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abstract

We present an explicit procedure to compute η-invariants.
This also yields a topological formula for adiabatic limits and
simplifies the calculation of Kreck-Stolz-invariants detecting
components of the space of positive scalar curvature metrics.

1 Introduction

Let M be a Riemannian Spin-manifold of positive scalar curvature carrying a
free and isometric action of the circle S1 with geodesic orbits. We compute the
η-invariant of twisted Dirac-operators on M . We list as an example the explicit
result for the (generalized) Berger spheres of dimension ≤ 11 (i.e. the odd
dimensional spheres with a metric obtained by rescaling the standard metric in
direction of the orbits of the circle action given by complex multiplication). As
a second application we derive a formula for the adiabatic limit of η-invariants.

The η-invariant of such an operator D is an analytic regularization of the
asymmetry of the spectrum of D. It is obtained by evaluating the meromorphic
extension of the Dirichlet series

∑

|λ|−ssign (λ), which converges for large Re s,
at s = 0 (cf. [10], [3]). In the Atiyah-Patodi-Singer index formula [1] for
manifolds W with boundary M it arises as the contribution of M to the index
of D on W .

In fact our calculation will be based on the index theorem. We prove a
vanishing theorem for the index of Dirac operators on disc bundles. To this end
we construct a Riemannian metric gDE and a connection ∇αDE on the canonical
bundle of an appropriate Spinc-structure αDE on the disc bundleDE associated
to M , such that the scalar curvature of gDE exceeds the absolute value of the
smallest eigenvalue of the curvature endomorphism of ∇αDE . By the vanishing
theorem of Hitchin-Lichnerowicz for the kernel of Dirac-operators the index of
the Dirac-operator on DE is trivial. It then follows from the Atiyah-Patodi-
Singer index formula that the η-invariant ofM is given by twice the integral over
DE of the Â-form twisted with the canonical line bundle of the Spinc-structure
on DE.

The last section contains the formulae for the curvature form on DE, fol-
lowed by a recipe to compute this integral. As a direct application of the



vanishing theorem we finally derive a formula for the limit of η-invariants of
circle bundles when the orbits of the circle action are shrinked.

In some cases the η-invariant of the Dirac operator has been computed di-
rectly out of the Dirac spectrum, e.g. by Hitchin [11] for the 3-dimensional
Berger spheres, by Seade-Steer [17] for quotients of PSL2(R) by Fuchsian
groups. Furthermore there are general formulae by Bismut-Cheeger [7] and
Dai [8] for the adiabatic limit of the η-invariant in fibrations. This has been
made explicit for S1-bundles by W. Zhang in [18] thus also deriving the for-
mula for the adiabatic limit of the η-invariant. The vanishing theorem 2.2 gives
a straightforward computation of the invariants used by Kreck and Stolz in
[13] to find manifolds with a nonconnected space of positive sectional curvature
metrics (see also [9]). In contrast to [9] our approach in computing these invari-
ants avoids the roundabout through η-invariants by giving an explicit geometric
construction.

I am grateful to M. Kreck for his inspiration and his encouragement, and
to him and S. Stolz for discussing their results in [13] with me.

2 A Vanishing Theorem for Disc Bundles

By (M,g) we will always denote a Riemannian manifold M of odd dimension
carrying a free isometric action of the circle S1 with geodesic orbits, an equiv-
ariant Spinc-structure α, an equivariant Hermitian vector bundle ζ and unitary
connections ∇α and ∇ζ on the canonical line bundle ξ(α) of α and on ζ re-
spectively. We assume that the orbits of the circle action on the vector bundles
ξ(α) and ζ are parallel with respect to these connections. Furthermore let sM

denote the scalar curvature of M and let Rα and Rζ be the curvature tensors
of ∇α and ∇ζ respectively. Let Dζ be the Spinc-Dirac operator twisted with
the connection ∇ζ . We follow the conventions in [14].

