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0 Introduction

The notion of Gromov hyperbolicity was introduced by Gromov in the setting of geometric group
theory [G1], [G2], but has played an increasing role in analysis on general metric spaces [BHK],
[BS], [BBo], [BBu], and extendability of Lipschitz mappings [L].

In this theory, it is often additionally assumed that the hyperbolic metric space is proper and
geodesic (meaning that closed balls are compact, and each pair of points can be joined by a path
whose length equals the distance between the points). These additional assumptions are useful
in proofs, and valid for large classes of examples of hyperbolic spaces, for instance Cayley graphs
of (finitely generated) hyperbolic groups, and certain important conformal distortions of locally
compact length metrics that push the boundary of the space to infinity; see for instance [BHK, 2.8]
for the case of a quasihyperbolic metric. However if the underlying metric is not locally compact,
as in examples that arise in a Banach space context, then such hyperbolic conformal distortions
typically fail to be proper and geodesic (although they are always length spaces).

Without these added assumptions, a few “standard” results for hyperbolic spaces may fail; for
one such example, see [GH, 5.13]. However, Väisälä recently proved [V1] that a large part of the
theory of hyperbolic spaces goes through if we merely assume the metric is a length metric and not
geodesic or proper; Väisälä then applied this theory in a Banach space context [V2].

Our paper adds to the work of [V1] by extending a characterization by Bonk of hyperbolicity
in a geodesic context [B] to a length space context; see Theorem 2.1 below. Note that our version
says a little more than Bonk’s result even in a geodesic space context.

1 Preliminaries

We make the standing assumption that (X, d) is a metric space; any additional properties of (X, d)
will be explicitly listed.

∗ Supported in part by Enterprise Ireland
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Our notation and terminology is fairly standard, but we record it here for completeness. B(x, r)
is the open ball {y ∈ X | d(x, y) < r}. Given x, y ∈ X, we write γ : x y y whenever γ is a rectifiable
path from x to y, and we denote by l(γ) the length of γ. We denote by Γ(x, y) the collection of all
paths γ : x y y. If x, y are two points on an arc γ, then γ[x, y] denotes the subarc of γ from x to
y; we do not care about the parametrization or direction. An arc is an injective path, and an arc
γ : x y y is said to be a h-short arc, h ≥ 0, if l(γ) ≤ d(x, y) + h. (X, d) is a length space if every
pair of points in X can be joined by a h-short arc for every h > 0; if we can always take h = 0, we
call (X, d) a geodesic space. A path γ : [0, T ] → X is a (α, h)-quasigeodesic segment, α ≥ 1, h ≥ 0,
if

l(γ|[s,t]) ≤ αd(γ(s), γ(t)) + h, 0 ≤ s ≤ t ≤ T.

We do not distinguish notationally between paths and their images, so x ∈ γ means that x is in
the image of γ.

(X, d) is (Gromov) δ-hyperbolic, δ ≥ 0, if

〈

x, z
〉

p
≥

〈

x, y
〉

p
∧

〈

y, z
〉

p
− δ, x, y, z, p ∈ X, (1.1)

where
〈

x, y
〉

p
is the Gromov product with basepoint p ∈ X:

〈

x, y
〉

p
= (d(x, p) + d(y, p) − d(x, y))/2, x, y ∈ X.

For more on the basics of hyperbolicity, we refer the reader to [CDP], [GH], and [V1].

(X, d) is (α, h,C)-geodesically stable if all (α, h)-quasigeodesics are within a Hausdorff distance C
of each other, and (X, d) is geodesically stable if for each α ≥ 1, h ≥ 0, there exists C = C(α, h) such
that (X, d) is (α, h,C)-geodesically stable. Bonk [B] showed that geodesic stability is equivalent
with Gromov hyperbolicity in a geodesic space context, and Väisälä extended this to a length space
context (this follows from a combination of 3.7, 3.12, and 2.34 in [V1]). We note that both results
are quantitative.

