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Abstract

Let W = S ⊗ E be a complex spinor bundle with vanishing first Chern
class over a simply connected spin manifold M of dimension ≥ 5. Up to
connected sums we prove that W admits a twisted Dirac operator with
positive order-0-term in the Weitzenböck decomposition if and only if
the characteristic numbers Â(TM)[M ] and ch (E)Â(TM)[M ] vanish.
This is achieved by generalizing [2] to twisted Dirac operators.

1 Introduction

A key point in the Lichnerowicz argument, showing that the Â genus is an ob-
struction to the existence of a metric with positive scalar curvature, is the fact
that the scalar curvature appears as the order-0-term in the Weitzenböck decom-
position of the ordinary Dirac Laplacian D2. It was shown in [2], [8] that positive
scalar curvature can be preserved under surgeries in codimension ≥ 3. Within the
class of simply connected spin manifolds of dimension ≥ 5 the cobordism relation
is generated by surgeries of this type. Therefore all such manifolds admitting a
metric of positive scalar curvature could be determined by computations in the
spin cobordism ring (see [2], [8], [6], [7]).

Here we extend this to general Dirac operators (see [1], [4]). The role of
scalar curvature is taken by the order-0-term in the Weitzenböck decomposition
of a twisted Dirac operator. This term is positive if the scalar curvature is larger
than a certain norm of the curvature endomorphism of the coefficient bundle.
First we prove a surgery theorem for the order-0-term in the the Weitzenböck
decomposition of twisted Dirac Laplacians D2

∇ (Theorem 1). Next we consider
complex spinor bundles with trivial first Chern class over simply connected spin
manifolds of dimension ≥ 5. Up to connected sums, we determine all spinor
bundles within this class, which admit a Dirac operator with positive order-0-term
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in its Weitzenböck decomposition (Theorem 2). This is done by a computation
in the cobordism ring

∑
n,k Ωspin

n (BSU(k))⊗Q.

2 Statement of Results

Let W be a complex spinor bundle over a spin manifold M . Then W is a twisted
spinor bundle W = S ⊗ E, where S is the spinor bundle associated to the irre-
ducible representation of the Clifford algebra and E is a complex vector bundle,
see [1], [4]. To a Riemannian metric g on M and a Hermitian connection ∇ on
E there is naturally associated the twisted Dirac operator D∇ acting on sections
of W . The Weitzenböck decomposition of its Dirac laplacian D2

∇ reads ([1], [4])

D2
∇ = D∗D +

1

4
s+

∑
i,j

eiej ⊗Rei,ej
,

the sum being taken over an orthonormal basis {ei} of the tangent space of M .
Here D is the covariant derivative on W induced from the connection ∇ and the
Levi-Civita connection on M . By s we denote the scalar curvature of M and by
R the curvature tensor of ∇. We also define E(∇) := 4

∑
i,j eiej ⊗ Rei,ej

and
||E(∇)|| (x) to be minus the smallest eigenvalue of the bundle endomorphism E(∇)
at the point x ∈M .

Assume additionally that M is simply connected, dimM ≥ 5 and c1(E) = 0.
We will show that rationally, i.e. after eventually passing to a suitable connected
sum multiple of (M,E), the following are equivalent:

1. M admits a Riemannian metric g and E a Hermitian connection ∇, such
that s(g) > ||E(∇)|| on M . We will then say that (M,E) admits large scalar
curvature.

2. Both S and W admit an invertible Dirac operator.

3. The characteristic numbers Â(TM)[M ] and ch (E)Â(TM)[M ] vanish.

As ||E(∇)|| is always nonnegative, the implication (1) ⇒ (2) is immediate from
the Weitzenböck decomposition. By the index theorem we have (2) ⇒ (3). So
we are left with the implication (3) ⇒ (1).

Therefore we will first extend the surgery theorem for scalar curvature (cf.
[2], [8]) to show that positivity of s + E(∇) can be preserved under surgeries of
codimension at least 3.

