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Quark propagator in the Landau gauge
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The Landau gauge quark propagator in momentum space is investigated using theO(a)-improved
Sheikholeslami-Wohlert quark action with a tree-level mean-field improved coefficientcsw. We study the
unimproved definition of the quark propagator, as well as two different tree-levelO(a)-improved propagators.
The ultraviolet behavior of the free lattice propagator is studied for each of these in order to establish which of
them provides the most reliable description of the quark propagator up to the medium momentum regime. A
general method of tree-level correction is introduced. This exploits asymptotic freedom and removes much of
the trivial lattice artifacts at medium to high momenta. We obtain results for the quark propagator which are
qualitatively similar to those typically used in quark models. A simple extrapolation of the infrared quark mass
M (p250) to the chiral limit gives 29868630 MeV, which is consistent with phenomenological expectations.
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I. INTRODUCTION

The quark propagator is one of the fundamental quanti
in QCD. By studying the momentum-dependent quark ma
obtained from the scalar part of the inverse quark propaga
we can gain valuable insight into the mechanism of ch
symmetry breaking and its momentum dependence.
quark propagator is also used extensively as an inpu
Dyson-Schwinger@1# based model calculations of hadron
matrix elements@2,3#. Hence a lattice calculation of th
quark propagator would enable us to check the validity of
models used in these calculations. There have been se
recent studies of the quark propagator on a finer lattice w
the aim of obtaining the light quark masses and renormal
tion constants@4#. Here we will focus more on the infrare
and medium-momentum regime and extend some earlier
liminary work @5#. For comparison with the present studie
some results for the quark mass function using Kog
Susskind fermions have recently been reported@6#.

The study of the quark propagator on the lattice is co
plicated by the explicit chiral symmetry breaking in the W
son fermion action, and also by finite lattice spacing effe
which are large compared to those in the pure gauge se
@7#. For the gluon sector, on the contrary, one can achi
reliable results even with very coarse lattices us
O(a2)-improved actions together with mean-field improv
ment. These studies have shown, for example, that in Lan
gauge the gluon propagator is enhanced at intermediate
menta and suppressed in the infrared to the point where
almost certainly infrared finite@8#.

Perturbation theory in a covariant gauge has a gau
fixing parameterj, which corresponds to the width of th
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Gaussian average over the auxiliary fieldc(x) in the gauge
fixing condition ]mAm(x)5c(x). The choice of Landau
gauge, i.e.,j50, corresponds to the zero width case, i.
]mAm(x)50, which is the Lorentz gauge-fixing condition
Hence ‘‘covariant gauges’’ are actually Gaussian weigh
averages over generalizations of the Lorentz gauge fix
condition. On the lattice, Landau gauge means that we h
imposed the Lorentz gauge condition by finding a local mi
mum of the appropriate gauge-fixing functional@7#. As for
the previously cited studies of the gluon propagator,
work reported here is done in the quenched approxima
and without attempting to avoid Gribov copies, e.g., witho
attempting to project onto the fundamental modular regi
Of course, in our finite ensemble of gauge field configu
tions no two Landau-gauge configurations will ever be G
bov copies of each other. However, the Landau gauge c
figurations will not be samples from a single connect
manifold such as the fundamental modular region. This is
interesting area for future study.

In a covariant gauge in the continuum the renormaliz
Euclidean space quark propagator must have the form

S~m;p!5
Z~m;p2!

i p”1M ~p2!
[

1

i p”A~m;p2!1B~m;p2!
, ~1!

where we see thatZ(m;p2)[1/A(m;p2) and M (p2)
[B(m;p2)/A(m;p2). The renormalization point is denote
by m and since we are interested in definingnonperturbative
renormalization we use the standard momentum subtrac
scheme~MOM!, which has the renormalization point boun
ary conditions

Z~m,m2!51 and M ~m2!5m~m!. ~2!

At sufficiently largem in an asymptotically free theory like
QCD the effects of dynamical chiral symmetry breaking b
come small andm(m) becomes the usual explicit chiral sym
©2001 The American Physical Society08-1
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metry breaking running quark mass. At large Euclidean m
mentum scales~i.e., largem! the procedure for relating th
parameters of the momentum subtraction~MOM! scheme to
the popularperturbativerenormalization schemes@i.e., mini-
mal subtraction~MS! or modified MS (MS)] is well known.
The renormalizability of QCD implies that the bare propag
tor is related to the renormalized one through the qu
wave-function renormalization constantZ2 :

Sbare~a;p!5Z2~m;a!S~m;p!, ~3!

wherea denotes the regularization parameter in some re
larization scheme~such as the lattice or dimensional regula
ization!. In a renormalizable theory the renormalized quan
ties become independent of the regularization paramete
the limit that it is removed~i.e., a→0 on the lattice ore
→0 in a dimensional regularization scheme!, while holding
the renomalization point boundary conditions fixed in E
~2!. It immediately follows from the renormalization poin
independence of the left-hand side of Eq.~3! that for suffi-
ciently smalla ~i.e., in thescaling region! we have

Z2~m;a!

Z2~m8;a!
5

Z~m8,p2!

Z~m,p2!
and

M ~p2![M ~m;p2!5M ~m8;p2! ~4!

for all p2. Hence the mass function must be renormalizat
point independent and a change of renormalization poin
just an overall rescaling ofZ(m;p2) by a momentum-
independent constant, i.e., the left-hand side of the
equality in Eq.~4!. Hence once the momentum-depende
renormalized propagator is known at onem for all p, then it
is immediately known for allm. We can evaluate the con
stant needed to rescaleZ(m;p2) to Z(m8;p2) by evaluating
Eq. ~4! at p25m82 and usingZ(m8;m82)51 @i.e., Eq.~2!# to
give

Z2~m8;a!

