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Abstract
Estimating population size in space and time is essential for applied ecology and wildlife management purposes; however, 
making accurate and precise estimates at large scales is highly challenging. An example is the European badger (Meles 
meles), a widespread and abundant mammal in Ireland. Due to their role in the epidemiology of bovine tuberculosis, the 
species has been culled in agriculturally dominant landscapes with the intention of reducing spillback infection to local cattle 
populations. Despite several studies using different approaches having estimated badger populations at different time points 
and scales, there remains considerable uncertainty regarding the current population and its future trajectory. To explore 
this uncertainty, we use published data and expert opinion to estimate a snapshot of probable badger population size using 
a Monte Carlo approach, incorporating variation in three key components: social group numbers, group size, and culling 
efficacy. Using this approach, we estimate what the badger population in Ireland would be with/without culling, assuming 
a steady-state population at carrying capacity, and discuss the limitations of our current understanding. The mean estimate 
for the badger population size was 63,188 (5–95th percentile, 48,037–79,315). Population estimates were sensitive to the 
assumption of mean group size across landscape type. Assuming a cessation of culling (in favour of vaccination, for example) 
in agricultural areas, the mean estimated population size was 92,096 (5–95th percentile, 67,188–118,881). Despite significant  
research being conducted on badgers, estimates on population size at a national level in Ireland are only approximate, which is  
reflected in the large uncertainty in the estimates from this study and inconsistencies between recording of data parameters in previous  
studies. Focusing on carefully estimating group size, factors impacting its variation, in addition to understanding the dynamics  
of repopulation post-culling, could be a fruitful component to concentrate on to improve the precision of future estimates.
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Introduction

Estimating population size and density accurately and pre-
cisely is critical for applied ecology studies and wildlife 
management and monitoring (Krebs 1985; Seber 1986). 
Doing so at scale, for example, at the national levels > 10,000 
 km2, has proved very challenging (Pollock et al. 2002). An 
example is the badger (Meles meles), a widespread and 
abundant species, in Ireland (Smal 1995; Sleeman et al. 
2009; Byrne et al. 2012a, b; Reid et al. 2012; Byrne et al. 
2014a; O’Brien et al. 2016) where accurate and precise esti-
mates of population size are required for wildlife manage-
ment purposes related to disease control and monitoring.

A significant amount of research on the ecology of badger 
has been undertaken in Ireland and the UK due to their role 
in the epidemiology of bovine tuberculosis (bTB), caused by 
the pathogen Mycobacterium bovis (M. bovis), in cattle herds 
(Griffin et al. 2005; Byrne et al. 2014b; Donnelly et al. 2006). 
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Furthermore, badgers have been culled to reduce density, in an 
attempt to reduce spillback infection of M. bovis from badgers 
to cattle (O’Keeffe 2006; Byrne et al. 2013a, b; Downes et al. 
2019). Consequently, measuring the abundance of badgers is a 
key parameter in understanding potential spillback risk as well 
as understanding the impact of culling on local populations 
and population viability (Abdou et al. 2016; Judge et al. 2014; 
Judge et al. 2017). Population estimates have been derived 
using direct and indirect methods, including counting setts 
(burrows), using field signs, mark-recapture, mark-resight, 
direct observation, genetic methods, removal studies, and spe-
cies distributional models (Sleeman et al. 2009; Byrne et al. 
2012b; Tuyttens et al. 2001; Tuyttens et al. 2001; Sadlier et al. 
2004; Scheppers et al. 2007; Byrne et al. 2014a, b; Byrne et al. 
2019; Jacquier et al. 2021). Despite such interest and data gath-
ering, there is still significant uncertainty associated with the 
population size of badgers at large scales (Byrne et al. 2014a, 
b; Judge et al. 2014; Jacquier et al. 2021) and, in particular, in 
Ireland, where the badger population has been depressed by 
the culling of badgers in agricultural areas where cattle herds 
have broken down with bTB (O’Keeffe, 2006).