Theorem 1 Let E →M be a vectorbundle over the smooth manifold M . Assume
that there is a Riemannian metric g on M and a unitary connection ∇ on E with
s(g) > ||E(∇)||. If the manifold M ′ is produced from M by surgery in codimension
more than 2 and such that the vector bundle E extends over the trace of the
surgery giving a vector bundle E ′ over M ′ then there are a Riemannian metric
g′ on M ′ and a unitary connection ∇′ on E ′ with s(g′) > ||E(∇′)||.
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Now we look at simply connected spin manifolds M of dimension dimM ≥ 5
endowed with a complex vectorbundle E with vanishing first Chern class. Then
E — and the spinor bundle W = S ⊗ E — are trivial over embedded 2-spheres.
As in [2] we obtain that any cobordism can be replaced by a sequence of surgeries
of codimension ≥ 3. Hence we can decide from the cobordism class of (M,E) in
Ωspin
n (BSU(k)), whether it admits large scalar curvature. We have

Theorem 2 Let E → M be a SU(r)-vectorbundle over the smooth simply con-
nected spin manifold M of dimension ≥ 5. Then the following are equivalent:

1. For some q the q-fold connected sum (M,E)# . . .#(M,E) carries a metric
g and a connection ∇ with s(g) > ||E(∇)||.

2. Â(TM)[M ] = 0 and ch (E)Â(TM)[M ] = 0.

3 Proof of Theorem 1

Consider surgery on an embedded sphere Sk ∼= S ⊂Mk+l, n = k+ l, with trivial
normal bundle and such that the restriction to S of the vector bundle E is trivial.
M ′ is then obtained by cutting out a tubular neighbourhood f : Sk ×Dl ↪→ M
of S and glueing back Dk+1×Sl−1 along the boundary Sk ×Sl−1. In the end M ′

will be described as a submanifold of Z := M × [0, δ] ∪f Dk+1 ×Dl

Let Sk ×Dl carry the metric and the connection induced via f from M . We
can extend these data to all ofDk+1×Dl, such that in the vicinity of the boundary
Sk×Dl they are compatible to a product structure of a collar neighbourhood. The
metric and connection on Z are then obtained by glueing this handle Dk+1 ×Dl

with the product metric and connection on M × [0, δ].
Let % ≤ R be sufficiently small constants (e.g. less that the injectivity radius

of Z) and denote by d(·, S) the distance from S. Define Nr := {x ∈M | d(x, S) ≤
r} and Yρ = ∂Nρ. If ρ ≤ R then the exponential map provides diffeomorphisms
Dn−k × Sk ∼= ρDν(S,M) → Nρ and Sn−k−1 × Sk ∼= ρSν(S,M) → Yρ. Pick a
decreasing real function φ(ρ) defined for ρ ≥ %, vanishing for ρ ≥ R and such
that all derivatives of its inverse function χ = φ−1 vanish at φ(%). Let δ := φ(%)
and ψ(x) := φ(d(x, S)), x ∈M . The result of the surgery is

M ′ = {(m, t) | φ(d(m,S)) = t} ∪f {x ∈ Dk+1 ×Dn−k | d(x, Sk ×Dn−k = %} .

We will show that one can find % and φ such that on M ′ we have s− E positive.
The calculations in 3.1 are much the same as in [2] and merely included for

the reader’s convenience.

3



3.1 Scalar Curvature of M ′

M ′ is glued together from the graph X of ψ on M \N% and a handle. We express
the scalar curvature of X ⊂ M × R at (m, t) in terms of the second fundamen-
tal form T of the submanifolds ψ−1(t) ⊂ M at m. This is a straightforward
calculation based on the Gauß equation.

Denote the derivation in direction of the R-factor by ∂t and the gradient
of ψ by ∂ψ. Let r := −∂ψ/|∂ψ| = ∂ψ/φ′ and n̂ := (−∂ψ, ∂t)/

√
1 + |∂ψ|2 =

(−φ′r, ∂t)/
√

1 + φ′2 be the normal unit vectors to ψ−1(t) and X respectively.
For a vector v ∈ TmM define v := (v, v(ψ) ∂t) ∈ T(m,ψ(m))X.