Z2~m;a!
5Z~m,m82!. ~5!

Perturbative QCD chooses a renormalization scalem close to
the momentum scale characterizing the particular proces
interest, e.g.,m2;Q2 in deep inelastic scattering. Thi
choice is made to ensure that perturbation theory will c
verge as rapidly as possible for the process of interest.
quark propagator used in such calculations is thenS(m;p)
for p2 nearm2, i.e., Sperturb(m;p)[1/@ ip”1m(m)#.

The tree-level quark propagator is the bare~i.e., regular-
ized! quark propagatorin the absence of interactions, i.e.,

S~0!~a;p!5
1

ip”1m0~a!
, ~6!

wherem0(a) is the bare quark mass. When the interactio
with the gluon field are turned on then

S~0!~p!→Sbare~a;p!5Z2~m;a!S~m;p!. ~7!
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So we see that in thescaling region~i.e., for sufficiently
smalla! the measure of nonperturbative physics is the dev
tion of Z(m;p2) from 1 and the difference ofM (p2) from
the renormalized quark massm(m). As already mentioned
for sufficiently largem, m(m) becomes the running mass
the renormalization pointm, which is the basis of the studie
performed in Ref.@4#.

The purpose of the work reported here is to extract
full Z(m;p2) andM (p2) directly from a lattice calculation of
the bare quark propagatorSbare(a;p). It is of course
Sbare(a;p) that is calculated on the lattice. In reality we d
not have the convenience of having an arbitrarily smalla,
rather we are faced with a lattice spacing which introdu
lattice artifacts at medium to high momenta. In order to si
plify the presentation of the data we will not explicitly intro
duce a renormalization point. Rather we will introduce f
convenience the renormalization-point-independent com
nation

Z~p2![Z2~m;a!Z~m;p2!. ~8!

The regularization parameter dependence~i.e., thea depen-
dence! of Z(p2) is not indicated for brevity, but is to be
understood. We will develop a procedure for tree-level c
rection of the lattice artifacts in order to minimize their e
fect.

The structure of the remainder of this paper is as follow
In Sec. II we describe the variousO(a) improved quark
actions and propagators that we will study. In Sec. III w
introduce our notation for the propagator in momentu
space and derive the tree-level expressions appropriate
the actions that we consider. In Sec. IV we describe
methods to minimize lattice artifacts, including our tree-lev
correction scheme. Section V contains our numerical resu
In Sec. V A we present the data for the propagator with
the tree-level correction; the effect of the tree-level corr
tion is shown in Sec. V B; in Secs. V C and V D we prese
the results of fits to a model function for the mass functionM
and extract the dynamically generated infrared quark m
and in Sec. V E we discuss the possibility of finite volum
effects onZ(p2). Finally, in Sec. VI we present our conclu
sions and suggestions for further work.

II. IMPROVED QUARK PROPAGATORS

A systematic program of improvement@9# proceeds by
adding all possible higher-dimensional local operators to
Lagrangian. When applied to the fermionic part of the QC
action, adding all possible gauge invariant local dimensi
five operators yields the following Lagrangian@10,11#:

L~x!5LW2
i

4
cswac̄smnFmnc1

bgam

2g0
2 tr~FmnFmn!

2bmam2c̄c1c1ac̄D” 2c1c2amc̄D” c. ~9!

Here for notational brevity we introduce the simple notati
m for the lattice bare mass, i.e.,m[m0(a). In this equation
we have usedLW for the standard Wilson Lagrangian densi
8-2
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QUARK PROPAGATOR IN THE LANDAU GAUGE PHYSICAL REVIEW D63 054508
and (i /4)cswac̄smnFmnc is the so-called ‘‘clover’’ improve-
ment term. The sum of these two terms is often referred t
the Sheikholeslami-Wohlert~SW! action. That the action
given by Eq.~9! is sufficient to remove allO(a) errors has
only been rigorously demonstrated for on-shell quantiti
For gauge dependent quantities, it is an open ques
whether further, gauge noninvariant@but Becchi-Rouet-
Stora-Tyutin ~BRST! invariant# terms must be added. W
will assume that any such terms will be small. We sh
follow the procedure used in studies of the gluon propaga
@7,8#, where it was seen that a combination of improved
tions and tree-level correction gave reliable outcomes eve
medium to high momenta.

Since the Wilson action explicitly breaks chiral symm
try, the lattice bare mass should be taken as the so-ca
subtracted bare mass@10#

m[m0~a![m02mc5
1

a S 1

2k
2

1

2kc
D , ~10!

wherem0[(1/2ka)24/a is the bare quark mass appeari
in the Wilson action. At tree level, where interactions a
absent, the quark condensate will vanish when the bare m
appearing in the action vanishes, i.e., whenm050 or equiva-
lently whenk5 1

8 . In the interacting theory,kc is defined as
the value ofk at which the pion mass vanishes andmc
[1/(2kca)24/a is a nonperturbative fine-tuning correctio
needed to ensure that the bare massm vanishes when the
pion mass vanishes. Thebg and bm terms correspond to a
~mass-dependent! rescaling of the coupling constant and t
mass respectively. Since we will work in the quenched
proximation we can setbg50. The parameterbm will be
absorbed into a redefinition of the bare massm here and we
will comment on this later. At tree level, thec1 andc2 terms
can be eliminated by the following transformation of t
fermion field @12#,

c→c85~11bqam!~12cqaD” !c,

c̄→c̄85~11bqam!c̄~11cqaD”Q !. ~11!

