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ANALYSIS OF AN ALGORITHM
FOR RANDOM SAMPLING*

CATHERINE B. HURLEY AND HOSAM M. MAHMOUDT
The George Washington University

Washington, D.C. 20052

We analyze a standard algorithm for sampling m items without replacement
from a computer file of n records. The algorithm repeatedly selects a record at
random from the file, rejecting records that have previously been selected, until
m records are obtained. The running time of the algorithm has two compo-
nents: a rejection component and a search component. We show that the prob-
ability distribution of the rejection component undergoes an infinite series of
phase transitions, depending on the order of magnitude of m relative to n. We
identify an infinite number of ranges of m, each with a different behavior. The
rejection component is distributed as a linear combination of Poisson-like ran-
dom variables. The search component is customarily done using a hash table
with separate chaining. The analysis of the hashing scheme in this problem dif-
fers from previous hashing analyses, as the number of lookups in the hash table
for each insertion has a geometric distribution. We show that the average over-
all cost of searching is asymptotically linear with only two phase transitions in
the coefficient of linearity.

1. INTRODUCTION

Sampling balls without replacement from an urn is a simple task accomplished
fay removing balls chosen at random from the urn. Sampling records without
replacement from a computer file is a more intricate task, as actual removal of
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154 C. B. Hurley and H. M. Mahmoud

records from the file is usually not allowed. Thus, the task is compounded by
leaving the chosen records behind. Specifically, we wish to sample m records
without replacement from a file of n records, such that all possible (^) sam-
ples are equally likely. There are a number of standard algorithms for this prob-
lem, as surveyed by Devroye [2]. We will analyze the behavior of TRYAGAIN,
which is one such algorithm.

TRYAGAIN is presented in Figure 1. Here, m items are selected without
replacement from a computer file of n records, by repeatedly selecting a record
at random from the file, rejecting records that have previously been selected,
and trying until a new sample element is generated. This whole process is re-
peated until m records are obtained. Perversely, the algorithm uses sampling
with replacement but in conjunction with rejection to construct a sample with-
out replacement. Even though TRYAGAIN may use more than m selections to
build the sample, its performance, as we shall demonstrate, is nevertheless com-
petitive. The algorithm is particularly appropriate when it is not permitted to
move records within the file.

For n/2 < m < n, it is more efficient to generate the "complement set," that
is, use the algorithm to generate those elements that are not in the sample. Thus,
we assume throughout that 1 < m < n/2.

The algorithm has been discussed by Goodman and Hedetniemi [6] and
Ernvall and Nevalainen [4]. Jakobsson [8] gave a partial average-case analysis
and showed that the number of selections is linear with respect to m with a pro-
portionality factor less than 2 In 2 « 1.38.

After each invocation of the random number generator, TRYAGAIN has
to decide whether or not the generated element is already in the sample. This
membership test may be done using a bit-vector of n components with the /th
entry being 1 if / is a sample element (or an index to it) or 0 otherwise. This extra
space is too large if n is very large. Instead, it is preferable to cut down on this
extra space by collecting only the indexes of previously generated elements in
a hash table. Goodman and Hedetniemi [6] and Jakobsson [8] have suggested

while sample size < m d o

begin

generate / uniformly from the integers 1 to n;

if / is not in the sample then

add / to the sample

end;

FIGURE 1. TRYAGAIN —an algorithm for sampling without
replacement.
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AN ALGORITHM FOR RANDOM SAMPLING 155

the use of hashing with separate chaining with m chains. This may be particu-
larly economical for small sample sizes.

In this paper we study the probabilistic behavior of both components of the
algorithm: the overall cost of the rejection component and the overall cost of
hashing. For the rejection component, we study the probability distribution
of Xnm, the number of times the random number generator must be invoked to
collect the sample; here, the number of rejections is Xnm — m. For the cost of
hashing, we analyze the average behavior of Znm, the total number of compar-
isons made within the hash table.

