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The quark propagator is calculated in the Landau gauge at ~ = 6.0. A method for removing the dominant, tree- 
level lattice artefacts is presented, enabling a calculation of the momentum-dependent dynamical quark mass. 

I.  Introduction 

The quark propagator is one of the fundamental 
quantities in QCD. By studying the mass func- 
tion, which is the scalar part of the quark prop- 
agator, we can gain insight into the mechanisms 
of chiral symmetry breaking. The momentum de- 
pendence of the quark propagator is also used ex- 
tensively as input in Dyson-Schwinger equations 
for hadronic matrix elements. A lattice study of 
the quark propagator may enable us to check the 
validity of the models used in these calulations. 

2. O(a)-improved quark  propagator 

All O(a) errors in the fermion action can be re- 
moved by adding terms to the Lagrangian [1, 2], 

£ ( z )  = f _ w  i - 

bgam Tr(F~,,F,v) - bmarn2¢¢ 
+ 2g---~o 

+ c l a ~ 2 ¢  + c2am~lp¢ (1) 

m should here be taken to be the subtracted bare 
3. Analysis  

mass m =_ t o o - m e .  The bg and bm terms corre- 
spond to a rescaling of the coupling constant and 
the mass respectively. The two last terms can be 
eliminated by a field transformation [3], 

¢ -+ ¢' = (1 + bqam)(1 - cqaO) ¢ = L ¢  

¢ --+ (1 + bqam)¢(1 + Cqa~) =_ C R  (2) 

The tree level improved action after the transfor- 
i The mation (2) has Csw = 1,bq = 1 and Cq = Z" 
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improved propagator is given by 

S ( x , y )  = (¢'(x)¢'(y)) = L ( x ) S o ( x , y ) a ( y )  (3) 

where So(x ,y)  =- (¢(x)¢(y)). Since the propa- 
gator So is defined as the inverse of the fermion 
matrix M(x)  =_ ~9(x) + mo + O(a), we can use 
this to obtain another, simpler expression for the 
improved propagator: 

S ( x , y )  = (1 + 2(bq + Cq)am)So(x,y)  

- 2aCqS(X - y) + O(a 2) (4) 

With this in mind, we define the tree-level im- 
proved propagator Sj (x ,  y) as 

s t ( x - y )  = (1 + m a ) & ( x - y )  - 25(x-y) (5) 

We will also introduce the tree-level 'rotated' 
propagator Sn(x ,  y) as the special case of the im- 
proved propagator in (3), 

am ~ R~ SR(x ,y )  =- (1 + --~-)L (x )So(x ,y )  (y) (6) 

where L' ~ 1 - o49/4 and R' = 1 + a ~ / 4 .  

The momentum space quark propagator in a par- 
ticular gauge is given by S(p) = ~']x e-~PxS( x, 0). 
We introduce the following 'lattice momenta' 

= = 2 sin(p~a/2) which k~ ~ sin(pua ) and fcu Z 
differ by 

a 2 
4 O(a4) a2Ak 2 =_ k2 _ k 2 = --£ ~.,P,,  + 

i.t 

(7) 
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In the continuum, the quark propagator has the 
following general form, 

1 Z~(p) 
S(p) = i ~Ac(p) + BC(p ) - i l¢ + UC(p ) (8) 

We expect the lattice quark propagator to have a 
similar form, but with ]~ replacing id: 

Z(p) (9) 
S(p) = i ]~ + M(p) 

The dimensionless Wilson fermion propagator at 
tree level is 

So(O)(p) = - i  + moa + ½k a (10) 
^ 2 * 

The tree level 'improved' propagator is given by 

S(°)(p) = (1 + moa)S(o°)(p) 1 2 (11) 

If we write 

[ ~--1 i ~a + moa + aAM(°)(p)  
= z(o)(p) (12) 

we find 

~,(o)l,,~ = k2a2( 1 + moa) 2 + B~I 
(13) a~J ~ t l ]  

(1 + moa)D 

a A M  (°) (p) = rn2a2 - a4Ak2 + a4k4/4 (14) 
1 + moa 

where 

( +)2 D = k2a 2 + moa + k2a2 (15) 

rn~a 2 a 4 A k  2 a4k 4 
BI1 = moa + ~ + ~ 8 (16) 

The corresponding tree level expressions for SR 
are considerably more complicated than those for 
$I, and we will not reproduce them here. 

