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Abstract 

We present several results concerning the l 1 sensitivity, a crucial parameter for differential privacy, of 
a positive linear observer. Specifically, for compartmental systems we derive explicit analytic expressions 
for positive observers that minimize a bound for the l 1 sensitivity. Results are given for single-output 
systems and classes of multiple-output systems. For single-output general positive systems, we charac- 
terize the optimal l 1 sensitivity bound of a positive observer with given convergence rate. We also make 
some initial observations on sensitivity for more general classes of positive observers. 
© 2020 The Authors. Published by Elsevier Ltd on behalf of The Franklin Institute. 
This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Motivated by applications in areas such as transportation, population dynamics, and com-
unications, there has been a lot of interest in the theory of positive systems over recent

ecades. The linear time invariant (LTI) system 

(t + 1) = Ax(t ) (1)

y(t ) = Cx(t ) , 
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s positive if A ∈ R 

n×n 
+ 

, C ∈ R 

p×n 
+ 

are both nonnegative matrices [1] . A positive (Luenberger)
bserver for Eq. (1) is defined by 

ˆ  (t + 1) = (A − LC) ̂  x (t ) + Ly(t ) (2)

here the matrix L is such that A − LC and LC are nonnegative and the spectral radius of
 − LC satisfies ρ(A − LC) < 1 [2,3] . Fundamental results concerning existence of positive
bservers have been presented in references such as [2–6] . Recently researchers have sought
o develop results for observers with specific forms [7] , for nonlinear positive systems [8,9] ,
ystems with missing information [10] , and to extend the theory of observers to the related
lass of max-plus linear systems [11] . On the other hand, there are fundamental and important
roblems concerning the limitations/difficulties of using positive observers in performance op-
imization and state feedback design; see for instance the work of [12,13] . Another interesting
nd important line of work related to positive observers concerns the development of meth-
ds that combine state estimation with fault detection and/or disturbance signal estimation;
or recent work in this direction see [14,15] . 

Compartmental systems are an important subclass of positive systems arising in applications
uch as transportation and population dynamics [16,17] . The seminal reference on observer
esign for this system class is [6] , while recent results on the dual problem of stabilizing a
ontinuous time compartmental system can be found in [18] . Applications of compartmental
ystems such as transportation networks or smart buildings use personal data and there is
 need to add privacy protections to such systems to address public concerns over personal
rivacy. In the recent past, differential privacy (DP) [19] has been applied to a variety of
ontrol problems. For example, the design of differentially private Kalman Filters was con-
idered in [20] while differentially private observer design for general, nonlinear systems was
rst considered in [21] ; motivating examples from epidemiology and social network analysis
or the addition of differential privacy to observers can be found in [21] . 

To make an observer of the form (2) differentially private, we add appropriate noise N
o the observer state ˆ x so that changes to the measured signal y caused by a small number
f individuals are difficult to detect. In this way the privacy of the individuals concerned is
rotected. The ‘randomized mapping’ [22] from the signal y to ˆ x + N is called a mechanism.
 mechanism can satisfy strict or non-strict differential privacy and can be constructed using
oise from various distributions such as the Gaussian or Laplace distributions. We focus on
trict differential privacy and Laplace mechanisms for a variety of reasons. First, the Laplace
echanism is the most widely used DP mechanism in practice. Second, the fundamental

esults in [20] underpinning mechanism design for control systems concern the Gaussian and
aplace distributions. As our interest in this paper is for strict DP, the Laplace is the natural
hoice as the results of [20] do not support the use of Gaussian mechanisms for strict DP. 

The crucial step in constructing a DP Laplace mechanism is deciding the magnitude of
oise to add to ˆ x ; equivalently determining the variance of the associated Laplace distribution.
his is determined by a key parameter of the system (2) known as its l 1 sensitivity [21] . In
eneral, it is very difficult to calculate exactly the sensitivity of a system. However, in [23] a
ound for the l 1 sensitivity of Eq. (2) was derived which can be used to determine how
uch noise is needed for differential privacy. This reference was the first paper to address the

roblem of DP positive observer design; a corresponding bound for the case of l 2 sensitivity
nd Gaussian mechanisms for non-strict DP was presented in [24] . In the current paper, we
onsider the problem of finding an observer gain L that minimizes the bound in [23] ; such
13924 
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 gain is optimal in that it will lead to a mechanism with minimal noise (variance) which is
hus the most accurate possible. 

The structure of the paper is as follows. In Section 2 , we recall the relevant background
o our work. In Section 3 , we present our main results on optimal positive observers for
ompartmental systems; results are given for the single output and multiple output cases.
n Section 4 , we consider the problem of minimising the l 1 sensitivity bound for a single
utput system where the norm of the observer system matrix is specified. We briefly note
n Section 5 that it is possible to improve on the optimal sensitivity for classical observers
y considering the more general class [4] . Finally, in Section 6 , we present our concluding
emarks and some ideas for future work. 

. Background and technical preliminaries 

R 

n denotes the vector space of n -tuples of real numbers and R 

m×n the space of m ×n
atrices with real entries. For x ∈ R 

n : x ≥0 means that x i ≥0 for 1 ≤ i ≤n . R 

n 
+ 

denotes the
onnegative orthant R 

n 
+ 

:= { x ∈ R 

n | x ≥ 0} . Similarly, for A ∈ R 

m×n : A ≥0 means that a ij ≥0
or 1 ≤ i ≤m and 1 ≤ j ≤n . We will sometimes use the notation [ A ] ij to denote the i , j entry
f a matrix A . R 

m×n 
+ 

denotes the cone of nonnegative matrices. A ≥B denotes that A − B ≥ 0
s a nonnegative matrix. A 

T denotes the transpose of A . 
For a vector c ∈ R 

n 
+ 

the support of c , supp( c ) is given by supp (c) = { j : c j � = 0} . Through-
ut, we use ‖ x ‖ to denote the l 1 norm of x ∈ R 

n and for T ∈ R 

m×n , ‖ T ‖ denotes the l 1 induced
orm of T . It is well known [25] that this is given by 

 T ‖ = max 

j 

m ∑ 

i=1 

| t i j | . (3)

Our main results concern the case where the system (1) is compartmental [16–18] . A
atrix A in R 

n×n 
+ 

is compartmental if 
∑ n 

i=1 a i j ≤ 1 for all 1 ≤ j ≤n . If the system matrix A
n Eq. (1) is compartmental, then Eq. (1) is a compartmental system. 

