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Abstract

A procedure to numerically compute the small eigenvalues of a first order
self adjoint elliptic operator acting on sections of a Hermitian vector
bundle over a compact Riemannian manifild. Explicit error bounds for
the piecewise linear finite elements are derived.

1 Introduction

On a compact manifold M carrying a complex vector bundle E we consider
an elliptic first order partial differential operator P with smooth coefficients.
With the objective to compute its small eigenvalues, we approximate P by
its restriction P� to a suitable finite dimensional subspace V ⊂ L2(E). We
will describe the case where the finite elements v ∈ V are piecewise linear
with respect to a given triangulation |K| = M and a bundle embedding
E ⊂M × CL of the coefficient bundle E into the trivial bundle of rank L.

This difficulty in defining the finite elements does not arise in the case
of elliptic operators on domains in Rn. The error estimates for the Laplace
operator on domains in Rn have been derived in [L] for spline approximations
of arbitrary order. Using the approximation results of [N] an extension of
our estimates to higher order splines should be straightforward, but will not
be given here.

The main objective of this paper is the discretisation error, always as-
suming that the eigenvalues of the finite dimensional approximation P� are
computed exactly. On the other hand the procedure works for any selfadjoint
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elliptic differential operator. In particular we do not assume that the spec-
trum of P be bounded from below or even positive. Therefore the procedure
can be applied to any geometric operator such as (twisted) Dirac operators
on a Riemannian manifold.

The outline of the paper is as follows. In section 2 we formulate our
main Theorem 1 and explain how it can be used to approximately compute
the eigenvalues of P in a given interval [−Λ,Λ]. In section 3 we define the
piecewise linear finite elements for a vector bundle over a compact manifold.
In section 4 we derive the explicit formulae for the error estimates in Theorem
1. These depend on pointwise estimates for a (local) parametrix for P and its
remainder which we derive in section 5 in a form adapted to our purpose. The
existence of such estimates follows from the Sobolev inequality and elliptic
regularity but we need the explicit expressions for the constants.

2 Computation of Small Eigenvalues

We choose a Riemannian metric on M and endow E ⊂ M × CL with a
Hermitian metric by restricting the standard Hermitian metric of M × CL.
Usually we denote by | · | the pointwise norm, by ‖ · ‖ the L2-norm and by
‖ · ‖∞ the supremum of | · |. The computation of the small eigenvalues of P
hinges on the following

Theorem 1 Assume that f ∈ C∞(E) is a unit eigenvector of P with eigen-
value λ, i.e. Pf = λf , ‖f‖ = 1. Then there is v ∈ V satisfying pointwise
estimates

‖f − v‖∞ ≤ δ

and
‖Pv − λv‖∞ ≤ ε+ |λ|δ .

The values of δ = δ(λ) and ε = ε(λ) are explicitely given by (4.2) and (4.3)
in section 4 and increase monotoneously with λ.

In particular one finds an almost eigenvector of P�, i.e. v ∈ V such that
‖v‖ ≥ 1− δ(vol(M))1/2 and

‖P�v − λv‖2 ≤ (ε+ |λ|δ)2vol(M) . (2.1)

Note that one finds eigenvectors v of P� if P is self-adjoint because P� then
is symmetric. This follows by expanding an almost eigenvector v in a basis
of eigenvectors of P� as in the argument at the end of this section.
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The apriori bounds δ and ε will be deduced from pointwise estimates for
f and its derivative df in section 4, which in turn follow from the estimates
of the second derivative d2f in section 5. These latter estimates are inde-
pendent on the triangulation, whereas the estimates for f and df improve
under subdivision provided that the n-simplices of the triangulation do not
degenerate. In this case one gets values of ε and δ tending to 0.