A h-short triangle ∆ ⊆ X consists of three h-short arcs, γ1 : x2 y x3, γ2 : x3 y x1, and
γ3 : x1 y x2, which we call the sides of the triangle, while the three endpoints are called the vertices.
The orientation of the sides is not important. We say that a h-short triangle ∆ = γ1 ∪ γ2 ∪ γ3 ⊆ X
is δ-slim, for some δ ≥ 0, if

d(z, γi+1 ∪ γi+2) ≤ δ,

for all z ∈ γi, and all i, indices counted modulo 3. By [V1, 2.34 and 2.35], Gromov hyperbolicity
of X is equivalent to the property that all h-short triangles are uniformly slim.

In the same way we can define (α, h)-quasigeodesic triangles as triangles with (α, h)-quasigeodesic
sides. It follows from geodesic stability that quasigeodesic triangles in δ-hyperbolic spaces are uni-
formly slim, with a slimness parameter depending on δ, α, and h.

Detour and Excess functions

We call λ ∈ Γ(x, y) a (t, h)-detour if there is a h-short arc γ ∈ Γ(x, y) and a point z ∈ γ such that

B(z, t) ∩ λ = ∅.
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For each h ≥ 0, we then define the detour function

Gh
X(t) := inf{l(λ)|λ is a (t, h)-detour}, t ≥ 0. (1.2)

We shall also work with the following related function, which we call the excess function:

Eh
X(t) := inf{eλ := l(λ) − d(x, y)|λ ∈ Γ(x, y) is a (t, h)-detour}, t ≥ 0. (1.3)

Here the infimum is over all (t, h)-detours between all pairs of endpoints x, y. If there are no
(t, h)-detours, we set Gh

X(t) = Eh
X(t) := ∞.

Clearly Eh
X(t) < Gh

X(t) for all t > 0. We have Gh1

X (t) ≥ Gh2

X (t) for h1 ≤ h2 and similarly for the
excess function. Note also that Gh

X(t) > 0 =⇒ t > h
2 . The detour function G0

X was first defined
by Bonk [B].

Consider the case of Euclidean space X = R
n, n > 1. It is straightforward to show that

G0
X(t) = 4t, t ≥ 0; indeed the extreme case is given by an isosceles right-angled triangle whose

sidelengths are 2t, 2t, and 23/2t. On the other hand, E0
X(t) ≡ 0, as can be seen by considering

isosceles triangles with a very long base and inradius t.

Bonk [B] showed that hyperbolicity, geodesic stability, and the superlinear growth of G0
X are

all equivalent if (X, d) is a geodesic space; in fact, hyperbolicity implies an exponential growth rate
for G0

X [B, Proposition 1.1]. We prove the same sort of equivalence in a length space context; of
course, G0

X must be replaced by Gh
X , since there might not be any geodesic segments. Additionally,

we prove that even Eh
X grows exponentially if the space is hyperbolic.

2 The Main Result and its Proof

Our main result is as follows:

Theorem 2.1. Let (X, d) be a length space. The following conditions are equivalent:

(a) X is Gromov hyperbolic;

(b) X is geodesically stable;

(c) lim
t→∞

t−1Gh
X(t) = ∞, for some h > 0;

(d) lim
t→∞

t−1Eh
X(t) = ∞, for some h > 0;

(e) lim inf
t→∞

t−1 log(Eh
X(t)) > 0, for some h > 0.

A version of this theorem for geodesic spaces was proved by Bonk [B], where it was shown that
in this context, (a), (b), and the h = 0 version of (c) are all equivalent. Also the equivalence of (a)
and (b) in a length space context was proved by Väisälä; see 3.7, 3.12, and 2.34 of [V1].
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Proof of Theorem 2.1. As mentioned above, Väisälä [V1] proved that (a) and (b) are equivalent.
Clearly (e) =⇒ (d) =⇒ (c). The rest of the proof is based on a series of lemmas and a proposition
given below. Specifically, (a) =⇒ (e) will follow from Lemma 2.2, while (c) =⇒ (a) will follow from
Proposition 2.15.

