The Computation of η -Invariants on Manifolds with Free Circle Action

Stefan Bechtluft-Sachs

March 18, 1999

ABSTRACT

We present an explicit procedure to compute η -invariants. This also yields a topological formula for adiabatic limits and simplifies the calculation of Kreck-Stolz-invariants detecting components of the space of positive scalar curvature metrics.

1 Introduction

Let M be a Riemannian Spin-manifold of positive scalar curvature carrying a free and isometric action of the circle S^1 with geodesic orbits. We compute the η -invariant of twisted Dirac-operators on M. We list as an example the explicit result for the (generalized) Berger spheres of dimension ≤ 11 (i.e. the odd dimensional spheres with a metric obtained by rescaling the standard metric in direction of the orbits of the circle action given by complex multiplication). As a second application we derive a formula for the adiabatic limit of η -invariants.

The η -invariant of such an operator D is an analytic regularization of the asymmetry of the spectrum of D. It is obtained by evaluating the meromorphic extension of the Dirichlet series $\sum |\lambda|^{-s} \operatorname{sign}(\lambda)$, which converges for large Re s, at s = 0 (cf. [10], [3]). In the Atiyah-Patodi-Singer index formula [1] for manifolds W with boundary M it arises as the contribution of M to the index of D on W.

In fact our calculation will be based on the index theorem. We prove a vanishing theorem for the index of Dirac operators on disc bundles. To this end we construct a Riemannian metric g_{DE} and a connection $\nabla^{\alpha_{DE}}$ on the canonical bundle of an appropriate Spin^c-structure α_{DE} on the disc bundle DE associated to M, such that the scalar curvature of g_{DE} exceeds the absolute value of the smallest eigenvalue of the curvature endomorphism of $\nabla^{\alpha_{DE}}$. By the vanishing theorem of Hitchin-Lichnerowicz for the kernel of Dirac-operators the index of the Dirac-operator on DE is trivial. It then follows from the Atiyah-Patodi-Singer index formula that the η -invariant of M is given by twice the integral over DE of the \hat{A} -form twisted with the canonical line bundle of the Spin^c-structure on DE.

The last section contains the formulae for the curvature form on DE, followed by a recipe to compute this integral. As a direct application of the

vanishing theorem we finally derive a formula for the limit of η -invariants of circle bundles when the orbits of the circle action are shrinked.

In some cases the η -invariant of the Dirac operator has been computed directly out of the Dirac spectrum, e.g. by Hitchin [11] for the 3-dimensional Berger spheres, by Seade-Steer [17] for quotients of $PSL_2(\mathbb{R})$ by Fuchsian groups. Furthermore there are general formulae by Bismut-Cheeger [7] and Dai [8] for the adiabatic limit of the η -invariant in fibrations. This has been made explicit for S^1 -bundles by W. Zhang in [18] thus also deriving the formula for the adiabatic limit of the η -invariant. The vanishing theorem 2.2 gives a straightforward computation of the invariants used by Kreck and Stolz in [13] to find manifolds with a nonconnected space of positive sectional curvature metrics (see also [9]). In contrast to [9] our approach in computing these invariants avoids the roundabout through η -invariants by giving an explicit geometric construction.

I am grateful to M. Kreck for his inspiration and his encouragement, and to him and S. Stolz for discussing their results in [13] with me.

2 A Vanishing Theorem for Disc Bundles

By (M, g) we will always denote a Riemannian manifold M of odd dimension carrying a free isometric action of the circle S^1 with geodesic orbits, an equivariant Spin^c-structure α , an equivariant Hermitian vector bundle ζ and unitary connections ∇^{α} and ∇^{ζ} on the canonical line bundle $\xi(\alpha)$ of α and on ζ respectively. We assume that the orbits of the circle action on the vector bundles $\xi(\alpha)$ and ζ are parallel with respect to these connections. Furthermore let s_M denote the scalar curvature of M and let R^{α} and R^{ζ} be the curvature tensors of ∇^{α} and ∇^{ζ} respectively. Let D_{ζ} be the Spin^c-Dirac operator twisted with the connection ∇^{ζ} . We follow the conventions in [14].

The orbit space $B = M/S^1$ then is a manifold and there is a metric g_B on B such that the quotient map $\pi : M \to B$ becomes a principal S^1 -bundle and a Riemannian submersion with totally geodesic fibres. The Spin^c-structure α , the vector bundle ζ and the connections are induced from a Spin^c-structure α_B , a vector bundle ζ_B and connections over B.