Suppose we wanted to compute the eigenvalues λ ∈ [−Λ,Λ] of a self
adjoint elliptic first order differential operator P acting on sections of a Her-
mitian vectorbundle E over a compact Riemannian manifold M . Recall that
P has discrete spectrum and that the eigenvectors are smooth by elliptic
regularity. We embed E isometrically in a trivial bundle M × CL. Relying
on the above theorem we exclude eigenvalues of P by computing eigenvalues
of the finite dimensional operator P�. Here we can work with δ = δ(Λ) and
ε = ε(Λ) in (2.1).

Conversely we can show existence of an eigenvalue in a certain interval
once we have found a unit eigenvector v� ∈ V with eigenvalue λ� of P�. To
that end we first compute ‖Pv − λ�v‖ =: α. Let {fi}i∈N be an orthonor-
mal basis of L2E consisting of eigenvectors of P and such that Pfi = λifi,
Spec(P ) = {λi | i ∈ N}. We expand

v� =
∑

i

aifi ,
∑

i

|ai|2 = 1

and compute

Pv� − λ�v� =
∑

i

ai(λi − λ�)fi .

In particular

α2 ≥
∑

i

|ai|2|λi − λ�|2 ≥ min
i
{|λi − λ�|2}

and there is λi ∈ Spec(P ) with |λi − λ�| ≤ α.

3 The Finite Elements

For a simplicial complex K we denote by Kn the set of its n-simplices σ =
(σ0, . . . , σn) and by

∆n = {(t0, . . . , tn) ∈ Rn+1 |
n∑

i=0

ti = 1, ti ≥ 0}
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the standard n-simplex. Let M be given as the geometric realization of a
simplicial complex K (plus a smooth structure), i.e.

M = |K| =
⋃

σ∈Kn

σ ×∆n /∼ (3.1)

with the identifications

σ × (t0, . . . , ti−1, 0, ti+1, . . . , tn) ∼ σ′ × (t0, . . . , ti−1, 0, ti+1, . . . , tn)

if σ = (σ0, . . . , σn), σ′ = (σ′0, . . . , σ
′
n) ∈ Kn with σj = σ′j for all j 6= i.

Let E ⊂ M × CL be a subbundle and denote by π:M × CL → E the
Hermitian projection. The finite elements we consider are the projection to
E of piecewise linear sections of M × CL. Thus

V ′ := {v:M → CL | v(x) ∈ E if x ∈ K0 and

v((x0, . . . , xn)× (t0, . . . , tn)) =
n∑

i=0

tiv(xi) for (x0, . . . , xn) ∈ Kn} ,

V := {π ◦ v | v ∈ V ′} .

The dimension of these spaces is N times the cardinality of K0. Since V
is contained in the Sobolev space H1(E) of sections of E, we can compute
the L2 scalar product

〈Pv, w〉 =

∫
M

(Pv, w)dvolg (3.2)

for v, w ∈ V where (·, ·) denotes Hermitian scalar product on E and dvolg
the measure corrsponding to Riemannian metric on M . We define the ap-
proximate operator P�:V → V by (3.2), i.e. as P� := prV P |V , where prV

denotes the Hermitian projection L2(E) → V .

4 Error Estimates

An eigenvector f :M → E, Pf = λf , splits in f = v+h with v ∈ V , v = πv′,
v′ ∈ V ′, such that v(p) = f(p) for all p ∈ K0 ⊂M . We have

|Pv − λv| = |λh− Ph| ≤ |λ||h|+ |Ph| .
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In the sequel we will estimate |h| and |Ph| pointwise over an n-simplex
σ ×∆n ⊂M .

We fix an open covering of M by charts Φs:Us → Rn covered by bundle
charts Φ̂s:E|Us → Rn × CN and a function s(σ) sucht that every n-simplex
σ×∆n is contained in Us(σ). From the triangulation we have maps jσ: ∆n →
Us(σ) covered by bundle maps ĵσ: ∆n ×CN → E|Us(σ)

. Denote by Φσ, Φ̂σ the

compositions Φσ := Φs(σ) ◦ jσ: ∆n → Rn and Φ̂σ := Φ̂s(σ) ◦ ĵσ: ∆n × CN →
Rn × CN . In the following diagam ∆n, Rn, CN and CL carry the standard
metrics.