Uncertainty at large scales arises due to the difficulty in 
measuring a nocturnal, cryptic species, the relationship between 
metrics of badger presence, and their environmental suitability, 
variation in group size (and its relationship to landscape capac-
ity) (Feore and Montgomery 1999; Judge et al. 2017; Jacquier 
et al. 2021), and the impact and efficacy of culling. Therefore, 
this study set out to use published data on badgers in Ireland, 
along with measures of uncertainty for these parameters, to 
provide a current “best” central estimate of the badger popula-
tion given recent culling history. We explore which variables 
contributed most to the variation in the estimates through a sen-
sitivity analysis. We then use this model to estimate, given the 
uncertainty, what the population carrying capacity could be in 
the total absence of culling, if vaccination replaced all culling. 
This latter what-if scenario is relevant from an Ireland popula-
tion perspective as vaccination by Bacillus Calmette–Guérin 
(BCG) is becoming a greater component of the management of 
bTB in wildlife (Aznar et al. 2018; Martin et al. 2020). Badg-
ers are a legally protected species and listed under the Bern 
Convention, and therefore gaining better understanding of the 
uncertainty in the population estimates is required from a con-
servation and management perspective.

Methods

Overview

Our overall approach was to develop a simple deterministic 
model of badger abundance based primarily as the product 
of the total number of badger setts and the mean group size 
within Ireland. This model was further developed to incorpo-
rate variation across landscape types, culling histories, and 

finally in the event where culling was ceased, and vaccination 
was wholesale introduced. Point estimates for these param-
eters were derived where possible from the literature. Once 
the deterministic model was developed, each parameter was 
given a distribution, and these distributions were repeatedly 
sampled to form the stochastic Monte Carlo model.

Base deterministic model

Let us first consider a general estimate of badger population 
(Y) to be the product of the number of main setts (s) and 
mean group size (g), under the assumption that main setts 
represent typically one territory and social group:

We assume that main setts were correctly identified, and 
group sizes enumerated, during previous studies. We also 
assume that group size estimates incorporated the disease 
status of badger groups at the time of study, which may 
include disease-related mortality (Wilkinson et al. 2004).

To expand on this oversimplification, different terrains will 
have different main sett densities and group sizes. To account 
for this, we divided the Irish landscape into three broad types 
(see similar approach employed by Feore 1996; Feore and 
Montgomery 1999; Reid et al. 2012), derived from categories 
predicted from a large-scale biogeographical model presented 
in Byrne et al. (2014a). Landscape 1 we term “low suitabil-
ity” landscapes are dominated by uplands, bog habitats, very 
steep, and shallow soil types, and wetland/waterlogged areas. 
“Moderate suitability” landscape 2 tends to be in lowland areas 
(< 170 m asl), with pasture being a significant component of 
the landscape but with limited cover provided by hedgerow 
and/or forests. “High suitability” landscape 3 areas are those 
with deep, well-drained soils, in lowland areas (30–170 m asl) 
with gentle slopes (< 15º) and with high hedgerow density, 
pasture, and forest coverage (Byrne et al. 2014b, a).

An assumption was made that landscape type impacts on the 
carrying capacity for badger populations (Feore and Montgomery  
1999; Reid et al. 2012; Byrne et al. 2014b, a; Judge et al. 2017), 
whereby higher social group densities are associated with 
higher landscape suitability (shown to have a cubic relationship 
by Byrne et al. (2014a). Furthermore, variation in landscape 
can also affect the mean social group size within badger social 
groups, such that larger social groups can reside in more suitable 
landscapes (Kruuk and Parish 1982; Feore and Montgomery  
1999; Judge et al. 2017) (see Supplementary Material for further 
discussion). Collating this information together, we can get an 
estimate for badger population, Ynoculling:

(1)Ygeneral = sg

(2)Ynoculling =

3
∑

i=1

sigi
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where si and gi represent the number of setts and mean group 
size, respectively, for the ith landscape types (1–3).

Badger culling

The impact of badger culling on the population estimate 
was introduced with three parameters.