We will show that the asymptotic distribution of Xnm undergoes an infinite
series of phase transitions, depending on the relative orders of magnitude of m
and n. The behavior of Xnm is almost ideal when m = o(Vn), because the num-
ber of rejections Xnm - m tends in probability to zero as n -» oo, with con-
vergence in /-th mean holding for fixed m, for all r > 0. For larger samples Xnm

departs from optimality but still remains rather good. Specifically, when m is
both Q(nu~1)/J)y and o(nJ/u+i)) for some integer j > 1, we show that the
number of rejections is approximately distributed as a linear combination of
j — I Poisson random variables.

The rejection aspect of TRYAGAIN has appeared previously in the guise
of the well-known coupon collectors' problem. As we shall see shortly, Xnm

can be modeled as a sum of independent geometrically distributed random vari-
ables. Baum and Billingsley [1] analyzed this sum and obtained different limit
distributions in four ranges of m. In fact, the problem has a longer history and
goes back to attacks by Erdos and Renyi [3], who obtained the result of Baum
and Billingsley [1] in only one range, and to attacks by Renyi [9], who found
some facts about the range of asymptotic normality. Hoist [7] surveyed several
results on coupon collectors' problems and their connection to a number of
other classical problems in probability theory. With the proper normalization
within each of the four ranges, Baum and Billingsley obtained in-probability
convergence for m = o(yfn), convergence to a Poisson limit if m ~ XV7F (for
constant X > 0),2 and convergence in distribution to a normal limit in a range
of m extending from Q(ni/2+t) up to n — o(n), beyond which ax 2 limit takes
over. (The range m > n/2 is irrelevant to our problem.) Thus, their result lumps
together an infinite number of hidden phases in the range of asymptotic nor-
mality. Our alternative representation of Xnm as an infinite sum of independent
Poisson-like random variables refines this range of asymptotic normality.

As for the cost of hashing, we shall take a look at the average of Znm. It
will turn out that E[Znm] /m -> c, a constant, and the constant c itself has two
phase transitions: it is asymptotic to (1 - \/m)/2 if m is fixed, then becomes
asymptotic to \ if m goes to infinity but m = o(n), and then becomes a func-
tion of X when m ~ Xn.

The paper will be organized as follows. In Section 2 we establish our nota-
tion. In Section 3 the behavior of Xnm is given in the exact form as the infinite
sum of Poisson-like random variables. The result is easy to apply for small
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156 C. B. Hurley and H. M. Mahmoud

sample sizes, as we illustrate when m is both Q(nu~1)/J) and o(nJ/u+l)) for
j = 1,2,3. For larger samples the normal limiting distribution provides an eas-
ier approximation, and this result is given in Section 4. In Section 5 we analyze
the average cost of hashing. We will show there that the cost of hashing is
asymptotically linear in m with an explicit characterization of the coefficient of
linearity and the phase transitions therein. Section 6 is a discussion about the
practical significance of the results.

2. THE TECHNICAL SETUP

Throughout the paper we shall use the following standard notation. We shall
denote the harmonic numbers Ej=i l/j by Hk, and H™ will denote Z*=1 I//2,
the second order harmonic numbers. Geometric(/>) will denote a geometrically
distributed random variable with rate of success p per trial; Poisson(X) will
denote a Poisson random variable with parameter X; the symbol N(0,l) will
denote a random variable having the standard normal distribution; and Hyper-
geometric(7V,«,A:) will denote a random variable with a hypergeometric distri-
bution, that is, the number of type 1 members in a subset of size k taken from
a population of size N and having n members of type 1, with the rest of type
2. Convergence in distribution and in probability will be denoted by the sym-

ID (P !D

bols -» and ->, as usual. On the other hand, the symbol = will denote exact
equality in distribution.

