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Abstract

To a topological space V we assign the bordism group Ndef
n (V ) of reg-

ularly defective maps f : M◦→V on closed n-dimensional manifolds M .
These are triples (M,∆, f) where ∆ is a closed submanifold ∆ ⊂ M and
f a continuous map f : M r ∆ → V .
We briefly review the construction of the defect complex DV given by
M. Rost in [17] and show that Ndef

n (V ) is isomorphic to ordinary bordism
Nn(DV ). The bordism classes in Ndef

n (V ) ∼= Nn(DV ) are detected by
characteristic numbers twisted with cohomology classes of DV . Some of
these numbers can be described without reference to the defect complex.
As an example we treat the case of the circle V = S1. We compute
Ndef

n (S1), construct a basis and a complete set of characteristic numbers.

1 Introduction

By a regularly defective map we mean a triple (M,∆, f) consisting of a
compact manifold M , a closed submanifold ∆ ⊂ M and a continuous map
f : M r ∆ → V into a topological space V . We additionally require that ∆
be transverse to the boundary ∂M of M . Usually the defect set ∆ will be
suppressed in the notation and we will write f : M◦→V .

Initially, interest in defective maps arose from the physics of ordered me-
dia, where M is thought of as the coordinate space of a collection of particles,
e.g. a domain in R3, cf. [11], [12] or [15]. A map f : M r ∆ → V encodes
some additional piece of information like the orientation of the particles. Fa-
mous examples are axial or biaxial nematics, superfluid 3He, see [1], [7], [10],
[13]. Physicists also have considered some invariants distinguishing topolog-
ically different defective maps f . Probably the simplest ones are obtained
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by considering the homotopy class of the restriction of f to a tubular neigh-
bourhood of the defect set, in particular the defect indices considered in [11],
[14], and [1], [2].

We consider the natural notion of bordism on such maps: Two regularly
defective maps f : M◦→V and f ′ : M ′◦→V with defect sets ∆, ∆′ are bordant
if there is a regulary defective map F : W◦→V with defect set Γ such that

1. ∂W = M∪̇M ′,

2. ∂Γ = ∆∪̇∆′ and

3. F |M = f , F |M ′ = f ′.

Taking disjoint union defines an addition on the set of equivalence classes.
We obtain the bordism group of regularly defective maps on n-dimensional
manifolds which we denote by Ndef

n (V ). If V = ∗ consists of a point only we
get bordism of pairs, which will be considered below.

Let f : M◦→V be a regularly defective map with defect set ∆ and fix a
component ∆0 ⊂ ∆. Consider the restriction of f to the sphere bundle SN
of the normal bundle N of ∆. Choosing a fibre SNx of SN |∆0, x ∈ ∆0,
and a homeomorphism h : Sk ∼= SNx we get a map f ◦ h : Sk → V . On the
set [Sk, V ] of homotopy classes of maps Sk → V we have an involution ±
induced by reversing the orientation of Sk. The local defect index of f at the
component ∆0 is the class ι(f,∆0) = [f ◦h] ∈ [Sk, V ]/±. It does not depend
on the choice of x and h. Up to sign it is the primary obstruction to extending
f over all of ∆0, cf. [3]. Regularly defective maps with ι(f,∆0) 6= 0 for each
component ∆0 of the defect set are called topologically stable in the physics
literature. In this case the defect can not be diminished by deformation, i.e.
f is not homotopic to a map extending to a superset of M r ∆.

We will also include the local defect index in the bordism groups. For
a prescribed subset Λ ⊂

⋃
k[S

k, V ]/±, a Λ-defective map f : M◦→V is a
regularly defective map all of whose local defect indices are contained in Λ.
Requiring the maps F , f ′ and f in the above definition to be Λ-defective
leads to the bordism groups Ndef ,Λ

n (V ).
In [17] M. Rost constructs the representing space DΛV for the set

DΛ(M,V ) of concordance classes of Λ-defective maps M◦→V by suitably
enlarging V such that each Λ-defective map f : M◦→V induces a con-
tinuous map F : M → DΛV , cf. section 2. He obtains a bijection
DΛ(M,V ) → [M,DΛV ]. We do not need this result here but rely on
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the corresponding statement for bordism. Along the lines of [17] we ob-
tain in section 2 a natural identification Ndef,Λ

n (V ) = Nn(DΛV ). Since
Nn(DΛV ) ∼=

⊕n

j=0 Nj(∗) ⊗ Hn−j(DΛV,Z2), cf. [4], the Λ-defective bordism
groups can then be computed from the Z2-homology of the defect complex.

The bordism class of a regularly defective map f : M◦→V is determined
by the characteristic numbers

〈wI(M) ` F ∗α, [M ]〉 (1.1)

where α ∈ H∗(DΛV ) and F : M → DΛV extends f . In section 3 we describe
some of these geometrically, i.e. without reference to the defect complex. For
fixed λ ∈ Λ we denote by ∆(λ) the union of those components of ∆ with local
defect index λ and by N (λ) and SN (λ) the corresponding bundles over ∆(λ).

We consider two types of characteristic numbers for regularly defective
maps. First, omitting the map f defines for each λ ∈ Λ a natural map
Ndef,Λ

n (V ) → Ndef
n (∗) = Npair

n , [M,∆, f : Mr∆ → V ] 7→ [M,∆(λ)] to bordism
of pairs. By Theorem 1 in [19] this is completely described by the Stiefel-
Whitney numbers 〈wI(TM), [M ]〉 of M and the characteristic numbers

Yλ,I,J(f) = 〈wI(∆) ` wJ(N), [∆(λ)]〉 .