In general, beyond tree level, the improvement in the ac
must be combined with a corresponding improvement in
fermion field @11#,

c85~11bq8am!~12cq8aD” !c1cn]”c, ~12!

where the gauge dependent coefficientcn is needed when we
compute gauge dependent quantities, like the quark prop
tor. By choosing the correct improvement coefficients for
field, thec1 andc2 terms may again be eliminated. We no
in passing that the coefficientsbq8 andcq8 were recently cal-
culated at one-loop level@13#, while cn is still unknown.
However, here we will be restricting ourselves to tree-le
O(a) improvement throughout for the coefficientsbq8 , cq8 ,
and cn8 . In that case, theO(a) improved action and fields
after the transformation in Eq.~11! have bq8→bq5 1

4 , cq8
→cq5 1

4 , and cn50. We will use the tree-level mean-fiel
improved value forcsw and the nonperturbatively determine
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value ofkc to determine the lattice bare massm in terms of
k. Although we will use tree-level improvement formulas f
our quark actions and propagators, it is more appropriat
usem thanm0 in these. Although there is an apparent inco
sistency in using tree-level values forbq8 and cq8 and the
mean-field improved value forcsw, we have numerically
verified that using mean-field improved values forbq8 andcq8
makes no significant difference in practice. The tree-le
O(a)-improved propagator can then be defined as

S~x,y![^c8~x!c̄8~y!&5^~11bqam!2

3@12cqaD” ~x!#S0~x,y;U !@11cqaD”Q ~y!#&,

~13!

wherebq5cq5 1
4 and whereS0(x,y;U) for a given configu-

ration U is simply defined as the inverse of the fermion m
trix,

M ~x;U ![D” W~x;U !1~ ia/4!cswsmnFmn~x!1m

5D” ~x;U !1m1O~a!, ~14!

where D” W(x;U) is the lattice Wilson-Dirac operator an
D” (x;U) is the usual continuum covariant derivative. Ther
fore S0(x,y;U) will always satisfy the relations

@D” ~x;U !1m#S0~x,y;U !5d~x2y!1O~a!,

S0~x,y;U !@2D”Q ~y;U !1m#5d~x2y!1O~a!. ~15!

The ‘‘unimproved’’ quark propagatorS0 will be defined here
to be that arising from the SW action consisting of the W
son term and the clover term, but with no other correctio
Hence, S0 is then given by the ensemble average
S0(x,y;U):

S0~x,y![^S0~x,y;U !&. ~16!

We will denote the tree-levelO(a)-improved quark propa-
gator obtained from Eq.~13! as the improved ‘‘rotated’’
propagatorSR(x,y), which is

SR~x,y![^SR~x,y;U !&[ K S 11
am

2 D F12
a

4
D” ~x!G

3S0~x,y;U !F11
a

4
D”Q ~y!G L . ~17!

We can use Eq.~15! to obtain another, simpler expressio
for the improved propagator from Eq.~13!:

S~x,y!5@112~bq1cq!am#S0~x,y!

22acqd~x2y!1O~a2!

5~11am!S0~x2y!2
a

2
d~x2y!1O~a2!,

~18!
8-3
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where we have used the fact thatbq5cq5 1
4 here. We define

the corresponding version of the tree-levelO(a)-improved
propagator as

SI~x2y![~11am!S0~x2y!2
a

2
d~x2y!. ~19!

If we are only interested in on-shell improvement, e.g., h
ronic matrix elements, thed function can be ignored. How
ever, it is essential if we are considering off-shell propert
such as the quark propagator in momentum space.

In summary, we see that bothSR and SI are tree-level
improved definitions of the SW-clover~i.e., the ‘‘Wilson
plus clover’’! propagatorS0 . However,SR andSI will have
different O(a2) errors in general. This will become an im
portant consideration when we later attempt to minimize
tice artifacts.

III. MOMENTUM SPACE PROPAGATOR

The momentum space quark propagator is given by

S~p!5(
x

e2 ipxS~x,0!. ~20!

As is appropriate for fermions we will be using period
boundary conditions in the spatial directions and antiperio
boundary conditions in the time direction. Hence the av
able momentum values for anNi

33Nt lattice ~with Ni ,Nt

even numbers andi 5x,y,z) are

pi5
2p

Nia
S ni2

Ni

2 D ; ni51,2, . . . ,Ni , ~21!

pt5
2p

Nta
S nt2

Nt

2 D ; nt51,2, . . . ,Nt . ~22!

We will also for notational convenience define the followin
‘‘lattice momenta’’:

km[
1

a
sin~pma! ~23!

k̂m[
2

a
sin~pma/2!5

&

a
A12cos~pma! ~24!

which differ by

a2Dk2[ k̂22k25
a2

4 (
m

pm
4 1O~a4!. ~25!

In the continuum, the quark propagator has the general f
given by Eq.~1!. On the lattice it is convenient to work with
the dimensionless quark propagatorS(p)[Sbare(a;p)/a. We
expect the lattice bare quark propagator to have a sim
form to its continuum equivalent, but with the lattice m
mentumk” replacingp” , which can be appreciated by referrin
to the tree level lattice propagators to be given later. Beca
of hypercubic lattice artifactsZL and the dimensionlessML
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will be functions ofpm rather thanp2. Hence we have for the
dimensionless lattice bare quark propagator the form

S~p!5
1

iak”A~p!1B~p!
[

ZL~p!

iak”1ML~p!

[ZL~p!
2 iak”1ML~p!

a2k21~ML!2~p!
. ~26!