Lemma 2.2. Suppose X is δ-hyperbolic and λ ∈ Γ(x, y). If γ ∈ Γ(x, y) is a (α, h)-quasigeodesic
and d(z, λ) ≥ R for some z ∈ γ, then

eλ := l(λ) − d(x, y) ≥ C1e
C2R − C3,

for some constants C1, C2, C3 depending only on δ, α, h.

Proof. Let M ≡M(δ, α, h) be a constant such that (α, h)-quasigeodesic triangles are M -slim. We
will show by induction, that for N 3 k ≥ 0, any x, y ∈ X and λ, γ ∈ Γ(x, y), where γ is (α, h)-
quasigeodesic, we have eλ < 2kh =⇒ d(z, λ) ≤ (k + 1)M for all z ∈ γ. By geodesic stability, the
claim is true for k = 0. So assume it is true for k and that eλ < 2k+1h. Then there is a point
v ∈ λ such that the subpath λ1 = λ[x, v] has excess eλ1

= 1
2eλ < 2kh. Let λ2 = λ[v, y] be the other

subpath. By the triangle inequality we have

eλ1
+ eλ2

≤ eλ,

hence eλ2
≤ 1

2eλ < 2kh. Let now γ1 : x y v , γ2 : v y y be h-short arcs, then the triangle γ∪γ1∪γ2

is M -slim. So for z ∈ γ we have z ′ ∈ γ1 ∪ γ2 with d(z, z′) ≤ M and by induction hypothesis
d(z′, λi) < (k + 1)M , if z′ ∈ γi, which shows the claim for k + 1.

Therefore
d(z, λ) ≥ (k + 1)M =⇒ eλ ≥ 2kh, k ∈ N.

So if λ is an R-detour of γ, i.e. d(z, λ) ≥ R, we have

eλ ≥ 2( 1

M
R−2)h−

1

2
h

Let us observe a couple of easy estimates that we will use repeatedly. First, if γ : y y z is
a h-short arc in X, then there is a sort of reverse triangle inequality for points w ∈ γ, namely
d(y, w) + d(w, z) ≤ d(y, z) + h. From this it is not hard to deduce (see [V1, 2.9]) that for all
x, y, z ∈ X and every h-short arc γ : y y z:

〈

y, z
〉

x
≤ d(x, γ) +

h

2
, (2.3)

and in particular,

2
〈

y, z
〉

x
≤ h, x ∈ γ. (2.4)

The following is a variation of a well-known lemma for Gromov hyperbolic spaces, designed to
suit our purposes. Other variants include [V1, 2.15] and one half of [B, Lemma 1.3].
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Lemma 2.5 (Tripod Lemma). Let ∆ = γ1 ∪ γ2 ∪ γ3 ⊆ X be a h-short triangle, which is δ-slim.
Let γ1 : x1 y x2 and γ2 : x1 y x3 be sides with common vertex x1, and let y ∈ γ1 , z ∈ γ2 be two
points. Then

(a) d(x1, y) = d(x1, z) ≤
〈

x2, x3

〉

x1

=⇒ d(y, z) ≤ 4δ + 6h;

(b) l(γ1[x1, y]) = l(γ2[x1, z]) ≤
〈

x2, x3

〉

x1

=⇒ d(y, z) ≤ 4δ + 7h.

Proof. Assuming that d(x1, y) = d(x1, z) ≤
〈

x2, x3

〉

x1

, we shall show that the inequality d(y, z) >

4δ + 6h leads to a contradiction. Part (a) then follows by a continuity argument, and (a) in turn
easily implies (b).