Second we can restrict the map f to the sphere bundle π : SN → ∆ of
the normal bundle of the defect set. From the splitting TSN (λ) = π∗T∆(λ)⊕
TFSN

(λ) we construct the characteristic numbers

Zλ,α,I,J(f) = 〈wI(∆) ` wJ(N) ` f ∗α, [SN (λ)]〉

for α ∈ H∗(V ).

Section 4 deals with regularly defective bordism of the circle V = S1.
In Theorem 4.1.1 we calculate the (co)homology of DΛ(S1) and thereby
Ndef,Λ

∗ (S1). A basis for Ndef,Λ
∗ (S1) is given in section 4.2. For V = S1

the Zλ,α,I,J(f) are determined by the Yλ,I,J(f). Nonetheless we obtain a
complete set of geometrically defined characteristic numbers for Ndef ,Λ

∗ (S1),
Λ ⊂ Z r 0 in Theorem 4.3.1.

The bordism groups of normal coverings with Galois group Z are N∗(S
1).

Analogously Ndef
∗ (S1) may be identified with cobordism of regularly branched

Z-coverings. These are branched coveringsX → M in the sense of [6] with the
following additional properties: First they are required to have a submanifold
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∆ of M as branching, or “singular” set. Second they are to carry an action
of the integers Z on X which is transitive and free on the fibres over M r∆.
It is shown in [6] that, via completion, branched coverings g : X → M with
singular set ∆ biuniquely correspond to unbranched coverings over M r ∆.
Taking the classifying map f : M r ∆ → S1 = BZ relates these to defective
maps to S1.

A similiar calculation is performed in [16] for V = RP
∞, thus producing a

branched analogue to the computation of line field cobordism by Koschorke,
[9]. It turns out that [f : M◦→RP

∞] ∈ Ndef,Λ
∗ (RP

∞) is determined by the
bordism class of M and the Zλ,α,I,J(f).

Finally in section 5 we compute the invariants Zλ,α,I,J(f) for some exam-
ples showing that in general they give information neither contained in the
local defect index nor in the characteristic numbers of bordism of pairs.

We are grateful to Prof. K. Jänich for inspiring this research and to the
referee for many valuable hints and suggestions.

2 The Defect Complex

We review the construction in [17] of the defect complex DΛV of a topological
space V . Let Λ ⊂

⋃∞
k=1[S

k, V ]/± which we sometimes view as a Z2-invariant
subset Λ ⊂

⋃∞
k=1[S

k, V ]. Let EO(k) → BO(k) denote the universal O(k)-
bundle and γk = EO(k)×O(k) Rk the universal vector bundle. We endow the
set C(Sk−1, V ) of continuous maps Sk−1 → V with the compact-open topol-
ogy and the O(k)-action (g, f) 7→ f ◦ g−1 for g ∈ O(k) and f ∈ C(Sk−1, V ).

Let CΛ(Sk−1, V ) be the subspace of maps with homotopy class in Λ.
For a k-dimensional R-vector bundle N → ∆ we consider the associated
CΛ(Sk−1, V )-bundle

CΛ(SN, V ) =
⋃

x∈∆

CΛ(SNx, V ) = PO(k)(N) ×O(k) CΛ(Sk−1, V ) → ∆ ,

where PO(k)(N) → ∆ is the orthonormal frame bundle of N . Let

∆k
Λ = CΛ(Sγk, V ) = EO(k) ×O(k) CΛ(Sk−1, V )

πk

Λ−→ BO(k)

denote the classifying CΛ(Sk−1, V )-bundle. Then CΛ(SN, V ) = ν∗∆k
Λ for a

classifying map ν : ∆ → BO(k).
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Denote by Ek
Λ = (πk

Λ)∗γk the pull-back of γk to ∆k
Λ and let DEk

Λ, SEk
Λ

denote its disc respectively sphere bundle. The fibre of SEk
Λ over a point q ∈

BO(k) is canonically (Sγk
Λ)q ×CΛ((Sγk

Λ)q, V ). Hence we have the evaluation
map ak

Λ : SEk
Λ → V . We let ∆Λ, EΛ, DEΛ, SEΛ, aΛ denote the union over

all k ≥ 1 of the corresponding objects and use aΛ to glue

DΛV := DEΛ ∪aΛ
V .

This set DΛV is called the Λ-defect complex and ∆Λ the universal defect set.
Two Λ-defective maps fi : M◦→V , i = 0, 1 are concordant if there is a Λ-

defective map f̃ : M×[0, 1]◦→V extending fi : M×{i}◦→V . If F : M → DΛV
is transverse to the universal defect set ∆ (i.e. the induced section of F ∗E ′

Λ

is transverse to the zero section, E ′
Λ the pull-back of EΛ over itself), then

∆ := F−1(∆Λ) is a submanifold of M . Viewing ∆Λ ⊂
◦

DEΛ ⊂ DΛV as the 0-
section we may define R to be the obvious retraction DΛV r∆Λ → V . Then,
R ◦ F : M◦→V is a Λ-defective map with defect set ∆. It is shown in [17]

that this construction induces a bijection R : [M,DΛV ]
[F ] 7→[R◦F ]
−→ DΛ(M,V )

of the set of homotopy classes of maps M → DΛV with the set DΛ(M,V ) of
concordance classes of Λ-defective maps M◦→V .

We rely on the following immediate consequence of this construction.