In the limit a→0 the continuum form will be recovered. Th
~dimensionless! lattice functionsA(p) and B(p) can then
easily be extracted from the inverse dimensionless lat
quark propagator,

A~p![
1

ZL~p!
5

2 i

4Nck
2a2 tr@k”S21~p!#, ~27!

B~p![
ML~p!

ZL~p!
5

1

4Nc
tr@S21~p!#. ~28!

In practice, however, it is easier to extract these functio
without inverting the propagator. It is easily verified that

A~p!5
A~p!

k2a2A2~p!1B2~p!
, ~29!

B~p!5
B~p!

k2a2A2~p!1B2~p!
, ~30!

where we have defined

A~p![
i

4Nck
2a2 tr@k”S~p!# B~p![

1

4Nc
tr S~p!. ~31!

Tree-level expressions

As was done in the introduction in Sec. I we will use th
superscript~0! to denote the tree-level versions of each of t
quark propagator definitions and actions considered. Th
are simply the propagators that would be obtained from
various definitions when the interaction with the gluons
turned off, i.e., when all the gluon links are taken to be t
identity. We will also be writingm rather thanm0 through-
out, since at tree level the two are identical. The dimensi
less SW fermion propagator at tree level is identical to
pure Wilson propagator and is given by@14,15#

S0
~0!~p!5

2 ik”a1ma1 1
2 k̂2a2

k2a21~ma1 1
2 k̂2a2!2

. ~32!

The tree-level form of the tree-levelO(a)-improved propa-
gatorSI is given by

SI
~0!~p!5~11ma!S0

~0!~p!2 1
2 . ~33!

If we write

~SI
~0!~p!!215 ik”aAI

~0!~p!1BI
~0!~p!, ~34!
8-4
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FIG. 1. Plots of the analytic
functions Z(0) ~top! and aDM (0)

~bottom! versus the momentumpa
for SI(p) ~left! andSR(p) ~right!.
The results shown here are ob
tained from the analytical expres
sions in Eqs.~A8!–~A15!.
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AI
~0!~p!52

i

4Nc
tr@k”a~SI

~0!~p!!21#/k2a2511O~a2!,

~35!

BI
~0!~p!5

1

4Nc
tr~SI

~0!~p!!215maS 12
ma

2
1O~a2! D .

~36!

We see that the quark mass gets anO(a) correction. The
purpose of the improvement termbm in the action~9! was to
cancel this change in the bare massm. However, by omitting
this correction we have have simply absorbed it into a red
nition of m. A(0)(p) is equal to unity up toO(a2), as ex-
pected. The details of the derivation are given in the App
dix.

It is also useful to write the propagator in the followin
way:

@S~0!~p!#215
1

Z~0!~p!
@ ik”a1ma1aDM ~0!~p!#. ~37!

The analytic expressions forZ(0)(p) andDM (0)(p) for both
the improved propagatorsSI andSR are given in the Appen-
dix. To illustrate the behavior of these tree-level functio
we show in Fig. 1 the forms ofZ(0) andDM (0) for both of
our improved actionsSI and SR . The horizontal axis ispa
05450
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2, where the possible values of the m
menta are those given in Eq.~22!. SinceZ(0)(p) deviates
from 1 andDM (0)(p) deviates from zero at medium to hig
momenta, it is immediately obvious that the finitea effects
are very large and we will need some method for taking c
of them if we are to obtain physically meaningful resul
The tree-level behavior is particularly pathological forSI(p),
with finite-a effects of several hundred percent appearing
Z(0), andDM (0) being many times larger thanm, and nega-
tive. The spread in the points is due to hypercubic artifa
since on the latticeZ(0) andDM (0) are functions ofpm and
not p2. The finite-a effects inSR are much more mild and
offer the hope that they might be partially compensated
Clearly in the limit a→0 we recover the continuum resu
whereZ(0)(p)51 andDM (0)(p)50 for all p.

IV. ANALYSIS

A. Tree-level correction

Recall that the quark propagators calculated on the lat
are actually the bare quark propagators, which become
tree-level propagators when the interactions are switched
We know that QCD is asymptotically free, which means th
at sufficiently high momentum values the bare quark pro
gator should approach the tree-level quark propagator u
logarithmic corrections, i.e., on the lattice for large mome
we should findS(p)→S(0)(p) up to logarithms. The devia
8-5
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tion of these from each other is a direct measure of the n
perturbative effects due to the interactions felt by the qua
Hence, we are here primarily interested in studying thede-
viation of the quark propagator from its tree-level form.

We will attempt to separate out the tree-level behavior
writing

S21~pa!5
1

Z~pa!Z~0!~pa!
@ iak”1aM~pa!1aDM ~0!~pa!#.

~38!

If asymptotic freedom holds for the momentum range we
considering, we should expect thatZ(pa)→1 and M (pa)
→m ~up to logarithmic corrections! for largep.

Equation ~38! can be rewritten to yield expressions f
Z(pa) andM (pa) in terms of the functionsZL andML ~or,
equivalently,A andB! defined in Eq.~26!,

Z~pa!5
ZL~pa!

Z~0!~pa!
, ~39!

aM~pa!5ML~pa!2aDM ~0!~pa!. ~40!

We refer to the functionsZ andM obtained in this way as the
tree-level correctedforms of the lattice quantitiesZL and
ML.