The orbit space B = M/S1 then is a manifold and there is a metric gB on
B such that the quotient map π : M → B becomes a principal S1-bundle and
a Riemannian submersion with totally geodesic fibres. The Spinc-structure α,
the vector bundle ζ and the connections are induced from a Spinc-structure αB ,
a vector bundle ζB and connections over B.

For a 2-form µ ∈ Ω2(X; u(S ⊗ ζ)) with values in the skew-Hermitian en-
domorphisms of the twisted spinor bundle S ⊗ ζ over a manifold X we define
||µ|| ∈ C∞(X) by

||µ||(x) := −min{〈E(µ)s | s〉 | s ∈ (S ⊗ ζ)x, ||s|| = 1} ,

where the Hermitian endomorphism E(µ) of S ⊗ ζ is given as

E(µ)(σ ⊗ ε) =
1

2

∑

j,k

µ(ej , ek)(ejekσ ⊗ ε)

for σ ∈ Sx, ε ∈ ζx and an orthonormal basis {e1, . . . , en} of TxX. For 2-forms
µ, ν ∈ Ω2(X; u(S ⊗ ζ)) we have the triangle inequality ||µ|| + ||ν|| ≥ ||µ + ν||.
For x ∈ M let {e1, . . . , en} be such that Rα =

∑

i≤(n−1)/2 λiei ∧ e[i+(n−1)/2].
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Then (see [11], [14])

||Rα ⊗ 1|| =
∑

i≤(n−1)/2

|λi| . (2.1)

On the disc bundle DE of the associated complex line bundle E = M ×S1

C we then have an equivariant vector bundle ζDE and an equivariant Spinc-
structure αDE both extending the corresponding data on M = ∂DE. We
consider the Spinc-structure induced from αB and the Spinc(2)-structure on
the vector bundle E. Assume that gDE is a Riemannian metric on the manifold
DE and ∇ζDE and ∇αDE are connections on ζDE and on ξ(αDE) such that
in a suitable collar neighbourhood U of M they are induced from a product
structure U ∼= M×]−ǫ, 0]. In this setting there is defined a Spinc-Dirac operator
DζDE

acting on twisted spinors satisfying the Atiyah-Patodi-Singer boundary
conditions and whose tangential operator is Dζ , cf [1]. For the index of the
operator DζDE

we have the following vanishing theorem:

Theorem 2.2 If

1

4
sM (x) > ||

1

2
Rα ⊗ 1 + 1 ⊗Rζ ||(x) for all x ∈M

then the index of the Dirac operator DζDE
vanishes.

The Atiyah-Patodi-Singer Index Theorem [1] then gives

Corollary 2.3

η(Dζ) = 2

∫

DE
ch (∇ζDE ) ∧ ec1(∇αDE )/2 ∧ Â(p(gDE)) . (2.4)

The last section contains a recipe to explicitly compute the η-invariant of
certain homogeneous spaces, by calculating the integral in (2.4).

If ζ is the 0-bundle, M carries a Spin-structure and α is its complexification,
then Rα = 0 and the condition is just sM > 0. The corresponding Dirac
operator has the same spectrum as the Dirac operator of the Spin-structure.

The Bochner formula for twisted Dirac operators (see [11], [15], [14]) states
that the Dirac-Laplacian satisfies the formula

D2
ζ := ∇∗∇ +

1

4
s+ E(

1

2
Rα ⊗ 1 + 1 ⊗Rζ) . (2.5)

The condition of the theorem thus is positivity of the order 0 term in this
formula on M .