When TRYAGAIN is in its /th stage, that is, after it has picked / - 1 sam-
ple elements and is about to choose the /th sample element, it repeatedly gen-
erates a random number until a new sample element is obtained. Let G, be the
number of iterations required for the /th sample element. Clearly,

3D „ .
= Geometric V n /

The random variables G,, / = l,...,m, are independent, and Xnm, the total
number of generations, is

Xnm = G, + G2 + • • • + Gm. (1)

As in Feller [5], the mean and variance can be written in terms of harmonic
numbers as

nm] = n(Hn — Hn_m),

] = nHH™ - H™m) -n(Hn- //„_„).

3. THE COST OF REJECTION FOR SMALL SAMPLES

Let Tpnm{t) be the moment generating function of Xnm — m. From the repre-
sentation of Xnm in Eq. (1),
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AN ALGORITHM FOR RANDOM SAMPLING 157

= 11 " , ' , ! , ' for/<ln2,*=i n - ( k - l ) e '

using the fact that a Geometric(/?) has the moment generating function
pe'/(l — (1 — p)e'). We shall next examine the behavior of the product in
the last quantity.

LEMMA 1: For any fixed t < In 2, we have

™ n-k+l f A ^ , / * - l V c - " -

PROOF: Let

Taking logarithms, one finds

m / k — 1
= m In /i + Y) In 1

*=i V i

j
(2)

=i y=i \ n ) j

The lemma now follows from calculating 5nm(0)/Snm(/).

So we

where

but exp{\(eJI — 1)) is the moment generating function of j times a Poisson(X)
random variable. Thus, the number of rejections has a moment generating func-
tion coinciding with that of a linear combination of infinitely many independent
Poisson random variables. We have thus proved the following theorem.

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964800003302
Downloaded from https://www.cambridge.org/core. Maynooth University, on 09 Feb 2022 at 12:07:57, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964800003302
https://www.cambridge.org/core


158 C. B. Hurley and H. M. Mahmoud

THEOREM 1: The number of rejections is distributed as a linear combination of
infinitely many independent Poisson random variables:

D °° (\ m (k —

y=i \J *=i \ n

We now apply Theorem 1 to the small sample situation, which we de-
fine as m = o(n). The interpretation of Theorem 1 depends on the range
of m. Roughly speaking, for any fixed j , the random variables j Poisson (j~l x
S*=i {(k - l)/n)J)=jPo\sson(O(mJ+1/nJ)) are "very small" with high prob-
ability if m = o(nj/u+l)). Thus, if m is both Q(nu~1)/J) and o{nJ/u+l)) for
some positive integer j , then the first j — 1 Poisson random variables dominate
and the others are asymptotically negligible. For each value of j , the orders of
magnitude between Sl(nu~1)/J) and o(nJ/{j+1)) correspond to a new range (the
yth range) of m, with il(nu~l)/j) as its lower boundary. Every time m
"crosses" the lower boundary into a new range, one extra random variable,
which is a multiple of a Poisson random variable, is "released" into the picture.
This curious behavior is illustrated later by a few corollaries concerning the
behavior in the first few ranges.

We now provide a rigorous justification for neglecting the tail terms in the
series of Poisson random variables of Theorem 1. The following asymptotic rep-
resentation of ipnm(t) is helpful. The negative of the logarithm in Eq. (2) may
be written as

and

m I k — \ \ r~l m I k — 1 \J

;=i *=i \ n

Thus,

In the special case of a very small sample, we now have the following cor-
ollary.

COROLLARY \:Ifm = o{yfn), then the number of rejections Xnm — m -» 0.

PROOF: In Eq. (3) take r = 1 to obtain
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AN ALGORITHM FOR RANDOM SAMPLING 159

Hence, Xnm — m -» 0 and, as convergence in distribution to a constant implies
convergence in probability, we have Xnm — m -* 0. •

Remark: In the case of fixed m, for every r > 0 the uniform integrability of
Xr

nm is demonstrated in the Appendix. This fact, together with Corollary 1,
shows that for fixed m the random variable Xnm converges in U for every
r>0, thatis.E^J-m'.

