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Abstract

A procedure to numerically compute the small eigenvalues of a first order
self adjoint elliptic operator acting on sections of a Hermitian vector
bundle over a compact Riemannian manifild. Explicit error bounds for
the piecewise linear finite elements are derived.

1 Introduction

On a compact manifold M carrying a complex vector bundle E we consider
an elliptic first order partial differential operator P with smooth coefficients.
With the objective to compute its small eigenvalues, we approximate P by
its restriction P to a suitable finite dimensional subspace V' C L*(FE). We
will describe the case where the finite elements v € V' are piecewise linear
with respect to a given triangulation |K| = M and a bundle embedding
E C M x CF of the coefficient bundle E into the trivial bundle of rank L.

This difficulty in defining the finite elements does not arise in the case
of elliptic operators on domains in R™. The error estimates for the Laplace
operator on domains in R™ have been derived in [L] for spline approximations
of arbitrary order. Using the approximation results of [N] an extension of
our estimates to higher order splines should be straightforward, but will not
be given here.

The main objective of this paper is the discretisation error, always as-
suming that the eigenvalues of the finite dimensional approximation P- are
computed exactly. On the other hand the procedure works for any selfadjoint



elliptic differential operator. In particular we do not assume that the spec-
trum of P be bounded from below or even positive. Therefore the procedure
can be applied to any geometric operator such as (twisted) Dirac operators
on a Riemannian manifold.

The outline of the paper is as follows. In section [2] we formulate our
main Theorem (1] and explain how it can be used to approximately compute
the eigenvalues of P in a given interval [—A, A]. In section 3| we define the
piecewise linear finite elements for a vector bundle over a compact manifold.
In section[d we derive the explicit formulae for the error estimates in Theorem
. These depend on pointwise estimates for a (local) parametrix for P and its
remainder which we derive in section [5|in a form adapted to our purpose. The
existence of such estimates follows from the Sobolev inequality and elliptic
regularity but we need the explicit expressions for the constants.

2 Computation of Small Eigenvalues

We choose a Riemannian metric on M and endow E C M x Cl with a
Hermitian metric by restricting the standard Hermitian metric of M x CF.
Usually we denote by | - | the pointwise norm, by || - || the L?>-norm and by
Il - |l the supremum of | - |. The computation of the small eigenvalues of P
hinges on the following

Theorem 1 Assume that f € C*°(E) is a unit eigenvector of P with eigen-
value A, i.e. Pf = Af, ||f|l| = 1. Then there is v € V satisfying pointwise
estimates

If —v]e <6

and
|Pv— M|l < e+ [N

The values of 6 = 6(N) and € = €(X\) are explicitely given by and
in section [ and increase monotoneously with \.

In particular one finds an almost eigenvector of P72, i.e. v € V' such that
lv]| > 1 — d(vol(M))*/? and

| P70 — Av||? < (e + |A|6)*vol(M) . (2.1)

Note that one finds eigenvectors v of P72 if P is self-adjoint because P then
is symmetric. This follows by expanding an almost eigenvector v in a basis
of eigenvectors of P as in the argument at the end of this section.



The apriori bounds ¢ and € will be deduced from pointwise estimates for
f and its derivative df in section [d, which in turn follow from the estimates
of the second derivative d?f in section . These latter estimates are inde-
pendent on the triangulation, whereas the estimates for f and df improve
under subdivision provided that the n-simplices of the triangulation do not
degenerate. In this case one gets values of ¢ and ¢ tending to 0.

Suppose we wanted to compute the eigenvalues A € [—A, A] of a self
adjoint elliptic first order differential operator P acting on sections of a Her-
mitian vectorbundle E over a compact Riemannian manifold M. Recall that
P has discrete spectrum and that the eigenvectors are smooth by elliptic
regularity. We embed E isometrically in a trivial bundle M x C*. Relying
on the above theorem we exclude eigenvalues of P by computing eigenvalues
of the finite dimensional operator P”. Here we can work with § = §(A) and
e =¢€(A) in (2.1).

Conversely we can show existence of an eigenvalue in a certain interval
once we have found a unit eigenvector v € V with eigenvalue A” of P”. To
that end we first compute ||[Pv — A\”v|| =: a. Let {f;}ien be an orthonor-
mal basis of L2E consisting of eigenvectors of P and such that Pf; = \;f;,
Spec(P) = {\; | i € N}. We expand

’UE| = Zalfl s Z ’CLi|2 =1

(2 1

and compute
Po” = A" =) (A = A7) f;

)

In particular

o > " aPIA — A7) > min{|\; — A7}
and there is \; € Spec(P) with |\; — A\7| < a.

3 The Finite Elements

For a simplicial complex K we denote by K, the set of its n-simplices o =
(0o, ...,0,) and by

A" ={(to, ., ta) ER™ Y i =11, 2 0}

1=0



the standard n-simplex. Let M be given as the geometric realization of a
simplicial complex K (plus a smooth structure), i.e.

