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Defining Locality in Genetic Programming
to Predict Performance

Edgar Galván-López, James McDermott, Michael O’Neill and Anthony Brabazon

Abstract—A key indicator of problem difficulty in evo-
lutionary computation problems is the landscape’s locality,
that is whether the genotype-phenotype mapping preserves
neighbourhood. In genetic programming the genotype and
phenotype are not distinct, but the locality of the genotype-
fitness mapping is of interest. In this paper we extend the
original standard quantitative definition of locality to cover the
genotype-fitness case, considering three possible definitions. By
relating the values given by these definitions with the results of
evolutionary runs, we investigate which definition is the most
useful as a predictor of performance.

I. INTRODUCTION
The concept of a fitness landscape [1] has dominated the

way geneticists think about biological evolution and has
been adopted within the Evolutionary Computation (EC)
community. In simple terms, a fitness landscape can be seen
as a plot where each point on the horizontal axis represents
all the genes in an individual corresponding to that point.
The fitness of that individual is plotted as the height against
the vertical axis. Thus, a fitness landscape is a representation
of a search space which may contain peaks, valleys, hills and
plateaus.
How an algorithm explores and exploits such a landscape

is a key element of evolutionary search. Rothlauf [2], [3] has
described and analysed the importance of locality in perform-
ing an effective evolutionary search of landscapes. Locality
refers to how well neighboring genotypes correspond to
neighboring phenotypes, and is useful as an indicator of
problem difficulty. This research distinguished two forms
of locality, low and high. A representation has high local-
ity if all neighboring genotypes correspond to neighboring
phenotypes, that is small genotypic changes result in small
phenotypic changes. On the other hand, a representation
has low locality if many neighboring genotypes do not
correspond to neighboring phenotypes. It is demonstrated
that a representation of high locality is necessary for efficient
evolutionary search. In Section III we further explain the
concept of locality.
In his original studies, Rothlauf used bitstrings to conduct

his experiments [4] (and more recently he further explored
the idea of locality using grammatical evolution at the chro-
mosome level [5]). To our knowledge, there are few explicit
studies on locality1 using the typical Genetic Programming
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anthony.brabazon@ucd.ie.
1Initial preliminary results include [6].

(GP) [7], [8] representation (i.e., tree-like structures). For
this purpose we will extend the definition of locality to GP,
and due to the lack of distinction between genotype and
phenotype, we will study the locality of the genotype-fitness
mapping. The principle of strong causality states that for
successful search, a small change in genotype should result
in a small change in fitness [9]. The goal of this paper then
is to shed some light on the type of locality present in GP
and to clarify the correct extension of Rothlauf’s genotype-
phenotype locality to the genotype-fitness case. We use three
different mutation operators, three different genotypic dis-
tance measures, and two problems with significantly different
landscape features: the Artificial Ant Problem (a multimodal
deceptive landscape) [10] and the Even-3-Parity Problem (a
highly neutral landscape) [11].
This paper is organised as follows. In the next section,

previous work on prediction of performance is summarised.
In Section III locality in EC is presented. In Section IV, we
describe how we study the locality of the genotype-fitness
mapping in GP. In Section V, we present and discuss our
findings. Finally, in Section VI we draw some conclusions.

II. RELATED WORK

Landscapes and problem difficulty have been the subject of
a good deal of research in EC in general and GP in particular.
Several approaches to investigating problem difficulty have
been proposed. In this section we mention some of them,
including their pros and cons, which have inspired our work.
A. Fitness Distance Correlation
Jones [12], [13] proposed the fitness distance correlation

(fdc) to measure the difficulty of a problem on the basis of
the relationship between fitness and distance. The idea behind
fdc was to consider fitness functions as heuristic functions
and to interpret their results as indicators of the distance to
the nearest optimum of the search space. fdc is an algebraic
measure to express the degree to which the fitness function
conveys information about distance to the searcher.
The definition of fdc is quite simple: given a set F =

{f1, f2, ..., fn} of fitness values of n individuals and the
corresponding set D = {d1, d2, ..., dn} of distances of such
individuals from the nearest optimum, fdc is given by the
following correlation coefficient:

fdc =
CFD

σF σD

,

where:

CFD =
1

n

n∑

i=1

(fi − f)(di − d)
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is the covariance of F and D, and σF , σD, f and d are
the standard deviations and means of F and D, respectively.
The n individuals used to compute fdc are obtained via some
form of random sampling.
According to [13], [12] a problem can be classified in one

of three classes, depending on the value of fdc:
1) misleading (fdc ≥ 0.15), in which fitness tends to
increase with the distance from the global optimum;

2) difficult (−0.15 < fdc < 0.15), for which there is no
correlation between fitness and distance; and

3) easy (fdc ≤ −0.15), in which fitness increases as the
global optimum approaches.