The number of main setts, representing social groups, 
where culling was attempted was known from records 
held by DAFM. Approximately, 30% of the land area of 
Ireland is under a capturing regime (Byrne et al. 2013a, 
b). Therefore, we introduced the parameter “culled setts” 
(c), which represents the number of social groups culled 
per landscape type 2 or 3, respectively. We did not invoke 
badger removal in landscape type 1 “low suitability”, as 
this landscape type is generally characterised by habi-
tats not conducive with cattle farming and therefore low 
bTB incidence areas (Byrne et al. 2015; McGrath et al. 
2014). Furthermore, badgers are not culled in local areas 
without evidence of bTB transmission within cattle herds 
(O’Keeffe 2006).

Not all badger setts where culling is attempted yield any 
badgers (Byrne et al. 2013a, b), and therefore, a probabil-
ity of any successful capture “prob_capture”pcapture was 
introduced based on observed capture records in Ireland 
(Byrne et al. 2012a, b, 2013a).

If there is a successful capture at a sett, there is signifi-
cant variation in the number of badgers that will be captured 
from the one social group during a multiannual program 
(Byrne et al. 2013b, 2019). Therefore, a variable represent-
ing the number of badgers captured per sett in areas where 
culling was attempted was introduced “badgersculled”(b). 
As capturing efficacy is related to abundance (Smith et al. 
2007; Woodroffe et al. 2009), two parameters for landscape 
types 2 and 3 were introduced, respectively, as larger group 
sizes were assumed in type 3 relative to type 2. Incorporat-
ing the capture process into the previous equation gives an 
updated estimate of the badger population, Ywithculling:

(3)

Ywithculling = s1g1 +

3
∑

i=2

(

si − ci
)

gi + cipcapture
(

gi − bi
)(

si − ci
)

gi

Table 2  Inputs parameter descriptions for a simulation

PERT distribution (Malcolm et al 1959; Clark 1962)

Culling simulation Variable Landscape type Distribution Mean/mode SD Min Max

Setts_1 Low suitability Normal 1982 600
Group size 1 Low suitability PERT 3 2 4
No. badgers culled 2 Moderate suitability PERT 1.5 1 4
Setts_2 Moderate suitability Normal 11,969 600
Group size 2 Moderate suitability PERT 3.5 2 5
No. setts culled 2 Moderate suitability Normal 1500 200
Setts_3 High suitability Normal 5208 200
Group size 3 High suitability PERT 4.5 2 10
No. badgers culled 3 High suitability PERT 2.5 1 7
No. setts culled 3 High suitability Normal 1500 200
Probability of badger capture All Beta (12, 20) 0.375 0 1

Non-culling simulation
Group size 2 Moderate suitability PERT 4.3 2 6
Group size 3 High suitability PERT 6.1 2 15

Table 3  Output from a Monte 
Carlo simulation exploring the 
variation of badger population 
size in Ireland if all culling 
ceased (i.e. bTB vaccination 
employed)

* Numbers 1, 2, and 3 assigned to variables refer to subpopulations within low, moderate, or high badger 
suitability landscapes, respectively

Variable* Mean SD 5% 25% 50% 75% 95%

sett_1 1980.1 599.88 995.9 1573.6 1977.1 2385.5 2967.0
sett_2 11,970.6 599.00 10,989.6 11,567.2 11,969.0 12,373.4 12,958.6
sett_3 5207.7 200.49 4878.3 5071.9 5208.1 5343.1 5537.2
group_1 3.0 0.38 2.4 2.7 3.0 3.3 3.6
group_2 4.2 0.75 2.9 3.7 4.2 4.8 5.4
group_3 6.9 2.38 3.3 5.1 6.7 8.6 11.1
Population 92,096.7 15,672.36 67,188.7 80,988.6 91,479.6 102,723.6 118,881.0
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where each variable is described in detail in Table 1 and 
Table 2 (see Supplementary Material for distribution of 
variables).