Proof of Theorem 2.2: Since the index does not depend on the metric
nor on the curvature form in the interior of DE it suffices to construct a metric
gDE on DE and a connection ∇αDE on ξ(αDE) extending the metric g and the
connection ∇α on M , such that the estimate 1

4sDE > ||12R
αDE ⊗ 1 + 1⊗RζDE ||

holds, where sDE is the scalar curvature of gDE and RαDE and RζDE are the
curvature tensors of ∇αDE and ∇ζDE . In [2] before Theorem 3.9 it is shown,
that the usual Lichnerowicz argument then also shows, that the index of the
Dirac-operator vanishes.
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Since the fibres of M are assumed totally geodesic, they are all isometric
to a circle S1

ρ →֒ C of radius ρ. For some δ ∈ R
+ to be determined later

the disc D2 ⊂ C of radius δ will be endowed with a metric such that ∂D2 is
isometric to S1

ρ . The map M × [0, δ] → DE = M ×S1 D2 is a Diffeomorphism
when restricted to M×]0, δ]. Let ũ be the fundamental vector field of the
S1-action, u := ũ/|u|, and v be the radial derivative i.e. the derivative with
respect to the interval-factor. Let gτ be the canonical variation of M i.e. the
family of metrics on M defined by rescaling the orbits of the circle action:
gτ (x, y) := g(x, y) + (τ2 − 1)g(x, ũ)g(y, ũ). For an odd smooth function f on
R with f ′(0) = 1 mapping [0, δ] → [0, ρ] and constant ρ on [γ, δ] the metric
gf(τ) × dτ2 on M×]0, δ] →֒ DE extends to give a metric gDE on all of DE such
that π : DE → B is a Riemannian submersion with totally geodesic fibres and
DE carries a product metric near its boundary M .

Since v commutes with all basic vectorfields of DE we get

∇vv = ∇vu = 0, ∇uv =
f ′

f
u, ∇uu = −

f ′

f
v, and ∇av = 0, (2.6)

for every horizontal vector field a. We will need the scalar curvature of gDE .
By O’Neill’s formulae (see [6]) this is given by

sDE = sF + sB − ||A||2 ,

whereAxy = V∇HxHy = 1
2V[x̄, ȳ], V and H denoting the vertical and horizontal

projections of the Riemannian submersion respectively. Let e = (m, τ) ∈ DE.
From (2.6) we get the scalar curvature of the fibre F = D2 of the submersion
DE → B as

sF (e) = −2
f ′′(τ)

f(τ)
.

Furthermore we compute

||A||2(e) =
∑

i,j

||Ah̄i(e)
h̄j(e)||

2 =
∑

i,j

1

4
||V[h̄i, h̄j ](e)||

2

=
∑

i,j

1

4
f(τ)2||V[h̄i, h̄j ](m)||2 = f(τ)2||A||2(m),

because the map M → DE, m = (m, δ) 7→ (m, τ) preserves the vectorfields h̄i

and maps u to f(τ)u. The scalar curvature of DE is thus estimated by

sDE(e) = sF (e) + sB(π(m)) − ||A||2(e)

= −2
f ′′(τ)

f(τ)
+ sM(m) + (ρ2 − f(τ)2)||A||2(m) (2.7)

≥ −2
f ′′(τ)

f(τ)
+ sM(m).

The equivariant Spinc-structure αM bounds the Spinc-structure αDE on the
disc bundle DE. The canonical bundle of αDE is ξ(αDE) = π∗(ξ(αB) ⊗ E).
Now we proceed to suitably extend the connection ∇α. By equivariance we
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find a connection ∇αB on ξ(αB) such that ∇α = π∗∇αB . Denote by ∇E the
connection on E induced from the Riemannian metric on M and let ∇0 be the
flat connection on the pull back of E over DE \ B induced from its canonical
trivialization. Now pick a smooth decreasing function

ψ : R
+
0 −→ [0, 1]

which is constant 0 in the intervall [γ, δ] and 1 in [0, α] for suitable α ∈]0, γ[. The
function obtained by composing with the distance d(·, B) from the 0-section is
also denoted by ψ.