Differential privacy and linear observers 
We very briefly recall the most relevant facts concerning differential privacy in the context

f this paper. For reasons of space, we omit much of the fundamental details on probability;
or more details and background, see [20] . 

For differential privacy, we first must choose a similarity relation on the space of signals
 ( · ). Following [21] , given two constants K > 0, 0 < α < 1, the signals y , y ′ are said to be
imilar, y ∼y ′ if there is some t 0 ≥0 with 

y(t ) = y ′ (t ) 0 ≤ t < t 0 (4)

 y(t ) − y ′ (t ) ‖ ≤ K αt−t 0 t ≥ t 0 . 

he similarity relation captures changes in the signal due to the behaviour of a small number
f individuals at time t 0 . The parameters K and α need to be chosen in advance and depend
n the application context and level of protection required. K describes how large an initial
hange is permitted while α describes the speed with which this change decays to zero. 

The sensitivity of the system (2) is the key parameter that determines the magnitude of
he noise required in order to achieve differential privacy . We use ˆ x y to denote the observer
ignal corresponding to the output y . 
13925 
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efinition 2.1. The l 1 sensitivity of the observer (2) is given by: 

:= sup {‖ ̂  x y − ˆ x y ′ ‖ : y ∼ y ′ } . (5)

A real-valued Laplace random variable with mean 0 and scale parameter b > 0 has proba-
ility density function (pdf) f (x) = 

1 
2b e 

− | x| 
b . Given ε> 0, an ε differentially private mechanism

or the observer (2) can be constructed by adding noise from a Laplace distribution to each
omponent of ˆ x (t ) at each time t ≥0. The key fact is the following. 

roposition 2.1 [20] . Let Eq. (2) have sensitivity � and ε> 0 be given. Choose b > 

�
ε 
,

nd define the mechanism 

ˆ X y by adding a Laplace random variable with mean 0 and scale
arameter b , to each component of ˆ x y (t ) for all t. Then 

ˆ X y is ε differentially private. 

Proposition 2.1 highlights the important role played by the sensitivity � of the system
n determining the amount of noise required for differential privacy. Exact computation of
he sensitivity can be difficult and complex. However, a differentially private mechanism for
q. (2) can be constructed using the Laplace distribution provided we have an upper bound

or the l 1 sensitivity of Eq. (2) . 
Recall that Eq. (2) is a positive observer for the positive system (1) if and only if the

ollowing conditions are satisfied [3] : (i) LC ≥0; (ii) A − LC ≥ 0; (iii) A − LC is Schur-
table, ρ(A − LC) < 1 . In order to ensure that an observer of the form (2) has a finite l 1
ensitivity with respect to the similarity definition (5) , we require that ‖ A − LC‖ < 1 . Thus
e are considering a more restricted form of the positive observer problem. In [23] the

ollowing bound for the l 1 sensitivity of a linear observer was derived. 

heorem 2.1. Consider the observer (2) with ‖ A − LC‖ < 1 and let K > 0, 0 < α < 1 be given.
he sensitivity � of Eq. (2) with respect to the similarity relation (4) satisfies the following
ound: 

≤ K 

1 − α

( ‖ L‖ 
1 − ‖ A − LC‖ . 

)
(6)

To minimize the amount of noise added to the observer state ˆ x , we want an observer gain
 that minimizes the upper bound in Theorem 2.1 . As K and α are fixed parameters, we
ocus on minimizing the function 

(L ) := 

‖ L ‖ 
1 − ‖ A − LC‖ , (7)

or L satisfying 0 ≤LC ≤A , ‖ A − LC‖ < 1 . 
It is worth noting that the function � is essentially the l 1 norm of the zero-initial-state

bserver (2) . Hence, it quantifies the sensitivity of this system to perturbations in the signal y
n terms of the l 1 norm on the associated sequence spaces. An interesting direction for future
ork would be to exploit this observation to investigate whether results on robust observer
esign, and the dual problem of robust state feedback, can be related to the problems of
ifferential privacy discussed here. In later examples, we shall help clarify the (somewhat
omplicated) relationship between �( L ) and the norm of the observer gain ‖ L ‖ . In particular,
e show that for some system classes, reducing ‖ L ‖ can increase �( L ) but the opposite may

lso occur. 
13926 
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. Compartmental systems 

We now assume Eq. (1) is a compartmental system and seek to minimize the function �,
n Eq. (7) , over observer gain matrices L that define a positive observer for Eq. (1) . First note
hat if ‖ A ‖ < 1, we can choose L = 0 giving �(L) = 0; as this case is trivial for the problem
e are studying here, we assume that ‖ A ‖ = 1 (remember A is compartmental). 

.1. Single output systems: p = 1 

We first consider the case where p = 1 so that C = c T for some nonnegative column vector
 . Given a compartmental matrix A ∈ R 

n×n 
+ 

with ‖ A ‖ = 1 and a column vector c ∈ R 

n 
+ 

, we
ay that ( A , c ) is a feasible pair if there exists some nonnegative l ∈ R 

n 
+ 

with ‖ A − lc T ‖ < 1 ,

 − lc T ≥ 0. Note that when p = 1 , the conditions lc T ≥0, l ≥0 are equivalent [3] . We denote
he set of all such l by F A,c . We first characterize feasible pairs for the compartmental case.

emma 3.1. Let a compartmental matrix A ∈ R 

n×n 
+ 

with ‖ A ‖ = 1 , and c ∈ R 

n 
+ 

be given. Let
 := { j : ∑ n 

i=1 a i j = 1 } . Then ( A , c ) is a feasible pair if and only if the following conditions
re satisfied. 

(i) J ⊆ supp (c) . 
(ii) There exists some i with 1 ≤ i ≤n such that a ij > 0 for all j ∈ supp( c ) . 

roof. First assume that (i) and (ii) hold. Choose some k such that a kj > 0 for all j ∈ supp( c )
nd set x = min { a k j 

c j 
: j ∈ supp (c) } . Clearly, x > 0. Now define l ∈ R 

n 
+ 

by 

 i = 

{
x i = k 
0 i � = k. 