For a 2-form $\mu \in \Omega^2(X; \mathfrak{u}(S \otimes \zeta))$ with values in the skew-Hermitian endomorphisms of the twisted spinor bundle $S \otimes \zeta$ over a manifold X we define $||\mu|| \in C^{\infty}(X)$ by

$$||\mu||(x) := -\min\{\langle \mathcal{E}(\mu)s \mid s \rangle \mid s \in (S \otimes \zeta)_x, ||s|| = 1\} ,$$

where the Hermitian endomorphism $\mathcal{E}(\mu)$ of $S \otimes \zeta$ is given as

$$\mathcal{E}(\mu)(\sigma \otimes \varepsilon) = \frac{1}{2} \sum_{j,k} \mu(e_j, e_k)(e_j e_k \sigma \otimes \varepsilon)$$

for $\sigma \in S_x$, $\varepsilon \in \zeta_x$ and an orthonormal basis $\{e_1, \ldots, e_n\}$ of $T_x X$. For 2-forms $\mu, \nu \in \Omega^2(X; \mathfrak{u}(S \otimes \zeta))$ we have the triangle inequality $||\mu|| + ||\nu|| \ge ||\mu + \nu||$. For $x \in M$ let $\{e_1, \ldots, e_n\}$ be such that $R^{\alpha} = \sum_{i \le (n-1)/2} \lambda_i e_i \wedge e_{[i+(n-1)/2]}$. Then (see [11], [14])

$$||R^{\alpha} \otimes 1|| = \sum_{i \le (n-1)/2} |\lambda_i|$$
 (2.1)

On the disc bundle DE of the associated complex line bundle $E = M \times_{S^1} \mathbb{C}$ we then have an equivariant vector bundle ζ_{DE} and an equivariant Spin^c-structure α_{DE} both extending the corresponding data on $M = \partial DE$. We consider the Spin^c-structure induced from α_B and the Spin^c(2)-structure on the vector bundle E. Assume that g_{DE} is a Riemannian metric on the manifold DE and $\nabla^{\zeta_{DE}}$ and $\nabla^{\alpha_{DE}}$ are connections on ζ_{DE} and on $\xi(\alpha_{DE})$ such that in a suitable collar neighbourhood U of M they are induced from a product structure $U \cong M \times]-\epsilon, 0]$. In this setting there is defined a Spin^c-Dirac operator $D_{\zeta_{DE}}$ acting on twisted spinors satisfying the Atiyah-Patodi-Singer boundary conditions and whose tangential operator is D_{ζ} , cf [1]. For the index of the operator $D_{\zeta_{DE}}$ we have the following vanishing theorem:

Theorem 2.2 If

$$\frac{1}{4}s_M(x) > ||\frac{1}{2}R^{\alpha} \otimes 1 + 1 \otimes R^{\zeta}||(x) \text{ for all } x \in M$$

then the index of the Dirac operator $D_{\zeta_{DE}}$ vanishes.

The Atiyah-Patodi-Singer Index Theorem [1] then gives

Corollary 2.3

$$\eta(D_{\zeta}) = 2 \int_{DE} \operatorname{ch}\left(\nabla^{\zeta_{DE}}\right) \wedge e^{c_1(\nabla^{\alpha_{DE}})/2} \wedge \hat{A}(p(g_{DE})) \ . \tag{2.4}$$

The last section contains a recipe to explicitly compute the η -invariant of certain homogeneous spaces, by calculating the integral in (2.4).

If ζ is the 0-bundle, M carries a Spin-structure and α is its complexification, then $R^{\alpha} = 0$ and the condition is just $s_M > 0$. The corresponding Dirac operator has the same spectrum as the Dirac operator of the Spin-structure.

The Bochner formula for twisted Dirac operators (see [11], [15], [14]) states that the Dirac-Laplacian satisfies the formula

$$D_{\zeta}^{2} := \nabla^{*} \nabla + \frac{1}{4} s + \mathcal{E}(\frac{1}{2} R^{\alpha} \otimes 1 + 1 \otimes R^{\zeta}) . \qquad (2.5)$$

The condition of the theorem thus is positivity of the order 0 term in this formula on M.