At a point (m, t) ∈ X choose an orthonormal basis v1, . . . , vn−1 of the or-
thogonal complement of the gradient ∂ψ in TmM . We work in the orthonormal
basis (

v1, . . . , vn−1,
∂ψ∣∣∂ψ∣∣ = − (r, φ′ ∂t)√

1 + φ′2

)
of T(m,t)X.

First we compare the second fundamental form T of the submanifolds ψ−1(t) ⊂
M at m with the second fundamental form T of X ⊂ M × R at (m, t). For v, w
perpendicular to ∂ψ we obtain

T (v, w) = 〈∇vw | n̂〉 = 〈∇vw | (−φ′ r)〉 /
√

1 + φ′2

= T (v, w)
−φ′√
1 + φ′2

T
(
v, ∂ψ/

∣∣∂ψ∣∣) = −〈∇v(r, φ
′ ∂t) | (−φ′r, ∂t)〉 /

(
1 + φ′

2
)

= (φ′ 〈∇vr | r〉 − v(φ′)) /
(
1 + φ′

2
)

=
(
φ′v(|r|2)/2− v(φ′)

)
/
(
1 + φ′

2
)

= 0

T
(
∂ψ/

∣∣∂ψ∣∣, ∂ψ/∣∣∂ψ∣∣) =
〈
∇(r,φ′ ∂t)(r, φ

′ ∂t)
∣∣ (−φ′r, ∂t)

〉
/
(
1 + φ′

2
)3/2

= (〈∇rr | − φ′r〉+ r(φ′)) /
(
1 + φ′

2
)3/2

=
φ′′(

1 + φ′2
)3/2

The Gauss formula then yields for the sectional curvature K of the submanifold
X:

K (v, w) = K(v, w) +
φ′2

1 + φ′2
(
T (v)T (w)− T (v, w)2

)
K
(
v, ∂ψ/

∣∣∂ψ∣∣) = KM×R (v, ∂ψ/∣∣∂ψ∣∣)− φ′φ′′(
1 + φ′2

)2T (v)
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=
1

1 + φ′2
K(v, r)− φ′φ′′(

1 + φ′2
)2T (v)

Taking sums over the basis above we end up with

s = s+
φ′2

1 + φ′2

∑
i,j

(
T (vi)T (vj)− T (vi, vj)

2
)

− φ′2

1 + φ′2
2
∑
i

K(vi, r) (3.1)

− φ′φ′′(
1 + φ′2

)2 2
∑
i

T (vi) .

We will need the asymptotic behaviour when approaching S of the functions
on NR \N% defined by the sums in (3.1):

Lemma 3.2 As ρ = d(x, S) → 0 the asymptotic behaviour of the functions A :=∑
i,j(T (vi)T (vj)− T (vi, vj)

2) = (TrT )2 −TrT 2, B := −2
∑

i T (vi) = 2 TrT and
C := 2

∑
iK(vi, r) = 2 Ric (r) is

A(x) = a2 ρ
−2 + a1(x) ρ

−1 + a0(x), B(x) = b1ρ
−1 + b0(x) ,

with bounded functions a1(x), a0(x) and b0(x) and positive constants a2 and b1.
C also extends to a bounded function on NR.

In fact since the codimension l of the submanifold S is ≥ 3 we have a2 = (l −
1)(l − 2)/2 > 0 and b1 = l − 1 > 0.

Proof: Consider the diffeomorphism S × Rl = ν(S,M) → NR given by the
exponential map i.e. mapping (p, v) 7→ expp v. For unit speed curves p(t) in S and

At in SO(l) define vectorfields h = d
dt

expp(t) v, u = d
dt

exppAtv, r̃ = d
dt

expp tv.
Then for small ρ = |v| expand |u| = ρ + buρ

2 and |r̃| = ρ + brρ
2 with smooth

functions bu, br. We compute

T (
u

|u|
) =

1

|u|2|r̃|
〈∇uu | r̃〉 = − 1

2|u|2|r̃|
r̃(|u|2)

because u and r̃ commute and are mutually perpendicular. Since r = r̃/ |r̃| = ∂
∂ρ

,

we infer from the asymptotics of |u|, that this is

−1

2|u|2
∂

∂ρ

(
ρ+ buρ

2
)2

= −1

ρ
+O(1) .