(8)

t follows immediately that for i � = k , a i j − l i c j = a i j ≥ 0 for all j . Moreover, for i = k, a k j −
 k c j = a k j ≥ 0 for j �∈ supp( c ). For j ∈ supp( c ), the definition of x implies that a k j − l k c j =
 k j − xc j ≥ 0 and so A − lc T ≥ 0. Furthermore, x > 0 and J ⊆ supp (c) ; these conditions
mply that for j ∈ J , 

n 
 

i=1 

(a i j − l i c j ) = 

( 

n ∑ 

i=1 

a i j 

) 

− xc j = 1 − xc j < 1 . 

rom the definition of J , we conclude that ‖ A − lc T ‖ < 1 and hence ( A , c ) is a feasible pair.
Conversely, assume that ( A , c ) is a feasible pair and let l ≥0 be such that A − lc T ≥ 0

nd ‖ A − lc T ‖ < 1 . As ‖ A ‖ = 1 , it follows that J is non-empty and that l � = 0. Let j ∈ J be
iven. Then 

∑ n 
i=1 a i j = 1 and, as ‖ A − lc T ‖ < 1 , we must have 

∑ n 
i=1 (a i j − l i c j ) < 1 . This

mplies that c j > 0 and hence j ∈ supp( c ). This proves (i). As l � = 0, we can choose some i with
 i > 0. Then as a i j − l i c j ≥ 0 for all i , j we must have a ij > 0 for all j ∈ supp( c ). This proves
ii) and completes the proof of the Lemma. �

When p = 1 , the gain matrix L is simply a column vector l ∈ R 

n 
+ 

; hence, for this subsection
e slightly alter our notation for for the function � in Eq. (7) and write �( l ) for l in F A,c . 
In our next result, we give an explicit analytic characterisation of this minimum value of

( l ) for l ∈ F A,c . 
13927 
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heorem 3.1. Let a compartmental matrix A ∈ R 

n×n 
+ 

with ‖ A ‖ = 1 , and c ∈ R 

n 
+ 

be given

uch that the set F A,c is non-empty. Let J := { j : ∑ n 
i=1 a i j = 1 } . There exists ˆ l ∈ F A,c such

hat 

(l ) ≥ �( ̂  l ) = 

1 

min j∈J c j 
. (9)

roof. We first note that for any l ∈ F A,c , 

 A − lc T ‖ = max 

1 ≤ j≤n 

n ∑ 

i=1 

(a i j − l i c j ) = max 

1 ≤ j≤n 

[ ( 

n ∑ 

i=1 

a i j 

) 

− ‖ l‖ c j 
] 

≥ max 

j∈J 

[ ( 

n ∑ 

i=1 

a i j 

) 

− ‖ l‖ c j 
] 

= 1 − ‖ l‖ min 

j∈J 
c j . 

his implies that 1 − ‖ A − lc T ‖ ≤ ‖ l‖ min j∈J c j and hence that 

(l ) ≥ 1 

min j∈J c j 
. 

hus to complete the proof, we need to show that there exists some ˆ l in F A,c with �( ̂  l ) =
1 

min j∈J c j 
. 

Denote by J 

c the set { 1 , . . . , n} \ J and, for each k ∈ J 

c , let αk = 

∑ n 
i=1 a ik denote the

orresponding column sum. Let j 0 be any index such that c j 0 = min { c j : j ∈ J } and let 

 = min 

{
1 − αk 

c j 0 − c k 
: k ∈ J 

c , c k < c j 0 

}
. 

hen as αk < 1 for all k ∈ J 

c , M > 0. By assumption, F A,c is non-empty. Thus, by Lemma 3.1 ,
 ⊆ supp (c) and we can choose some i 0 such that a i 0 j > 0 for all j ∈ supp( c ). Define the
ector ˆ l ∈ R 

n 
+ 

by: 

ˆ 
 i = 

{ 

0 i � = i 0 
min 

(
{ M} ∪ { a i 0 j c j 

: j ∈ supp (c) } 
)

i = i 0 . 

e note the following readily verifiable facts. 

(i) ˆ l ≥ 0; ‖ ̂  l ‖ ≤ M. 
(ii) a i j − ˆ l i c j ≥ 0 for all 1 ≤ i , j ≤n . 

(iii) 
∑ n 

i=1 (a i j − ˆ l i c j ) < 1 for 1 ≤ j ≤n . This follows from the facts that A is compartmental,
ˆ l � = 0, and J ⊆ supp (c) . 

To finish the proof, we will show that for ˆ l constructed above, ‖ A − ˆ l c T ‖ = 

1 
c j 0 

. First note

hat for any k ∈ J , by the choice of j 0 , 1 − ‖ ̂  l ‖ c j 0 ≥ 1 − ‖ ̂  l ‖ c k . 
Now consider k ∈ J 

c . Then αk < 1 so if c k ≥ c j 0 , 1 − ‖ ̂  l ‖ c j 0 > αk − ‖ ̂  l ‖ c k . Finally, if
 ∈ J 

c , and c k < c j 0 , 

 ̂

 l ‖ ≤ M ⇒ ‖ ̂  l ‖ ≤ 1 − αk 

c j 0 − c k 

⇒ αk − ‖ ̂  l ‖ c k ≤ 1 − ‖ ̂  l ‖ c j 0 . 
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utting the previous calculations together, we see that 

 A − ˆ l c T ‖ = max 

1 ≤ j≤n 

n ∑ 

i=1 

a i j − ‖ ̂  l ‖ c j = 1 − ‖ ̂  l ‖ c j 0 . 

t now follows immediately that 

( ̂  l ) = 

1 

c j 0 
= 

1 

min j∈J c j 
, 

hich completes the proof. �
Constructing the optimal ˆ l : It is relatively straightforward to construct the optimal observer

ain by following the steps in the proof of Theorem 3.1 . 