By (2.3),

d(z, γ1) = min{d(z, γ1[x1, y]), d(z, γ1[y, x2])} ≥ min{
〈

x1, y
〉

z
,
〈

y, x2

〉

z
} −

h

2

But
2
〈

x1, y
〉

z
= d(x1, z) + d(y, z) − d(x1, y) = d(y, z)

and, by the shortness of γ1 and (2.4),

2
〈

y, x2

〉

z
= d(y, z) + d(x2, z) − d(y, x2)

≥ d(y, z) + d(x2, z) − (d(x1, x2) − d(x1, y) + h)

= d(y, z) + d(x2, z) + d(x1, z) − d(x1, x2) − h

= d(y, z) + 2
〈

x2, x1

〉

z
− h

≥ d(y, z) − h

From this we then get d(z, γ1) ≥ 1
2d(y, z) − h > 2δ + 2h. In particular d(z, x1) > 2δ + 2h, hence

there is a point w ∈ γ2[x1, z] with d(w, z) = δ + 3
2h. By the triangle inequality we have

d(w, γ1) ≥ d(z, γ1) − (δ +
3

2
h) > δ +

h

2

and

d(w, γ3) ≥ d(x1, γ3) − d(x1, w) ≥
〈

x2, x3

〉

x1

−
h

2
− d(x1, w)

> d(x1, z) −
h

2
− d(x1, w) ≥ d(z, w) − h−

h

2
= δ.

So d(w, γ1 ∪ γ3) > δ, contradicting that the triangle is δ-slim, thus establishing (a) and hence
(b).

The following is an adaptation of [B, Lemma 2.2].

Lemma 2.6. Let (X, d) be a length space and let ∆ ⊆ X be a h-short triangle. If ∆ is δ-slim and
δ′ ≥ 0 is a number satisfying 27δ + 56h < Gh

X(δ′) and δ′ ≤ δ, then ∆ is also 2δ′-slim.
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Proof. Let α : b y c, β : a y c and γ : a y b be the sides of a h-short triangle ∆, which is δ-slim.
We assume without loss of generality that x ∈ γ and want to show that d(x, α ∪ β) ≤ 2δ ′, when δ′

satisfies the conditions above. Define

eγ := l(γ) − d(a, b) = l(γ) −
〈

b, c
〉

a
−

〈

a, c
〉

b
. (2.7)

Since γ is h-short, 0 ≤ eγ ≤ h. We also assume that l(γ[a, x]) ≤
〈

b, c
〉

a
+ eγ ; in view of (2.7),

this assumption can be made without loss of generality since, if it it false, we can make it true by
swapping a and b.

Define ρ = 4δ + 7h and ρ′ = 5δ + 10h. Now let x1 be the point in γ[a, x] with l(γ[x1, x]) = ρ′

if l(γ[a, x]) ≥ ρ′ and let x1 = a otherwise. Similarly define x2 ∈ γ[x, b] with l(γ1[x, x2]) = ρ′ if
l(γ[x, b]) ≥ ρ′ and put x2 = b otherwise. As in [B] we consider two cases:

Case 1: Assume l(γ[a, x2]) <
〈

b, c
〉

a
+ eγ and thus x2 6= b.

Then l(γ[a, x1]) <
〈

b, c
〉

a
, and so by the Tripod Lemma for a point y1 ∈ β with l(β[a, y1]) =

l(γ([a, x1]), we have d(x1, y1) ≤ ρ. If l(γ[a, x2]) ≤
〈

b, c
〉

a
, then let y2 ∈ β be the point with

l(β[a, y2]) = l(γ[a, x2]) and d(x2, y2) ≤ ρ. Otherwise, for l(γ[a, x2]) ∈ (
〈

b, c
〉

a
,
〈

b, c
〉

a
+ eγ), let

y2 ∈ β be the point with l(β[a, y2]) =
〈

b, c
〉

a
, then d(x2, y2) ≤ ρ + eγ ≤ ρ + h. In both situations

we have l(β[y1, y2]) ≤ l(γ[x1, x2]) ≤ 2ρ′.

We will now show that the assumption

d(x, α ∪ β) ≥ δ′ (2.8)

leads to a contradiction.

Let ω1 : x1 y y1 be h-short. In the case x1 = y1 = a we choose ω1 to be the constant curve.
We show first that ω1 ∩B(x, δ′) = ∅.

