣ�−1(t) =
(

α� − h�(t)

w�(x�(t))

)
∂w�

∂x�

w�−1

(
x�−1(t)

)
ET , ∀t ∈ T�. (A.24)

Equation (A.3) with i = � implies that w�(t) > 0, ∀ t ∈ T�, since otherwise h�(t) = α� ≥ 0
for some t ∈ T� and (A.15) cannot be satisfied. This guarantees that ḣ�−1(t) in (A.24) is
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well defined in the interval T�. Similarly, (A.18) implies that w�−1(x�−1(t)) > 0, ∀ t ∈ T�−1

and ẋ�−1(t) = 0, ∀ t ∈ T�. Then, w�−1(x�−1(t)) > 0, ∀ t ∈ T� and thus, using (3) and (A.15)
in (A.24) yields

ḣ�−1(t) > 0, ∀ t ∈ T�. (A.25)

Therefore, combining (A.15), (A.20), (A.22), and (A.25) we conclude that the j th
switching function satisfies

hj (t) =
{

αj , ∀2 ≤ j ≤ �, ∀t ∈ ⋃j−2
i=0 Ti ,

− 1
ET

, ∀j ≤ �, ∀t ∈ Tj ,
(A.26)

ḣj (t) > 0, ∀j < �, ∀t ∈ Tj+1, (A.27)

ḣj (t) = 0, ∀j < �, ∀t ∈
�⋃

i=j+2

Ti. (A.28)

In order to clarify the idea, a schematic plot of the switching functions h�−2(t), h�−1(t)

and h�(t) is depicted in Fig. A.1.
The idea is then to show that the form of time courses in Fig. A.1 implies that the

only enzyme that can be nonzero in T�+1 is u�+1 (as expressed in (A.19)). We proceed by
analyzing the effect of enzyme uj being active in interval T�+1.

• Case j < �:
Assume that for some j < �, uj ∈ U ∗

�+1. Then in order to satisfy (A.15), (A.26)–
(A.28) imply that hj (t) must be discontinuous at t = t� (see Fig. A.1), which from
(A.3) is not possible since both x(t) and p(t) are continuous. Hence, it follows that

uj /∈ U ∗
�+1, ∀j < �. (A.29)

• Case j > � + 1:
Assume that for some j > � + 1, uj ∈ U ∗

�+1. Then from (A.17) we have that
xi(t�) = 0, ∀i > � + 1 and hence using (4) we conclude that xi(t) = 0, ∀i > � + 1,

Fig. A.1 Sketch plot of switching functions h�−2(t), h�−1(t) and h�(t).
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∀t ∈ T�+1. In view of (A.3) and (2), this implies that hi(t) = αi ≥ 0, ∀i > � + 1, which
contradicts (A.15). This means that ej , j > � + 1, cannot be optimal in interval T�+1

and thus we can use Fact 1 to conclude

uj /∈ U ∗
�+1, ∀j > � + 1. (A.30)

• Case j ∈ {�, � + 1}:
Assume that U ∗

�+1 = {�, � + 1}. Using (A.29) and (A.30) in (A.21) yields

ḣ�(t) = (
p�+1(t) − p�+2

)∂w�+1

∂x�+1
w�

(
x�(t)

)
u�+1(t), ∀t ∈ T�+1, (A.31)

ḣ�+1(t) = −(
p�+1(t) − p�+2

)∂w�+1

∂x�+1
w�

(
x�(t)

)
u�(t), ∀t ∈ T�+1. (A.32)

Substituting (A.3) with i = � + 1 in (A.31) and (A.32) leads to

ḣ�(t) =
(

α�+1 − h�+1(t)

w�+1(x�+1(t))

)
∂w�+1

∂x�+1
w�

(
x�(t)

)
u�+1(t), ∀t ∈ T�+1, (A.33)

ḣ�+1(t) = −
(

α�+1 − h�+1(t)

w�+1(x�+1(t))

)
∂w�+1

∂x�+1
w�

(
x�(t)

)
u�(t), ∀t ∈ T�+1. (A.34)

Since x�+1(t) �= 0, ∀ t ∈ T�+1, (A.33) and (A.34) are well defined. From (A.14) and
(A.15), U ∗

�+1 = {�, � + 1} implies that ḣ�(t) = ḣ�+1(t) = 0, ∀t ∈ T�+1, but in view of
(A.33) and (A.34), this can only hold if u�(t) = u�+1(t) = 0, ∀t ∈ T�+1, which accord-
ing to (A.11) is a contradiction. Moreover, if U ∗

�+1 = {u�}, then U ∗
�+1 = U ∗

� , contradict-
ing the fact that U ∗

i �= U ∗
i+1, ∀i = 0,1, . . . , q − 1. Thus, e� cannot be optimal in the

interval T�+1 and resorting to (A.16), the result (A.19) is obtained. �

Finally, to conclude the argument, consider interval T0 and assume that vertex ej ,
j > 0, is optimal in T0, then since x(0) = 0 it follows from (4) that x(t) = 0, ∀ t ∈ T0.
From (2) and (A.3), this yields hj (t) = αi ≥ 0, ∀ i > 0, which contradicts (A.15), and
therefore ej , j > 0, cannot be optimal in interval T0. Fact 1 then yields

U ∗
0 = {u0}. (A.35)

We now consider interval T1. If ej , ∀j > 1, is optimal in interval T1, then (A.35)
implies xi(t0) = 0, ∀ i > 1, and hence (4) yields xi(t) = 0, ∀ i > 1, ∀ t ∈ T1. From (2)
and (A.3), this implies that hi(t) = αi ≥ 0, ∀ i > 1, which contradicts (A.15). Thus, from
Fact 1 we conclude that uj /∈ U ∗

1 , ∀j > 1. Now suppose that e0 and e1 are optimal in
interval T1, then similarly as in case j ∈ {�, � + 1} of Fact 2 (take (A.31)–(A.34) with
� = 0), it can be shown that ḣ0(t) = ḣ1(t) = 0, ∀t ∈ T1 only when u0(t) = u1(t) = 0,
∀t ∈ T1, which in view of (A.11) is a contradiction. Moreover, if e0 is optimal in T1,
then U ∗

1 = U ∗
0 , contradicting our hypothesis that U ∗

i �= U ∗
i+1, ∀i = 0,1, . . . , q . Thus, we

conclude that u0 /∈ U ∗
1 and (A.16) yields

U ∗
1 = {u1}. (A.36)
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Eq. (A.35) and (A.36) imply that xi(t1) = 0, ∀ i > 1, and therefore, we can inductively
use Fact 2, leading to the desired result (A.12).

To prove (A.13), consider interval Tn, so that from (A.12) it holds that U ∗
n = {un}.

Then from (A.14) it follows that hn(t) = min{h0(t), h1(t), . . . , hn(t)}, ∀t ∈ Tn, but from
(A.26)–(A.28) we have that it does not exist hi(t), i �= n such that hi(t) ≤ hn(t) for t ≥
tn−1, thus implying that ẋn(t) < 0, ∀ t ≥ tn−1. This in turn means that limt→∞ xn(t) = 0,

and therefore the terminal condition (9) fails and tf grows without bound. This leads to the
conclusion that un(t) is zero during the whole optimization interval and (A.13) follows.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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