Applying Eq. (3) to the next range of m values (i.e., r = 2), we have the fol-
lowing corollary.

COROLLARY 2. If m is both O(V7J) and o(n2n), then tnm(t) - exp((m2/

As a Poisson random variable with a large parameter is approximately nor-
mally distributed, we can interpret Corollary 2 as follows:

Xnm -m% Poisson(X2/2), if m ~

otherwise the Poisson parameter m2/2n tends to infinity with n, and so

For the next higher range of m (with r = 3), Eq. (3) yields the next
corollary.

COROLLARY 3: Ifmistt(nin) and o(n3/4),

Observe that the right-hand side in the preceding expression is the moment
generating function of a combination of two independent Poisson random vari-
ables: Poisson({m(m - l))/2n) + 2 Poisson((m(m - l)(2m - 1))/12«2).
Asymptotic normality follows after suitable normalization. One may continue
to obtain similar expressions in higher ranges of m.

Of course, there is only one limiting distribution in the range of m begin-
ning at fl(VTi), which is the Normal distribution. That Normal distribution
captures the asymptotic behavior of the first Poisson random variable in the
series of Theorem 1. However, the existence of lower order Poisson random
variables may affect the rate of convergence and, in general, including those
variables may provide a better approximation for small values of n. As an exam-
ple, Table 1 compares three approximations to P(Xnm < m), with the exact
probability (computed using the expression given in the Appendix), for a
sequence of increasing n values and with m = T?2/3. In each case the two-
Poisson approximation to the distribution of Xnm provides quite accurate
results.
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160 C. B. Hurley and H. M. Mahmoud

TABLE 1. Comparison of Three Approximations to
P(Xnm <m), With the Exact Probability3

n

23

2 6

29

2 1 2

Exact

0.4102
0.1290
0.0164
2.92E-4

Normal

0.1950
0.0859
0.0237
2.38E-3

'Column 1 gives the exact probability;
bution given by Baum and Billingsley
two-term approximations, respectively,
m = n2/}.

One Poisson

0.4724
0.1534
0.0195
3.46E-4

Two Poissons

0.4234
0.1318
0.0166
2.93E-4

column 2 uses the asymptotic Normal distri-
[1], while columns 3 and 4 use the one- and
given in the result of Theorem 1. In each case

4. THE COST OF REJECTION FOR LARGE SAMPLES

Under the assumption of a large sample, that is, m ~ \n for some X G (0, | ] ,
we will show in this section that the algorithm running time converges in dis-
tribution to a normally distributed random variable. This could perhaps be
approached by obtaining a limit from Eq. (3) of the previous section, for
increasingly higher ranges of m. However, here we choose to establish the result
via Lindeberg's condition, a route considered prohibitive by Baum and Billings-
ley [1]. Formally stated, we shall prove the following theorem.

THEOREM 2: When m ~\n where X G (0,| ] ,

Xnm - n In'

'
1 - X \l - X

PROOF: From the representation of Xnm in Eq. (1), it is sufficient to verify
Lindeberg's condition to establish the asymptotic normality of

as n and hence m -> oo. As shown by Baum and Billingsley [1], the mean and
variance satisfy the following asymptotic relations:

(4)

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964800003302
Downloaded from https://www.cambridge.org/core. Maynooth University, on 09 Feb 2022 at 12:07:57, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964800003302
https://www.cambridge.org/core


AN ALGORITHM FOR RANDOM SAMPLING 161

and asymptotic normality in the form stated will follow.
To simplify notation we introduce o*m = \%T[Xnm] and nk = E[Gk]. Fix

e > 0, and define "Lindeberg's quantity" Lnm(e) as

anm k=\ \x-*
{x-tik)

1P{Gk=x).