The threshold interval [-0.15, 0.15] was empirically deter-
mined by Jones. In [13], [12], Jones also proposed to use
scatter plots (distance versus fitness) when fdc does not give
enough information about the hardness of a problem.
1) Comments on Fitness Distance Correlation: Al-

tenberg [14] argued that predicting the hardness of a problem
when using only fitness and distance in an EC system
presents some difficulties. For instance, neither crossover nor
mutation are taken into account when fdc is calculated. Other
works have also shown some weaknesses on fdc [15], [16].
As it can be seen from the previous examples, fdc presents
some weakness to predict the hardness of a given problem.
Both [17] and [18] construct examples which demonstrate
that the fdc can be “blinded” by particular qualities of
the search space, and that it can be misleading. There is,
however, a vast amount of work where Jones’ approach has
been successfully used in a wide variety of problems [19],
[20], [21]. Of particular interest is the work by Vanneschi
and colleagues [22], [17], [23], [24] which concentrated on
the use of fdc in the context of GP.

B. Fitness Clouds and Negative Slope Coefficients
Later work by Vanneschi and colleagues attempted to

address weaknesses of the fdc with new approaches. Fitness
clouds are scatter plots relating fitness with distance to the
optimum, as used in the fdc. Here, however, a more sophis-
ticated approach to sampling the data (intended to model the
real sampling behaviour of an evolutionary algorithm) and
its analysis is used. The negative slope coefficient [25], [26]
and the variant fitness-proportional negative slope coefficient
[27] allow estimation of problem difficulty without requiring
knowledge of the global optimum, making an fdc-style
approach practical on real-world problems for the first time.

C. Other Landscape Measures
Several other approaches to studying landscapes and prob-

lem difficulty have also been proposed, generally in a non-GP
context, including: other measures of landscape correlation
[28], [29]; epistasis, which measures the degree of interaction
between genes and is a component of deception [18]; mono-
tonicity, which is similar to fdc in that it measures how often
fitness improves despite distance to the optimum increasing
[18]; and distance distortion which relates overall distance
in the genotype and phenotype spaces [4]. All of these

measures are to some extent related. However, Rothlauf’s
locality approach, again related to all of the ideas above, is
of particular interest and so is treated separately in the next
section.

III. LOCALITY

Understanding of how well neighbouring genotypes cor-
respond to neighbouring phenotypes is a key element in
understanding evolutionary search [4], [3]. In the abstract
sense, a mapping has locality if neighbourhood is preserved
under that mapping2. In EC this generally refers to the
mapping from genotype to phenotype. This topic is a worthy
of study because if neighbourhood is not preserved, then the
algorithm’s attempts to exploit the information provided by
an individual’s fitness will be misled when the individual’s
neighbours turn out to be very different.
Rothlauf’s work on locality [4], [3], [31] has shed new

light on several problems. Rothlauf gives a quantitative
definition: “the locality dm of a representation can be defined
as

dm =
∑

dg(x,y)=d
g

min

|dp(x, y) − d
p
min|

where dp(x, y) is the phenotypic distance between the pheno-
types xp and yp, dg(x, y) is the genotypic distance between
the corresponding genotypes, and d

p
min resp. d

g
min is the min-

imum distance between two (neighboring) phenotypes, resp.
genotypes” [4] [p. 77; notation changed slightly]. Locality is
thus seen as a continuous property rather than a binary one.
The point of this definition is that it provides a single quantity
which gives an indication of the behaviour of the genotype-
phenotype mapping and can be compared between different
representations. Note that the quantity dm is a measure of
phenotypic divergence, so it is low for situations of high
locality, and vice versa.
It can be stated that there are two types of locality: low and