A similiar computation shows that T (h/|h|) and T (u/|u|, h/|h|) are bounded.
The Lemma then follows from polarisation. •

The scalar curvature of Yρ is also obtained from the Gauß formula (substitute
φ′′ = 0 and φ′ = ∞ in (3.1)). Hence for small ρ we get:

sYρ = s+A− C = a2 ρ
−2 + a1 ρ

−1 + a0 − C .
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3.2 The Curvature Endomorphism

The manifold X can also be viewed as obtained from M \N% by blowing up the
metric in direction of r. More precisely X is isometric to (M \N%, g) with

g(v, w) := g(v, w) + g(v, ∂ψ)g(∂ψ,w) = g(v, w) + |∂ψ|2g(v, r)g(r, w) .

Especially the length of r becomes
√

1 + φ′2. The transition matrix between the
metrics g and g gives an isomorphism between the spinor bundles of (M, g) and
of (M, g). The pull back via this isomorphism of the curvature endomorphism of
(M, g) to the spinor bundle over (M, g) is:

E = 4
∑
i,j

vivj ⊗Rvi,vj
+

4√
1 + φ′2

∑
i

rvi ⊗Rr,vi

= E − 4

(
1− 1√

1 + φ′2

)∑
i

rvi ⊗Rr,vi
(3.3)

and its smallest eigenvalue is estimated by

∣∣∣∣E∣∣∣∣ ≤ ||E||+ 4

(
1− 1√

1 + φ′2

)∣∣∣∣∣
∣∣∣∣∣∑

i

rvi ⊗Rr,vi

∣∣∣∣∣
∣∣∣∣∣

≤ ||E||+ 4
φ′2

1 + φ′2

∣∣∣∣∣
∣∣∣∣∣∑

i

rvi ⊗Rr,vi

∣∣∣∣∣
∣∣∣∣∣ (3.4)

Herein D := 4 ||
∑

i rvi ⊗Rr,vi
|| extends to a bounded function on NR.

3.3 Solution of The Differential Inequality

Finally we need to solve the differential estimate s−
∣∣∣∣E∣∣∣∣ > 0. From (3.1), (3.4)

and Lemma 3.2 we infer that

s−
∣∣∣∣E∣∣∣∣ ≥ s− ||E||+ φ′2

1 + φ′2
(A−D − C) +

φ′φ′′(
1 + φ′2

)2B
= s− ||E||+ φ′2

1 + φ′2
(
a2ρ

−2 + a1(x)ρ
−1 + a0(x)−D − C

)
+

φ′φ′′(
1 + φ′2

)2 (b1ρ−1 + b0(x)
)

So we have solved the problem on X if we can find a decreasing function φ on
[%,R] such that this expression is positive. Furthermore we need that φ vanishes
identically near R and that all derivatives of its inverse function χ = φ−1 vanish
at φ(%) so that X will inherit a product metric and connection near its boundary.
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Eventually after taking an even smaller value of R, we pick positive constants
a, b such that on NR the estimates aρ−2 ≤ a2ρ

−2 + a1(x)ρ
−1 + a0(x)−D−C and

b ≤ b1ρ
−1 + b0(x) hold. Furtermore let ε := min(s− ||E||) > 0. Then it suffices to

solve
ε+ φ′

4
aρ−2 + φ′φ′′bρ−1 > 0 (3.5)

Consider the the differential equation φ′4ρ−2 a/2+φ′φ′′ρ−1 b = 0 and its solutions

φC(ρ) =

∫ R

ρ

1√
a
b
log x+ C

dx

defined for ρ ≥ % := e−Ca/b for some C ∈ R. For a sufficiently large value of C we
can find a decreasing solution of ε+ φ′φ′′bρ−1 > 0 in the intervall [R/2,R] which
vanishes identically near R and extends φC smoothly from [%,R/2] to [%,R] to
ensure the proper boundary condition at ρ = R. At the other boundary (3.5)
for the inverse function χ reads εχ2χ′4 + a − bχχ′′ ≥ 0. Let χC be the inverse
function of φC on [0, φ(%)] extended by the constant % to all of R+. Then we have
a/2− bχC(y)χ′′C(y) = 0 for all y 6= φ(%). But χC can clearly be smoothed keeping
a− bχ(y)χ′′(y) ≥ 0.