It is important that one not be confused by the differe
uses of the expression ‘‘tree-level.’’ First, there is anO(a)
improvement which was only implemented at tree le
rather than having the improvement coefficients determi
in some nonperturbative way. Second, there are tree-l
propagators which are the bare propagators when there
no interactions. Third, we have just now introduced o
method of tree-level correction, which will hopefully min
mize the finite-a errors in our extraction of the quark prop
gator from the lattice. Because the tree-level behavior ofSI ,
i.e., SI

(0) , is much worse at medium and high momenta th
that of SR , we anticipate that our tree-level correction m
not be adequate in that case. We therefore expect the
level correction method to work significantly better forSR
than forSI .

B. Cuts

Even after the tree-level correction has been perform
there will still be anisotropies in the data, resulting fro
finite a effects beyond tree level. To remove these, we se
momenta lying close to the diagonal in momentum spa
We choose the diagonal because finite-a hypercubic artifacts
will be minimized at a givenpa when the momentum is
approximately equally spread among the four moment
components. Ideally, one should attempt ana→0 extrapola-
tion, but given the available data we will see that this cut
the data removes most of these artifacts. We define the
tance of a point from the diagonal by

Dp5upusinu~p!, ~41!

where the angleu(p) is given by
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cosu~p!5
p•n̂

upu
, ~42!

andn̂5 1
2 (1, 1, 1, 1) is the unit vector along the diagonal. W

select momentum values such thatDp<p/8a, i.e., within
one unit of spatial momentum from the diagonal. We refer
this selection as the ‘‘cylinder cut,’’ since the momenta s
lected lie within a cylinder around the diagonal in mome
tum space.

V. RESULTS

The quark propagator is calculated atb56.0 on a 163

348 lattice, using the tree-level mean-field~‘‘tadpole’’ ! im-
proved valuecsw51.479. For this action with these param
eter values,kc is found to bekc50.1392@16#. Two values
for k were used:k50.137, corresponding toma50.0603,
and k50.1381, corresponding toma50.031. The lattice
spacing as determined from string tension measuremen
the gluon sector atb56.0 isa50.10660.002 fm or equiva-
lently 1/a51.855638 GeV and so the values for the qua
masses arem5112 MeV andm557.5 MeV, respectively.

The configurations were fixed to Landau gauge with
accuracy ofu[(x,mu]mAm(x)u2,10212. At k50.137, we
have generated bothS0 andSR . At k50.1381, onlyS0 was
generated.SI is easily constructed fromS0 . We have used
the tree-level values for the coefficientsbq andcq as previ-
ously stated, rather than the mean-field improved values
the difference between the two is negligible compared to
O(a2) and higher effects which the tree-level correcti
scheme attempts to minimize. We have explicitly verifi
that replacing the tree-level values forbq and cq with the
mean-field improved values makes only negligible diffe
ence. However, in any future study it would clearly be pr
erable to make consistent use of mean-field improved or n
perturbatively determined~as far as they are available!
improvement coefficients throughout. All the results sho
for SR are for 20 configurations, while the results forSI are
for 499 configurations, unless otherwise specified.

As a further check on our results, we have also analy
60 configurations atb55.7 on a 123324 lattice, for k
50.138 43 andk50.140 77, corresponding toma50.128
and 0.068, respectively. Here,kc50.1432. In this case, al
three propagators were generated for all configurations.
will not explicitly show these results here but will comme
on their relevance in our later discussion.

A. Uncorrected data

Let us first see what happens when we use the naive
mulas forZ andM without implementing the tree-level cor
rection, i.e., we first considerZL and ML. Since Eq.~15!
holds precisely configuration by configuration, Eq.~18!
should be satisfied nonperturbatively. However, theO(a2)
term can be quite large. In Fig. 2 we showZL(p)51/A(p) as
a function ofpa usingSI(p) andSR(p), respectively, while
in Fig. 3 we presentML(p) for the same two cases. Com
paring these figures with the tree-level behavior shown
Fig. 1 we see that finite-a errors completely dominate thes
8-6
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FIG. 2. ZL(p)51/A(p) as a
function of momentum p for
SI(p) ~left! and for SR(p) ~right!
with the bare quark mass corre
sponding tok50.137. No tree-
level correction has been mad
and no data cuts have been a
plied.
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~uncorrected! quark propagators at medium and high m
menta. Only in the infrared, belowpa&0.8, might we be
able to extract physically significant information.

A comparison with the ‘‘unimproved’’ SW propagatorS0
shows that bothSI(p) and SR(p) are considerably bette
behaved in the infrared than the ‘‘naive’’ propagatorS0(p).
In particular, the mass function is a decreasing function ofpa
up to pa;1, which is what one would expect from
asymptotic freedom. This is not the case forS0(p), which
begins to increase monotonically in the infrared atpa;0.4
as does its tree-level form. Also, the values forZL(p)
51/A(p) andML(p) agree forSR andSI within errors up to
pa;0.8, while the values obtained fromS0(p) are signifi-
cantly different from the improved values even at low m
menta.

At momenta abovepa;1 theO(p2a2) and higher terms
dominate and it is impossible to extract any meaningful
formation from these uncorrected data. This can be appr
ated most dramatically by the way the lattice data dive
with increasing momentum for the two improved~but uncor-
rected! propagators.

B. Tree-level corrected data

Since, as we saw in the previous section, the tree-le
form completely dominates the high-momentum data,
may hope that by factoring out this behavior we will g
05450
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something which lies close to the continuum asympto
form. In the low and intermediate momentum region we m
then be able to extract the physical, nonperturbative beha
of the functionsZ(p) andM (p).