M=|K|= ] oxA"/~ (3.1)

oceK,
with the identifications
g X (to,...,tz‘_l,o,ti+1,...,tn) ~ o' x (to,...,ti_l,o,ti+1,...,tn)

if 0 = (00,...,04),0" = (00,...,0,) € K, with o; = o for all j # i.

rn

Let £ C M x CF be a subbundle and denote by 7m: M x C* — E the
Hermitian projection. The finite elements we consider are the projection to
E of piecewise linear sections of M x CF. Thus

V' = {v:M — C"|v(z) € Eif v € Ky and
v((x0, -, xn) X (to, - tn)) = Y tv(a;) for (zg,...,2,) € Kn}
=0
V = {rov]veV'}.

The dimension of these spaces is N times the cardinality of K. Since V'
is contained in the Sobolev space H;(E) of sections of F, we can compute
the L? scalar product

(Pv,w) :/M(Pv,w)dvolg (3.2)

for v,w € V where (-,-) denotes Hermitian scalar product on E and dvol,
the measure corrsponding to Riemannian metric on M. We define the ap-
proximate operator P7:V — V by (3.2)), i.e. as P7 := pryP|y, where pry
denotes the Hermitian projection L?(E) — V.

4 FError Estimates

An eigenvector f: M — E, Pf = \f, splitsin f =v+h withv € V, v = 70/,
v € V' such that v(p) = f(p) for all p € Ky C M. We have

|Pv — | = [\ — Ph| < |N|h| + | Ph] .



In the sequel we will estimate |h| and |Ph| pointwise over an n-simplex
ox A" C M.

We fix an open covering of M by charts ®,: U; — R" covered by bundle
charts ®,: E|y, — R" x CV and a function s(o) sucht that every n-simplex
o x A" is contained in Uy). From the triangulation we have maps j,: A" —
Us(o) covered by bundle maps 30: A" x CN — E]US(U). Denote by ®,, d, the
compositions @, := Py, 0 j,: A" — R" and CTDU = CTDS(U) ojy'\az A" x CN —
R"™ x CV. In the following diagam A", R", CV and C! carry the standard
metrics.

Ar L AN 2, AnxCE

Lio Lo Ljoxid

Us L E Us — Us X (CL

lcbs l&)s \J/@SX’L'd
f

R L, RrxCN £, RexCL

Slightly abusing notation we will write f(z) = (z, f(x)), w(z,v) = (z,w,v)
and analagously for f and w. From section , (5.4) we obtain pointwise
apriori estimates

<G lafl<C 1@< G

independent of the triangulation. Hence

wi@)] < 1©8]Co=: Co
dow ] < [|d@]l o |dPo || Co + [[W]|o[|dPo || Cr =2 Cy
[ fl < (1470 ld® |2 + [|dD] | @4 |.) Co

+ (2)|dB| Nl do |1 + 17|, .) Ch
+ @]l 4, |2 Co
= 02

where || ||, denotes the supremum of the respective fibrewise operator norm,
e.g ||lwllw := sup, [@(z)llop-

Note that Cjy, C; and C5 depend on the triangulation. Passing to a
subdivision replaces the j, by the composition with affine linear maps A" —
A"™. Choosing the subdivision appropriately, e.g. barycentric, these affine
linear maps will have differential < o < 1. The constants C, i = 0,1,2



for the subdivision then satisfy C! < o'C;. For instance, the barycentric
subdivision has a = y/n/2(n + 1).

Next we estimate b’ = wf — v and h = 7h/. Since d*v' = 0, d*h’ = d*wf
the above estimates yield |d?h/| < Cy. From the definition of v we also have
h'(q) = 0 for the vertices ¢, = (0,...,0, i, 0,...,0) € R* of A",

For z € CF = R?F let W/ (x) := /() - 2 be the scalar product of R?~. The
Taylor expansion of b/, at z € A" reads

1
0= h(q) = W.(z) + duhl(q = x) + Sdgh (@ — @) (4.1)

for a some £ € A". Assume that |h}| attains its maximum at z € A™ and
also that z lies in the interior of A”. Otherwise the ensuing argument applied
to some face A¥ C JA™ will yield even better estimates. Since d,h, = 0 we
immediately get

1, 1, 1 _ ,
W (z)| = §d§hlz(ql —x) < i §d§hlz(% —x) < §C2|Z| lg(l)}flnklz —
1 n
< ZC )
- 2 2|Z|n—|— 1
Therefore |
n
B = h < =
W ()] max (z) < QCan
and
1l = ITh' ]| <0 := || Loy (4.2)

In order to estimate the differential we define

pn = max{||v|| |v e R”“,qul =0,
1=0

1
IneR, ae A" :|n+v(q —a) §§|ql—al2,l:O...n,}.

Eliminating 7 this becomes

pe = max{ol] | v € B vg =0,
1=0
Jac A" v(q —qm) <14+a®>—alg+qn),l=0...n,}
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< max{|jv]| |v € R"H,qul =0,Ja e A"Viim=0...n:
1=0
v(@ — @m) < 1+a* —alg + gm)}

A rough estimate for this is p, < v/n + 1 using that 1+ a® — a(q + ¢n) < 2
for a € A",
Because of (4.1)) the differential is