3.4 The result of glueing

In the above we could make % arbitrarily small. By the remark after Lemma 3.2
we thus may assume s − ||E|| positive on the handle H% := {x ∈ Dk+1 × Dl |
d(x,Dk+1 × %Sl−1) = %}. Since both X and Dk+1 × Dl were produced to carry
product metric and connection near their boundary, we can glue M ′ = X ∪ H%

metrically and obtain the desired metric and connection over M ′. This proves
theorem 1. •

4 Proof of Theorem 2

We will exhibit representatives (M,E) admitting large scalar curvature in every
cobordism class in Ωspin

n (BSU(r)) ⊗ Q with vanishing characteristic numbers
Â(TM)[M ] and ch (E)Â(TM)[M ]. In the sequel cobordism classes will always
be understood rationally, i.e. tensored with Q, but this will be supressed in the
notation. We will produce suitable generators of Ωspin

n (BSU(r)) first.
This vectorspace is trivial for n odd. The cobordism classes X = (M,E) ∈

Ωspin
n (BSU(r)) are detected by the characteristic numbers

cJpI(X) = cJ(E)pI(TM)[M ] ,

where cJ = cjrr · · · c
j2
2 and pI = pisr · · · p

i1
1 for J = (jr, . . . , j2), I = (is, . . . , i1)

with 2(rjr + · · · + 2j2) + 4(sis + · · · i1) = n. First we will define Xn(J) ∈
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Ωspin
2n (BSU(r)) such that the matrix (cJ ′(X

n(r, J)))J ′,J has full rank. We will
construct appropriate bundles over products of the sphere S2 and the complex
projective spaces CP2n+1:

For J = (jr, . . . , j2) with
∑r

i=2 iji = n we define (r×n)-matrices M r
J . If r ≥ 4

let

M r
J :=



1 · · · 1
−1 · · · −1︸ ︷︷ ︸

jr

1 · · · 1 0
−1 · · · −1︸ ︷︷ ︸
jr+jr−1 ·

·
·

1 · · · 1
0 −1 · · · −1︸ ︷︷ ︸

jr+jr−1+...+j3

1 · · · 1
−1 · · · −1︸ ︷︷ ︸

jr+jr−1+...+j3+2j2


For r = 3 and J = (j3, j2) with j3 > 1 let

M3
J =

 1 · · · 1 1 0 · · · 0
−1 · · · −1 0 1 · · · 1

0 · · · 0︸ ︷︷ ︸
j3

−1 −1 · · · −1︸ ︷︷ ︸
j3+2j2−1


Then let

Xn(r, J) = (S2 × · · · × S2︸ ︷︷ ︸
n

, E(M r
J)), (4.1)

with

E(M r
J) =

r⊕
i=1

γ
ε1,i

1 ⊗ · · · ⊗ γεn,i
n (4.2)

for M r
J = (εµ,ν)µ=1...n,ν=1...r. Here γq is the canonical complex line bundle over the

qth factor S2 in (4.1). Slightly abusing the system of notation above define

X2n+2(2, (n+ 1)) := (CP2n+1 × S2, (η ⊗ γ)⊕ (η−1 ⊗ γ−1)) (4.3)

and
X2n+1(3, (a, b, c)) := (CP2n+1, ηa ⊕ ηb ⊕ ηb) (4.4)

for a, b, c ∈ Z, −n ≤ a, b, c ≤ n, a + b + c = 0, if n ≥ 2. If n = 1 we take a = 2,
b = c = −1. In (4.3) and (4.4) η, γ denote the canonical bundles over CP2n+1

and S2.