Proof of Theorem 2.2: Since the index does not depend on the metric nor on the curvature form in the interior of DE it suffices to construct a metric g_{DE} on DE and a connection $\nabla^{\alpha_{DE}}$ on $\xi(\alpha_{DE})$ extending the metric g and the connection ∇^{α} on M, such that the estimate $\frac{1}{4}s_{DE} > ||\frac{1}{2}R^{\alpha_{DE}} \otimes 1 + 1 \otimes R^{\zeta_{DE}}||$ holds, where s_{DE} is the scalar curvature of g_{DE} and $R^{\alpha_{DE}}$ and $R^{\zeta_{DE}}$ are the curvature tensors of $\nabla^{\alpha_{DE}}$ and $\nabla^{\zeta_{DE}}$. In [2] before Theorem 3.9 it is shown, that the usual Lichnerowicz argument then also shows, that the index of the Dirac-operator vanishes. Since the fibres of M are assumed totally geodesic, they are all isometric to a circle $S_{\rho}^{1} \hookrightarrow \mathbb{C}$ of radius ρ . For some $\delta \in \mathbb{R}^{+}$ to be determined later the disc $D^{2} \subset \mathbb{C}$ of radius δ will be endowed with a metric such that ∂D^{2} is isometric to S_{ρ}^{1} . The map $M \times [0, \delta] \to DE = M \times_{S^{1}} D^{2}$ is a Diffeomorphism when restricted to $M \times]0, \delta]$. Let \tilde{u} be the fundamental vector field of the S^{1} -action, $u := \tilde{u}/|u|$, and v be the radial derivative i.e. the derivative with respect to the interval-factor. Let g^{τ} be the canonical variation of M i.e. the family of metrics on M defined by rescaling the orbits of the circle action: $g^{\tau}(x, y) := g(x, y) + (\tau^{2} - 1)g(x, \tilde{u})g(y, \tilde{u})$. For an odd smooth function f on \mathbb{R} with f'(0) = 1 mapping $[0, \delta] \to [0, \rho]$ and constant ρ on $[\gamma, \delta]$ the metric $g^{f(\tau)} \times d\tau^{2}$ on $M \times]0, \delta] \hookrightarrow DE$ extends to give a metric g_{DE} on all of DE such that $\pi : DE \to B$ is a Riemannian submersion with totally geodesic fibres and DE carries a product metric near its boundary M.

Since v commutes with all basic vectorfields of DE we get

$$\nabla_v v = \nabla_v u = 0, \ \nabla_u v = \frac{f'}{f} u, \ \nabla_u u = -\frac{f'}{f} v, \ \text{and} \ \nabla_a v = 0,$$
 (2.6)

for every horizontal vector field a. We will need the scalar curvature of g_{DE} . By O'Neill's formulae (see [6]) this is given by

$$s_{DE} = s_F + s_B - ||A||^2 ,$$

where $A_x y = \mathcal{V} \nabla_{\mathcal{H}x} \mathcal{H}y = \frac{1}{2} \mathcal{V}[\bar{x}, \bar{y}], \mathcal{V}$ and \mathcal{H} denoting the vertical and horizontal projections of the Riemannian submersion respectively. Let $e = (m, \tau) \in DE$. From (2.6) we get the scalar curvature of the fibre $F = D^2$ of the submersion $DE \to B$ as

$$s_F(e) = -2\frac{f''(\tau)}{f(\tau)}.$$

Furthermore we compute

$$\begin{split} ||A||^{2}(e) &= \sum_{i,j} ||A_{\bar{h}_{i}(e)}\bar{h}_{j}(e)||^{2} = \sum_{i,j} \frac{1}{4} ||\mathcal{V}[\bar{h}_{i},\bar{h}_{j}](e)||^{2} \\ &= \sum_{i,j} \frac{1}{4} f(\tau)^{2} ||\mathcal{V}[\bar{h}_{i},\bar{h}_{j}](m)||^{2} = f(\tau)^{2} ||A||^{2}(m), \end{split}$$

because the map $M \to DE$, $m = (m, \delta) \mapsto (m, \tau)$ preserves the vector fields \bar{h}_i and maps u to $f(\tau)u$. The scalar curvature of DE is thus estimated by

$$s_{DE}(e) = s_F(e) + s_B(\pi(m)) - ||A||^2(e)$$

= $-2\frac{f''(\tau)}{f(\tau)} + s_M(m) + (\rho^2 - f(\tau)^2)||A||^2(m)$ (2.7)
 $\geq -2\frac{f''(\tau)}{f(\tau)} + s_M(m).$

The equivariant Spin^c-structure α_M bounds the Spin^c-structure α_{DE} on the disc bundle DE. The canonical bundle of α_{DE} is $\xi(\alpha_{DE}) = \pi^*(\xi(\alpha_B) \otimes E)$. Now we proceed to suitably extend the connection ∇^{α} . By equivariance we find a connection ∇^{α_B} on $\xi(\alpha_B)$ such that $\nabla^{\alpha} = \pi^* \nabla^{\alpha_B}$. Denote by ∇^E the connection on E induced from the Riemannian metric on M and let ∇^0 be the flat connection on the pull back of E over $DE \setminus B$ induced from its canonical trivialization. Now pick a smooth decreasing function

$$\psi: \mathbb{R}_0^+ \longrightarrow [0,1]$$

which is constant 0 in the intervall $[\gamma, \delta]$ and 1 in $[0, \alpha]$ for suitable $\alpha \in]0, \gamma[$. The function obtained by composing with the distance $d(\cdot, B)$ from the 0-section is also denoted by ψ .