VARYNAES
hence
Jdl. < Coptn .
ldhll = ARl <l W]+ ]
< [drllyCors + 7l Cotn -

Over A™ the operator P takes the form
Pf(z) = Az)d.f + B(z) f(z)

with functions A: A" — Hom(Hom(R",C"), C") and B: A™ — Hom(C", C™).
In terms of the operator norms we estimate

[Ph] < [[Alllldh]lo + 1| Bll< 1Pl < €

with

1 n 1 n
ei= Ca (A1l (rly g 4 Il ) + 1Bl ) - (09

5 Estimates for the Derivatives of an Eigenvector

In this section we obtain explicit pointwise apriori estimates for the up to 2nd
order derivatives of a unit eigenvector f for P with eigenvalue A. In principle
these estimates are computed from the Sobolev- and Garding- inequalities,
but here we want to derive explicit expressions for the error estimates. To this
end we adapt the proofs of these inequalities from [G], [S], [K], for instance,
to our purpose.



Let {¢s}s, ¢s: M — [0,1] be a partition of unity corresponding to the

charts ®,: U, =, R" and choose functions 1, with compact support and
such that 1)y = 1 on the support of ¢,. We have f =" ¢,f. In the sequel
we will work in one chart ® = &, and therefore drop the subscript s in the
notation. We will also identify U, via ®, with a subset of U C R" and
E|U, = U x C¥. In particular we will not distinguish between f and f as in
the previous section.

In order to get a sufficiently smoothing parametrix we need to work with
P? instead of P for some d > 1+ n. In fact, if one can perform the inverse
Fourier transform of the remainder R of the parametrix for P? analytically,
it suffices to take d > 2 + n/2. We will use a local parametrix @ i.e. a
pseudodifferential operator of order —d such that

$g = QP + Ry (5.1)

for any g with compact support in the chart ®. The remainder R will also
be pseudodifferential of order —d. We apply (5.1)) to g = ¢ f which gives

of = oUf =QUP'f+ Rpf = QUUP'f + Ry f
= QUYXN'f+ Ryf (5.2)

where 1; is a 0-order operator defined by the relation P%) = I;Pd. From the
expressions for () and R as pseudodifferential operators we obtain pointwise
estimates for the derivatives of f.

In the subsequent calculations integration will be over R” with (27)
times the Lebesgue measure. The Fourier transform of a Schwartz class
function g on R" is §(§) := [ e “*g(x)dz and the Fourier inversion formula
becomes g(z) = [ €%*g(€)dE.

Below we derive pointwise estimates for ¢f, d(¢f) and d*(¢f) in terms
of the eigenvalue A and the L2-norm of ¢f. The corresponding quantities for
f are readily computed from these. We use the multi-index notation z¢ =
p e ptn de = X E ol =ay -+ ay fora = (aq,..., ) €N,

T oayt T dany
x=(r1,...,1,) € R™. )
In the chart ® we expand the operator ) P? as

P! =" py(x)DY .
E

—n/2



It has a smooth symbol p(z,n) =3, ps(2)n® which has compact z-support.
The parametrix ) we will work with is a pseudodifferential operator

Qu(z) = / 0(2,€)¢"g(€)dE = / 4(z, )¢V () dyde

of order —d. Its symbol ¢(z,§) is given by

—d
= Z C]—d—j(l', 5) :
=0

where the g_q_;(z,£) are homogeneous of degree —d — j in £ and determined
by solving the equations

—)le
2 %d?qdj(x@dipﬁ(x,f) = {

18— lo| —d—j=1

<
N
R
™
I
o

(5.3)

Here we have fixed once and for all a bump function o : R" — [0, 1] which is
0 near 0 and 1 outside a small neighbourhood of the origin.

In order to write down an explicit formula for R we consider the Taylor
expansion of the symbol p(y,n) of P at y at = € supp(e):

1 o « (07
plym) = Y —dips@)y -2+ Y ras(ey)y—2)
lal,|8]<d la|=d+1,|8|<d
From this and the formula

ds(gh) = Zwm dy(h)

Bt+y=a

we obtain R in the form

Ry(z) = / (. €, 9)e OV g () dyde

with

—q)lal
ey = 3 0 (e (e, ) — o)

lo|<d

|
FY S 3 LM

laj=d+1 o=

= 7’0(27,5) + ?(xagay)
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where ro(z, &) = ¢(z)(c(§) — 1) + truncation error in (5.3)), and 7(x, £, y) are

explicitely known symbols of order —d — 1. With these explicit expressions
for R and @ we compute the derivatives of ¢f from ([5.2)) and obtain

dy(@f)(x) = d3(QUiA’+ Ry)f
= [ (Mo 9@ + o, ©) ) fie)de

; / &2 (7, €,4)) V) (y) () dyde

Finally the Cauchy-Schwartz inequality yields the estimate

42(61) (@) ~ |
W ﬂ;a 3y ,dﬂ <,\d £)¢(x)w(x)+r0(x,5)> ey |
L2¢
/ Z —dﬂ (2, &, )iMEde 54)
B+y=a ' Loy
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