1. First find the minimum value of the entries of c corresponding to indices in J ; choose
one such entry c j 0 . 

2. Compute M which is the minimum of the quotients (1 − αk ) / (c j 0 − c k ) over indices k
in J 

c for which the denominator is positive. If no such index exists, set M = ∞ . 
3. Choose a row i 0 of A with a i 0 j > 0 for all j with c j > 0 and set b = min { a i 0 j c j 

: c j > 0} .
4. Finally, define ˆ l by setting its i 0 th entry equal to the minimum of b and M and all other

entries zero. 

xample 3.1. Let 

 = 

⎛ 

⎝ 

1 / 3 0 1 / 2 

0 1 / 2 1 / 4 

1 / 3 0 1 / 4 

⎞ 

⎠ , c T = 

(
0 1 3 / 4 

)
. 

learly this is a feasible pair and J = { 3 } so c j 0 = c 3 = 3 / 4. Next we compute M which
s given by (1 / 3) / (3 / 4) = 4/ 9 . Clearly, i 0 = 2 and b = 1 / 3 . Putting this together we see
hat ˆ l = (0, 1 / 3 , 0) T and it can be easily verified that �( ̂  l ) = 

4 
3 which is the optimal value

stablished in Theorem 3.1 . 

Remark: Theorem 3.1 gives an explicit, analytic expression for the minimum of the sen-
itivity bound for a single-output compartmental system: K 

(1 −α) min j∈ J c j 
. Further, it provides a

onstructive way of obtaining the gain vector ˆ l that achieves this minimum. 

.2. Extension to multiple output systems ( p ≥2) 

We next consider the more general case where p ≥2. Given a compartmental matrix A ∈
 

n×n 
+ 

with ‖ A ‖ = 1 and C ∈ R 

p×n 
+ 

, if there exists some L satisfying 

 ≤ LC ≤ A ; ‖ A − LC‖ < 1 , (10)

e say that ( A , C ) is a feasible pair and denote the set of all such L by F A,C . We wish to
inimize the function �( L ) given by Eq. (7) over L ∈ F A,C . 
Lemma 3.1 was important for our construction of the optimal observer gain vector l in

heorem 3.1 . It is tempting to conjecture the following natural generalisation of this result. For
 ≤k ≤p , let c ( k ) denote the k th row of C . As above, let J denote the set { j : ∑ n 

i=1 a i j = 1 } .
 natural conjecture generalising Lemma 3.1 is that ( A , C ) is a feasible pair if and only if

he following two conditions are satisfied. 
13929 
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(F1) J ⊆ ⋃ p 
k=1 supp (c (k) ) . 

(F2) For each k in { 1 , . . . , p} , there exists some i k such that a i k , j > 0 for all j ∈ supp( c ( k ) ). 

Unfortunately, this conjecture is not true as is shown by the following example. 

xample 3.2. Consider the matrices: 

 = 

⎛ 

⎝ 

2/ 3 0 0 

0 1 / 2 3 / 4 

1 / 3 0 0 

⎞ 

⎠ , C = 

(
1 0 0 

1 0 1 

)
. 

hen clearly A is compartmental and ‖ A ‖ = 1 . Moreover, ( A , C ) is feasible as the matrix 

 = 

⎛ 

⎝ 

1 / 3 0 

0 0 

0 0 

⎞ 

⎠ 

learly satisfies Eq. (10) . However, while it is true that J ⊆ ∪ 

p 
k=1 supp (c (k) ) , there is no i k

atisfying condition (F2) for k = 2. 

We will revisit the previous example after our next result which extends Theorem 3.1 to
ultiple output compartmental systems satisfying conditions (F1) and (F2) above. 

heorem 3.2. Let a compartmental A ∈ R 

n×n 
+ 

with ‖ A ‖ = 1 and C ∈ R 

p×n 
+ 

with p ≥2 be given.
ssume that the pair ( A , C ) satisfies conditions (F1), (F2) above. Let J = { j : ∑ n 

i=1 a i j = 1 }
nd for 1 ≤ j ≤n , let γ j = 

∑ p 
i=1 c i j . Then the pair ( A , C ) is feasible and moreover there exists

ˆ 
 ∈ F A,C such that for all L in F A,C : 

(L) ≥ �( ̂  L ) = 

1 

min j∈J γ j 
, (11)

here � is given by Eq. (7) . 

roof. Let L ∈ F A,C be given. Then, as A − LC ≥ 0: 

 A − LC‖ = max 

1 ≤ j≤n 

n ∑ 

i=1 

[ A − LC] i j 

= max 

1 ≤ j≤n 

( 

n ∑ 

i=1 

a i j −
n ∑ 

i=1 

[ LC] i j 

) 

≥ max 

j∈J 

( 

n ∑ 

i=1 

a i j −
n ∑ 

i=1 

[ LC] i j 

) 

. (12)

ote that while we are not assuming L ≥0 here, we do have C ≥0 and hence for 1 ≤ i , j ≤n : 

 LC] i j = 

p ∑ 

k=1 

l ik c k j ≤
p ∑ 

k=1 

| l ik | c k j . 

t follows that for any j ∈ J : 

n 
 

i=1 

[ LC] i j ≤
n ∑ 

i=1 

p ∑ 

k=1 

| l ik | c k j = 

p ∑ 

k=1 

( 

n ∑ 

i=1 

| l ik | ) c k j ≤ ‖ L‖ 
p ∑ 

k=1 

c k j = ‖ L‖ γ j . 
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ombining this with Eq. (12) , we see that 

 A − LC‖ ≥ max 

j∈J 
(1 − ‖ L‖ γ j ) = 1 − ‖ L‖ min 

j∈J 
γ j . (13)

t now follows immediately that for any L ∈ F A,C : 

(L ) = 

‖ L ‖ 
1 − ‖ A − LC‖ ≥

1 

min j∈J γ j 
. 

t remains for us to show that there exists some ˆ L in F A,C such that �( ̂  L ) attains this lower
ound. 

To begin, write J 

c for the complement of J , J 

c = { 1 , . . . , n} \ J . Also, for 1 ≤ j ≤n , let
j = 

∑ n 
i=1 a i j ; thus αj < 1 for all j ∈ J 

c . It is easy to see that by choosing x > 0 sufficiently
mall, we can ensure that 

 − ( min 

j∈J 
γ j ) x > αk − γk x, ∀ k ∈ J 

c . (14)

Now, assumption (F2) implies that for 1 ≤k ≤p , there is some (not necessarily unique) i k
n { 1 , . . . n} such that a i k j > 0 for all j with c kj > 0. We use this fact to construct ˆ L . 