Post‑culling population

Equation 2 represents what a non-culled population size 
might be without the potential benefits of BCG vaccination 
to badgers. However, vaccination could provide a benefit 
to badgers in terms of reduced disease-related mortality 

(Abdou et al. 2016), though we acknowledge such benefits 
may only accrue slowly over years (Delahay et al. 2003). 
We assumed that the carrying capacity was saturated in 
terms of the density of badger setts available across Ireland 
(see Discussion). This assumption was predicated on the 
fact that badgers rely on hedgerows in Ireland as a surrogate 
for broadleaf forest found elsewhere in the species range 
(Byrne et al. 2012a, b). The reduction of hedgerow cover 
in Ireland, and the low broadleaf forest cover generally, 
would limit the construction of new main setts allowing for 

Fig. 1  Histogram of the esti-
mated population size across 
parameter space using 100,000 
Monte Carlo simulations 
exploring a scenario with no 
culling

Table 4  Output from a Monte 
Carlo simulation exploring the 
variation of badger population 
size in Ireland

* Numbers 1, 2, and 3 assigned to variables refer to subpopulations within low, moderate, or high badger 
suitability landscapes, respectively

Variable* Mean SD 5% 25% 50% 75% 95%

sett_1 1979.3 600.9 988.6 1574.7 1977.1 2385.5 2964.3
sett_2 11,965.6 599.2 10,978.0 11,562.2 11,964.8 12,372.0 12,953.1
sett_3 5206.9 199.9 4878.7 5072.5 5206.8 5341.9 5534.4
group_1 3.00 0.3 2.3 2.7 3.0 3.2 3.6
group_2 3.50 0.5 2.5 3.0 3.5 3.9 4.4
group_3 5.00 1.4 2.8 3.8 4.8 6.0 7.5
no_culled_sett_2 1499.8 199.8 1170.4 1365.5 1500.0 1634.5 1828.2
no_culled_sett_3 1499.6 199.5 1169.7 1365.6 1500.3 1633.9 1827.5
prob_no_capture 0.37 0.085 0.24 0.32 0.37 0.43 0.52
badger_culled_2 1.83 0.508 1.15 1.43 1.76 2.16 2.79
badger_culled_3 3.00 1.070 1.45 2.16 2.88 3.73 4.94
Population 63,188.3 9484.7 48,037.6 56,438.4 62,940.9 69,562.1 79,315.9
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social group number expansion (Reid et al. 2012). We did, 
however, assume that group size within social groups could 
expand (see Table 2) as a consequence of reduced distur-
bance (Wright et al. 2015) and/or disease-induced mortality 
(Wilkinson et al. 2004) in bTB-afflicted areas (landscape 
types 2 and 3, only). Therefore, we updated the estimates for 
group size such that the mean value for each landscape type 
was 3, 4.3, and 6.1, respectively (following Reid et al. 2012). 

It should be noted that these mean group sizes may be con-
servative (low) given that the data underlying them included 
populations where bTB was present (Reid et al. 2012).

Monte Carlo estimation

Estimating uncertainty when exploring population esti-
mates has been approached in several ways, but in this 

Fig. 2  Histogram of the esti-
mated population size across 
parameter space using 100,000 
Monte Carlo simulations (in a 
culling scenario)

Fig. 3  Tornado diagram illus-
trating sensitivity analysis from 
the Monte Carlo simulation 
(scenario with culling)
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study, we utilised a Monte Carlo approach, which has been 
used elsewhere for wildlife reservoir species (Feirrera and 
Funston 2010; Ward et al. 2009). We gathered data from 
the literature on the European badgers that could be applied 
to badgers within Ireland (see Table 1). The distribution 
for each of the variables of interest and their associated 
parameters was chosen based on the best available evidence 
from the literature, ensuring all distributions and parameters 
were appropriate (e.g. ensuring they were left or right cen-
sored, as appropriate), and was informed by expert opinion 
and the experience of two authors (AWB, JOK). The culled 
population (Ywithculling) estimate was designed to represent a 
“snapshot” year in Ireland prior to the rollout of large-scale 
vaccination policy which occurred in 2018.

For each iteration, a value for each variable was ran-
domly drawn from its assumed distribution, and an estimate 
of the population was calculated. Results for each iteration 
were saved, and uncertainty intervals were based on the 5th 
and 95th percentiles of 100,000 iterations. For a sensitiv-
ity analysis, a tornado plot was constructed which depicted 
graphically how much of the variation in the inputs affected 
the outcome (the population estimate), in mean terms. The 
tornado diagram was stacked in order of decreasing width, 
indicating that variations near the top had the greatest effect 
on the population estimate, while variations in our inputs 
near the bottom had relatively small effects on the popula-
tion estimate. All statistical analyses were conducted in R  
(R Core Team, 2021), and code to reproduce the simulations 
is provided in the Supplementary Material.