When applying this correction, we find that there is
dramatic improvement in the behavior withpa of all three of
our forms of the propagator, i.e., forS0 , SI , andSR . How-
ever, the pathological behavior ofSI

(0)(p) at high momenta
gives rise to a cancellation of large terms in the subtrac
mass, leading to a behavior for the mass function which
clearly at odds with the expectation from asymptotic fre
dom. Thus, as expected, the finite-a errors inSI are simply
too large to be corrected by our simple tree-level correct
procedure. As previously noted, our unimproved propaga
S0 behaves poorly even at very low momenta and can
therefore be trusted. It is therefore desirable to use the d
nition SR for the improved propagator@19# and to apply our
tree-level correction to that. The results forZ(p) andM (p)
for our preferred propagatorSR(p) are shown in Fig. 4 as
functions of pa for k50.137. We see that the medium
large momentum behavior has been dramatically impro
by our tree-level correction procedure as expected, i.e
behaves in a way reasonably consistent with the expectat
of asymptotic freedom. The spread of the lattice data due
hypercubic artifacts is somewhat reduced but has not b
eliminated.
ts
FIG. 3. ML(p) for SI(p) ~left!
and forSR(p) ~right! with the bare
quark mass corresponding tok
50.137. No tree-level correction
has been made and no data cu
have been applied.
8-7
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FIG. 4. Z(p) ~left! andaM(p)
~right! for our preferred form of
the improved propagatorSR(p) at
k50.137. The lattice data show
are obtained using the tree-leve
correction defined in Eq.~38! but
without any cuts.
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In Fig. 5 we show the lattice results forZ and M for all
three definitions of our quark propagator, after implement
both the tree-level correction and the cylinder cuts descri
in Sec. IV B. The tree-level correction is clearly failing forSI
as is evident from the behavior of the mass functionM (p).
Although the behavior of the unimproved propagatorS0 has
been considerably improved, as we previously observe
cannot be trusted even at relatively low momenta and s
must be discarded. The apparent difference in the behavio
Z between the two improved definitions of the propagatorSI
and SR , even at relatively low momenta, is at first sig
puzzling. However, it must be recalled thatZ(p)
[Z2(m;a)Z(m;p) and that it is actuallyZ(m;p) that we
should be comparing for the different actions. Different a
tions will in general have different values of the renorm
ization constantZ2(m;a). If we renormalize at some ‘‘safe’
momentum scale where we would expect both improv
propagators to be reliable, e.g.,ma;0.4, then the apparen
difference is much reduced except at medium to high m
menta whereSI can no longer be trusted. Analysis of the da
at b55.7, which corresponds to a coarser lattice, and he
larger finite-a effects, is also consistent with this interpret
tion. Below pa;0.6, the values forM (p) agree within er-
rors for the two versions of the improved propagator. In p
ticular, the value for the infrared massM (p→0) agrees well.
In contrast, and not surprisingly, the unimproved propaga
S0 yields a mass which is 3–4s higher. We again clearly se
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from this plot the poor high-momentum behavior ofM (p)
arising from the inexact cancellation of large finite-a errors
in SI .

Figure 6 showsM (p) calculated fromSI for the two val-
ues of the quark mass. In the infrared region, the m
changes only slightly as the bare quark mass is halved, po
ing to a dynamically generated ‘‘constituent’’ quark mass
the chiral limit, which we will later estimate. The functio
Z(p) was found to be insensitive to the quark mass.

C. Model fits

In order to try to parametrize its behavior, the mass fu
tion M (p) was fitted to the simple model analytical form

aM~pa!5
c

~ka!21L2 1mUV , ~43!

wherek was defined in Eq.~24!. We have fitted to data in the
window 0<ka<P, with P varying between 0.7 and 1.4, i
order to verify that the parameters are insensitive to the
ting window P. Since SR is far better behaved thanSI at
higher momenta, all the fits have been performed to the m
function M (p) extracted from our preferred propagatorSR .

The parameter values fork50.137 are shown in Table I
All the fits give a value formUV which is consistent with 0.
This is due to the fact that we have not completely remov
s
s
-

0

o

FIG. 5. The tree-level cor-
rected functionsZ(p) ~left! and
aM(p) ~right! for all three propa-
gators, after performing the cut
described in Sec. IV B. The value
for SR are obtained from 20 con
figurations; for the two other
propagators the data are from 30
configurations. Note that theZ(p)
functions need to be scaled t
agree at some ‘‘safe’’ momentum
scale~e.g.,ma.0.4) before being
compared.
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QUARK PROPAGATOR IN THE LANDAU GAUGE PHYSICAL REVIEW D63 054508
these lattice artifacts fromM (p) at intermediate and larg
momenta. This indicates that atb56.0 with our preferred
improved action and propagator we still do not have su
cient control of ultraviolet lattice artefacts that would allo
us to extract the ultraviolet running mass@4#. Combining the
fit parameters for all the fits gives a value for the infrar
quark mass ofaM ir50.21160.008.

D. Infrared quark mass

A quantity of intrinsic interest is the mass functionM (p)
at zero momentum in the ‘‘chiral’’ limitm→0. This gives a
measure of the dynamical chiral symmetry breaking in
system, and is related to the order parameter of dynam
chiral symmetry breaking, the chiral condensate^c̄c&, as
well as to the concept of the ‘‘constituent quark mass’’ us
as input in various quark models.