∆n f−→ ∆n × CN ω−→ ∆n × CL

↓jσ ↓ĵσ ↓jσ×id

Us
f−→ E|Us ↪→ Us × CL

↓Φs ↓Φ̂s ↓Φs×id

Rn f̃−→ Rn × CN ω̃−→ Rn × CL

Slightly abusing notation we will write f(x) = (x, f(x)), ω(x, v) = (x, ωxv)

and analagously for f̃ and ω̃. From section 5, (5.4) we obtain pointwise
apriori estimates

|f̃ | ≤ C̃0 |df̃ | ≤ C̃1 |d2f̃ | ≤ C̃2

independent of the triangulation. Hence

|ωf(x)| ≤ ‖ω̃‖∞C̃0 =: C0

|dxωf | ≤ ‖dω̃‖∞‖dΦσ‖∞C̃0 + ‖ω̃‖∞‖dΦσ‖∞C̃1 =: C1

|d2
xωf | ≤

(
‖d2ω̃‖∞‖dΦσ‖2

∞ + ‖dω̃‖∞‖d2Φσ‖∞
)
C̃0

+
(
2‖dω̃‖∞‖dΦσ‖2

∞ + ‖ω̃‖∞‖d2Φσ‖∞
)
C̃1

+ ‖ω̃‖∞‖dΦσ‖2
∞C̃2

=: C2

where ‖·‖∞ denotes the supremum of the respective fibrewise operator norm,
e.g. ‖ω̃‖∞ := supx ‖ω̃(x)‖op.

Note that C0, C1 and C2 depend on the triangulation. Passing to a
subdivision replaces the jσ by the composition with affine linear maps ∆n →
∆n. Choosing the subdivision appropriately, e.g. barycentric, these affine
linear maps will have differential ≤ α < 1. The constants C ′

i, i = 0, 1, 2
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for the subdivision then satisfy C ′
i ≤ αiCi. For instance, the barycentric

subdivision has α =
√
n/2(n+ 1).

Next we estimate h′ = ωf − v′ and h = πh′. Since d2v′ = 0, d2h′ = d2ωf
the above estimates yield |d2h′| ≤ C2. From the definition of v′ we also have

h′(ql) = 0 for the vertices ql = (0, . . . , 0,
l

1, 0, . . . , 0) ∈ Rn+1 of ∆n.
For z ∈ CL = R2L let h′z(x) := h′(x) · z be the scalar product of R2L. The

Taylor expansion of h′z at x ∈ ∆n reads

0 = h′z(ql) = h′z(x) + dxh
′
z(ql − x) +

1

2
d2

ξh
′
z(ql − x) (4.1)

for a some ξ ∈ ∆n. Assume that |h′z| attains its maximum at x ∈ ∆n and
also that x lies in the interior of ∆n. Otherwise the ensuing argument applied
to some face ∆k ⊂ ∂∆n will yield even better estimates. Since dxh

′
z = 0 we

immediately get

|h′z(x)| =
1

2
d2

ξh
′
z(ql − x) ≤ min

l=0...n

1

2
d2

ξh
′
z(ql − x) ≤ 1

2
C2|z| min

l=0...n
|ql − x|2

≤ 1

2
C2|z|

n

n+ 1
.

Therefore

|h′(x)| = max
|z|=1

h′z(x) ≤
1

2
C2

n

n+ 1

and

‖h‖∞ = ‖πh′‖∞ ≤ δ := ‖π‖∞
1

2
C2

n

n+ 1
. (4.2)

In order to estimate the differential we define

µn := max{‖v‖ | v ∈ Rn+1,
n∑

l=0

vql = 0,

∃η ∈ R, a ∈ ∆n : |η + v(ql − a)| ≤ 1

2
|ql − a|2, l = 0 . . . n, } .