Define a connection on $\xi(\alpha_{DE})$ by

$$\nabla^{\alpha_{DE}} = (\pi^* \nabla^{\alpha_B} \otimes 1 + 1 \otimes (\psi \pi^* \nabla^E + (1 - \psi) \nabla^0).$$

The curvature tensor of this connection is

$$R^{\alpha_{DE}} = \pi^* R^{\alpha_B} + d\psi \wedge (\pi^* \nabla^E - \nabla^0) + \psi \pi^* R^E$$

= $\pi^* R^{\alpha_B} - i \frac{\psi'}{f} u \wedge v + \psi \pi^* R^E,$ (2.8)

where we have written u and v for the 1-forms $u = \langle u | \cdot \rangle$, $v = \langle v | \cdot \rangle$. In view of (2.7) we search functions f and ψ such that for every $e = (m, \tau) \in DE$ we have

$$4 ||\frac{1}{2}R^{\alpha_{DE}} \otimes 1 + 1 \otimes R^{\zeta_{DE}}||(e) \le -2\frac{f''(\tau)}{f(\tau)} + s_M(m).$$

By the triangular inequality for $|| \cdot ||$ we estimate using (2.1) and substituting $R^{\alpha} = \pi^* R^{\alpha_B}$:

$$||\frac{1}{2}R^{\alpha_{DE}} \otimes 1 + 1 \otimes R^{\zeta_{DE}}|| \le ||\frac{1}{2}(\pi^* R^{\alpha_B} \otimes 1 + 1 \otimes R^{\zeta_{DE}}|| - \frac{\psi'}{2f} + \frac{\psi}{2}||\pi^* R^E \otimes 1||.$$

By the assumption of the theorem

$$s := \frac{1}{2} \min(s_M - 4 || \frac{1}{2} R^{\alpha} \otimes 1 + 1 \otimes R^{\zeta} ||)$$

is positive. Let m be a real number with m > s/2 and $m > ||R^E \otimes 1||(b)$ for all $b \in B$. Then the theorem is proved if we can solve the differential estimate

$$-\frac{f''}{f} + s \ge 2\left(-\frac{\psi'}{2f} + \frac{\psi}{2}m\right) = -\frac{\psi'}{f} + \psi m \tag{2.9}$$

for functions f and ψ as before.

For every ρ, β with $0 < \rho < \rho$ and $0 < \beta < \rho \pi/2$ let δ be a real number and $f : \mathbb{R}_0^+ \longrightarrow [0, \rho]$ be function such that

$$\begin{array}{lll} f(r) &=& \rho \sin(r/\rho), \, \text{if} \, r \in [0,\beta], \\ f''(r) &\leq& 0 \, \, \text{for all} \, r, \\ f(r) &\geq& \rho, \, \text{if} \, r \geq \rho \pi/2, \\ f(r) &\equiv& \rho \, \, \text{near} \, \delta, \, \text{i.e for some} \, \gamma < \delta \, \, \text{we have} \, f \equiv \rho \, \, \text{on} \, [\gamma, \delta]. \end{array}$$

We will use the following obvious fact about smooth functions:

Lemma 2.10 Let F be a smooth real function such that $F' \ge 0$ and let b > a, $\Psi_b > \Psi_a > 0$ be real numbers with $F(b) - F(a) > \Psi_b - \Psi_a > 0$. Then there is a smooth real function Ψ which is constant near a and near b with $\Psi(b) = \Psi_b$, $\Psi(a) = \Psi_a$ and $0 \le \Psi' \le F'$

We will show that one can find $\rho \in]0, \rho], \beta \in]0, \rho\pi/2[$ and $\alpha \in]0, \beta[$ and a function $\psi : \mathbb{R}_0^+ \longrightarrow [0,1]$ with $\psi \equiv 1$ on $[0,\alpha]$ and $\psi \equiv 0$ near δ such that (f,ψ) solve (2.9). We get a solution of (2.9) on $[0,\alpha]$ if $-f''/f = 1/\rho^2 > 2m$, so we impose the condition

$$2m\varrho^2 < 1. \tag{2.11}$$

Clearly

$$0 \le -\psi' \le -f'' - mf \tag{2.12}$$

implies (2.9) on $[0,\beta]$. By 2.10 we can extend ψ to $[0,\beta]$ such that ψ is constant near β , $\psi(\beta) < s/m$ and 2.12 holds if the condition