Proposition 2.1 For each n there is a canonical isomorphism

Nn(DΛV )
∼=

−→ Ndef ,Λ
n (V )

[F ] 7−→ [R ◦ F ] ,

where we have chosen a representative F transverse to the universal defect
set ∆Λ.

Proof: In [17], the inverse map L : DΛ(M,V ) → [M,DΛV ] of R is obtained
by linear extension as follows. Let f : M r ∆ → V be a Λ-defective map and
ν : ∆ → BO(k), ν̂ : N → γk be a classifying map for the normal bundle N
of ∆. The map f defines a section of the bundle C(SN, V ) = ν∗∆k

Λ defined

above. Therefore we have a unique lift ψ : ∆ → ∆k
Λ, ψ̂ : N → Ek

Λ of maps

of vector bundles such that f |SN = ak
Λ ◦ ψ̂|SN . Glueing f |MrDN with ψ̂|DN

along SN yields a map L(f) : M → DΛV . This map represents L([f ]) and
will be called a linear extension of f in the sequel.

Applying R ◦ − resp. L(−) to bordisms one easily sees that R and L

induce well defined maps R′ : Nn(DΛV ) → Ndef ,Λ
n (V ), [F ] 7→ [R ◦ F ] and

L′ : Ndef,Λ
n (V ) → Nn(DΛV ).
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Since R ◦ L = id and L ◦ R = id we obviously get R′ ◦ L′ = id and
L′ ◦ R′ = id. �

3 Characteristic numbers for Ndef,Λ
n (V )

The bordism class of f : M r ∆ → V is determined by the characteristic
numbers 〈wI(M) ` F ∗α , [M ]〉, where F is a linear extension of f as defined
in the proof of proposition 2.1. In the following, we will investigate the
relation between these numbers and the invariants Yλ,I,J(f) and Zλ,α,I,J(f).
For q ≥ 0 and λ ∈ Λ∩ [Sk−1, V ] we define κq

λ : Hq(∆
λ
) → Hq+k(DΛV ) as the

composition

Hq(∆
λ
)

Φ
λ−−→
∼=

Hq+k(DE
λ
, SE

λ
)

(ι∗
λ
)−1

−−→
∼=

Hq+k(DΛV,DΛV r
◦

DE
λ
)

∗
λ−−→

∗
λ−−→ Hq+k(DΛV ), (3.1)

where Φ
λ

is the Thom isomorphism, ι
λ
: (DE

λ
, SE

λ
) → (DΛV,DΛV r

◦

DE
λ
)

the canonical map and 
λ
: (DΛV, ∅) → (DΛV,DΛV r

◦

DE
λ
) the inclusion.

Additionally, we define µq
λ : Hq(SE

λ
) → Hq+1(DΛV ) as the composition

Hq(SE
λ
)

δ
−−→ Hq+1(DE

λ
, SE

λ
)

(ι∗
λ
)−1

−−→
∼=

Hq+1(DΛV,DΛV r
◦

DE
λ
)

∗
λ−−→

∗
λ−−→ Hq+1(DΛV ).

Proposition 3.2 Then we have

Yλ,I,J(f) = 〈wI(M) ` F ∗κ∗λ(wJ(E
λ
)) , [M ]〉.

Proof: Let Φ: Hq(∆(λ)) ∼= Hq+k(DN (λ), SN (λ)) be the Thom isomorphism

and ι : (DN (λ), SN (λ)) →֒ (M,M r
◦

DN (λ)),  : (M, ∅) →֒ (M,M r
◦

DN (λ))
the inclusions. Then we have

Yλ,I,J(f) = 〈wI(TM |∆(λ)) ` wJ(N (λ)) , [∆(λ)]〉

= 〈wI(TM |DN(λ)) ` Φ(wJ(N (λ))) , [DN (λ), SN (λ)]〉

= 〈wI(M) ` (ι∗)−1Φ(wJ(N (λ))) , ι∗[DN
(λ), SN (λ)]〉

= 〈wI(M) ` ∗(ι∗)−1Φ(F |∆(λ))∗wJ(E
λ
) , [M ]〉 .

Since ∗(ι∗)−1Φ(F |∆(λ))∗ = F ∗κ∗λ the proposition is proved. �

6



Proposition 3.3 Let π
λ
: SE

λ
→ ∆

λ
denote the projection. Then we have

Zλ,α,I,J(f) = 〈wI(M) ` F ∗µ∗
λ(π

∗
λ
wJ(E

λ
) ` a∗

λ
α) , [M ]〉.

Proof: Let ιSN(λ) : SN (λ) →֒ DN (λ), ι : (DN (λ), SN (λ)) →֒ (M,M r
◦

DN (λ))

and  : (M, ∅) →֒ (M,M r
◦

DN (λ)) denote the inclusions. Then we have

Zλ,α,I,J(f) = 〈(ιSN(λ))∗wI(DN
(λ)) ` (πSN(λ))∗wJ(N (λ)) ` (f |SN(λ))∗α , [SN (λ)]〉

= 〈wI(DN
(λ)) ` δ((πSN(λ))∗wJ(N (λ)) ` (f |SN(λ))∗α) , [DN (λ), SN (λ)]〉

= 〈wI(M) ` (ι∗)−1δ((πSN(λ))∗wJ(N (λ)) ` (f |SN(λ))∗α) , ι∗[DN
(λ), SN (λ)]〉

= 〈wI(M) ` ∗(ι∗)−1δ((πSN(λ))∗wJ(N (λ)) ` (f |SN(λ))∗α) , [M ]〉.