We are here primarily interested in studying the 
deviation of the quark propagator from its tree 
level value. Since QCD is asymptotically free, 
we should at sufficiently high momentum values 
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Figure 1. Zr(p) (left) and Mr(p) (right) for all 
three propagators, from 20 configurations. 

get S(p) -+ S(°)(p) up to logarithms. We will 
attempt to separate out the tree level behaviour 
by writing 

ia ]t + aMr(pa) + aAM(°)(pa) (17) 
S-XO ) = 

where m0 is replaced by m in the expressions for 
Z (°) and A M  (°). Asymptotically, we expect that 
Zr(pa) ~ 1 and Mr(pa) -~ m up to logarithms. 

4. Resu l t s  

The quark propagator is calculated at fl = 6.0 on 
a 163x 48 lattice, using the mean-field improved 
value csw=1.479. The configurations were fixed to 
Landau gauge with an accuracy of 0ma~ = 10 -12. 
At ~ = 0.137, corresponding to rna = 0.0603, we 
have generated both So and SR. At ~ = 0.1381, 
corresponding to ma = 0.031, only So was gener- 
ated. 5;1 is easily constructed from So. 

When we calculate Z and M without factoring 
out the tree-level behaviour, it becomes clear 
that both improved propagators (SI and Sn)  
are completely dominated by the unphysical tree 
level behaviour at high momenta. In particular, 
B =_ Z M  computed from SI becomes large and 
negative, approaching a value of aB = -3 .  Only 
in the infrared, below pa ~< 0.8, might we be able 
to extract physically significant information. 

Fig. 1 shows Zr and Mra as functions of pa for 
both So, SI  and SR. In order to ease the com- 
parison and remove residual anisotropy, we have 
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Figure 2. Mr(p) from SI, for a = 0.137 (circles) 
and a = 0.381 (crosses). The increase in Mr(p) 
for pa > 1 is an indication of the difficulty of accu- 
rately subtracting off the tree level mass function. 
The data shown are from 50 configurations. 

selected momenta lying within one unit of spatial 
momentum of the 4-dimensional diagonal. While 
all three show a dramatic improvement on the un- 
subtracted data, the large momentum behaviour 
of the mass function from $1 is poor as a con- 
sequence of the pathological behaviour of S~ °) (p) 
at high momenta. This is due to the cancellation 
of large terms in the subtraction for the mass. It 
is therefore desirable to use the definition SR for 
the improved propagator. 1 

Below pa ,~ 0.9, the values for Mr agree within 
errors for the two versions of the improved prop- 
agator. In particular, the value for the infrared 
mass Mr(0) comes out the same. In contrast, So 
yields a mass which is 3-4a higher. 

Fig. 2 shows Mr(p) calculated from Ss for both 
quark masses. We see that the infrared mass 
changes only slightly as the bare quark mass 
is halved, pointing to a dynamically generated 
quark mass of (300 ± 30)MeV in the chiral limit. 
Zr turns out not to depend on the quark mass. 

1A s i m i l a r  c o n c l u s i o n  w a s  r e a c h e d  b y  C.  P i t t o r i  [4]. 

5 .  C o n c l u s i o n  a n d  f u r t h e r  w o r k  

We have used two different definitions of the O(a) 
improved quark propagator. We make use of 
asymptotic freedom to factor out the tree level 
behaviour, replacing it with the 'continuum' tree 
level behaviour Z(p) = 1, M(p) = m. This tree 
level subtraction dramatically improves the data. 
The relatively poor behaviour of the tree level 
subtracted SI can be put down to the large tree 
level finite-a effects which require fine tuning to 
subtract off correctly. 

For pa <~ 1, we see that Mr (p) falls off with p as 
expected. The values obtained from SR and from 
SI are consistent, while those for the unimproved 
propagator So differ significantly. We find that 
Mr(0) approaches a value of 300 ± 30 MeV in the 
chiral limit. 

We also find a significant dip in the value for Zr (iv) 
at low momenta. This is more pronounced for the 
improved propagators than for the unimproved 
one. The next step will be a quantitative study 
of the functional form for Zr and Mr 

Finite volume effects have not been studied, but 
there is no sign of any anisotropy at low p, indicat- 
ing that finite volume effects are small. Repeating 
these calculations at a different lattice spacing is 
also essential especially to get reliable results for 
the quark mass. 
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