First, choose i 1 such that c 1 j > 0 implies a i 1 j > 0. Then, for some x > 0 (to be determined
ater) set ˆ l i 1 1 = x, ˆ l s1 = 0 for s � = i 1 . Repeat this, choosing i k for k = 2, 3 , . . . p and in each
ase setting 

ˆ l i k k = x and 

ˆ l sk = 0 otherwise. Note that all of the i k selected need not necessarily
e distinct. However, it can be seen from the construction of ˆ L that: 

(i) each column of ˆ L has exactly one non-zero entry which is equal to x ; 
(ii) ˆ l sq > 0, c qj > 0 implies that a sj > 0 (as in this case s = i q ). 

From (i), it follows that 
∑ n 

i=1 
ˆ l i j = x for 1 ≤ j ≤p and that ‖ ̂  L ‖ = x. From point (ii), it

ollows that by choosing x sufficiently small (and positive) we can ensure that A − ˆ L C ≥ 0.
learly as ˆ L ≥ 0, ˆ L C ≥ 0. Finally, note that if j ∈ J , there is some k ∈ { 1 , . . . p} such that
 kj > 0. Hence, by the construction of ˆ L , ˆ l i k k = x > 0. This implies that 

∑ n 
i=1 [ A − ˆ L C] i j < 1

or any such j and by the definition of J , ‖ A − ˆ L C‖ < 1 . Thus ˆ L ∈ F A,C . Finally, note that 

 A − ˆ L C‖ = max 

1 ≤ j≤n 

n ∑ 

i=1 

( 

a i j −
p ∑ 

s=1 

ˆ l is c s j 

) 

= max 

1 ≤ j≤n 

( 

α j −
n ∑ 

i=1 

p ∑ 

s=1 

ˆ l is c s j 

) 

= max 

1 ≤ j≤n 

( 

α j −
p ∑ 

s=1 

( 

n ∑ 

i=1 

ˆ l is 

) 

c s j 

) 

= max 

1 ≤ j≤n 

( 

α j −
p ∑ 

s=1 

xc s j 

) 

= max 

1 ≤ j≤n 

(
α j − xγ j 

)
. 

ow, if we choose x > 0 sufficiently small so that Eq. (14) holds, then we can ensure that
ax 1 ≤ j≤n (α j − xγ j ) = 1 − x min j∈J γ j . As ‖ ̂  L ‖ = x by construction, it follows that for such
 choice of x > 0: 

( ̂  L ) = 

x 

x min j∈J γ j 
= 

1 

min j∈J γ j 
. 

his completes the proof. �
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emarks: 

(i) Theorem 3.2 explicitly characterizes the minimum value of �( L ) for a multiple out-
put compartmental system satisfying (F1), (F2). Further, the proof is constructive as it
demonstrates how to construct an optimal observer gain matrix L . 

(ii) For p ≥2, it is in general not necessary for the gain matrix L of a positive observer
(10) to be nonnegative. However the optimal L constructed in Theorem 3.2 is indeed
nonnegative. The problem of determining classes of positive linear systems for which
there exists a nonnegative optimal observer gain is an interesting one for further research.
It is certainly not going to be true for arbitrary positive systems as [3] contains examples
of systems (1) for which there exists a positive observer with LC ≥0 but no positive
observer with L ≥0. 

Constructing an optimal observer gain 

ˆ L : It is possible to construct an optimal gain 

ˆ L for
 system satisfying (F1), (F2) in the following way. 

1. Set �1 = min j∈J γ j . 
2. Choose b 1 = min { 1 −αk 

�1 −γk 
: k ∈ J 

c , �1 − γk > 0} . If the set is empty, set b 1 = ∞ . 
3. k = 1 : First choose i 1 so that c 1 j > 0 ⇒ a i 1 j > 0 (this is possible by (F2)). Define the

first column of L by setting l i 1 1 = b 1 and all other entries zero. 
4. k = 2, . . . , p: Repeat the previous step, choosing a corresponding i k for k ∈ { 2, . . . , p} .
5. Form the product LC . 
6. Find the minimum value b 2 of a i j 

[ LC] i j 
over pairs ( i , j ) with [ LC ] ij > 0. 

7. Choose any x > 0 that is less than min { b 1 , b 2 }. The matrix 

ˆ L = x L is optimal. 

xample 3.3. Let 

 = 

⎛ 

⎜ ⎜ ⎝ 

1 / 2 0 1 / 4 0 

0 1 / 3 1 / 4 1 / 3 

1 / 3 1 / 4 0 1 / 4 

1 / 6 0 1 / 2 0 

⎞ 

⎟ ⎟ ⎠ 

, C = 

(
0 1 / 2 1 0 

1 1 / 4 0 1 / 3 

)
. 

t is straightforward to see that (F1) and (F2) are satisfied and J = { 1 , 3 } so the optimal
bserver sensitivity is given by 1. Following the algorithm steps to construct ˆ L , �1 = 1 and
 1 = min { 4/ 3 , 5 / 8 } = 5 / 8 . Next we note that i 1 = 2, i 2 = 3 so 

 = 

⎛ 

⎜ ⎜ ⎝ 

0 0 

5 / 8 0 

0 5 / 8 

0 0 

⎞ 

⎟ ⎟ ⎠ 

, LC = 

⎛ 

⎜ ⎜ ⎝ 

0 0 0 0 

0 5 / 16 5 / 8 0 

5 / 8 5 / 32 0 5 / 24 

0 0 0 0 

⎞ 

⎟ ⎟ ⎠ 

. 

 simple calculation shows that b 2 = 2/ 5 so we can (for example) choose x = 1 / 5 to give 

ˆ 
 = 

⎛ 

⎜ ⎜ ⎝ 

0 0 

1 / 8 0 

0 1 / 8 

0 0 

⎞ 

⎟ ⎟ ⎠ 

. 