$$1 - \frac{s}{m} < \int_{\alpha}^{\beta} -f'' - mf = (1 - m\varrho^2)(\cos(\alpha/\varrho) - \cos(\beta/\varrho))$$
(2.13)

is fulfilled. If we set $\psi \equiv \psi(\beta)$ on $[\beta, \rho\pi/2]$ then (f, ψ) solve 2.9 on $[0, \rho\pi/2]$. In order to get a solution on $[0, \delta]$ with $\psi \equiv 0$ near δ for some δ we solve $s \geq -\psi'/\rho + m\psi(\beta)$ on $[\rho\pi/2, \infty[$ for some extension of ψ which is constant near $\rho\pi/2$ and δ . Again applying 2.10 we need to find δ such that

$$\int_{\varrho\pi/2}^{\delta} s - m\psi(\varrho\pi/2) \ge (s - m\psi(\varrho\pi/2))(\delta - \varrho\pi/2) > \psi(\varrho\pi/2)$$
(2.14)

holds.

Now choose ρ sufficiently small such that $1-s/m < 1-m\rho^2$. Then condition (2.11) holds and we can accomplish (2.13) by choosing α sufficiently close to 0 and β close to $\rho\pi/2$. The values of $\psi(\rho\pi/2) < s/m$ and ρ now being fixed we can take δ sufficiently large to ensure that (2.14) holds.

3 Computation of the Eta-Invariant

In this section we will show how to compute the integral in Corollary 2.3. For simplicity we will confine ourselves to the untwisted Spin-case. The integral does not depend on the choice of the connection $\nabla^{\alpha_{DE}}$ on π^*E in the interior of DE, so we may take the vertical projection of the Levi-Civita-connection of the Riemannian metric for $\nabla^{\alpha_{DE}}$, identifying the bundle along the fibres of DEwith π^*E . This corresponds to choosing $\psi = f'$ in the previous proof.

For the Riemannian curvature tensor on DE at a point $e = (m, \tau)$ we get from O'Neill's formulae [6], as before using the rescaling property of the map $(m, \delta) \mapsto (m, \tau)$:

$$\begin{array}{lll} \langle R^{DE}_{u,v} u \mid v \rangle & = & \displaystyle \frac{f''(\tau)}{f(\tau)} \; , \\ \langle R^{DE}_{a,u} u \mid v \rangle & = & 0 \; , \end{array}$$

$$\begin{split} \langle R_{a,v}^{DE} u \mid v \rangle &= 0 , \\ \langle R_{a,v}^{DE} b \mid v \rangle &= 0 , \\ \langle R_{a,b}^{DE} u \mid v \rangle &= \langle \nabla_{[a,b]} v \mid u \rangle = 2 f'(\tau) \alpha(a,b) , \\ \langle R_{a,b}^{DE} c \mid v \rangle &= 0 , \\ \langle R_{a,u}^{DE} u \mid a \rangle &= \langle A_a u \mid A_a u \rangle(e) = f(r)^2 \langle A_a u \mid A_a u \rangle^M(m) , \\ \langle R_{a,v}^{DE} u \mid b \rangle &= \langle \nabla_v \nabla_a b \mid u \rangle(e) = v \langle \nabla_a b \mid u \rangle(e) = f'(\tau) \alpha(a,b) , \\ \langle R_{a,b}^{DE} u \mid c \rangle &= f(r) \langle R_{a,b}^M u \mid c \rangle^M(m) , \\ \langle R_{a,b}^{DE} c \mid h \rangle &= \langle R_{a,b}^M c \mid h \rangle^M(m) \\ &+ (f(\tau)^2 - 1)(2 \alpha(a,b) \alpha(c,h) - \alpha(a,h) \alpha(b,c) + \alpha(a,c) \alpha(b,h)) \end{split}$$

where a, b, c and h denote horizontal vectors in T_eDE and the corresponding vectors in T_mM as well, and $\alpha(a,b) := \frac{1}{\rho} \langle A_a b \mid u \rangle (m) = \frac{1}{2\rho} \langle [a,b] \mid u \rangle (m) =$. Writing x for the 1-form $\langle x \mid \cdot \rangle$, $x \in TDE$, and a^* for the 1-form $\alpha(a, \cdot)$, we express the curvature 2-form as

$$\langle R_{\cdot,\cdot} u \mid v \rangle = \frac{f''(r)}{f(r)} u \wedge v + 2f'(r) \alpha , \qquad (3.1)$$

$$\langle R_{\cdot,\cdot}v \mid a \rangle = -f'(r) \ u \wedge a^* , \qquad (3.3)$$