Let ξ : N → E
λ

denote the isometric bundle map, equal to F on DN . Then

(πSN(λ))∗wJ(N (λ)) ` (f |SN(λ))∗α = (ξ|SN(λ))∗(π∗
λ
wJ(E

λ
) ` a∗

λ
α)

and using ∗(ι∗)−1δ(ξ|SN(λ))∗ = F ∗µ∗
λ we have proved proposition 3.3. �

4 Regularly defective bordism of the circle

4.1 Homology of DΛ(S1)

In the sequel (co)homology is always understood with Z2-coefficients. In this
section we think of the set Λ of admitted defect indices as a symmetric subset
Λ ⊂ π1(S

1) = Z, Λ = Λ+ ∪ −Λ+ with Λ+ ⊂ N0

Theorem 4.1.1 Let Λev
+ = Λ+ ∩ 2Z, φ :

⊕
λ∈Λ+

Z2 → Z2, (aλ)λ 7→
∑

λ λaλ

and assume 0 6= Λ. Then

Hk(DΛS
1) ∼=





Z2 for k = 0

Z2/im(φ) for k = 1

ker(φ) ⊂
⊕

λ∈Λ+
Z2 for k = 2⊕

λ∈Λev
+

Z2 for k ≥ 3

and

Hk(DΛS
1) = Hom(Hk(DΛS

1),Z2) ∼=





Z2 for k = 0

ker(ψ) for k = 1(∏
λ∈Λ+

Z2

)
/im(ψ) for k = 2

∏
λ∈Λev

+
Z2 for k ≥ 3
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where ψ : Z2 →
∏

λ∈Λ+
Z2, 1 7→ (λ mod 2)λ∈Λ+. If 0 ∈ Λ then Hk(DΛS

1) ∼=

Hk(DΛr0S
1) ⊕ Z

k−1
2 and Hk(DΛS

1) ∼= Hk(DΛr0S
1) × Z

k−1
2 (reading Z

0
2 =

Z
−1
2 = 0).

For the proof of the theorem consider the subspaces

CΛ(S1, S1) := {f : S1 → S1 | deg(f) ∈ Λ},

Cnor
Λ (S1, S1) := {f : S1 → S1 | ∃

λ∈Λ
∃

z0∈S1
∀

z∈S1
f(z) = z0z

λ}

of C(S1, S1). Let λ > 0 and let λ := {λ,−λ}. Obviously, Cnor
λ (S1, S1) is

a strong deformation retract of Cλ(S
1, S1). The deformation of the identity

into a retraction can be chosen to be compatible with the SO(2)-action on
Cλ(S

1, S1). Therefore, ∆nor
λ := EO(2) ×SO(2) C

nor
λ (S1, S1) is a strong defor-

mation retract of

∆
λ

= EO(2) ×O(2) Cλ
(S1, S1) = EO(2) ×SO(2) Cλ(S

1, S1).

We identify SO(2) = S1, and consider the S1-action S1 ×S1 → S1, (w, z) 7→
α(w)z on S1, where α : S1 → S1, w 7→ w−λ. Then the homeomorphism
Cnor

λ (S1, S1) → S1, f 7→ f(1) is compatible with the S1-actions and we get

∆nor
λ = EO(2) ×α S

1 =: α∗EO(2).

Consider the vector bundle ξλ := α∗EO(2) ×S1 C → BSO(2). We have
c1(ξλ) = −λc1, where c1 ∈ H2(BSO(2),Z) denotes the universal first Chern
class. Reducing modulo 2 we get w2(ξλ) = λw2. Since H∗(BSO(2)) = Z2[w2]
and thus Hn(BSO(2)) = 0 for n odd, the Gysin sequence of pλ : ∆nor

λ =
Sξλ → BSO(2) yields an exact sequence

0 → Hn−1(∆nor
λ )

φn−1

−−→ Hn−2(BSO(2))
λ̀w2

−−→ Hn(BSO(2))
p∗

λ−→ Hn(∆nor
λ ) → 0

for each even n ≥ 2. If λ is odd, then `λw2 : Hn−2(BSO(2)) → Hn(BSO(2))
is an isomorphism and consequently Hk(∆nor

λ ) = 0 for all k ≥ 1.
If λ is even, then ` λw2 : H0(BSO(2)) → H2(BSO(2)) is zero and it

follows that there exists a class α ∈ H1(∆nor
λ ) with φ1(α) 6= 0. Then

δ(α) ∈ H2(Dξλ, Sξλ) is the Thom class of the vector bundle ξλ → BSO(2).
Therefore the restriction of α to each fibre generates the first Z2-cohomology
of the fibre. Recalling that ∆

λ
≃ ∆nor

λ we obtain from the Leray-Hirsch
Theorem:
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Proposition 4.1.2 Let λ > 0. If λ is odd then Hk(∆
λ
) = 0 for k ≥ 1. If

λ is even then there is a nontrivial class α ∈ H1(∆
λ
) and H∗(∆

λ
) is a free

module over H∗(BSO(2)) with basis {1, α}.

Applying the Thom isomorphism theorem, we get

Proposition 4.1.3 Let Λ ⊂ Z r 0 be a Z2-invariant subset, Λ+ := Λ ∩ N

and Λev
+ := Λ+ ∩ 2Z. Then

Hk(DΛS
1, S1) ∼=





0 for k = 0, 1⊕
λ∈Λ+

Z2 for k = 2⊕
λ∈Λev

+
Z2 for k ≥ 3

and

Hk(DΛS
1, S1) ∼=





0 for k = 0, 1∏
λ∈Λ+

Z2 for k = 2∏
λ∈Λev

+
Z2 for k ≥ 3.