Define a connection on ξ(αDE) by

∇αDE = (π∗∇αB ⊗ 1 + 1 ⊗ (ψπ∗∇E + (1 − ψ)∇0).

The curvature tensor of this connection is

RαDE = π∗RαB + dψ ∧ (π∗∇E −∇0) + ψπ∗RE

= π∗RαB − i
ψ′

f
u ∧ v + ψπ∗RE, (2.8)

where we have written u and v for the 1-forms u = 〈u | ·〉, v = 〈v | ·〉. In view
of (2.7) we search functions f and ψ such that for every e = (m, τ) ∈ DE we
have

4 ||
1

2
RαDE ⊗ 1 + 1 ⊗RζDE ||(e) ≤ −2

f ′′(τ)

f(τ)
+ sM (m).

By the triangular inequality for || · || we estimate using (2.1) and substituting
Rα = π∗RαB :

||
1

2
RαDE ⊗ 1 + 1⊗RζDE || ≤ ||

1

2
(π∗RαB ⊗ 1 + 1⊗RζDE || −

ψ′

2f
+
ψ

2
||π∗RE ⊗ 1||.

By the assumption of the theorem

s :=
1

2
min(sM − 4 ||

1

2
Rα ⊗ 1 + 1 ⊗Rζ ||)

is positive. Let m be a real number with m > s/2 and m > ||RE ⊗ 1||(b) for all
b ∈ B. Then the theorem is proved if we can solve the differential estimate

−
f ′′

f
+ s ≥ 2

(

−
ψ′

2f
+
ψ

2
m

)

= −
ψ′

f
+ ψm (2.9)

for functions f and ψ as before.
For every ̺, β with 0 < ̺ < ρ and 0 < β < ̺π/2 let δ be a real number and

f : R
+
0 −→ [0, ρ] be function such that

f(r) = ̺ sin(r/̺), if r ∈ [0, β],

f ′′(r) ≤ 0 for all r,

f(r) ≥ ̺, if r ≥ ̺π/2,

f(r) ≡ ρ near δ, i.e for some γ < δ we have f ≡ ρ on [γ, δ].

We will use the the following obvious fact about smooth functions:
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Lemma 2.10 Let F be a smooth real function such that F ′ ≥ 0 and let b > a,
Ψb > Ψa > 0 be real numbers with F (b) − F (a) > Ψb − Ψa > 0. Then there is

a smooth real function Ψ which is constant near a and near b with Ψ(b) = Ψb,

Ψ(a) = Ψa and 0 ≤ Ψ′ ≤ F ′

We will show that one can find ̺ ∈]0, ρ], β ∈]0, ̺π/2[ and α ∈]0, β[ and a
function ψ : R

+
0 −→ [0, 1] with ψ ≡ 1 on [0, α] and ψ ≡ 0 near δ such that

(f, ψ) solve (2.9). We get a solution of (2.9) on [0, α] if −f ′′/f = 1/̺2 > 2m,
so we impose the condition

2m̺2 < 1. (2.11)

Clearly
0 ≤ −ψ′ ≤ −f ′′ −mf (2.12)

implies (2.9) on [0, β]. By 2.10 we can extend ψ to [0, β] such that ψ is constant
near β, ψ(β) < s/m and 2.12 holds if the condition

1 −
s

m
<

∫ β

α
−f ′′ −mf = (1 −m̺2)(cos(α/̺) − cos(β/̺)) (2.13)

is fulfilled. If we set ψ ≡ ψ(β) on [β, ̺π/2] then (f, ψ) solve 2.9 on [0, ̺π/2].
In order to get a solution on [0, δ] with ψ ≡ 0 near δ for some δ we solve
s ≥ −ψ′/̺ + mψ(β) on [̺π/2,∞[ for some extension of ψ which is constant
near ̺π/2 and δ. Again applying 2.10 we need to find δ such that

∫ δ

̺π/2
s−mψ(̺π/2) ≥ (s−mψ(̺π/2))(δ − ̺π/2) > ψ(̺π/2) (2.14)

holds.
Now choose ̺ sufficiently small such that 1−s/m < 1−m̺2. Then condition

(2.11) holds and we can accomplish (2.13) by choosing α sufficiently close to 0
and β close to ̺π/2. The values of ψ(̺π/2) < s/m and ̺ now being fixed we
can take δ sufficiently large to ensure that (2.14) holds.

