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Abstract

This paper surveys some topics in the area of small universal Turing

machines and tag systems. In particular we focus on recent results con-

cerning the computational complexity of such machines.
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1 Introduction

Shannon [22] was the first to consider the question of finding the smallest possi-
ble universal Turing machine (UTM), where size (s, l) is the number of states s

and symbols l. Early attempts [5, 25] gave small UTMs that efficiently (with a
polynomial time slowdown) simulate Turing machines.

In the early 1960s Cocke and Minsky [2] showed that 2-tag systems simulate
Turing machines, but in an exponentially slow fashion. Minsky [12] found a 7-
state, 4-symbol UTM that simulates 2-tag systems in polynomial time. So this
small UTM simulates Turing machines via the following sequence of simulations

Turing machine → 2-tag system → small UTM (1)

where A → B denotes that A is simulated by B. Later Rogozhin [21] and
others [1, 7, 19] used Minsky’s technique of simulation via (1) to find small
UTMs for a range of state-symbol pairs (see Figure 1). All of these small
UTMs efficiently simulate 2-tag systems. However since the 2-tag simulation
of Turing machines is exponentially slow, it remained open as to whether these
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UTMs could be made to run in polynomial time. We have recently resolved this
situation by showing that 2-tag systems efficiently simulate Turing machines.

Theorem 1 ([26]). Given a Turing machine M that computes in time t then
there is a 2-tag system TM that simulates the computation of M and computes
in polynomial time O(t4(log t)2).

We immediately get the following interesting result.

Corollary 2 ([26]). The small UTMs of Minsky, Rogozhin and others [1, 7,
12, 19, 21] are polynomial time, O(t8(log t)4), simulators of Turing machines.

This is an exponential improvement on the previously known simulation time
overhead and improves a forty year old result in the area of small UTMs.

Before this result was known it was entirely plausible that there was a trade-
off between UTM program size complexity, and time/space complexity; the
smallest UTMs seemed to be exponentially slow. However our result shows
there is currently little evidence for such a claim.

Since this result, Neary has found (9, 3) and (18, 2) UTMs [13]. These ma-
chines are efficient simulators of Turing machines and simulate via bi-tag sys-
tems [14]. Bi-tag systems are a variant of tag system that use the technique of
reading either one or two symbols per timestep in order to efficiently simulate
Turing machines.

Prior to Theorem 1 the smallest known polynomial time UTMs are to be
found in [16]. However these efficient machines are not as small those of Ro-
gozhin et al., hence Theorem 2 represents a significant size improvement for
efficient UTMs. On the other hand, the machines in [16] remain significant
to this day since (i) they are the smallest known UTMs that directly simulate
Turing machines and (ii) they have only a quadratic slowdown when simulating
1-tape machines.

Figure 1 illustrates the present situation.

1.1 Unanswered questions

Suppose we change the usual definition of UTM to allow for repeated blank
words. Does this situation permit smaller universal machines? As yet there is
no definite answer to this question, however we conjecture that it is indeed the
case. As evidence we cite the small machines of Cook.1 As Figure 1 shows,
Cook’s machines are significantly smaller than the ‘non-repeated blank word’
machines. A second piece of evidence is the fact that Cook uses the repeated
blank word to store a (possibly universal) cyclic tag system program.

To illustrate potential difficulties of proving decidability for certain state-
symbol classes we note that Margenstern [10] gives a number of small machines
that simulate the famous Collatz 3x + 1 problem (Margenstern gives (2, 10),

1In the present paper, the phrase “small UTMs” refers to Turing machines that obey the
standard definitions. Recently M. Cook [3] has found universal machines that are smaller
than all others discussed in the present paper (see Figure 1). However Cook’s UTMs are
generalisations of standard Turing machines: their blank tape consists of an infinitely repeated
word to the left and another to the right. Incidentally Cook’s machines simulate Rule 110,
which he showed to be universal via a magnificent construction in the same paper. Via Cook’s
construction, his universal machines are exponentially slow; in a recent paper [15] we have
improved their simulation time overhead to polynomial.
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(4, 4), (5, 3) and (2, 11) machines and mentions that Baiocchi has improved
these results by giving (2, 8), (5, 2) and (2, 10) machines). Michel subsequently
gave (2, 4), (3, 3) and (5, 2) machines that simulate an open Collatz-like prob-
lem [11], which suggests that moving the non-universal curve to these points
could be difficult. However, Michel [11] has conjectured that all (4, 2) machines
are decidable.

Can we have more efficient small UTMs? For example the machines that
simulate 2-tag or bi-tag systems leave ‘garbage’ data on the tape, because of
this they use space that is linear in the time of the simulated Turing machine.
Can we have small UTMs that are more space efficient? For example it would
be interesting to find small UTMs that simultaneously use space that is a con-
stant times the space used by the simulated Turing machine and time that is a
polynomial of the time used by the simulated Turing machine. Such machines
would satisfy van Emde Boas’ [23] notion of reasonable sequential machines.

What about small UTMs with less than polynomial time complexity? For
example, consider the construction of a linear time UTM. The following idea
makes it seem that direct simulation of Turing machines is the most straightfor-
ward way to achieve a linear time UTM. Let M be a one tape Turing machine.
The program of M is encoded as a word that is positioned at the simulated tape
head location on the UTM’s tape. Simulating a transition rule would involve
scanning through the encoded table of behaviour, however it is not necessary to
scan the entire simulated tape contents. The idea is straightforward, however
trying to construct small linear time UTMs could be difficult.

1.2 Applications

Besides Corollary 2 there are numerous other applications of Theorem 1. Ro-
gozhin and Verlan [20] prove the universality of splicing tissue P systems with
only 8 rules by simulating 2-tag systems. Simulation via small UTMs has
been used to prove universality in cellular automata [9, 10]. Our result im-
proves the efficiency of these simulations. For another example, Levin and
Venkatesan [8, 24] used a small 8-state, 5-symbol, polynomial time UTM of
Watanabe’s [25] to show the average case NP-completeness of a graph colouring
problem. Our construction gives polynomial time UTMs that are significantly
smaller than Watanabe’s and thus improves (lowers) the number of colours in
their construction.
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Figure 1: State-symbol plot of small UTMs. The plot shows the polynomial
time curve induced by our previous UTMs [16], the previously exponential time
curve of Minsky, Rogozhin and others [1, 7, 12, 21], and the non-universal Tur-
ing machine curve for which there are no UTMs [4, 6, 17, 18]. Theorem 1 [26]
improves the polynomial time curve so that it coincides with the previous ex-
ponential time curve. The polynomial time UTMs from [13] represent a further
improvement for 2 and 3 symbol machines.
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