Our next example shows that the conclusion of Theorem 3.2 does not necessarily hold
ithout the assumptions (F1), (F2) on the matrix pair ( A , C ). 
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xample 3.4. Consider again the matrices A , C given in Example 3.2 . We saw earlier that
he pair ( A , C ), while feasible, does not satisfy condition (F2). Now suppose that L ∈ R 

3 ×2

s such that LC ≥0 and A − LC ≥ 0. A direct calculation shows that 

C = 

⎛ 

⎝ 

l 11 + l 12 0 l 12 

l 21 + l 22 0 l 22 

l 31 + l 32 0 l 32 

⎞ 

⎠ . 

he conditions LC ≥0, A − LC ≥ 0 now imply that 

 12 = l 32 = 0; l 22 ≥ 0; l 21 = −l 22 . 

hus 

 = 

⎛ 

⎝ 

l 11 0 

−l 22 l 22 

l 31 0 

⎞ 

⎠ , A − LC = 

⎛ 

⎝ 

2/ 3 − l 11 0 0 

0 1 / 2 3 / 4 − l 22 

1 / 3 − l 31 0 0 

⎞ 

⎠ . 

t now follows that ‖ L‖ = l 11 + l 22 + l 31 and that ‖ A − LC‖ ≥ 1 − (l 11 + l 31 ) ≥ 1 − ‖ L‖ . This
mplies that 

‖ L‖ 
1 − ‖ A − LC‖ ≥ 1 . 

hus, for any L with 0 ≤LC ≤A , we must have �( L ) ≥1. However, for this pair ( A , C ),
 = { 1 } and min j∈J γ j = 2. Thus in this case, there exists no L in F A,C with 

(L) = 

1 

min j∈J γ j 
= 

1 

2 

. 

. Trade-offs for l 1 sensitivity 

When designing an observer (2) , the speed of convergence to the true state, as determined
y ‖ A − LC‖ , is an important consideration. In general, there will be a conflict or trade-off
etween obtaining the lowest possible value for the sensitivity bound (or equivalently the
unction �) and minimising the norm ‖ A − LC‖ . In this section, we consider this trade-off
or a general positive LTI system, not necessarily compartmental, with a single output. 

Consider the system (1) , where A is a nonnegative matrix, not necessarily compartmental,
nd C is a (non-zero) nonnegative row vector, which we will write as c T for some c ∈ R 

n 
+ 

\ { 0} .
hus, we adopt the notation of Section 3.1 and consider the interplay between the objective

unctions ‖ A − lc T ‖ and �( l ) where l ∈ R 

n 
+ 

is constrained to lie in the feasibility region F A,c .
ormally, we will address the following question in detail. 

roblem 4.1. Given A ∈ R 

n×n 
+ 

, c ∈ R 

n 
+ 

and η∈ [0, 1), find the minimum value of �( l ) subject
o 

 ≥ 0; A − lc T ≥ 0; ‖ A − lc T ‖ = η. (15)

We first characterise the possible values of η = ‖ A − lc T ‖ for l satisfying the first two
onditions of Eq. (15) . 

emma 4.1. Let A ∈ R 

n×n 
+ 

, c ∈ R 

n 
+ 

be given and suppose that l ∈ R 

n 
+ 

is such that A − lc T ≥
. Define the vector ˆ l for 1 ≤ i ≤n by 

ˆ 
 i = min 

k∈ supp (c) 

a ik 

c k 
. (16)
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 A − ˆ l c T ‖ ≤ ‖ A − lc T ‖ ≤ ‖ A ‖ (17)

roof. As A − lc T ≥ 0 and l ≥0, it follows that for all 1 ≤ i , j ≤n , a i j − l i c j ≥ 0 which implies
hat l i ≤ min k∈ supp(c) 

a ik 
c k 

for 1 ≤ i ≤n . If we set ˆ l i = min k∈ supp (c) 
a ik 
c k 

, then l ≤ ˆ l . As c ≥0 and
he l 1 induced matrix norm is monotonic [25] , it follows that: 

 − ˆ l c T ≤ A − lc T ≤ A ⇒ ‖ A − ˆ l c T ‖ ≤ ‖ A − lc T ‖ ≤ ‖ A ‖ 

emarks: 

(i) For the rest of this section, given A ∈ R 

n×n 
+ 

and c ∈ R 

n 
+ 

, we shall use ηmin and ηmax to
denote 

ηmin = ‖ A − ˆ l c T ‖ , ηmax = ‖ A ‖ . (18)

(ii) If ηmin = ηmax , then ‖ A − lc T ‖ = ‖ A ‖ for any l satisfying the first two conditions of
Eq. (15) . There are two possibilities in this case: ‖ A ‖ ≥1 in which case the problem is
not feasible; ‖ A ‖ < 1 and l = 0 gives a solution of Problem 4.1 with �(l ) = 0. Thus if
ηmin = ηmax , the problem is either infeasible or trivial, so we shall assume for the rest
of this section that ηmin < ηmax ; this implies that ˆ l � = 0. 

(iii) Let A ∈ R 

n×n 
+ 

, c ∈ R 

n 
+ 

be such that ηmin < ηmax . Then it is not difficult to see that for
any η∈ [ ηmin , ηmax ] there exists some l ∈ R 

n 
+ 

that satisfies Eq. (15) . This is essentially
an application of the Intermediate Value Theorem coupled with the continuity of the
norm. 

(iv) We are interested in the function � as a bound for the l 1 sensitivity of a linear observer
(2) . This bound, given by Theorem 2.1 , is only valid if ‖ A − lc T ‖ < 1 holds. For this
reason, we will assume for the rest of this section that ηmin < 1. 

Given η∈ [ ηmin , ηmax ], we define the set F (η) as follows: 

(η) = { l ∈ R 

n 
+ 

: A − lc T ≥ 0, ‖ A − lc T ‖ = η} . (19)

n view of the remarks above, F (η) � = { 0} . 
Given, A ∈ R 

n×n 
+ 

, c ∈ R 

n 
+ 

, and η∈ [ ηmin , ηmax ] we define M ( η) as: 

(η) = max 

j∈ supp(c) 

(∑ n 
i=1 a i j − η

c j 

)
(20)

The following lemma notes that under the assumption in point (ii), M ( η) is nonnegative. 
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emma 4.2. Let A ∈ R 

n×n 
+ 

, c ∈ R 

n 
+ 

\ { 0} be given. Assume that ηmin < ηmax . Then for any
∈ [ ηmin , ηmax ], M ( η) ≥0 . 

roof. By assumption, ‖ A − ˆ l c T ‖ < ‖ A ‖ . This implies that for any j with 

∑ n 
i=1 a i j = ‖ A ‖ ,

e must have c j > 0. Let 
∑ n 

i=1 a ik = ‖ A ‖ for some k . It follows that k ∈ supp( c ) and that for
∈ [ ηmin , ηmax ]: 

(η) = max 

j∈ supp(c) 

(∑ n 
i=1 a i j − η

c j 

)
≥

∑ n 
i=1 a ik − η

c k 
= 

‖ A ‖ − η

c k 
≥ 0. 