high locality. A representation is said to have the property
of high locality if all neighboring genotypes correspond to
neighboring phenotypes. On the other hand, a representation
has low locality if some neighboring genotypes do not
correspond to neighboring phenotypes. Rothlauf claims that a
representation that has high locality will be more efficient at
evolutionary search. If a representation has high locality then
any search operator has the same effects in both the genotype
and phenotype space. It is clear then that the difficulty of
the problem remains unchanged compared to an encoding in
which no genotype-phenotype map is required.
This, however, changes when a representation has low lo-

cality. To explain how low locality affects evolution, Rothlauf
considered three different categories, taken from the work
presented in [12] and explained previously. These are:

• easy, in which fitness increases as the global optimum
approaches,

2The term locality has also been used in an unrelated context, to refer to
the quasi-geographical distribution of an EC population [30].



• difficult, for which there is no correlation between
fitness and distance and,

• misleading, in which fitness tends to increase with the
distance from the global optimum.

If a given problem lies in the first category (i.e., easy),
a low-locality representation will change this situation by
making it more difficult and now, the problem will lie in the
second category. This is due to low locality randomising the
search. This can be explained by the fact that representations
with low locality lead to uncorrelated fitness landscapes, so
it is difficult for heuristics to extract information.
If a problem lies in the second category, a low-locality

representation does not change the difficulty of the problem.
There are representations that can convert a problem from
difficult (class two) to easy (class one). However, to construct
such a representation typically requires an understanding of
the landscape equivalent to solving the problem.
Finally, if the problem lies in the third category, a rep-

resentation with low locality will transform it so that the
problem will lie in the second category. That is, the problem
is less difficult because the search has become more random.
As can be seen, this is a mirror image of a problem lying
in the first category and using a representation that has low
locality.
Although Rothlauf does not provide a threshold value to

distinguish high and low locality, nevertheless it is possible
to make relative comparisons between representations.
Note in particular Rothlauf’s treatment of neutrality. When

distinct (but neighbouring) genotypes map to identical pheno-
types, a quantity (dmin) is added to the sum. This is the same
quantity that is added when neighbouring genotypes diverge
slightly (for bitstring phenotypes with hamming distance).
That is, neutrality is regarded as a deviation from good
locality. Whether neutrality is beneficial in general is a
complex question and some works have shed light on this
issue [19], [20], [21], [32], [33], [34], but this issue deserves
consideration as we will see.
We now consider the correct way to define the locality of

the genotype-fitness mapping. Recall that locality, in general,
is the property of preservation of neighbourhood under a
mapping. Rothlauf assumes that a distance measure exists on
both genotype and phenotype spaces, that for each there is
a minimum distance, and that neighbourhood can be defined
in terms of minimum distance. In standard GP, there are no
phenotypes distinct from genotypes. It is common therefore
to study instead the behaviour of the mapping from genotype
to fitness [35], and we take this approach here. We will
also regard two individuals to be neighbours in the genotype
space if they are separated by a single mutation. That is, a
mutation operator defines the neighbourhood of individuals
at the genotype space, adhering to the Jones [12] principle
that each operator induces its own landscape. We will also
study very large spaces of GP-style trees, and therefore we
must sample the space rather than enumerate it.
However, the most difficult issue in this context is how to

define neighbourhood in the fitness space. There are three

possibilities:
• The most straightforward extension of Rothlauf’s def-
inition might regard two individuals as neighbours if
the difference of their fitness values is 1.3 This leads to
the following definition which we call the fdmin = 1
definition of locality.

dm =

∑N

i=1 |fd(xi, m(xi)) − fdmin|

N
(1)

where fd(xi, m(xi)) = |f(xi) − f(m(xi))| is the
fitness distance between a randomly-sampled individual
xi and the mutated individual m(xi), fdmin = 1 is the
minimum fitness distance between two individuals, and
N is the sample size.

• However, the above definition treats a fitness-neutral
mutation as being just as bad for locality as a mutation
causing a fitness divergence of two fitness units (as-
suming integer-valued fitness). It might be preferable to
redefine the minimum distance in the fitness space as
zero, giving the same locality definition as above but
with fdmin = 0. This we term the fdmin = 0 definition
of locality.