$$\langle R_{\cdot,\cdot a} \mid b \rangle = \langle R^{M}_{\mathcal{H}\cdot,\mathcal{H}\cdot a} \mid b \rangle^{M} + f(r) \langle R^{M}_{\mathcal{H}\cdot,u}a \mid b \rangle^{M} \wedge u + 2 f'(r) \alpha(a,b) u \wedge v + (f(r)^{2} - 1) (2\alpha(a,b) \alpha + a^{*} \wedge b^{*}) \quad (3.4) = \langle R^{B}_{\mathcal{H}\cdot,\mathcal{H}\cdot a} \mid b \rangle^{B} + f(r) \langle R^{M}_{\mathcal{H}\cdot,u}a \mid b \rangle^{M} \wedge u + 2 f'(r) \alpha(a,b) u \wedge v + f(r)^{2} (2\alpha(a,b) \alpha + a^{*} \wedge b^{*}) .$$

Recall that the \hat{A} -form is given by (see [5])

$$\hat{A} = \det{}^{1/2} \frac{R/4\pi}{\sinh\left(R/4\pi\right)}$$

The first Chern-form of the bundle along the fibres of DE is obtained from (2.8), substituting $\psi = f'$ and $R^E = i\alpha$:

$$c_1(\nabla^{\alpha_{DE}}) := \frac{1}{2\pi i} \pi^* R^{\alpha_B} + \frac{1}{2\pi} \left(\frac{f''(\tau)}{f(\tau)} \ u \wedge v + 2f'(\tau) \ \pi^* \alpha \right) \ . \tag{3.6}$$

Now assume M = G/H homogeneous and that the circle action commutes with the action of G. Using the above formulae we express the characteristic form $e^{c_1(\nabla^{\alpha_{DE}})/2} \hat{A}(p(g_{DE}))$ at a point $e = (m, \tau) \in DE$ as

$$e^{c_1(\nabla^{\alpha_{DE}})/2} \hat{A}(p(g_{DE}))(e) = P(f(\tau), f'(\tau), \frac{f''(\tau)}{f(\tau)}) \operatorname{vol}(DE, g_{DE})$$

with some polynomial P whose coefficients can be computed from (3.1) to (3.4). The volume form vol (DE, g_{DE}) at e is vol $(DE, g_{DE}) = f(\tau)$ vol $(M) \land v$ and we finally get

$$\frac{1}{2}\eta(M) = \int_{DE} e^{c_1(\nabla^{\alpha_{DE}})/2} \hat{A}(p(g_{DE}))$$
$$= \operatorname{vol}(M) \int_0^{\delta} P(f(\tau), f'(\tau), \frac{f''(\tau)}{f(\tau)}) f(\tau) d\tau$$

Now this integral can be calculated for a suitable function f. **Remark:** Since the integral does not depend on the specific choice of f the integrand f P(f, f', f''/f) is of the form

$$f P(f, f', f''/f) = \sum_{i,j} a_{i,j} f^i(f')^j + f'' \sum_{i,j} b_{i,j} f^i(f')^j = \left(\sum_{i,j} c_{i,j} f^i(f')^j\right)',$$

hence $a_{i-1,j+1}/i = b_{i,j-1}/j := c_{i,j}$ for i, j > 0. The value of the integral then is

 $\sum_{i} c_{i,0} \rho^{i} + \sum_{j} c_{0,j}.$ The sum $\sum_{j} c_{0,j}$ does not depend on ρ and will be computed in the next section on adiabatic limits from a topological formula.

The $c_{i,0}$ can be determined from the $a_{i,1}$ only. In order to compute the $a_{i,1}$ we may replace the expressions on the right hand side in (3.1), (3.3) and in (3.6) by 0, because in (3.1) to (3.4) the form v always occurs with a factor f'.

Thus terms involving f' and not v contribute to the constant part (i.e. independent of ρ) only. If M also carries a Spin-structure which is not equivariant but bounds a Spin-structure of DE then the conclusion of the vanishing theorem holds if the scalar curvature of M is positive because we only need to endow DE with a metric of positive scalar curvature to ensure that the index of the Dirac operator on *DE* vanishes. But this can be achieved as in the proof of that theorem. In order to compute the η -invariant we have to compute the integral over the A-form only, but by the discussion above, this differs only by the term of order 0 in ρ from the equivariant case.

Example: The (generalized) Berger spheres M_{ρ} are obtained from the round sphere $M_1 = S^{n+1} \subset \mathbb{C}^{l+1}$ of odd dimension n+1 = 2l+1 of curvature 1 by shrinking the orbits of the S^1 -action induced from complex multiplication. In this case we have $\langle R_{\mathcal{H},\mathcal{H}} u \mid a \rangle^M = 0$ and $\langle R_{\mathcal{H},\mathcal{H}} a \mid b \rangle^M = b \wedge a$. The horizontal distribution in TM has a complex structure J (it is induced from $B = \mathbb{C}P^{l}$) and we have that $\alpha(x, Jx) = 1$ for a unit vector x and $\alpha(x, y) = 0$ if y and x are perpendicular over \mathbb{C} .