�
The next result characterizes the norm of l ∈ F (η) in terms of η. 

emma 4.3. Let A ∈ R 

n×n 
+ 

, c ∈ R 

n 
+ 

\ { 0} be given and assume that ηmin < ηmax . Let l ∈ F (η)

or some η∈ [ ηmin , ηmax ] . Then 

 l‖ ≥ M(η) . 

roof. As ‖ A − lc T ‖ = η, max j 
∑ n 

i=1 (a i j − l i c j ) = η and hence, for all 1 ≤ j ≤n , 

n 
 

i=1 

a i j − c j ‖ l‖ ≤ η ⇒ c j ‖ l‖ ≥
n ∑ 

i=1 

a i j − η

rom the definition of supp( c ), it follows immediately that: 

 l‖ ≥ max 

j∈ supp(c) 

(∑ n 
i=1 a i j − η

c j 

)
= M(η) 

�
emark: The last result gives us a lower bound for ‖ l ‖ where l is in F (η) and η∈ [ ηmin ,

max ]. We next show that this lower bound is in fact a minimum. 

roposition 4.1. Let A ∈ R 

n×n 
+ 

, c ∈ R 

n 
+ 

\ { 0} be given. Assume that ηmin < ηmax . For any
∈ [ ηmin , ηmax ] let M ( η) be given by Eq. (20) . Then: 

in {‖ l‖ : l ∈ F (η) } = M(η) . 

roof. From Lemma 4.3 , it is enough to show that there exists l ∗ ∈ F (η) with ‖ l ∗‖ = M(η) .
s ηmin < ηmax , it follows that there exists l ∈ F (η) such that ‖ l ‖ > 0; choose such an l . 
As ‖ A − lc T ‖ = η, for all j ∈ { 1 , . . . , n} , we have that 

∑ n 
i=1 a i j − c j ‖ l‖ ≤ η. Furthermore,

s A ≥0, c ≥0, l ≥0, it follows that 

 j : 
n ∑ 

i=1 

a i j > η} ⊆ supp (c) 

ence for all j �∈ supp( c ), 
∑ n 

i=1 a i j ≤ η. 
Define 

 

∗ = 

(
M(η) 

‖ l‖ 
)

l. 

his is possible as we have chosen l with ‖ l ‖ > 0. Moreover, as ηmin < ηmax , M ( η) ≥0 by
emma 4.2 and ‖ l ∗‖ = M(η) . 
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It remains to show that l ∗ ∈ F (η) . By Lemma 4.3 , M(η) 

‖ l‖ ≤ 1 , thus 0 ≤ l ∗ ≤ l and A − l ∗c T ≥
 − lc T ≥ 0. To finish we need to show that ‖ A − l ∗c T ‖ = η. 

First of all, note that for all j �∈ supp( c ), 
n 

 

i=1 

a i j − c j ‖ l ∗‖ = 

n ∑ 

i=1 

a i j ≤ η

Next note that the definition of M ( η) implies that: 

1. M(η) ≥
∑ n 

i=1 a i j −η

c j 
for all j ∈ supp( c ); 

2. M(η) = 

∑ n 
i=1 a i j 0 −η

c j 0 
for some j 0 ∈ supp( c ). 

As ‖ l ∗‖ = M(η) , it follows that for all j ∈ supp( c ), 
∑ n 

i=1 a i j − c j ‖ l ∗‖ ≤ η while for j 0 ,
 A − l ∗c T ‖ = 

∑ n 
i=1 a i j 0 − c j 0 ‖ l ∗‖ = η. Thus l ∗ ∈ F (η) and ‖ l ∗‖ = M(η) . This completes the

roof. �

emark: It is now straightforward to apply Proposition 4.1 to answer Problem 4.1 . With the
pplication to differential privacy in mind, we make the assumption that ηmin < 1 (in order
o ensure the bound in Theorem 2.1 is valid). The next result follows immediately from the
efinition of � in Eq. (7) and the set F (η) . 

orollary 4.1. Let A ∈ R 

n×n 
+ 

, c ∈ R 

n 
+ 

{ 0} be such that ηmin < ηmax and ηmin < 1 . Set η1 =
in { ηmax , 1 } . Let η∈ [ ηmin , η1 ) be given. Then 

min 

∈F (η) 
�(l ) = 

(
M(η) 

1 − η

)
. (21)

Remark: In the corollary, if ηmax < 1 we can include the right endpoint η1 (allow η∈ [ ηmin ,
max ]) but this makes no material difference to the argument or conclusion. 

xample 4.1. Let 

 = 

(
3 / 4 0 

1 / 2 3 / 4 

)
, c T = 

(
1 1 

)
. 

hen we can see that ηmin = 3 / 4, ηmax = 5 / 4. Then for any η∈ [3/4, 1), we can calculate
(η) = 5 / 4 − η so by Corollary 4.1 the minimum value of �( l ) for ‖ A − lc T ‖ = η is given

y 

5 / 4−η

1 −η
. 

For this example, it is worth noting that if we take l = (0, 5 / 16) T , ˆ l = (0, 6 / 16) T then we
nd �(l ) = 5 , �( ̂  l ) = 3 showing that �(l ) > �( ̂  l ) while ‖ l‖ < ‖ ̂  l ‖ . So reducing the norm
f the gain increases the sensitivity bound in this case. 

.1. Implications for globally optimising the sensitivity bound 

We now give two simple applications of Corollary 4.1 to the problem of finding a global
inimum of � over l in F A,c . 

roposition 4.2. Let A ∈ R 

n×n 
+ 

, c ∈ R 

n 
+ 

\ { 0} be given. Assume that ηmin < ηmax and ηmin < 1 .
f 
∑ n 

i=1 a i j ≥ 1 for all j ∈ supp(c), then the infimum of �( l ) for l in F A,c is M(ηmin ) 

1 −ηmin 
. 
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roof. Set η1 = min { ηmax , 1 } . For a given η∈ [ ηmin , η1 ) (as above, if η1 < 1 we can include
he right endpoint here), write 

M(η) 

1 − η
= max 

j∈ supp(c) 
φ j (η) where φ j (η) = 

(∑ n 
i=1 a i j − η

c j 

)
1 

1 − η
. 