• Finally, it might be better to treat only true divergence of
fitness as indicating poor locality. Therefore we might
say that fitness divergence occurs only when the fitness
distance between the pair of individuals is 2 or greater:
otherwise the individuals are regarded as neighbours in
the fitness space. This leads to the following definition,
which we will call the conditional definition of locality).

dm =

∑N

i=1:fd(xi,m(xi))≥2 fd(xi, m(xi))

N
(2)

where fdmin = 1.
Since we have no a priori reason to decide which of these

three is the best definition of genotype-fitness locality, we
will decide the issue by relating the values produced by each
with performance achieved on EC runs.

IV. EXPERIMENTAL SETUP
For our analysis, we have used two well-known difficult

problems for GP: the Artificial Ant Problem [7] (which
has been shown to have multimodal deceptive features [10,
Chapter 9]) and the Even-3-Parity problem (a problem that
is difficult if no bias favorable is added in any part of
the algorithm). To see and compare the locality present
on these problems, we have decided to use two different
function sets (see Table I for a description of them) for each
of the problems used in this work. The idea here is that
each function set will give a different locality and different
performance.
The first problem, the Artificial Ant Problem [7, pp. 147–

155], consists of finding a program that can successfully
navigate an artificial ant along a path of 89 pellets of food
on a 32 x 32 toroidal grid. When the ant encounters a

3Notice that in this work we are using problems of discrete values and
so, it is reasonable to adopt this notion of fitness distance.
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Fig. 1. Distribution of fitness distance values on the Artificial Ant Problem (top) and on the Even-3-Parity problem (bottom) using structural, one-point
and subtree mutation, with standard and alternative function sets (left and right). For clarity we focus on the first 9 fitness distance values for the Artificial
Ant Problem. Note also that structural mutation cannot be applied when using the 4-function set since all functions are of the same arity.

TABLE I
FUNCTION SETS USED ON THE ARTIFICIAL ANT AND THE EVEN-3-PARITY PROBLEM.

Number of Artificial Ant Problem Even-3-Parity
functions
3 Functions FA3 = {IF, PROG2, PROG3} FE3 = {NOT, AND, OR}
4 Functions FA3 = {IF, PROG2, PROG3, PROG4} FE4 = {AND, OR, NAND, NOR}

food pellet, its (raw) fitness increases by one, to a maxi-
mum of 89. The problem is in itself challenging for many
reasons. The ant must eat all the food pellets (normally in
600 steps) scattered along a twisted track that has single,
double and triple gaps along it. The terminal set used for
this problem is T = {Move, Right, Left}. The standard
function set is FA3 = {IfFoodAhead, P rog2, P rog3} (see
[7] for a full description). In order to have an alternative
encoding (with, as we will see, different performance and

locality characteristics), we now propose a second function
set: FA4 = {IfFoodAhead, P rog2, P rog3, P rog4}. The only
difference is the addition of an extra sequencing function,
Prog4, which runs each of its four subtree arguments in order.

The second problem is the Boolean Even-3-Parity where
the goal is to evolve a function that returns true if an even
number of the inputs evaluate to true, and false otherwise.
The maximum fitness for this problem is 8 (23). The terminal
set used for this problem is the set of inputs, often called



T = {D0, D1, D2}. The standard function set is FE3 =
{NOT, OR, AND} and again, we propose a new function
set for comparison: FE4 = {AND, OR, NAND, NOR}.
Each of the function sets is complete and sufficient to
represent an optimal solution (indeed, any boolean function).
Again our assumption, shown below to be correct, is that they
will differ in performance and in locality characteristics.
For our studies we have considered the use of three

different mutation operators:
• Subtree mutation replaces a randomly selected subtree
with another randomly created subtree [7].

• One-Point mutation replaces a node (leaf or internal) in
the individual by a new node chosen randomly among
those of the same arity, taking the arity of a leaf as zero.
In standard GP one-point mutation is generally applied
with a per-node probability, but in our experiments,
since we define genotypic neighbourhood in terms of
single mutations, we will apply a single one-point
mutation per mutation event.