For if x1 = a = y1 then

d(x, ω1) = d(x, a) ≥ d(x, α ∪ β) ≥ δ′

If x1 6= y1, then d(x, x1) ≥ ρ′ − h hence

d(x, ω1) ≥ d(x, x1) − l(ω1) ≥ ρ′ − h− ρ− h = 5δ + 10h − 4δ − 9h = δ + h ≥ δ′

In the same way, using d(x, x2) ≥ ρ′ − h and d(x2, y2) ≤ ρ+ h, one sees that

d(x, ω2) ≥ δ ≥ δ′,

and thus ω2 ∩B(x, δ′) = ∅ for ω2 : x2 y y2 a h-short arc. Furthermore we clearly have

d(x, β[y1, y2]) ≥ d(x, β) ≥ δ′

We thus have a path φ with endpoints x1, x2 and image ω1 ∪ β[y1, y2] ∪ ω2 and

l(φ) ≤ ρ+ h+ 2ρ′ + ρ+ 2h = 18δ + 37h
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Since φ is a δ′-detour of γ[x1, x2], then by our assumptions we have

27δ + 56h < G1
X(δ′) ≤ l(φ) ≤ 18δ + 37h,

which is a contradiction.

Case 2: Assume l(γ[a, x2]) ≥
〈

b, c
〉

a
+ eγ .

By (2.7), we see that l(γ[x2, b]) ≤
〈

a, c
〉

b
. As before, we have a point y1 ∈ β with l(β[a, y1]) =

l(γ[a, x1]) and d(x1, y1) ≤ ρ and now another point y2 ∈ α with l(α[b, y2]) = l(γ[x2, b]) and
d(x2, y2) ≤ ρ. Let z1 ∈ β and z2 ∈ α be points such that l(β[z1, c]) = l(α[z2, c]) =

〈

a, b
〉

c
,

then by the Tripod Lemma d(z1, z2) ≤ ρ.

We claim that

l(β[y1, z1]) ≤ 2ρ′ + h, (2.9)

l(α[y2, z2]) ≤ ρ′ + h. (2.10)

Let us first prove (2.9). By the β analogue of (2.7),

l(β[a, z1]) = l(β) − l(β[z1, c])

=
〈

a, b
〉

c
+

〈

c, b
〉

a
+ eβ −

〈

a, b
〉

c
=

〈

c, b
〉

a
+ eβ .

and so
l(β[a, z1]) −

〈

b, c
〉

a
∈ [0, h]. (2.11)

On the other hand,

l(β[a, y1]) = l(γ[a, x1]) ≤ l(γ[a, x]) ≤
〈

b, c
〉

a
+ eγ ≤

〈

b, c
〉

a
+ h,

and
l(β[a, y1]) = l(γ[a, x1]) ≥ l(γ[a, x2]) − 2ρ′ ≥

〈

b, c
〉

a
+ eγ − 2ρ′ ≥

〈

b, c
〉

a
− 2ρ′.

These last two estimates imply that

l(β[a, y1]) −
〈

b, c
〉

a
∈ [−2ρ′, h]. (2.12)

Putting together (2.11) and (2.12), we deduce (2.9).

The proof of (2.10) is similar. In particular, we see as before that

l(α[b, z2]) −
〈

a, c
〉

b
∈ [0, h]. (2.13)

Also l(α[b, y2]) = l([x2, b]) ≤
〈

a, c
〉

b
, while

l(α[b, y2]) = l(γ[x2, b]) ≥ l(γ[x, b]) − ρ′ = l(γ) − l(γ[a, x]) − ρ′

≥
〈

b, c
〉

a
+

〈

a, c
〉

b
+ eγ − (

〈

b, c
〉

a
+ eγ) − ρ′

=
〈

a, c
〉

b
− ρ′.
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These last two estimates imply that

l(α[b, y2]) −
〈

a, c
〉

b
∈ [−ρ′, h]. (2.14)

Putting together (2.13) and (2.14), we deduce (2.10).