Since we have only computedSR for one value of the
quark mass, we must use the data fromSI to perform the
extrapolation tom50. Recall that at low momenta the tw
actions give consistent results forM (p2) within errors. The
results are shown in Fig. 8. The data point fromSR at k
50.137 is also shown, giving an indication of systema

FIG. 6. The tree-level corrected mass functionM (p) from SI ,
for k50.137~circles! andk50.381~crosses!, after performing the
cuts described in Sec. IV B. The increase inM (p) for pa.1 is an
indication of the difficulty of accurately subtracting off the tre
level mass function for this definition of the improved propagat
SI has been used in this case because we lack data for more
one quark mass for our preferred definitionSR ; however, the mass
functions agree well in the infrared. The data shown are from
configurations.
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uncertainties. We find a value forM (0;m50) of 29868
630 MeV, where the second set of errors is an estimate
the systematic uncertainty coming from the difference
tweenSR and SI . This is reasonably consistent with com
monly used values for the constituent quark mass.

E. Finite volume effects

To determine whether the infrared suppression ofZ(p) is
real or a finite volume effect, we can look for anisotropy
the infrared. Since the temporal extension of the lattice
three times the spatial extension, the finite volume will affe
spatial momenta differently from timelike momenta, givin
an indication of the size of~anisotropic! finite volume ef-
fects.

Figure 9 shows the infrared behavior ofZ(p), with mo-
menta in different directions plotted separately. We see
the finite volume anisotropy, although not negligible, is n
sufficient to explain the infrared suppression. This indica
that the suppression is either due to isotropic finite volu
effects, or is a real physical phenomenon. In model Dys
Schwinger equation studies@1# the dynamically generated
quark mass is typically associated with a dip inZ(p) similar
to what is seen here. There is no discernible anisotropy in
data for the mass functionM (p) at low momenta. We there
fore conclude that finite volume effects forM (p) are almost
certainly negligible.

VI. CONCLUSION AND FURTHER WORK

We have presented initial lattice results for the mome
tum dependence of the quark propagator after implemen
a tree-level correction procedure. At high momenta, qua
are asymptotically free and so the quark propagator
proaches its tree-level behavior. We make use of this fac
subtract off and factor out the tree-level behavior, replac
it with what should be a more continuumlike medium a
high momentum behavior of the quark propagator. This
proach can only work reliably when the tree-level finitea
effects are not too large, i.e., when the tree-level propag
corresponding to the action of interest is reasonably beha
at medium and high momenta. The tree-level correction w
seen to dramatically improve the data for the preferred d
nition of the improved quark propagatorSR . The relatively
poor behavior of the tree-level correctedSI is due to the
large tree-level finite-a effects which require fine tuning to
subtract off correctly. The unimproved propagator was s
to be unreliable even at low momenta (pa;0.4) and so can-
not be trusted even after tree-level correction.

.
an

0

TABLE I. Parameter values for best fits to the form of Eq.~43! in the window 0<ka<apmax, for
different values ofpmax, at k50.137.

apmax mUV c L M IR x2/Ndf

0.8 0.00172183
1134 0.086214

121 0.6424
16 0.210210

18 0.330
1.0 20.00082146

1102 0.089213
119 0.6524

15 0.21029
18 0.270

1.2 0.0056293
194 0.08128

110 0.6323
13 0.21128

19 0.253
1.4 0.0086267

176 0.07727
18 0.6122

12 0.21227
18 0.195
8-9



ary
quark

JON IVAR SKULLERUD AND ANTHONY G. WILLIAMS PHYSICAL REVIEW D 63 054508
FIG. 7. The lattice results forZ(p)[Z2(m;a)Z(m;p) andM (p) for our preferred form of the quark propagatorSR(p), after both the
tree-level correction and the cylinder cut. The vertical scale forZ(m;p) is determined from the above by dividing it by the necess
renormalization constant@i.e.,Z2(m;a)] to ensure thatZ(m;m2)51. These are the central results of the studies reported here. The bare
mass used here wasm5112 MeV and hence we conclude thatM (p) is not reliable at momenta above approximately 1.5 GeV.
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Although the ultraviolet behavior of the quark propaga
is clearly improved, it remains an open question whet
there exists a momentum window where the lattice data
reliable and perturbation theory is valid. One way of che
ing this would be to calculate the propagator at three or m
different quark masses and attempt a chiral extrapolatio
the mass function in the intermediate momentum region
perturbation theory is valid in this region, the mass funct
should extrapolate to zero.

Residual lattice artifacts may also be investigated
studying the chiral Ward identity@17,18#, which should be
valid at all momenta. This involves computing the pseud
scalar vertex, and while it falls outside the scope of t
initial study, it should be included in future studies of th
quark propagator. In Ref.@18# the Ward identity has bee

FIG. 8. The infrared value of the quark mass functionM ir

[M (p50), obtained by extrapolatingM (p) to pa50 for two
different bare quark masses,m557.5 and 112 MeV. The crosse
denote the two values obtained fromSI from 300 configurations and
two bare quark masses, while the square is the value obtained
SR for a single quark mass. The burst indicates the chirally extra
lated value ofM ir obtained by a simple straight line interpolation
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studied for a slightly different action to ours, and verified f
momenta up topa&1.

The central results of this work are summarized in Fi
7–9. Figure 7 represents the best estimate from our curre
available data of the nonperturbative behavior of the qu
propagator and is based on our preferred quark action co
sponding to theSR propagator. Figure 8 is our extraction o
the dynamically generated infrared or ‘‘constituentlike
quark mass. Finally, Fig. 9 gives an indication of the mag
tude of finite volume effects inZ(p) compared to the non
perturbative effects.