• Structural mutation is composed of two complementary
parts, inflate and deflate mutation. The former consists
of inserting a terminal node beneath a function whose
arity a is lower than the maximum arity defined in the
function set and replacing the function by another of
arity a + 1; the latter consists of deleting a terminal
beneath a function whose arity is at least 1 and re-
placing that function by another of arity a − 1 [23].
Note that this mutation operator can only be applied
when functions of the appropriate arity exist: in par-
ticular, the alternative boolean function set (FE4 =
{AND, OR, NAND, NOR}) contains functions all of
arity 2, and so structural mutation will not be applicable.

To have sufficient statistical data, we created 1,250,000
individuals for each of the three mutation operators described
previously (in total 3,750,000 individuals). These samplings
were created using traditional ramped half-and-half initialisa-
tion method described in [7] using depths = [1, 8]. By using
this method, we guarantee that we will use trees of different
sizes and shapes, so no bias is imposed in our sampling.
For each data point in the sample data, we created an

offspring via mutation, as in our locality definitions (Sec-
tion III). In the following section we present and describe the
results on locality using these mutations on the two problems
using the two function sets and three mutation operators for
each.

V. RESULTS

We begin by visually examining the distributions of fitness
distances induced by the mutation operators. Figure 1 shows
the frequency of each possible fitness distance (fd) between
individuals, for the two problems and two function sets for
each problem.
For the Artificial Ant Problem, fitness differences of up

to 89 are possible, but larger values are rare and decrease
roughly linearly, continuing the trend shown in Figure 1
(top). We have therefore omitted values above 8 to make

TABLE II
PARAMETERS USED TO CONDUCT OUR EXPERIMENTS.

Selection Tournament (size 7)
Initial Population Ramped half and half (depth 1 to 8)
Population size 50, 100, 125, 200, 250, 500
Generations 500, 250, 200, 125, 100, 50
Runs 50
Mutations One Point, Subtree, Structural
Mutation rate One single mutation per individual
Termination Maximum number of generations

the important values easier to visualise. We can see that a
high number of mutations are fitness-neutral (fitness distance
= 0), regardless of the function set or mutation used. Using
four function (FA4) produces slightly fewer fitness-neutral
mutations, with a proportional increase for larger fitness
differences. We can also see that only a small proportion
of individuals are fitness-neighbours (defined as fd = 1).
For larger fitness difference values (i.e., fd > 1), it is very
difficult to see a difference between the 3- and 4-member
function sets FA3 and FA4. As we will see, however, the
locality equations do distinguish between these cases.
The Even-3-Parity Problem has 8 fitness cases; 9 possible

fitness values, including 0; and 9 possible fitness distances.
The frequency of occurrence of each fitness distance is
shown in Figure 1 (bottom). The number of neutral mutations
(fd = 0) is again much larger compared to non-fitness-
neutral mutations (fd > 0), regardless of the function set
used. For the standard function set (FE3), it seems that
one-point mutation produces the greatest number of fitness-
neutral mutations (i.e., fd = 0), followed by subtree and
structural mutation. Structural mutation seems to produce the
greatest number of fitness neighbours (i.e., fd = 1). When
using FE4, the situation is less clear and again, one really
needs to take a look at the results on locality by using the
locality equations, discussed next.

A. Evolutionary Runs
To see if the prediction made by locality (Equation 1) is

correct, we performed actual runs for each of the problems
presented in Section IV and the two instances on each on
them (i.e., two different function sets). For this purpose,
we used a mutation-GP system (using each of the three
mutation operators in separate runs). According to the one-
operator, one-landscape principle [12], and since we define
locality using mutation only, crossover was not used. This
methodology is standard [5]. To obtain meaningful results,
we performed 50 independent runs, using different combina-
tions of population sizes and generations. Runs were stopped
when the maximum number of generations was reached. The
rest of the parameters are shown in Table II. The best fitness
per generation, averaged over 50 runs, is shown in Figure 2.

B. Comparing alternative encodings
Next we consider the locality properties of the alternative

encodings, that is alternative function sets, comparing the
results given by the three locality definitions, as explained in
Section III.
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Fig. 2. Best fitness for the Artificial Ant Problem (top) and the Even-3-Parity problem (bottom) and using two mutation operators: one-point (left) and
subtree mutation (right).