Now let ω1 : x1 y y1, ω2 : x2 y y2 and ω3 : z1 y z2 be h-short arcs, which we choose to
be constant curves in case the endpoints equal. Then as in Case 1, but with the possibility that
x2 = b, the assumption (2.8) implies that

(

ω1 ∪ β[y1, z1] ∪ α[y2, z2] ∪ ω2

)

∩B(x, δ′) = ∅

Now let φ be a path with image

ω1 ∪ β[y1, z1] ∪ ω3 ∪ α[z2, y2] ∪ ω2,

and
l(φ) ≤ ρ+ h+ ρ′ + h+ ρ+ h+ 2ρ′ + h+ ρ+ h = 27δ + 56h

However, if B(x, δ′) ∩ ω3 = ∅, then φ is a δ′-detour. Thus

27δ + 56h < Gh
X(δ′) ≤ l(φ) ≤ 27δ + 56h,

which is a contradiction, so there must be a point w ∈ ω3 with d(x,w) < δ′. Now we show that
d(w,α ∪ β) ≤ δ′.

Assume the opposite, that d(w,α ∪ β) > δ ′. Then choose w1 ∈ β[z1, c], w2 ∈ α[z2, c] such that

l(α[z1, w1]) = l(α[z2, w2]) = ρ′′ = 9δ + 17h

if
〈

a, b
〉

c
≥ ρ′′, and let w1 = w2 = c otherwise. Then by the Tripod Lemma, we have d(w1, w2) ≤ ρ.

Let ω4 : w1 y w2 be h-short; take ω4 to be the constant curve if w1 = w2 = c. Consider the path
ψ with image:

β[z1, w1] ∪ ω4 ∪ α[z2, w2],

which has length
l(ψ) ≤ ρ′′ + ρ+ h+ ρ′′ = 22δ + 42h

If w1 = w2 = c we have ψ ⊆ α ∪ β, and thus by assumption

ψ ∩B(w, δ′) = ∅

In the other case, w1, w2 6= c, we have d(z1, w1) ≥ ρ′′ − h, hence

d(w,ω4) ≥ d(z1, w1) −
(

l(ω3[z1, w]) + l(ω4)
)

≥ ρ′′ − 2ρ− 3h = δ ≥ δ′

This shows that ψ is a δ′-detour of ω3, so

27δ + 56h < Gh
X(δ′) ≤ l(ψ) ≤ 22δ + 42h,

a contradiction. Therefore we must have d(w,α ∪ β) ≤ δ ′, and hence

d(x, α ∪ β) ≤ d(x,w) + d(w,α ∪ β) ≤ 2δ′,

which finishes the proof.
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The next proposition corresponds to Proposition 2.3 in [B].

Proposition 2.15. If (X, d) is a length space with limt→∞
Gh

X
(t)

t = ∞, for some h > 0, then X is
Gromov hyperbolic.

Proof. By [V1, 2.34], we need to show that every h-short triangle is ρ-slim, for some fixed ρ ≥ 0.

As in [B, Lemma 2.1], we can choose a function f : (0,∞) → (0,∞) with

lim
t→∞

f(t)

t
= 0 and lim

t→∞

Gh
X(f(t))

t
= ∞.

By the properties of the functions Gh
X and f , there is a number ρ > 0 with 27t+56h < Gh

X(f(t))
and f(t) ≤ 1

4 t for t ≥ ρ.

We will show that every h-short triangle ∆ is ρ-slim. Certainly such a triangle ∆ is δ1-slim,
where δ1 < ∞ is the diameter of ∆. Now for N 3 k > 1 define δk+1 = 2f(δk). If δk ≥ ρ we have
δk+1 ≤ 1

2δk, hence A := {k ∈ N|δk ≤ ρ} 6= ∅. Fix k0 = minA. Now either k0 = 1, i.e. δ1 ≤ ρ, or
else for k ∈ {1, . . . , k0 − 1}, δ = δk and δ′ = 1

2δk+1 = f(δk) satisfies the requirements of Lemma 2.6.
Hence a repeated use of this shows that ∆ is δk0

-slim. But δk0
≤ ρ, and we are done.
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