Thus, in order to prove theorem 4.1.1 for 0 /∈ Λ, it remains to show

Proposition 4.1.4 The boundary

∂ : H2(DΛS
1, S1) ∼=

⊕

λ∈Λ+

Z2 → H1(S
1) ∼= Z2

is given by (aλ)λ∈Λ+ 7→
∑

λ∈Λ+
λaλ and the coboundary δ : H1(S1) ∼= Z2 →

H2(DΛS
1, S1) ∼=

∏
λ∈Λ+

Z2 by 1 7→ (λ mod 2)λ∈Λ+.

Proof: Obviously, it suffices to show that δ : H1(S1) → H2(D
λ
S1, S1) is zero

if and only if λ is even.
Let ι : D2 → DE

λ
denote the inclusion of a fibre of the disc bundle DE

λ

and  : (DE
λ
, SE

λ
) → (D

λ
S1, S1) the canonical map. Then we have the

commutative diagram

0 −−−→ H1(S1)
δ

−−−→
∼=

H2(D2, S1) −−−→ 0

(ι|
S1)∗
x ∼=

xι∗

. . . −−−→ H1(SE
λ
)

δ
−−−→ H2(DE

λ
, SE

λ
) −−−→ . . .

(|SE
λ
)∗
x ∼=

x∗

. . . −−−→ H1(S1)
δ

−−−→ H2(D
λ
S1, S1) −−−→ . . .
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Since ( ◦ ι)|S1 : S1 → S1 has degree ±λ, it follows that (ι|S1)∗ ◦ (|SE
λ

)∗ = 0
if and only if λ is even. �

For the case 0 ∈ Λ, observe that ∆nor
0 = BO(2) × Cnor

0 (S1, S1).

4.2 A Basis for Ndef,Λ
∗ (S1)

Let {Bk
i | k ≥ 0, i ∈ I(k)} be a set of closed differentiable manifolds with

dimBk
i = k such that {[Bk

i ] | i ∈ I(k)} forms a basis of Nk for each k ≥ 0.
It is well known that one can explicitly specify such a set using products of
real projective spaces and Milnor manifolds, cf. [18], [4].

Let {F l
j : M l

j → X | l ≥ 0, j ∈ J(l)} be a set of singular manifolds in
a topological space X such that {(F l

j)∗[M
l
j ] | j ∈ J(l)} is a basis of Hl(X).

Then the singular manifolds

F l
j ◦ pr2 : Bk

i ×M l
j → X,

for k, l ≥ 0, i ∈ I(k), j ∈ J(l) represent a basis of Nk(X), cf. [5]. Here [M l
j ]

denotes the fundamental class of M l
j over Z2.

Using this fact and the identification Ndef ,Λ
∗ (V ) ∼= N∗(DΛV ) of Proposi-

tion 2.1 we immediately get

Proposition 4.2.1 Let f l
j : M l

j◦→V, l ≥ 0, j ∈ J(l) be Λ-defective maps with
defect sets ∆l

j and let F l
j : M l

j → DΛV be linear extensions. If {(F l
j)∗[M

l
j ] | j ∈

J(l)} is a basis for Hl(DΛV ) for each l then the Λ defective maps

f l
j ◦ pr2 : (Bk

i ×M l
j) r (Bk

i × ∆l
j) → V,

k, l ≥ 0, i ∈ I(k), j ∈ J(l) represent a basis of Ndef ,Λ
∗ (V ).

In the following we explicitly give such a set of Λ-defective maps f l
j, l ≥ 0,

j ∈ J(l) for the case V = S1.
Let Λ ⊂ Z r 0 be a symmetric subset and Λ+ := Λ ∩ N, Λev

+ := Λ+ ∩ 2Z.
With the techniques of section 4.1 it is straightforward to show that the
following Λ-defective maps fulfil the assumptions of proposition 4.2.1. For
simplicity, we omit the case 0 ∈ Λ.

Dimension 0: We take J(0) := {0}, M0
0 := {∗} and choose a constant map

f 0
0 : M0

0 → S1.
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Dimension 1: If Λ contains odd indices then H1(DΛS
1) = 0 and conse-

quently J(1) = ∅. Else H1(DΛS
1) ∼= Z2 and we take J(1) := {1}, M1

1 := S1

and f 1
1 := idS1 .

Dimension 2: Let λ1 < λ2 < . . . be the sequence of the odd indices in Λ+

and let n ≤ ∞ be the number of such indices. Let

J(2) := Λev
+ ∪ {(λi, λi+1) | 1 ≤ i < n}.

Let D2 ⊂ C denote the unit disc. For each index λ ∈ Λev
+ we define

gλ : D2r0 → S1, z 7→ zλ/|zλ|. Since gλ(z) = gλ(−z), we get a well defined Λ-
defective map f 2

λ on M2
λ := RP2 by identifying antipodal points in S1 ⊂ D2.

For 1 ≤ i < n let M2
(λi,λi+1)

:= S2 and define f 2
(λi,λi+1) : S

2◦→S1 to be a
map with λi+1 point defects of index λi and λi point defects of index −λi+1.

Dimension 2k + 3, k ≥ 0: Let J(2k+3) := Λev
+ and fix some λ ∈ J(2k+3).