For each j ∈ supp( c ), as 
∑ n 

i=1 a i j ≥ 1 , it follows by differentiation that φj is a non-
ecreasing function on [ ηmin , η1 ). Hence, M(η) 

1 −η
is a non-decreasing function and 

M(ηmin ) 

1 − ηmin 
≤ M(η) 

1 − η

or all η∈ [ ηmin , η1 ). The result now follows from Corollary 4.1 . �
Finally for this section, we prove a simple result for the case where the non-zero entries

f c are all equal. 

roposition 4.3. Let A ∈ R 

n×n 
+ 

, c ∈ R 

n 
+ 

\ { 0} be given. Assume that ηmin < ηmax and ηmin < 1 .
uppose that there is some real number λ> 0 such that c j = λ for all j ∈ supp( c ) . If
ax j∈ supp(c) 

∑ n 
i=1 a i j > 1 , then the infimum of �( l ) for l in F A,c is M(ηmin ) 

1 −ηmin 
. 

roof. Again, set η1 = min { 1 , ηmax } and let η∈ [ ηmin , η1 ). As c j = λ for all j ∈ supp( c ): 

M(η) 

1 − η
= 

max j∈ supp(c) 

(∑ n 
i=1 a i j −η

c j 

)
1 − η

= 

max j∈ supp(c) 
(∑ n 

i=1 a i j 
) − η

λ(1 − η) 

f max j∈ supp(c) 
∑ n 

i=1 a i j > 1 , then 

M(η) 

1 −η
is an increasing function for all η in [ ηmin , η1 ). The

esult follows immediately. �

. The l 1 sensitivity of positive observers with coordinate transformation 

In [4] , a more general form of positive observer was studied for continuous time systems.
or the discrete time setting, the observer structure studied in [4] is of the form: 

(t + 1) = F z(t ) + Gy(t ) (22)

ˆ x (t ) = T −1 z(t ) . 

n order for this to define a positive observer for Eq. (1) , the following conditions are suffi-
ient: F ≥0, ρ( F ) < 1; T A − F T = GC; T is inverse positive, meaning T −1 ≥ 0. 

By suitably adapting the calculation previously published in [23] for the observer (2) , we
an readily derive the following bound for the l 1 sensitivity of Eq. (22) . As before, we require
hat ‖ F ‖ < 1 in order to ensure that the sensitivity bound is finite. 

roposition 5.1. Consider the observer (22) with ‖ F ‖ < 1 . Let K > 0, 0 < α < 1 be given. The
ensitivity � of Eq. (22) with respect to the similarity relation (4) satisfies the following
ound: 

≤ K 

1 − α

(‖ T −1 ‖‖ G ‖ 
1 − ‖ F ‖ . 

)
(23)
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Remark: It is easy to see that a classical Luenberger observer (2) corresponds to the
hoice T = I , F = A − L C, G = L , so Theorem 2.1 is a corollary of Proposition 5.1 . It is
mmediate that an optimal observer of the form (22) cannot perform worse than the optimal
bserver of the classical type. However, note that characterising the set of possible observers
atisfying Eq. (22) may be significantly more complicated than for the classical case. Hence,
he problem of determining an optimal observer belonging to the more general class is likely
o be far more challenging and is beyond the scope of the present paper. The point of the
ext example is simply to show that it is possible to improve significantly on the theoretical
inimum for a classical observer by considering the more general type. 
In Example 5.1 , we consider an observer (22) for a single-output compartmental system.

hus, an observer is defined by a triple ( F , T , g ) in R 

n×n 
+ 

× R 

n×n × R 

n 
+ 

satisfying: 

 F ‖ < 1 ; T −1 ≥ 0; T A − F T = gc T . (24)

e construct such an observer for which 

‖ T −1 ‖‖ g‖ 
1 −‖ F ‖ is strictly less than the theoretical minimum

iven by Theorem 3.1 for the classical observer. 

xample 5.1. Consider: 

 = 

(
1 / 2 1 / 4 

1 / 2 1 / 3 

)
, c T = 

(
1 / 3 1 / 2 

)
. 

ext choose: 

 = 

(
1 0 

−1 1 

)
, F = 

(
1 / 3 0 

0 1 / 30 

)

nd g 

T = (1 / 2 1 / 10) . Then it is readily verified that T A − F T = gc T , and T −1 ≥ 0, ‖ F ‖ < 1
o Eq. (22) defines a positive observer. Moreover 1 

min j∈J c j 
= 3 while, for this choice of F ,

 , g , ‖ T −1 ‖‖ g‖ 
1 −‖ F ‖ = 

9 
5 . Thus, the upper bound for the general observer (23) of 9 

5 is significantly
ower than the theoretical minimum value of 3 for a classical observer in this case. 

. Concluding remarks 

Theorems 3.1 and 3.2 provide simple, usable expressions for the minimum value of the l 1
ensitivity bound in Theorem 2.1 as well as indicating a constructive procedure for computing
n optimal observer gain. In Section 4 we characterize the interplay between the l 1 sensitivity
ound and the rate of convergence for single-output positive LTI systems. We have provided
everal numerical examples to illustrate the results of the paper; Example 5.1 shows explicitly
hat the more general type of observer in [4] can offer significantly improved performance. 

There are several interesting directions for future research. For instance, extending Theo-
em 3.2 to a more general class of multiple-output compartmental systems. Specifically, can
e relax the assumptions (F1) and (F2) of Section 3.2 ? The optimal gain matrix in Theo-

em 3.2 is nonnegative even though, as we have noted, this does not need to be the case for
eneral positive systems. This suggests the problem of identifying matrix pairs ( A , C ) with
 ≥2 for which the minimum value of �( L ) for L ∈ F A,C occurs at a nonnegative matrix
 . Another question is to consider arbitrary output matrices C for the multi-output case and

he corresponding optimization. Finally, determining the minimum value of the bound for the
ore general observer class in Section 5 presents a significant challenge. 
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