In Tables III and IV, we show the locality of the two prob-
lems (Artificial Ant and Even-3-Parity) and their instances
(i.e., two different function sets shown in Table I) and three
mutation operators. For the Artificial Ant Problem (Table III),
we can see that the function set FA3 has better properties
of locality (i.e., lower number) compared to FA4. That is,
the typical function set used for this problem and using any
of the mutations used in this work (one-point, subtree and
structural) is predicted to be better. For the Even-3-Parity
Problem, the best properties of locality are when using FE4

(i.e., AND, OR, NAND, NOR).

We now relate these predictions to performance (e.g., aver-
age of best fitness per run or finding a solution). For this, we
used six different values for the population size as well as for
numbers of generations, giving a total of 25,000 individuals
in every case. Let us start our analysis by looking at the
results found on the Artificial Ant Problem (see Table V).
According to the results on locality shown in Table III,
we should expect to see a better performance (in terms
of the average of the best fitnesses out of 50 independent
runs) when using FA3 and using any of the three mutation

operators. In fact, we can see that the best performance
is achieved when using FA3. This was correctly predicted
using all three definitions of locality: in all combinations of
population size and number of generations, they gave a better
locality value for FA3 (i.e., IF, PROG2, PROG3). In fact,
this is consistent with the best fitness per generation on the 50
independent runs using 50 individuals and 500 generations4
(see top of Figure 2).
For our second problem (Even-3-Parity), the prediction

obtained using the fd = 1 definition of locality was again
correct, but the other definitions did not predict the differing
performance (see Table IV). In this case, we can see that
there are better properties of locality when using FE4 (i.e.,
AND, OR, NAND, NOR) on the one-point and subtree
mutation (structural mutation being inapplicable with this
function set). This is, in fact, the case for all the combinations
we tested on this problem (see Table VI, where the best per-
formance (measured in terms of finding the global optimum)

4Due to space constraints we show only these combinations of values for
population size and generations. However, it is worth mentioning that the
same trend is seen when using the rest of the values shown in Table II.



TABLE III
LOCALITY ON THE ARTIFICIAL ANT PROBLEM USING TWO FUNCTION

SETS (FA3 = {IF, PROG2, PROG3} AND

FA4 = {IF, PROG2, PROG3, PROG4}), THREE MUTATIONS, AND
THREE LOCALITY DEFINITIONS.

fdmin = 0 fdmin = 1 fdmin ≤ 1

FA3 FA4 FA3 FA4 FA3 FA4

One Point 1.8790 2.0896 2.1467 2.2628 1.5128 1.6764
Subtree 2.1653 2.2804 2.3199 2.3708 1.7426 1.8256
Structural 2.1771 2.4162 2.3197 2.4124 1.7484 1.9143

TABLE IV
LOCALITY ON THE EVEN-3-PARITY PROBLEM USING TWO FUNCTION

SETS (FE3 = {AND, OR, NOT} AND

FE4 = {AND, OR, NAND, NOR}), THREE MUTATIONS, AND THREE
LOCALITY DEFINITIONS. RECALL THAT STRUCTURAL MUTATION IS

INAPPLICABLE WITH FE4 .

fdmin = 0 fdmin = 1 fdmin ≤ 1

FE3 FE4 FE3 FE4 FE3 FE4

One Point 0.0968 0.1435 0.9196 0.8904 0.0082 0.0169
Subtree 0.1368 0.1368 0.8780 0.8760 0.0064 0.0069
Structural 0.1769 NA 0.8740 NA 0.0254 NA

is seen when using FE4. Again, as for the Artificial Ant
Problem, this is consistent with the best fitness per generation
on the runs performed to corroborate the prediction obtained
with locality (see bottom of Figure 2 where population size
= 50 and generations = 500).

C. Comparing alternative mutation operators
We next compare the locality properties of the three

mutation operators, comparing the results given by the three
locality definitions with the performance in actual GP runs.
Comparing Tables III and V, we see that on the Artificial

Ant problem, locality is best for the one-point operator
according to all three definitions. However, performance was
mixed: the one-point operator sometimes performed better
in evolutionary runs than the other operators, sometimes
worse (using either encoding). Thus none of the three locality
definitions predicted performance correctly here. There was
little to choose between subtree and structural mutation in
this case.
On the Even-3 Parity problem, the one-point mutation

operator now has worse locality, according to the fdmin = 1
and the conditional definitions of locality (Figure IV). These
predictions are seen to be correct when we look at perfor-
mance (Figure VI). The fdmin = 0 definition of locality
gives mixed messages concerning performance (Figure IV).