3 Computation of the Eta-Invariant

In this section we will show how to compute the integral in Corollary 2.3. For
simplicity we will confine ourselves to the untwisted Spin-case. The integral
does not depend on the choice of the connection ∇αDE on π∗E in the interior
of DE, so we may take the vertical projection of the Levi-Civita-connection of
the Riemannian metric for ∇αDE , identifying the bundle along the fibres of DE
with π∗E. This corresponds to choosing ψ = f ′ in the previous proof.

For the Riemannian curvature tensor on DE at a point e = (m, τ) we get
from O’Neill’s formulae [6], as before using the rescaling property of the map
(m, δ) 7→ (m, τ):

〈RDE
u,v u | v〉 =

f ′′(τ)

f(τ)
,

〈RDE
a,u u | v〉 = 0 ,
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〈RDE
a,v u | v〉 = 0 ,

〈RDE
a,v b | v〉 = 0 ,

〈RDE
a,b u | v〉 = 〈∇[a,b]v | u〉 = 2 f ′(τ) α(a, b) ,

〈RDE
a,b c | v〉 = 0 ,

〈RDE
a,u u | a〉 = 〈Aau | Aau〉(e) = f(r)2 〈Aau | Aau〉

M (m) ,

〈RDE
a,v u | b〉 = 〈∇v∇ab | u〉(e) = v〈∇ab | u〉(e) = f ′(τ) α(a, b) ,

〈RDE
a,b u | c〉 = f(r) 〈RM

a,bu | c〉M (m) ,

〈RDE
a,b c | h〉 = 〈RM

a,bc | h〉
M (m)

+ (f(τ)2 − 1)(2 α(a, b) α(c, h) − α(a, h) α(b, c) + α(a, c) α(b, h))

where a, b, c and h denote horizontal vectors in TeDE and the corresponding
vectors in TmM as well, and α(a, b) := 1

ρ〈Aab | u〉(m) = 1
2ρ 〈[a, b] | u〉(m) =.

Writing x for the 1-form 〈x | ·〉, x ∈ TDE, and a∗ for the 1-form α(a, ·), we
express the curvature 2-form as

〈R·,·u | v〉 =
f ′′(r)

f(r)
u ∧ v + 2f ′(r) α , (3.1)

〈R·,·u | a〉 = f(r) 〈RM
H·,H·u | a〉M − f(r)2 u ∧ 〈Aau | AH·u〉

+f ′(r) v ∧ a∗ , (3.2)

〈R·,·v | a〉 = −f ′(r) u ∧ a∗ , (3.3)

〈R·,·a | b〉 = 〈RM
H·,H·a | b〉M + f(r)〈RM

H·,ua | b〉M ∧ u

+ 2 f ′(r) α(a, b) u ∧ v + (f(r)2 − 1) (2α(a, b) α+ a∗ ∧ b∗) (3.4)

= 〈RB
H·,H·a | b〉B + f(r)〈RM

H·,ua | b〉M ∧ u

+ 2 f ′(r) α(a, b) u ∧ v + f(r)2 (2α(a, b) α+ a∗ ∧ b∗) . (3.5)

Recall that the Â-form is given by (see [5])

Â = det 1/2 R/4π

sinh (R/4π)
.