We now verify that

lim LnmU) = 0.
m-*oo

For n sufficiently large, [x:x < /xk — eanm] is a set of negative integers for
any k with 1 < k < m and P{Gk = x) for any x from that set is 0—this holds
for large n because

and, according to Eq. (5), anm -> oo as n -> oo. Therefore, for large n

4 2
nm k=\

4
where

y*(/j,m) = (7 =y - /x*.:̂  is a positive integer andy > \ik + effnm),

/>A = (/i — A: + \)/n and qk = 1 — p t . Thus,

Using the inequality y1 < 2^(y — 1), valid for any y > 2, and the identity

W 2 = n ,3 (d - ^ ^ ( j ' o - i) + zqiyo - gy<> + Q)\

2, for ^o == 1,
( l - < ? ) 3

we can write
,yk(n.m)~2
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162 C. B. Hurley and H. M. Mahmoud

where yk(n,m) = m i n ( ^ G Yk(n,m)}, which is > 2 for large n. Therefore, as
\ik > 1 for all 1 < k < m,

where eanm < 70 = sup^f / i . /n) < eanm + 1. Recalling that 1 < m < «/2,
we have

16^0
2

16(2e<irnw)2/t

But ffnm ~ VC^TJ -• oo as n -> oo (cf. Eq. (5)), and so limn^ooLnm(€) = 0, for any
£ > 0 . •

5. THE COST OF HASHING

Among several possible choices for a hashing scheme, authors who worked
on this problem preferred the method of hashing with separate chaining. The
method is quite simple and efficient. A hash table of m slots labeled 1,. . . , m,
is set up. The /th slot contains a header pointer to a linked list of sample ele-
ments that hash to position /. The hash function is h{x) = \xm/n]. At the Arth
stage, each failure in generating a new sample element corresponds to a success-
ful search in the table. That search is handled as follows. The hash function is
invoked and a sequential search in the appropriate list is begun at its header. At
the end of the £th stage, a new sample element is generated and inserted in the
table in the following manner. The new element is first hashed. The linked list
corresponding to the hash position is searched until it is exhausted and the NIL
pointer at its tail is reached. Then, the new element is inserted in the list. The
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AN ALGORITHM FOR RANDOM SAMPLING 163

most efficient way is to insert it at the beginning of the list, as this does not
require any additional search for an insertion position.

Consider the situation at the kih stage. The random number generator is
invoked Gk times, of which the first Gk - 1 are failures (producing an element
already in the hash table) and the last time is a success (producing a new sam-
ple element). The hash table has m slots, where each slot contains a linked list
of at most \n/m\ sample elements. For simplicity we assume that n is an exact
multiple of m, and we define 5 as n/m. (If m is not an exact multiple of n, the
results will still hold asymptotically.)

We wish to study the mean of Znm, the total number of comparisons used
within the hash table. Writing Ck as the total number of comparisons required
for inserting the Arth sample element, we have

Znm = C, + C2+ ••• + C m .

We derive expressions for the mean of Ck.
Let hkj, i = 1, . . . ,Gk — 1, be the number of hash table comparisons

required for the ith rejection at the kth stage. Suppose that when the kth sam-
ple element is finally obtained it calls for ^comparisons. Then we have

Ck = hk,i + h k l + • • • + / I* ,G*-I + hk. (6)

Let T*-! be the a-field generated by the first k — 1 stages. Note that T*_i
includes the complete history of the process up to stage k — 1; in particular,
it contains the depths of the linked lists <4-i,i,<4_i,2,... ,dk-lim, after the
(k — l)st sample element is obtained. For short, we will use the notation d\,
d?.,..-,dm, for these depths, where the dependence on k is understood.