Results

The uncertainty in the badger population size in Ireland (for 
the non-culling scenario and assuming positive impacts of 
badger vaccination) based on the Monte Carlo simulation 
is presented in Table 3 where the mean population estimate 
was 92,096 (5–95th percentile, 67,188–118,881). The his-
togram of the simulated population sizes across the 100,000 
stochastic iterations is presented in Fig. 1 and highlights 
that there is a high degree of uncertainty in the projected 
estimate given the input parameters.

For the scenario where culling is implemented, the uncer-
tainty in the badger population size is presented in Table 4, 
and the associated histogram of the simulated population 
size across 100,000 iterations is presented in Fig. 2. Overall, 
the mean population estimate was 63,188 (5–95th percen-
tile, 48,037–79,315). Note (by definition), there were rare 
scenarios where the population were below 48,037 (< 5th 
percentile) and above 79,315 badgers (> 95th percentile).

Based on sensitivity analysis using the tornado plot, esti-
mates were particularly sensitive to group size in landscapes 
2 and 3 (Fig. 3).

Discussion

The present exercise revealed that the current estimates of 
the badger population size in Ireland are highly uncertain, 
despite a significant body of work to date to estimate abun-
dance for this species. However, given the lack of detailed 
and consistent recording of data on the parameters for the 
Irish context, this uncertainty is not that surprising and is a 
common problem often highlighted in mammal population 
estimate studies (Croft et al. 2017). Overall, the exercise 
reflects that the culling regime in Ireland has depressed the 
national badger population in higher carrying capacity land-
scapes. This is not surprising given that reduction of badger 
density in bTB-affected areas is a key tenet of the control 
program (O’Keeffe 2006). Over 30% of the agricultural land 
area in recent years has been culled, significantly reducing 
metrics of abundance (Byrne et al. 2013a, b).

Assuming badger culling was discontinued and was 
replaced wholesale in Ireland with vaccination, the badger 
population could grow to approximately 92,096 (5–95th 
percentile, 67,188–118,881) based on our estimates, if 
reaching carrying capacity based on current known social 
group density. Such population growth may take several 
years given that Rmax, the maximum intrinsic growth rate, 
for badger populations is quite low (~ 0.3) (Promislow and 
Harvey 1990). The badger population in Northern Ireland 
has stayed relatively stable over the period from 1993–1994 
to 2007–2008, with the more recent estimate being 34,100 
(95% CI, 26,200–42,000) badgers (Reid et al. 2012), sug-
gesting that either the badger population there is at carrying 
capacity or that the population growth is being depressed 
via anthropogenic disturbance (e.g. road traffic collisions or 
sett disturbance) (Sadlier and Montgomery 2004) or disease-
induced mortality. It should be noted that in a study by Reid 
et al. (2012), similar social group size parameters were used 
between the comparative datasets; therefore, there is some 
uncertainty as to whether the population has remained stable 
there over time. There were large recorded increases in the 
badger population in Britain over recent decades based on 
repeated surveys from an estimate of 250,000 in 1985–1988 
to an estimate of 485,000 (95% CI, 391,000–581,000) badg-
ers in 2011–2013 (Cresswell et al. 1990; Wilson et al. 1997; 
Judge et al. 2014; Judge et al. 2014). Much of the increase 
was attributed to increases in the number of social groups, 
which increased overall by 88% (70–105%) in England and 
Wales (Judge et al. 2014) and perhaps less so on the increase 
in the social group size. However, our population estimates 
were most sensitive to social group size. Given the history 
of culling in Ireland, we assumed smaller social group size 
for our culled estimates but expected social group size to 
rebound to broad norms for Irish landscapes in the absence 
of culling (Reid et al. 2012). The impact of social group size 
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estimates on badger population size was highlighted by a 
high abundance estimate for Ireland of 200,000 from surveys  
undertaken during 1989–1993 (Smal 1995; see discussions 
in Roper, 2010). A single group size of 5.9 was used to infer 
population size from an estimate of 34,000 social groups 
(Smal 1995). We now know badger social group size varies 
significantly with landscape type, and mean group sizes of 
5.9 badgers would be only typical of undisturbed highly suit-
able landscapes in Ireland; therefore, the 200,000 estimate 
is considered an overestimate (Roper 2010; Sleeman et al. 
2009). An estimate of the badger population size based on 
data collected in 1997–2002, without incorporating national 
culling activities, estimated the population to be 84,000 (95% 
CI, 72,000–95,000) (Sleeman et al. 2009). The current esti-
mated social group abundance based on main setts in Ireland 
is approximately 19,200 (95% CI, 12,200–27,900) (Byrne  
et al. 2014a). Taken together, our assumption that current 
social group density is at carrying capacity is possibly  
conservative, and so potentially the central tendency of the  
non-culled vaccinated population estimate here may be low.