The first Chern-form of the bundle along the fibres of DE is obtained from
(2.8), substituting ψ = f ′ and RE = iα:

c1(∇
αDE ) :=

1

2πi
π∗RαB +

1

2π

(

f ′′(τ)

f(τ)
u ∧ v + 2f ′(τ) π∗α

)

. (3.6)

Now assume M = G/H homogeneous and that the circle action commutes
with the action of G. Using the above formulae we express the characteristic
form ec1(∇

αDE )/2Â(p(gDE)) at a point e = (m, τ) ∈ DE as

ec1(∇αDE )/2Â(p(gDE))(e) = P (f(τ), f ′(τ),
f ′′(τ)

f(τ)
) vol (DE, gDE)

with some polynomial P whose coefficients can be computed from (3.1) to (3.4).
The volume form vol (DE, gDE) at e is vol (DE, gDE) = f(τ) vol (M) ∧ v and

7



we finally get

1

2
η(M) =

∫

DE
ec1(∇αDE )/2Â(p(gDE))

= vol (M)

∫ δ

0
P (f(τ), f ′(τ),

f ′′(τ)

f(τ)
) f(τ) dτ

Now this integral can be calculated for a suitable function f .
Remark: Since the integral does not depend on the specific choice of f the
integrand f P (f, f ′, f ′′/f) is of the form

f P (f, f ′, f ′′/f) =
∑

i,j

ai,jf
i(f ′)j + f ′′

∑

i,j

bi,jf
i(f ′)j =





∑

i,j

ci,jf
i(f ′)j





′

,

hence ai−1,j+1/i = bi,j−1/j := ci,j for i, j > 0. The value of the integral then is
∑

i ci,0ρ
i +
∑

j c0,j.
The sum

∑

j c0,j does not depend on ρ and will be computed in the next
section on adiabatic limits from a topological formula.

The ci,0 can be determined from the ai,1 only. In order to compute the ai,1

we may replace the expressions on the right hand side in (3.1), (3.3) and in
(3.6) by 0, because in (3.1) to (3.4) the form v always occurs with a factor f ′.

Thus terms involving f ′ and not v contribute to the constant part (i.e. inde-
pendent of ρ) only. If M also carries a Spin-structure which is not equivariant
but bounds a Spin-structure of DE then the conclusion of the vanishing the-
orem holds if the scalar curvature of M is positive because we only need to
endow DE with a metric of positive scalar curvature to ensure that the index
of the Dirac operator on DE vanishes. But this can be achieved as in the proof
of that theorem. In order to compute the η-invariant we have to compute the
integral over the Â-form only, but by the discussion above, this differs only by
the term of order 0 in ρ from the equivariant case.
Example: The (generalized) Berger spheres Mρ are obtained from the round
sphere M1 = Sn+1 ⊂ C

l+1 of odd dimension n + 1 = 2l + 1 of curvature 1 by
shrinking the orbits of the S1-action induced from complex multiplication. In
this case we have 〈RH·,H·u | a〉M = 0 and 〈RH·,H·a | b〉M = b∧a. The horizontal
distribution in TM has a complex structure J (it is induced from B = CP l)
and we have that α(x, Jx) = 1 for a unit vector x and α(x, y) = 0 if y and x
are perpendicular over C.

If n = 4k+1 the Mρ = (M,gρ) do not admit equivariant Spin-structures be-
cause CP 2k is not spin. If n = 4k+3 there is one equivariant Spin-structure in-
duced from a Spin-structure on CP 2k+1. For k = 0, 1, 2, a lengthy but straight-
forward calculation gives:

η(D,S3
ρ) = −

1

6
+

1

12
ρ2 −

1

6
ρ4 ,

η(D,S7
ρ) = −

11

360
+

11

90
ρ2 −

11

60
ρ4 +

11

90
ρ6 −

11

360
ρ8 ,

η(D,S11
ρ ) = −

191

30240
+

191

5040
ρ2 −

191

2016
ρ4 +

191

1512
ρ6 −

191

2016
ρ8

+
191

5040
ρ10 −

191

30240
ρ12 .
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The first result was computed by Hitchin (see [11]) from the Dirac spectrum of
the classical Berger spheres.