We thus have

because if the /th list contains dt elements, only .y — dj of the remaining n — k + 1
equally likely unselected elements are candidates to be placed in the /th linked list.
Hence,

n - k

n-k+l

because the rf,'s have the same distribution.
We next obtain the expected value of the part of Eq. (6) corresponding to

the comparisons associated with rejection. Conditioning, we have

- l l =(Gk-\)E{hkil),
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164 C. B. Hurley and H. M. Mahmoud

because the hkjs have the same distribution, which is independent of Gk — 1.
Therefore,

E H S V / 1 =E[Gk-l]E[hkA]= k~1 E[hktl].
L /=i J n — k + 1

At the Arth stage, there are k — 1 sampled elements of which rf, belong to the
/th slot. Also, the number of comparisons required for a sampled element from
the /th slot has a discrete uniform distribution on {1, . . . ,d,} with a mean value
of (rf/+l)/2. Thus,

and

(E[df)
- 1 )

Hence,

E[Ck] =
_

sE\dx\-\E\dx(dx-\)\\.
n-k+ 1 \ 2

The random variable c?! follows a Hypergeometric(n,s,A: — 1) distribution, and
soE[rf,] = (k- l)^/«andEtrf,(rf,- 1)] = (k - \)(k-2)s(s- \)/n{n- 1).
Substituting s by /2/m, we obtain, after some algebra,

= (k - l)(2n2 - kn + mk - 2m)
2(n-k+ l)m(n- 1)

We next show that E[C*] is uniformly bounded for all relevant values of k,
thus identifying a constant for the 0(1) bound discussed by Jakobsson [8].

LEMMA 2: For 1 < / :< /«< n/2,

E[C,] < I

PROOF: First, write

_ Ar — 1 F /? n fc-2 I
* 2 X [ ( n - k + \ ) m + (n - \ ) m + (n - k + l)(n - 1 ) J

Because k < m < n/2, and 2(n — k + 1) > n + 2, we have

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964800003302
Downloaded from https://www.cambridge.org/core. Maynooth University, on 09 Feb 2022 at 12:07:57, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964800003302
https://www.cambridge.org/core


AN ALGORITHM FOR RANDOM SAMPLING 165

l + + ?2m(n — 1) (n •

Substituting m = n/2, we obtain the desired bound. •

Although one could quickly get the linear upper bound 7m/4 for the aver-
age overall number of comparisons, one expects that the coefficient of linear-
ity can be improved because 3 is a uniform bound at all stages; it is plausible
that I is a loose bound at the early stages. The overall average of the number
of comparisons may be obtained by adding up E[Ck], for k = 1,2,... ,m.
After somewhat long and unpleasant algebra, we obtain the next theorem.

THEOREM 3:

n{n + m) 2n2 + mn — n + m2 - 3m
E [ Z " J = ~ ^ T ~ < " » - " " - * •

Asymptotically, we have the following corollary.

COROLLARY 4:

m - 1

E[Znm] ~

2 '

m

T

ifm is fixed;

ifm-*oa, andm = o(n);

PROOF: Using the asymptotic expansion of the harmonic numbers, and the fact
that m < n/2, we obtain

u M - inf " ' "• • m(2n-m) ( 1
tin — Hn_m - In fn-mj 2n{n - m) \2n2(n - m)2 \n3

The lemma follows from straightforward algebraic manipulation using Taylor's
expansion with remainder for the logarithm. •

6. DISCUSSION

We studied the behavior of an algorithm for sampling m records from a com-
puter file of n records. For very small samples (m = o(Vn)), Corollary 1
shows that the algorithm is almost ideal; it takes m steps in probability, with
convergence in all moments for fixed m. In the higher ranges of m, some vari-
ability appears and the algorithm may take more than m steps. Jakobsson [8]
showed that the average number of steps is less than cm for a constant c not
exceeding 2 In 2 = 1.38. In fact, relation (4) shows that the upper bound of
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Jakobsson is sharp if X = \ but can be improved for 0 < X < \. For example,
if m = [n/101, the algorithm takes about 1.05/n steps on average, only 5%
worse than the ideal case of finishing in m steps. In addition, it is not likely for
the algorithm to deviate by large amounts from its mean. For example, if
m = \n06], from Corollary 2 the number of rejections is asymptotically dis-
tributed as Poisson(0.5«0-2), and, according to Chebychev's inequality, the
probability the algorithm takes V/?f steps beyond its average is

0.2

0

In the worst case scenario where m = n/2, Theorem 2 shows that, for large val-
ues of n,

P(Xnm - E[Xnm] > 2Jm) * .0052.