If n = 4k+1 the $M_{\rho} = (M, g^{\rho})$ do not admit equivariant Spin-structures because $\mathbb{C}P^{2k}$ is not spin. If n = 4k + 3 there is one equivariant Spin-structure induced from a Spin-structure on $\mathbb{C}P^{2k+1}$. For k = 0, 1, 2, a lengthy but straightforward calculation gives:

$$\begin{split} \eta(D,S_{\rho}^{3}) &= -\frac{1}{6} + \frac{1}{12}\rho^{2} - \frac{1}{6}\rho^{4} ,\\ \eta(D,S_{\rho}^{7}) &= -\frac{11}{360} + \frac{11}{90}\rho^{2} - \frac{11}{60}\rho^{4} + \frac{11}{90}\rho^{6} - \frac{11}{360}\rho^{8} ,\\ \eta(D,S_{\rho}^{11}) &= -\frac{191}{30240} + \frac{191}{5040}\rho^{2} - \frac{191}{2016}\rho^{4} + \frac{191}{1512}\rho^{6} - \frac{191}{2016}\rho^{8} \\ &+ \frac{191}{5040}\rho^{10} - \frac{191}{30240}\rho^{12} . \end{split}$$

The first result was computed by Hitchin (see [11]) from the Dirac spectrum of the classical Berger spheres.

4 Adiabatic Limits

Consider the canonical variation of the metric on M as in the proof of the vanishing theorem. We want to compute the limit $\rho \to 0$ of $\eta(D_{\zeta}, g^{\rho})$. The condition of theorem 2.2 holds for small ρ if the corresponding condition for the quotient manifold B is satisfied, because the scalar curvature of M converges to that of B as $\rho \to 0$. The following theorem gives the limit of integrals as in 2.3.

In general let K be the multiplicative sequence associated to a power series k (see [12] or [14]), f an arbitrary power series in one variable starting with 1, ∇ a connection on $\pi^* E$ extending ∇^0 with first Chern form $c_1(\nabla) \in \Omega^2(DE; \mathbb{R})$ and $\beta \in \Omega^*(B; \mathbb{R})$ arbitrary.

Theorem 4.1

$$\lim_{\tau \to 0} \int_{DE} K(p(g_{DE}^{\tau})) f(c_1(\nabla)) \pi^* \beta = \left\langle K(p(TB)) \beta \left. \frac{(k(y^2) f(y) - 1)}{y} \right|_{y = c_1(E)} \right| [B] \right\rangle.$$

For the signature operator $S(g_M^{\tau})$ (see [1]) we get at once:

Corollary 4.2

$$\lim_{\tau \to 0} \eta(S(g_M^{\tau}))) = \left\langle L(p(TB)) \left(\frac{1}{\tanh(c_1(E))} - \frac{1}{c_1(E)} \right) \middle| [B] \right\rangle - \operatorname{sign}(DE, M).$$

By Theorems 2.2 and 4.1 the Atiyah-Patodi-Singer index theorem applied to the manifold (DE, M) yields for $K = \hat{A}$, $f(x) = e^{x/2}$, $k(x) = x^{1/2}/(2\sinh(x^{1/2}/2))$ and $\beta = \operatorname{ch}(\zeta_B)e^{c_1(\xi(\alpha_B))/2}$:

Corollary 4.3

$$\lim_{\rho \to 0} \frac{\eta(D_{\zeta}, g^{\rho}) + \dim \ker (D_{\zeta}, g^{\rho})}{2} = \left\langle \hat{A}(B) e^{c_1(\xi(\alpha_B))/2} \operatorname{ch} (\zeta_B) \left(\frac{e^{c_1(E)/2}}{2\sinh (c_1(E)/2)} - \frac{1}{c_1(E)} \right) \middle| [B] \right\rangle \mod \mathbb{Z}.$$

If in addition

$$s_B(b) > 4 ||R^{\alpha_B} \otimes 1 + 1 \otimes R^{\zeta_B}||(b)$$

for all $b \in B$, then the identity holds in \mathbb{R} i.e. without reducing modulo \mathbb{Z} and $\lim_{\rho \to 0} \dim \ker (D_{\zeta}, g^{\rho})$ is trivial.

This formula was also obtained by W. Zhang [18] relying on the work in [7]. It follows that these limits do not depend on the metrics and connections involved but can be computed from the bundles only.