For pa&1, we see thatM (p) falls off with p as expected.
The values obtained fromSR and from SI are consistent,
while those for the unimproved propagatorS0 differ signifi-
cantly. The infrared massM (0), which can be thought of as

m
-

FIG. 9. Z(p) from the propagatorSI(p), from 70 configurations
at k50.137, i.e.,m5112 MeV. The squares denote purely timelik
momenta, while the diamonds denote points with one unit of spa
momentum. The fancy squares are points with half a unit of tim
like momentum~i.e., nearly purely spatial momentum!. These data
appear to indicate that the infrared suppression ofZ(p) is not a
finite volume effect.
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QUARK PROPAGATOR IN THE LANDAU GAUGE PHYSICAL REVIEW D63 054508
analogous to a ‘‘constituent quark mass,’’ appears to
proach a value of 29868630 MeV in the chiral limit.

We also find a significant dip in the value forZ(p) at low
momenta. It must be remembered that the curves forZ(p2)
for different actions need to be rescaled to agree at s
‘‘safe’’ low momentum renormalization point before com
paring them. The finite volume anisotropy is much sma
than the apparent infrared suppression. We cannot expli
rule out largeisotropic finite volume errors, although base
on experience with earlier gluon propagator studies
seems unlikely. However, a larger volume is needed to c
pletely resolve this issue.

Since in this initial study, we have used the mean-fi
improved value for the clover coefficientcsw , and tree-level
improvement for the fermion fields, the quark propaga
still has some residualO(a) errors as well asO(a2) and
higher order errors. To remove the residualO(a) errors it
would be necessary to compute the nonperturbative va
for the coefficientsbq8 , cq8 andcn . Repeating these calcula
tions at a different lattice spacing and with other improv
quark actions is also essential to get reliable results for
quark propagator and in particular for the quark mass fu
tion at medium to high momenta. These studies are curre
underway.
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APPENDIX: TREE-LEVEL EXPRESSIONS—DETAILS

The dimensionless Wilson fermion propagator at tr
level is

S0
~0!~p!5

2 ik”a1ma1
1

2
k̂2a2

k2a21S ma1
1

2
k̂2a2D 2

[
1

D
S 2 ik”a1ma1

1

2
k̂2a2D . ~A1!

Since the SW term is proportional to the gauge field tenso
vanishes at tree level, so this expression also holds true
the SW action. The tree-level ‘‘improved’’ propagatorSI is
given by
SI
~0!~p!5~11ma!S0

~0!~p!2
1

2
5

2 i ~11ma!k”a1ma1
1

2
m2a22

1

8
k̂4a41

1

2
a4Dk2

k2a21S ma1
1

2
k̂2a2D 2 [

1

D
@2 i ~11ma!k”a1BI8#

~A2!

and the inverse propagator is

~SI
~0!~p!!215

D@ ik”a~11ma!1BI8#

k2a2~11ma!21BI8
2

5

F ik”a~11ma!1maS 11
1

2
maD 2

1

8
a4k̂41

1

2
a4Dk2GFk2a21S ma1

1

2
k̂2a2D 2G

k2a2~11ma!21S ma1
1

2
m2a21

1

2
a4Dk22

1

8
a4k̂4D 2 .

~A3!

If we write

~SI
~0!~p!!215 ik”aA~0!~p!1B~0!~p!, ~A4!

we find

AI
~0!~p!52

i

4Nc
tr@k”a~SI

~0!~p!!21#/k2a2511
a2

4

k̂42m4

k21m2 1O~a4!, ~A5!

BI
~0!~p!5

1

4Nc
tr~SI

~0!~p!!215maS 12
ma

2
1

m2a2

4

2k21m21 k̂4/m2

k21m2 D 1O~a4!. ~A6!

If we write the propagator according to Eq.~38!,
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~SI
~0!~p!!215

1

ZI
~0!~p!

@ ik”a1ma1aDMI
~0!~p!#, ~A7!

we find

ZI
~0!~p![

1

AI
~0!~p!

5
k2a2~11ma!21BI8

2

~11ma!D
~A8!

aDMI
~0!~p![ZI

~0!~p!BI
~0!~p!2ma52

1

2

m2a22a4Dk21a4k̂4/4

11ma
, ~A9!

where

BI8[ma1
m2a2

2
1

a4Dk2

2
2

a4k̂4

8
. ~A10!

We have defined the rotated propagatorSR(x,y) as

SR~x,y!5S 11
ma

2 D S 12
1

4
D” ~x! DS0~x,y!S 11

1

4
D”Q ~y! D . ~A11!

At tree level, the Fourier transform of this is

SR
~0!~p!5S 11

ma

2 D S 12
iak”

4 DS0
~0!~p!S 12

iak”

4 D5
~11ma/2!

D S 12
iak”

4 D ~2 iak”1m1 k̂2a2/2!S 12
iak”

4 D
5

~11ma/2!

D F2 iak” S 11
ma

2
1

3

16
k2a21

1

4
a4Dk2D1ma2

1

16
a3mk22

1

32
a4k2k̂21

1

2
a4Dk2G

[
11ma/2

D
@2 iak”AR8 ~p!1BR8 ~p!#. ~A12!
We can then write

SR
~0!~p!215

D

~11ma/2!DR
~ iak”AR81BR8 !;

DR5k2AR8
21BR8

2. ~A13!

From this we find the expressions forZR
(0)[1/AR

(0) and
aDM (0)[ZR

(0)BR
(0)2ma, via

AR
~0!~p!5

DAR8

~11ma/2!DR
511

k2a2

16
1O~a2! ~A14!
s,
.

D

05450
BR
~0!~p!5

DBR8

~11ma/2!DR

5maS 12
ma

2
1

m2a2

16

k214m223k4/m2

k21m2 D
1O~a4!. ~A15!

Comparing these expressions with those of Eqs.~A5! and
~A6!, we clearly see that the tree-levelO(a2) errors inSR are
much smaller than forSI .
s.
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