The distributional theory of the hashing aspect of this problem is harder to
analyze. We have only been able to analyze it on average and found out that the
overall cost of hashing is asymptotically linear in m. The coefficient of linear-
ity is a constant slightly less than j , if m is fixed, and is \ if m goes to infinity
but in such a way that m = o(n); when m ~ \n, the coefficient of linearity goes
up a little bit. For example, E[Znm] ~ (3 In 2 - %)m = .704m, if n = 2m.

The real cost of the algorithm is a linear combination of Xnm and Znm.
Thus, a complete distributional analysis will further require finding the joint dis-
tribution of Xnm and Znm, which appears to be a very formidable task. How-
ever, we have all the desired average-case results. The coefficients used in the
linear combination depend on the speed of the particular computer in use be-
cause the operations involved in random number generation are quite different
from those involved in hashing.
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NOTES

1. Q(g(n)) = | / ( n ) : 3 c > 0 , n0 > 0 such that Vn > n0, 0 < cg(n) < / (n)) .
2. If limn_m (/("))/(£(«)) = 1, then/(n) and g(n) are said to be asymptotically equivalent,

denoted by/(n) ~ g{n).

References

1. Baum, L. & Billingsley, P. (1965). Asymptotic distributions for the coupon collector's problem.
Annals of Statistics 36: 1835-1839.

2. Devroye, L. (1986). Non-uniform random variate generation. New York: Springer-Verlag.
3. Erdos, P. & Renyi, A. (1961). On a classical problem of probability theory. Magyar Tudomanyos

Akademia Mat. Kutato Int. Kozl. 6: 215-220.

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964800003302
Downloaded from https://www.cambridge.org/core. Maynooth University, on 09 Feb 2022 at 12:07:57, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964800003302
https://www.cambridge.org/core


AN ALGORITHM FOR RANDOM SAMPLING 167

4. Ernvall, J. & Nevalainen, O. (1982). An algorithm for unbiased random sampling. The Com-
puter Journal 25: 45-47.

5. Feller, W. (1968). An introduction to probability theory and its applications, Vol. 1, 3rd ed. New
York: Wiley.

6. Goodman, S. & Hedetniemi, S. (1977). Introduction to the design and analysis of algorithms.
New York: McGraw-Hill.

7. Hoist, L. (1986). On birthday, collectors', occupancy and other classical urn problems. Inter-
national Statistical Review 54: 15-27.

8. Jakobsson, M. (1985). Sampling without replacement in linear time. The Computer Journal 28:
412-413.

9. Renyi, A. (1962). Three new proofs and a generalization of a theorem of Irving Weiss. Magyar
Tudomanyos Akademia Mat. Kutato Int. Kozl. 7: 203-214.

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964800003302
Downloaded from https://www.cambridge.org/core. Maynooth University, on 09 Feb 2022 at 12:07:57, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964800003302
https://www.cambridge.org/core


168 C. B. Hurley and H. M. Mahmoud

APPENDIX

Here we will demonstrate the uniform integrability of X'nm for 0 < r < oo and fixed m.
The distribution of Xnm, the total number of generations, is given by (see, e.g.,

Feller [5, pp. 57-59])

where S(k,m) is a Stirling number of the second kind, that is, the number of ways of
distributing k items into m boxes, leaving no empty box. Clearly, S{k,m) < mk/m\, the
number of ways of distributing k items into m boxes, and so

f"\fm\k mm(m\k-m mm(i\k-m
P{Xnm = k ) < [ ] _ ) < _ _ ) < — ( - ) ,

because m < n/2. Then, we have that

\k~m

) * '

Because the series S* ({)k(k + m)r is convergent, we obtain

1 , ^ ^ , ] =0 .
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