Consider the canonical bundle γk → CPk. In view of the previous section we
use the lens space

∆λ(2k + 3) := S2k+1/λ = S(γ⊗Cλ
k ) ∼= PSO(2)(γk) ×SO(2) C

nor
−λ (S1, S1)

as a finite dimensional approximation of the universal defect set and
Dπ∗γk ∪aλ

S1 for the defect complex. Here π denotes the projection
S2k+1/λ→ CPk and aλ : Sπ∗γk → S1 maps ([x], v) 7→ zλ if v = zx, x ∈ S2k+1,
v ∈ S2k+1, z ∈ S1. Let

M2k+3
λ := Dπ∗γk/±

be obtained by identifying antipodal points in the circle bundle Sπ∗γk. We
have a fibre bundle M2k+3

λ → S2k+1/λ with fibre RP2. Since λ is even there is
a map fλ,2k+3 : M2k+3

λ ◦→S1 with defect set S2k+1/λ and local defect index λ
induced by aλ. By the discussion in the previous section the linear extension
of fλ,2k+3 maps [M2k+3

λ ] to the generator of H2k+3(DλS
1).

Dimension 2k + 2, k ≥ 1: For λ ∈ J(2k + 2) := Λev
+ let gλ,2k+2 be the

composition

∆λ(2k + 2) := RP
2k →֒ RP

2k+1 = S2k+1/2 → S2k+1/λ .

We define M2k+2
λ to be the pull-back of M2k+3

λ to ∆λ(2k+2) with gλ,2k+2 and
let fλ,2k+2 be the compositionM2k+2

λ →M2k+3
λ ◦→S1. Since gλ,2k+2 induces an

isomorphism in H2k we get that the linear extension of fλ,2k+2 maps [M2k+2
λ ]

to the generator of H2k+2(DλS
1).
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4.3 Characteristic numbers for Ndef,Λ
n (S1)

Let Λ ⊂ Zr0 be a Z2-invariant subset. In this section we prove the following:

Theorem 4.3.1 Let f : M◦→S1 be a Λ-defective map. There is a unique
class α ∈ H1(M) with α|Mr∆ = f ∗ϕS1, where ϕS1 denotes the generator
of H1(S1). For each λ ∈ Λev

+ there is a unique class βλ ∈ H1(∆(λ)) ⊂
H1(∆) with the following property: If ι : S1 → ∆(λ) is any continuous map,
ι̂ : S(ι∗N (λ)) → SN (λ) the canonical map over ι and σ : S1 → S(ι∗N (λ)) an
arbitrary cross-section, then

〈βλ, ι∗[S
1]〉 = deg(f |SN(λ) ◦ ι̂ ◦ σ) mod 2.

The bordism class of f : M r ∆ → S1 is determined by the characteristic
numbers

〈wI(M) ` α , [M ]〉,

〈wI(TM |∆) ` w2(N)q−1, [∆(λ)]〉 = Yλ,I,(0,q−1)(f) with λ ∈ Λ+, (4.3.2)

〈wI(TM |∆) ` w2(N)q−1
` βλ, [∆

(λ)]〉 with λ ∈ Λev
+

together with the bordism class of M .

Let F : M → DΛS
1 be a linear extension of f . Throughout this section let

κq
λ : Hq(∆

λ
) → Hq+2(DΛS

1) denote the homomorphism (3.1) in the case V =
S1. Theorem 4.3.1 is an immediate consequence of the following propositions.

First we assume that Λ ⊂ 2Z. Then H1(DΛV ) ∼= Z2. Recall that we have
H1(DΛV ) = 0 if Λ 6⊂ 2Z. Let η be the nontrivial element in H1(DΛV ).

Proposition 4.3.3 The restriction H1(M) → H1(M r ∆) is injective and
we have (F ∗η)|Mr∆ = f ∗ϕS1, where ϕS1 ∈ H1(S1) denotes the generator.

Proof: Since ∆ has codimension 2, we have H1(M,Mr∆) = 0 and the long
exact sequence yields the injectivity of the restriction. Let j : S1 → DΛS

1

denote the inclusion. Since H1(DΛS
1, S1) is zero, j∗ : H1(DΛS

1) → H1(S1)
is bijective. Consequently, we have ϕS1 = j∗η. As F |Mr∆ is homotopic to
j ◦ f , it follows that (F ∗η)|Mr∆ = f ∗j∗η = f ∗ϕS1 . �

Now, let Λ be an arbitrary Z2-invariant subset of Zr0. We haveH2(DΛS
1) ∼=(∏

λ∈Λ+
Z2

)
/ im(ψ), where ψ is the homomorphism defined in theorem 4.1.1.
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Proposition 4.3.4 Let η ∈ H2(DΛS
1) and let (aλ)λ∈Λ+ ∈

∏
λ∈Λ+

Z2 be an
element representing η under the isomorphism of Theorem 4.1.1. Then

〈wI(M) ` F ∗η , [M ]〉 =
∑

λ∈Λ+

aλ 〈wI(TM |∆) , [∆(λ)]〉 =
∑

λ∈Λ+

aλ Yλ,I,(0)(f) .

Proof: Since ∆ is compact, we may assume that Λ is finite. Moreover, it
suffices to consider λ ∈ Λ+ with aλ = 1 and aµ = 0 for µ ∈ Λ+ r {λ}, hence
η = κ0

λ(1). Proposition 3.2 yields

〈wI(M) ` F ∗η , [M ]〉 = Yλ,I,(0)(f) = 〈wI(TM |∆) , [∆(λ)]〉.

�

For the even dimensions ≥ 4 we have

Proposition 4.3.5 Let q ≥ 2 and η = (aλ)λ∈Λev
+
∈
∏

λ∈Λev
+

Z2
∼= H2q(DΛS

1).
Then

〈wI(M) ` F ∗η, [M ]〉 =
∑

λ∈Λev
+

aλ 〈wI(TM |∆) ` w2(N)q−1, [∆(λ)]〉

=
∑

λ∈Λev
+

aλ Yλ,I,(0,q−1)(f) .