Eliminating η this becomes

µn = max{‖v‖ | v ∈ Rn+1,

n∑
l=0

vql = 0,

∃a ∈ ∆n : v(ql − qm) ≤ 1 + a2 − a(ql + qm), l = 0 . . . n, }
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≤ max{‖v‖ | v ∈ Rn+1,
n∑

l=0

vql = 0,∃a ∈ ∆n ∀l,m = 0 . . . n :

v(ql − qm) ≤ 1 + a2 − a(ql + qm)}

A rough estimate for this is µn ≤
√
n+ 1 using that 1 + a2 − a(ql + qm) ≤ 2

for a ∈ ∆n.
Because of (4.1) the differential is

|dh′z| ≤ µnC2|z| ,

hence

‖dh′‖∞ ≤ C2µn ,

‖dh‖∞ = ‖d(πh′)‖∞ ≤ ‖dπ‖∞‖h′‖∞ + ‖π‖∞‖dh′‖∞

≤ ‖dπ‖∞
1

2
C2

n

n+ 1
+ ‖π‖∞C2µn .

Over ∆n the operator P takes the form

Pf(x) = A(x)dxf +B(x)f(x)

with functionsA: ∆n → Hom(Hom(Rn,CN), CN) andB: ∆n → Hom(CN , CN).
In terms of the operator norms we estimate

|Ph| ≤ ‖A‖∞‖dh‖∞ + ‖B‖∞‖h‖∞ ≤ ε

with

ε := C2

(
‖A‖∞

(
‖dπ‖∞

1

2

n

n+ 1
+ ‖π‖∞µn

)
+ ‖B‖∞‖π‖∞

1

2

n

n+ 1

)
. (4.3)

5 Estimates for the Derivatives of an Eigenvector

In this section we obtain explicit pointwise apriori estimates for the up to 2nd
order derivatives of a unit eigenvector f for P with eigenvalue λ. In principle
these estimates are computed from the Sobolev- and Garding- inequalities,
but here we want to derive explicit expressions for the error estimates. To this
end we adapt the proofs of these inequalities from [G], [S], [K], for instance,
to our purpose.
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Let {φs}s, φs:M → [0, 1] be a partition of unity corresponding to the

charts Φs:Us

∼=−→ Rn and choose functions ψs with compact support and
such that ψs = 1 on the support of φs. We have f =

∑
s φsf . In the sequel

we will work in one chart Φ = Φs and therefore drop the subscript s in the
notation. We will also identify Us via Φs with a subset of U ⊂ Rn and
E|Us = U ×CN . In particular we will not distinguish between f and f̃ as in
the previous section.

In order to get a sufficiently smoothing parametrix we need to work with
P d instead of P for some d > 1 + n. In fact, if one can perform the inverse
Fourier transform of the remainder R of the parametrix for P d analytically,
it suffices to take d > 2 + n/2. We will use a local parametrix Q i.e. a
pseudodifferential operator of order −d such that

φg = QψP dg +Rg (5.1)

for any g with compact support in the chart Φ. The remainder R will also
be pseudodifferential of order −d. We apply (5.1) to g = ψf which gives

φf = φψf = QψP dψf +Rψf = Qψψ̃P df +Rψf

= Qψψ̃λdf +Rψf (5.2)

where ψ̃ is a 0-order operator defined by the relation P dψ = ψ̃P d. From the
expressions for Q and R as pseudodifferential operators we obtain pointwise
estimates for the derivatives of f .

In the subsequent calculations integration will be over Rn with (2π)−n/2

times the Lebesgue measure. The Fourier transform of a Schwartz class
function g on Rn is ĝ(ξ) :=

∫
e−iξxg(x)dx and the Fourier inversion formula

becomes g(x) =
∫
eiξxĝ(ξ)dξ.