Lemma 4.5 The Xn(r, J) above admit large positive scalar curvature with ex-
ception of X2(2, (2)) and X3(3, ((2,−1,−1)))
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Proof: In [3] Hitchin has proved that (CPq, ηs) admits large scalar curvature
if q ≥ 2s and that s−||E(ηs)|| = 0 if q = |s| = 1. It is immediate from the definition
that ||E(E ⊕ F )|| = max(||E(E)|| , ||E(F )||) and ||E(E ⊗ F )|| ≤ ||E(E)|| + ||E(F )||.
Thus we can estimate

||E(E(M r
J))|| ≤ maxi

(
n∑
q=1

εq,i ||E(γ)||

)
< n ||E(γ)||

because, with the above exceptions, in every row of the matrices M r
J at least one

entry vanishes. Since the scalar curvature of the round S2 equals ||E(γ)||, we thus
get that the scalar curvature of S2 × . . . × S2 is larger than ||E(E(M r

J))||. The
cases involving CP2n+1 are similiar. •

Lemma 4.6 The matrix (cJ ′ (X
n(s, J)))J ′,(s,J), s ≤ r, has full rank.

Proof: We compute the Chern class of the vectorbundle E(M r
J): Denoting

by xq = c1(γq) the generator of the second cohomology group of the qth factor
S2 in (4.1) we obtain from (4.2) that:

ck(E) =
∑

µ1,...µk,ν1,...νk

εµ1,ν1 · · · εµk,νk
xν1 · · ·xνk

,

where the µs respectively νs in this sum are pairwise distinct. Order the partitions
I, J lexicographically. Observing that x2

s = 0 we get for r ≥ 4 that

cI(X
n(r, J)) =

{
0 if I > J
6= 0 if I = J

(4.7)

Thus this part of the matrix is triangular. If r = 3, then a straightforward
calculations gives that cj3,j2(X

n(3, (j3, j2))) = (−1)j3+j2−1(j3−1)(j3 +j2)j3!(2j3 +
2j2 − 1)!. If n is even then j3 6= 1 and (4.7) still holds. For the remainder of the
matrix we use the manifolds defined in (4.3) and (4.4). For r = 2 we clearly have
cn+1
2 ((η⊗ γ)⊕ (η−1⊗ γ−1)) = 2(−1)j2j2 6= 0. We are left with the case r = 3 and
n odd. The Chernclasses of ηa ⊕ ηb ⊕ ηb are given by the elemenary symmetric
polynomials σ3, σ2 in a, b, c. Assume that the polynomial

P (a, b, c) :=
∑
j3,j2

αj3,j2cj3,j2(X
n(3, (a, b, c))) =

∑
j3,j2

αj3,j2σ
j3
3 σ

j2
2

of degree 2n + 1 vanishes for all a, b, c as after (4.4). Then the polynomial
P (a, b,−a − b) vanishes for all a, b ∈ Z with −n ≤ a, b, a + b ≤ n. Since it
is homogeneous it must be divisible by all (na+sb) and (sa+nb), s = 0 . . . n and
if n ≥ 2 it must also contain (a− b) hence have degree at least 2n+ 2. Therefore
P vanishes on the entire plane a+b+c = 0. Since it does not contain σ1 and since
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there are no algebraic relations between the elementary symmetric polynomials,
the coefficients αj3,j2 are all 0.

•

Let Kn,r ⊂ Ωspin
2n (BSU(r)) be the kernel of those cJpI with nontrivial I. We

have shown that the span of the Xn(r, J) as above projects onto Kn,r. It is
well known that

⊕
n Ωspin

n is polynomially generated by the Kummer surface K
and the quaternionic projective spaces HPn, n ≥ 2. In view of the direct sum
decomposition

Ωspin
2n (BSU(r)) =

n⊕
p=0

Kp,r × Ωspin
2n−2p (4.8)

we infer from Lemma 4.6 that there is a basis of Ωspin
n (BSU(r)) consisting of

monomials in K, quaternionic projective spaces and one of the Xn(r, J). Among
these only K, X2(2, (2)) and X3(3, ((2,−1,−1))) do not admit large scalar cur-
vature. Therefore the only monomials not admitting large scalar curvature are
of the form Kd/4−1 ×X2(2, (2)) or Kd/4 if the dimension d is divisible by 4 and
K(d−2)/4−1 ×X3(3, ((2,−1,−1))) if the dimension is d = 2 mod 4. These mono-
mials are also detected by the characteristic numbers Â and ch Â.
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