Proof: We may again assume that we have a λ ∈ Λev
+ with aλ = 1 and

aµ = 0 for µ ∈ Λev
+ r{λ}. Then η = κ2q−2

λ (w2(Eλ
)q−1). Proposition 3.2 yields

〈wI(M) ` F ∗η , [M ]〉 = Yλ,I,(0,q−1)(f) = 〈wI(TM |∆) ` w2(N)q−1 , [∆(λ)]〉.

�

Now, let q ≥ 1 and η = (aλ)λ∈Λev
+

∈
∏

λ∈Λev
+

Z2
∼= H2q+1(DΛS

1). For
λ ∈ Λ+ let F (λ) : ∆(λ) → ∆

λ
be the restriction of F to ∆(λ).

Proposition 4.3.6 For λ ∈ Λev
+ let βλ be the generator of H1(∆

λ
) as in

Proposition 4.1.2 . Then

〈wI(M) ` F ∗η , [M ]〉 =

=
∑

λ∈Λev
+

aλ 〈wI(TM |∆(λ)) ` w2(N |∆(λ))q−1
` F (λ)∗βλ , [∆(λ)]〉 .
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Proof: Assume again that aλ = 1 and aµ = 0 for µ ∈ Λev
+ r {λ}. Then we

have η = κ2q−1
λ (w2(Eλ

)q−1
` βλ). With the Thom isomorphism Φ and the

inclusions ι : (DN (λ), SN (λ)) →֒ (M,M r
◦

DN (λ)) and  : (M, ∅) →֒ (M,M r
◦

DN (λ)) we get

〈wI(TM |∆(λ)) ` w2(N
(λ))q−1

` F (λ)∗βλ , [∆(λ)]〉

= 〈wI(TM |DN(λ)) ` ΦF (λ)∗(w2(Eλ
)q−1

` βλ) , [DN (λ), SN (λ)]〉

= 〈wI(M) ` (ι∗)−1ΦF (λ)∗(w2(Eλ
)q−1

` βλ) , ι∗[DN
(λ), SN (λ)]〉

= 〈wI(M) ` ∗(ι∗)−1ΦF (λ)∗(w2(Eλ
)q−1

` βλ) , [M ]〉 .

Using ∗(ι∗)−1ΦF (λ)∗ = F ∗κ∗λ we obtain

〈wI(TM |∆(λ)) ` w2(N
(λ))q−1

` F (λ)∗βλ , [∆(λ)]〉 = 〈wI(M) ` F ∗η , [M ]〉.

�

Thus, it remains to describe the classes F (λ)∗βλ ∈ H1(∆(λ)) for λ ∈ Λev
+ .

Proposition 4.3.7 Let λ ∈ Λev
+ , let ι : S1 → ∆(λ) be a continuous mapping

and let ι̂ : S(ι∗N (λ)) → SN (λ) denote the canonical map over ι. For an
arbitrary cross-section σ : S1 → S(ι∗N (λ)) we then have:

〈F (λ)∗βλ , ι∗[S
1]〉 = deg(f |SN(λ) ◦ ι̂ ◦ σ) mod 2. (4.3.8)

Proof: Let σ1 and σ2 be two cross-sections in S(ι∗N (λ)) → S1. Then ob-
viously deg(f |SN(λ) ◦ ι̂ ◦ σ2) − deg(f |SN(λ) ◦ ι̂ ◦ σ1) is a multiple of λ and
consequently

deg(f |SN(λ) ◦ ι̂ ◦ σ2) ≡ deg(f |SN(λ) ◦ ι̂ ◦ σ1) mod 2.

Therefore, is suffices to show the existence of a cross-section σ which fulfils
(4.3.8). Let π̃ : ∆

λ
→ BSO(2) denote the projection map. As π1(BSO(2)) =

0, π̃λ ◦ F (λ) ◦ ι is null homotopic and we can assume that π̃λ ◦ F (λ) ◦ ι ≡
x ∈ BSO(2). Let γ̃2 denote the universal vector bundle over BSO(2). An
arbitrary element v ∈ Sγ̃2

x yields a cross-section σ̃ : (∆
λ
)x → SE

λ
|(∆

λ
)x

. Let

σ : S1 → S(ι∗N (λ)) be the cross-section induced by σ̃.
The map a

λ
◦ σ̃ is equal to the evaluation map

(∆
λ
)x = Cλ(Sγ̃

2
x, S

1) −→ S1, g 7−→ g(v)
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and therefore is a homotopy equivalence. Thus, (a
λ
◦ σ̃)∗ϕS1 is the generator

of H1((∆
λ
)x) = Z2, i.e. (a

λ
◦ σ̃)∗ϕS1 = βλ|(∆

λ
)x

. We obtain

ι∗F (λ)∗βλ = ι∗F (λ)∗(a
λ
◦ σ̃)∗ϕS1 = (f |SN(λ) ◦ ι̂ ◦ σ)∗ϕS1

and the proposition is proved. �

Thus the characteristic numbers (4.3.2) together with the bordism class
of M determine all the numbers (1.1).

5 Further Examples

We end with some examples of nonvanishing invariants Zλ,α,I,J(f) distin-
guishing bordism of regularly defective maps from bordism of pairs.