Below we derive pointwise estimates for φf , d(φf) and d2(φf) in terms
of the eigenvalue λ and the L2-norm of φf . The corresponding quantities for
f are readily computed from these. We use the multi-index notation xα =
xα1

1 · · ·xαn
n , dα

x = ∂α1

∂x
α1
1
· · · ∂αn

∂xαn
n

, |α| = α1 + · · ·+αn for α = (α1, . . . , αn) ∈ Nn,

x = (x1, . . . , xn) ∈ Rn.
In the chart Φ we expand the operator ψ̃P d as

ψ̃P d =
∑

β

pβ(x)Dβ
x .
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It has a smooth symbol p(x, η) =
∑

β pβ(x)ηβ which has compact x-support.
The parametrix Q we will work with is a pseudodifferential operator

Qg(x) :=

∫
q(x, ξ)eixξĝ(ξ)dξ =

∫
q(x, ξ)ei(x−y)ξg(y)dydξ

of order −d. Its symbol q(x, ξ) is given by

q(x, ξ) =
−d∑
j=0

q−d−j(x, ξ) .

where the q−d−j(x, ξ) are homogeneous of degree −d− j in ξ and determined
by solving the equations∑
|β|−|α|−d−j=l

(−i)|α|

α!
dα

ξ q−d−j(x, ξ)d
α
xpβ(x, ξ) =

{
φ(x)σ(ξ) l = 0

0 l = −1, . . . ,−d

(5.3)
Here we have fixed once and for all a bump function σ : Rn → [0, 1] which is
0 near 0 and 1 outside a small neighbourhood of the origin.

In order to write down an explicit formula for R we consider the Taylor
expansion of the symbol p(y, η) of ψ̃P d at y at x ∈ supp(φ):

p(y, η) =
∑

|α|,|β|≤d

1

α!
dα

xpβ(x)(y − x)αηβ +
∑

|α|=d+1,|β|≤d

rα,β(x, y)(y − x)αηβ

From this and the formula

dα
x(gh) =

∑
β+γ=α

α!

β!γ!
dβ

x(g)dγ
x(h)

we obtain R in the form

Rg(x) =

∫
r(x, ξ, y)ei(x−y)ξg(y)dydξ

with

r(x, ξ, y) =
∑
|α|≤d

(−i)|α|

α!
dα

ξ q(x, ξ)d
α
xp(x, ξ)− φ(x)

+
∑

|α|=d+1

1

α!
dα

ξ q(x, ξ)
∑

γ+δ=β

β!

γ!δ!
(−1)|γ|ξγdδ

yrα,β(x, y)

= r0(x, ξ) + r̃(x, ξ, y)
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where r0(x, ξ) = φ(x)(σ(ξ)− 1) + truncation error in (5.3), and r̃(x, ξ, y) are
explicitely known symbols of order −d − 1. With these explicit expressions
for R and Q we compute the derivatives of φf from (5.2) and obtain

dα
x(φf)(x) = dα

x(Qψψ̃λd +Rψ)f

=

∫
dα

x

((
λdq(x, ξ)ψ(x)ψ̃(x) + r0(x, ξ)

)
eixξ

)
f̂(ξ)dξ

+

∫
dα

x

(
r̃(x, ξ, y))ei(x−y)ξ

)
ψ(y)f(y)dydξ

Finally the Cauchy-Schwartz inequality yields the estimate

|dα
x(φf)(x)|∞
‖ψf‖L2

≤

∥∥∥∥∥ ∑
β+γ=α

α!

β!γ!
dβ

x

(
λdq(x, ξ)ψ(x)ψ̃(x) + r0(x, ξ)

)
i|γ|ξγ

∥∥∥∥∥
L2,ξ

+

∥∥∥∥∥
∫ ∑

β+γ=α

α!

β!γ!
dβ

x r̃(x, ξ, y)i
|γ|ξγdξ

∥∥∥∥∥
L2,y

. (5.4)
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