4 Adiabatic Limits

Consider the canonical variation of the metric on M as in the proof of the
vanishing theorem. We want to compute the limit ρ → 0 of η(Dζ , g

ρ). The
condition of theorem 2.2 holds for small ρ if the corresponding condition for the
quotient manifold B is satisfied, because the scalar curvature of M converges
to that of B as ρ→ 0. The following theorem gives the limit of integrals as in
2.3.

In general let K be the multiplicative sequence associated to a power series
k (see [12] or [14]), f an arbitrary power series in one variable starting with 1,
∇ a connection on π∗E extending ∇0 with first Chern form c1(∇) ∈ Ω2(DE; R)
and β ∈ Ω∗(B; R) arbitrary.

Theorem 4.1

lim
τ→0

∫

DE
K(p(gτ

DE)) f(c1(∇))π∗β =

=

〈

K(p(TB)) β
(k(y2) f(y) − 1)

y

∣

∣

∣

∣

y=c1(E)

∣

∣

∣

∣

∣

[B]

〉

.

For the signature operator S(gτ
M ) (see [1]) we get at once:

Corollary 4.2

lim
τ→0

η(S(gτ
M ))) =

〈

L(p(TB))

(

1

tanh(c1(E))
−

1

c1(E)

)∣

∣

∣

∣

[B]

〉

− sign (DE,M).

By Theorems 2.2 and 4.1 the Atiyah-Patodi-Singer index theorem applied to the
manifold (DE,M) yields for K = Â, f(x) = ex/2, k(x) = x1/2/(2sinh (x1/2/2))
and β = ch (ζB)ec1(ξ(αB))/2:

Corollary 4.3

lim
ρ→0

η(Dζ , g
ρ) + dimker (Dζ , g

ρ)

2
=

=

〈

Â(B) ec1(ξ(αB))/2ch (ζB)

(

ec1(E)/2

2sinh (c1(E)/2)
−

1

c1(E)

)∣

∣

∣

∣

∣

[B]

〉

mod Z.

If in addition

sB(b) > 4 ||RαB ⊗ 1 + 1 ⊗RζB ||(b)

for all b ∈ B, then the identity holds in R i.e. without reducing modulo Z and

limρ→0 dimker (Dζ , g
ρ) is trivial.

This formula was also obtained by W. Zhang [18] relying on the work in [7]. It
follows that these limits do not depend on the metrics and connections involved
but can be computed from the bundles only.
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Proof of Theorem 4.1: By the formulae (3.1) to (3.4) and (3.5) for the
Riemannian curvature tensor on DE we have

lim
ρ→0

RDE
x,y =





0 z
−z 0

?

0 π∗RB





with

z :=
f ′′(τ)

f(τ)
u ∧ v + 2f ′(τ) π∗α .

The invariant polynomial P defining the Pontrjagin forms from the curvature

tensor is p(R) = det (1 + R
2π ) and has the property that p

(

A
0

B
C

)

= p(A)p(C).

Because of the multiplicativity of K we therefore have

lim
ρ→0

K(p(gρ
DE)) = π∗K(p(gB)) ∧ k(z2/4π2).

As ρ→ 0 the integral in the theorem converges to
∫

DE
π∗(K(p(TB)) β) k(z2/4π2)f(z/2π)

=

∫

DE
π∗(K(p(TB)) β)(k(z2/4π2)f(z/2π) − 1) .

The last factor is divisible by z/2π. So we can perform integration along the
fibre and get

∫

B
K(p(TB))β

k(c1(E)2)f(c1(E)) − 1

c1(E)
,

since

π!(z
l) = lπ!

(

f ′′(τ)f ′(τ)l−1

f(τ)
u ∧ v ∧ (2α)l−1

)

= (2α)l−1

and α/π represents c1(E).
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