Example: The unit tangent bundle of RP
2k is explicitly given as STRP

2k =
{(x, y) ∈ S2k × S2k | x ⊥ y}/∼, with the antipodal identification (x, y) ∼
(−x,−y). For independent x, y ∈ R2k+1, let 〈x, y〉 ∈ G+

2 (R2k+1) denote the
oriented subspace spanned by these vectors and define a map f̂ : STRP

2k →
V = G+

2 (R2k+1) by [x, y] 7→ 〈x, y〉. Mapping [x, y] 7→ (〈x, y〉, [x]) defines
a homeomorphism of STRP

2k with the projective bundle of the canonical
bundle over G+

2 (R2k+1). This is the circle bundle of a 2-dimensional vector
bundle L over G+

2 (R2k+1) and under the above identifications, the map f̂
extends to the bundle projection of L. Glueing the disc bundle DL of L with
the obvious regularly defective extension of f̂ to the disc bundle DTRP

2k we
obtain a regularly defective map

f : M = DL ∪STRP
2k DTRP

2k◦→V = G+
2 (R2k+1)

with defect set RP
2k. If k ≥ 2 its local defect index λ is a generator of

Z = π2k−1(V ). We compute the Zλ,α,I,J(f̂).

From the Leray-Hirsch Theorem we infer that f̂ ∗ is injective and
that H∗(STRP

2k) is a free H∗(V )-module with base {1, y} for some
y ∈ H1(STRP

2k). The Gysin-sequence shows that H∗(STRP
2k) ∼=

Z2[b, y]/(b
2, y2k) as graded Z2-algebras with deg(b) = 2k and y the gener-

ator of H1(STRP
2k) ∼= H1(RP

2k). Hence H∗(V ) ∼= Z2[b, y
2]/(b2, y2k). One

can now easily compute the Zλ,α,I,J(f). For instance taking α = y2k−2b,
I = (1, 0, . . . , 0) and J = (0) we get Zλ,α,I,J(f) = 1.

For the second set of examples we need the following.
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Lemma 5.1 For multiindices L, I and l ∈ N there are universal polynomials
pL,I,l ∈ Z2[T1, ...Tl] with the following property: Let π : N → ∆ be an l-
dimensional vector bundle, UN its Thom class and Φ the Thom isomorphism.
Then PL : H∗(∆) → H∗(∆) mapping

x 7−→
∑

I∈Nt
0,t∈N

pL,I,l(w1, . . . , wl) SqI(x)

fulfils SqL(Φ(x)) = Φ(PL(x)).

Proof: We use induction on the length of L. For L ∈ N we compute

SqL(Φ(x)) =
∑

r+s=L

π∗(Sqr(x)) Sqs(UN)︸ ︷︷ ︸
=Φ(ws)

= Φ

(
∑

r+s=L

ws Sqr(x))

)
.

The assertion follows by induction using the formulae of Wu and Cartan.
Obviously the polynomials do not depend on the bundle π : N → ∆. �

Proposition 5.2 Let M be a compact n-dimensional manifold and ∆ a
closed k-dimensional connected submanifold. Let π : N → ∆ be the nor-
mal bundle. Let I, Ĩ, J, J̃ , L, L̃ be multiindices and y ∈ Hs−n+k+1(∆), y 6= 0
with s > n− k − 1 such that

1. wn−k(N) = 0,

2. Hn−k(M,∆) = Hs(M,∆) = 0,

3. 〈PL(1) ` wI(∆) ` wJ(N) , [∆]〉 6= 0,

4. 〈PL̃(y) ` wĨ(∆) ` wJ̃(N) , [∆]〉 6= 0.

Then there are maps f1,2 : M r ∆ → V := K(Z2, n − k − 1) × K(Z2, s)
with the same nontrivial local defect index λ representing different nontrivial
elements in Ndef ,λ

n (V ).

For an explicit example choose M = Sn and ∆ any submanifold diffeo-
morphic to RP

k with k even, n > 2k + 1, n − k < s < n, I = (1, 0, . . . , 0),
J = J̃ = (0, . . . , 0), L = 1, Ĩ = (n− s− 1, 0 . . . , 0), L̃ = 0, y = zs−n+k+1 with
z the generator of H∗(RP

k).
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Proof: The fi will be distinguished by suitable Zλ,α,I,J . Let u and v be the
characteristic elements ofK(Z2, n−k−1) andK(Z2, s). Let b ∈ Hn−k−1(SN)
with ρ(b) = 1 where ρ is the connecting homomorphism in the Gysin se-
quence. Let i : SN → M r ∆ be the inclusion. The long exact sequence

of (M r
◦

DN,SN) shows that there is an x ∈ Hn−k−1(M r ∆) such that
i∗(x) = b. There is a unique map f : M r ∆ → K(Z2, n− k − 1) such that
f ∗(u) = x. Analogously there is a x̃ ∈ Hs(M r ∆) with i∗(x̃) = yb and a
map g : M r ∆ → K(Z2, s) with g∗(v) = x̃. Define f1 := f × const. and
f2 := f × g.

Now we show that both maps have nontrivial local defect indices. Since
δi∗f ∗(u) is the Thom class of N we know that its restriction on any fibre of
SN is not zero. This shows that the local defect index of f is not zero for
any p ∈ ∆.

By assumption 3, Zλ,SqL(u)×1,I,J(fi) = Zλ,SqL(u),I,J(f) 6= 0. Hence the fi

are not null bordant. But on the other hand f1 and f2 are not bordant since
Z

λ,1×SqL̃(v),Ĩ ,J̃
(f1) = 0 and Z

λ,1×SqL̃(v),Ĩ ,J̃
(f2) 6= 0. �
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