Proof of Theorem 4.1: By the formulae (3.1) to (3.4) and (3.5) for the Riemannian curvature tensor on DE we have

$$\lim_{\rho \to 0} R_{x,y}^{DE} = \begin{pmatrix} 0 & z & & \\ -z & 0 & & \\ & 0 & & \pi^* R^B \end{pmatrix}$$

with

$$z := \frac{f''(\tau)}{f(\tau)} \ u \wedge v + 2f'(\tau) \ \pi^* \alpha \ .$$

The invariant polynomial P defining the Pontrjagin forms from the curvature tensor is $p(R) = \det \left(1 + \frac{R}{2\pi}\right)$ and has the property that $p\begin{pmatrix} A & B \\ 0 & C \end{pmatrix} = p(A)p(C)$. Because of the multiplicativity of K we therefore have

$$\lim_{\rho \to 0} K(p(g_{DE}^{\rho})) = \pi^* K(p(g_B)) \wedge k(z^2/4\pi^2).$$

As $\rho \to 0$ the integral in the theorem converges to

$$\int_{DE} \pi^* (K(p(TB)) \ \beta) \ k(z^2/4\pi^2) f(z/2\pi) = \int_{DE} \pi^* (K(p(TB)) \ \beta) (k(z^2/4\pi^2) f(z/2\pi) - 1) \ .$$

The last factor is divisible by $z/2\pi$. So we can perform integration along the fibre and get

$$\int_{B} K(p(TB))\beta \frac{k(c_1(E)^2)f(c_1(E)) - 1}{c_1(E)} ,$$

since

$$\pi_{!}(z^{l}) = l\pi_{!}\left(\frac{f''(\tau)f'(\tau)^{l-1}}{f(\tau)} \ u \wedge v \wedge (2\alpha)^{l-1}\right) = (2\alpha)^{l-1}$$

and α/π represents $c_1(E)$.

References

- M. F. Atiyah, V. K. Patodi and I. Singer, Spectral asymmetry and Riemannian geometry I, Math. Proc. Camb. Philos. Soc. 77, 1975, 43–69.
- [2] M. F. Atiyah, V. K. Patodi and I. Singer, Spectral asymmetry and Riemannian geometry II, Math. Proc. Camb. Philos. Soc. 78, 1975, 405–432.
- [3] M. F. Atiyah, V. K. Patodi and I. Singer, Spectral asymmetry and Riemannian geometry III, Math. Proc. Camb. Philos. Soc. 79, 1976, 71–99.
- [4] M. F. Atiyah and I. Singer, *The index of elliptic operators III*, Ann. of Math. 87, 1968, 546–604.
- [5] N. Berline, E. Getzler, M. Vergne, *Heat Kernels and Dirac Operators*, Grundlehren der Mathematischen Wissenschaften, 298, Springer Verlag, Berlin and New York, 1991.

- [6] A. L. Besse, *Einstein manifolds*, Springer Verlag, Berlin and New York, 1986.
- [7] J.-M. Bismut and J. Cheeger, η-invariants and their adiabatic limits, J. Amer. Math. Soc. 2, 1989, 33–70.
- [8] X. Dai, Adiabatic limits, nonmultiplicativity of signature, and Leray spectral sequence, J. Amer. Math. Soc. 4 (1991), no. 2, 265–321.
- X. Dai and W.P. Zhang, Circle bundles and the Kreck-Stolz invariant, Trans. Amer. Math. Soc. 347 (1995), no. 9, 3587–3593.
- [10] P. Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, Publish or Perish Pressm, Wilmington Delaware, 1984.
- [11] N. Hitchin, *Harmonic spinors*, Adv. Math. 14, 1974, 1–55.
- [12] F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Grundlehren der mathematischen Wissenschaften Bd. 131, Springer, 1966.
- [13] M. Kreck and S. Stolz, Nonconnected moduli spaces of positive sectional curvature metrics, J.-Amer.-Math.-Soc. 6 (1993), no. 4, 825–850.
- [14] H. B. Lawson and M.-L. Michelson, Spin Geometry, Princeton University Press, Princeton, 1989.
- [15] A. Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci. Paris, Sér. A-B 257, 1963, 7–9.
- [16] B. O'Neill, The fundamental equations of a submersion, Mich. Math. J. 13, 459–469, 1966.
- [17] J. Seade and B. Steer, A note on the Eta function for quotients of $PSL_2(\mathbb{R})$ by co-compact Fuchsian groups, Topology 26, 1987, 79–91.
- [18] W. Zhang, η-invariants and Rokhlin congruences, C. R. Acad. Sci. Paris A 315, 1992, 305–308.