A significant limitation to the present study is the reli-
ance of parameters of badger populations that are inher-
ently uncertain and the reliance on expert opinion. Local 
scale parameters are used to infer larger scale population 
patterns, resulting in any national models being extremely 
sensitive to individual parameters, e.g. social group size. 
Judge et al. (2014) found a similar pattern when estimating 
the badger population of England and Wales. In an attempt 
to overcome this problem, they prospectively designed a 
study to estimate badger social group sizes across a number 
of landscape types using hair traps and genetic profiling 
(Judge et al. 2017). Their work showed that mean group 
size varied from 2.67 in a poor habitat suitability landscape 
to a high of 7.92 in a highly suitable habitat landscape. An 
uncertainty analysis in that study concurs with our findings, 
in that concentrating on better estimates of group size by 
surveying more groups is recommended. However a recent 
study on badgers from France has decomposed which com-
ponents contribute to adult badger density across 13 dif-
ferent sites (Jaquier et al. 2021). Overall, that study sug-
gested that badger population density correlated best with 
sett density and not variation in group size. It should be 
noted, as the culled population estimate was designed to 
represent a “snapshot” year in Ireland prior to the rollout of 
the large-scale vaccination policy which occurred in 2018, 
we did not incorporate vaccine efficacy explicitly into our 
calculations to estimate the impact of the vaccination pro-
gramme on current population estimates.

An additional complication in Ireland is that the badger 
population is actively being managed, adding additional 
parameters to be estimated. Count models have been used 
effectively to estimate trends in catch over time (Byrne 

et al. 2013a) or across capture sequences (Byrne et al. 
2013b). Mark-recapture studies in unculled populations 
have also revealed that badger trappability per attempt has 
a mean of approximately 50% (Byrne et al. 2012a, b). Such 
studies, however, can somewhat underestimate the dynam-
ics of the badger population (Byrne et al. 2019), such that 
culling may be changing badger behaviour (O’Corry-
Crowe et al. 1996) and source-sink dynamics may be at 
play where badgers might be moving into vacant social 
groups when resident badgers are removed. This level 
of dynamic interaction is very hard to incorporate into 
the current models, as understanding non-target popula-
tion depletion has not been studied extensively (but see 
Tuyttens et al. 2000). We strongly advocate that further 
modelling endeavours of bovine TB in cattle population 
in Ireland incorporates badger disease and population 
dynamics (Abdou et al. 2016). Ideally, an iterative feed-
back approach to identify key ecological questions, vital to 
useful epidemiological model development, is progressed.

In conclusion, this exercise highlights the challenges 
of working with heterogeneous datasets when attempting 
to model population size, even in a wildlife species that 
has been studied intensively. Future prospective work is 
required to develop robust, reproducible, and cost-effective 
metrics of badger population size at local and national 
level. This is especially important in Ireland where badger 
culling is being reduced as a bTB control tool, in favour of 
BCG vaccination of badgers (Martin et al. 2020). Under-
standing how the dynamics of population increase may 
undermine the efficacy of wildlife vaccination will be an 
important avenue of research going forward.
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