VI. CONCLUSIONS
Rothlauf [4] described and analysed the importance of

locality in performing an effective evolutionary search of
landscapes. According to Rothlauf, a representation that has
high locality is necessary for an efficient evolutionary search.
In this work, we have extended Rothlauf’s quantitative

definition of genotype-phenotype locality to the genotype-
fitness mapping, considering the issues of fitness neighbour-

TABLE V
AVERAGE OF THE BEST FITNESSES OUT OF 50 INDEPENDENT RUNS OF A
MUTATION-BASED GP ON THE ARTIFICIAL ANT PROBLEM USING

THREE TYPES OF MUTATIONS: ONEPOINT, SUBTREE AND STRUCTURAL
MUTATION. FA3 = {IF, PROG2, PROG3} AND

FA4 = {IF, PROG2, PROG3, PROG4}.

OnePoint Subtree Structural
FA3 FA4 FA3 FA4 FA3 FA4

P(500), G(50) 57.92 49.32 59.10 53.78 57.10 54.26
P(250), G(100) 58.22 52.40 55.06 52.14 61.01 54.82
P(200), G(125) 59.66 53.66 59.00 53.76 58.12 55.24
P(125), G(200) 58.67 53.05 58.79 52.12 58.12 55.24
P(100), G(250) 59.24 52.12 52.58 48.86 60.46 55.52
P(50), G(500) 61.36 53.62 52.32 47.06 61.22 58.74

TABLE VI
PERFORMANCE (MEASURED IN TERMS OF FINDING THE GLOBAL
OPTIMUM) OF A MUTATION-BASED GP ON THE EVEN-3-PARITY

PROBLEM USING THREE TYPES OF MUTATIONS: ONEPOINT, SUBTREE
AND STRUCTURAL MUTATION. FE3 = {NOT, AND, OR} AND

FE4 = {NAND, NOR, AND, OR}.

OnePoint Subtree Structural
FE3 FE4 FE3 FE4 FE3 FE4

P(500), G(50) 4% 18% 0% 4% - NA
P(250), G(100) 4% 18% 10% 16% - NA
P(200), G(125) 2% 28% 6% 14% - NA
P(125), G(200) 6% 32% 4% 12% - NA
P(100), G(250) 6% 28% 2% 16% - NA
P(50), G(500) 6% 46% 6% 28% - NA

hood and neutrality in particular. For this purpose, we have
used two problems with significantly different landscape
features: a multimodal deceptive landscape and a highly
neutral landscape (both believed to be common in many real-
world problems). We have used two instances for each of
these problems and analysed the locality present on them by
defining neighbourhood in the fitness space in three different
ways: when the fitness distance is 0 (fd = 0), when it is 1
(fd = 1) and a combination of these (i.e., when fd < 2, the
individuals are treated as neighbours).
We have seen that the correct prediction was obtained

more often when neighbourhood was defined with fd = 1,
which corresponds to the definition given by Rothlauf in
his genotype-phenotype mapping studies using bitstrings [4].
To corroborate this finding, we performed independent runs
and used different combinations of population sizes and
generations (i.e., six in total). In all of them, this definition
of locality correctly predicted the differing performance of
the two function sets.
In the case of mutation operators, predicting performance

was much more difficult, and none of the locality definitions
achieved very good predictions. It is acknowledged that
the differences between mutation operators are not entirely
summarised by the impact they have on locality. Instead, it is
natural to see (for example) subtree mutation as being more
explorative and one-point as more exploitative. These “side
effects” may be the cause of the mixed results obtained when
comparing the locality predictions with actual performance



of the mutation operators.
Nevertheless, we can conclude that performance is best

predicted by a genotype-fitness locality definition which
takes individuals as fitness neighbours if they differ by 1
fitness unit, and which treats fitness-neutrality as detrimental
to locality.
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