
Heuristic-Based Multi-Agent
Monte Carlo Tree Search

Edgar Galván-López∗, Ruohua Li∗, Constantinos Patsakis†, Siobhán Clarke∗ and Vinny Cahill∗
∗Distributed Systems Group, School of Computer Science and Statistics, Trinity College Dublin

{edgar.galvan, liru, siobhan.clarke, vinny.cahill}scss.tcd.ie
†Software Engineering Lab, Department of informatics, University of Piraeus. kpatsak@unipi.gr

Abstract—Monte Carlo Tree Search (MCTS) is a relatively new
sampling best-first method to search for optimal decisions. The
MCTS’ popularity is based on its extraordinary results in the
challenging two-player based game Go, a game considered much
harder than Chess and that until very recently was considered
unfeasible for Artificial Intelligence methods. Different MCTS
variants have been proposed, mainly to enhance its capabilities.
Perhaps, one of the main limitations of this approach is its
applicability in scenarios where multiple agents (more than two)
are required. Some works have made an attempt to overcome this
limitation by using a vector of reward values for each agent and
allowing the algorithm to find an optimal equilibrium strategy.
Inspired by these approaches, in this work we make an effort to
explore a new proposal for handling multiple agents in MCTS
by using a vector of values of what the agents need to do
(defined tasks) instead of a vector of rewards for each agent.
To achieve this we use a rather simple, but powerful heuristic
that estimates the desired values of this vector. That is, a set
of values that could lead to the optimal completion of the task.
We tested this idea in a real-world scenario rather than using
it in games as traditionally done. The results achieved by our
proposed approach, named Heuristic-Based Multi-Agent Monte
Carlo Tree Search, indicate the feasibility of using heuristics in
the MCTS algorithm in situations where more than two agents
are required.

Index Terms—Monte Carlo Tree Search, Heuristics, Demand-
Side Management Systems.

I. INTRODUCTION

Monte Carlo Tree Search (MCTS) is a relatively new
sampling method for finding optimal decisions by performing
random samples in the decision space and building a tree
according to partial results.

MCTS has started to attract the attention of researchers as
shown by the increasing number of publications over recent
years. Perhaps, the main reason for this is due to its major
success in the two-player game Go [7], [12], a game that until
very recently was considered to be highly difficult for Artificial
Intelligence (AI) techniques.

Different variants of the MCTS algorithm have been pro-
posed to use it in different contexts or to improve results on
different benchmark problems. In terms of benchmark prob-
lems and based on its widely used application (board games),
a natural extension of its applicability is in video games [22].
Other applications of MCTS include combinatorial optimisa-
tion (e.g., traveling salesman problem [20], [21]), constraint
satisfaction (e.g., mathematical expression [3], constraint prob-
lems [1]). See [2] for a detailed survey of applications using

MCTS.
In terms of MCTS algorithm variants, different approaches

have been proposed. For example, a Parallel MCTS [4] has
been proposed to exploit today’s computer capabilities in
terms of using multiple processors and tested with Go. A
single-player based MCTS has also been proposed in board
games where no opponent is necessary (e.g., SameGame)
to estimate potential winning positions (actions) [23]. Other
variants of the algorithm include the modification of some
of the core components of MCTS (these components are
presented in Section II) specifically in trying to improve
its selection mechanism [6], [14]. Multi-agent approaches in
MCTS have been briefly explored before, but they are very
different compared to our approach. For example, in [17]
the authors used “multiple” agents to record the outcomes
of multiple Monte Carlo simulations in the computer game
of Go. This idea is similar to Parallel MCTS where the goal
is to get better estimates by performing multiple simulations
rather than handling a real multi-agent approach. More closely
related works to our approach are those based on the notion
of maxn [16]. The idea is to develop an algorithm capable of
being used in multi-player games using a matrix of values. The
main difference compared to our approach, is that the maxn

algorithm searches a game tree and finds a strategy which is
in equilibrium. In our case, we use a simple, but powerful
heuristic that calculates some desirable values for each agent
in terms of their goals. That is, the heuristic builds a vector
of actions, rather than trying to build a vector of rewards, as
carried out by methods based on the maxn algorithm.

More specifically, the main research contribution of this
paper is to extend the MCTS to a multi-agent approach via a
matrix-based representation that is created with desired values
that can solve the problem. To do so, we use a heuristic method
to determine some useful combination of these values and a
reward is determined for all the agents. We tested this idea
in a real-world problem borrowed from the area of Demand-
Side Management Systems1 (a research area highly popular in
smart grids as shown by the increasing number of publications,
e.g., [9], [10], [13], [24], [25]): we try to automatically charge
the battery of six electric vehicles (EVs) with two, potentially,
conflicting goals: (a) that each of the EVs is as fully charged

1Demand-Side Management System is normally considered as a mecha-
nism or program, implemented by utility companies, to control the energy
consumption at the customer side [18].

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 31,2022 at 12:43:46 UTC from IEEE Xplore. Restrictions apply.

as possible at the time of departure, and (b) that the energy
usage is intelligently distributed so that the energy load at the
transformer level is reduced. We describe in more detail the
test bed scenario used in this work in Section II.

This paper is organised as follows. In the following section
we present in detail how the MCTS works and present our
proposed approach. Section III presents the experimental setup
used to test our approach. In Section IV, we present and
discuss the results obtained by our approach, and finally,
Section V draws some conclusions and discusses future work.

II. MONTE CARLO TREE SEARCH

A. The Mechanics Behind MCTS

MCTS relies on two key elements: (a) that the true value
of an action can be approximated using simulations, and (b)
that these values can be used to adjust the policy towards a
best-first strategy. The algorithm builds a partial tree, guided
by the results of previous exploration of that tree. Thus, the
algorithm iteratively builds a tree until a condition is reached
or satisfied (e.g., number of simulations, time given to perform
Monte Carlo simulations), then the search is halted and the
best performing action is executed. In the tree, each node
represents a state, and directed links to child nodes represents
actions leading to subsequent states.

Like many AI techniques, MCTS has several variants.
Perhaps, the most accepted steps involved in MCTS are
those described in [2] and are the following: (a) Selection:
a selection policy is recursively applied to descend through
the built tree until an expandable (a node is classified as ex-
pandable if it represents a non-terminal state and also, if it has
unvisited child nodes) node has been reached, (b) Expansion:
normally one child is added to expand the tree subject to
available actions, (c) Simulation: from the new added nodes,
a simulation is run to get an outcome (e.g., reward value),
and (d) Back-propagation: the outcome obtained from the
simulation step is back-propagated through the selected nodes
to update their corresponding statistics.

Simulations in MCTS start from the root state (e.g., actual
position) and are divided in two stages: when the state is added
in the tree, a tree policy is used to select the actions (the
selection step is a key element and it is discussed in detail later
in this section). A default policy is used to roll out simulations
to completion, otherwise. This is depicted in Figure 1.

We now proceed to define the most popular MCTS algo-
rithm, named Upper Confidence Bounds for Trees, which has
been used as a foundation in our work.

B. Upper Confidence Bounds for Trees

The success of MCTS depends heavily on how the tree is
build and the selection process plays a fundamental role on
this. One particular selection mechanism that has proved to
be very reliable is UCB1 (tree policy) [15]. Formally, UCBj

is defined as:

UCBj = X̄j + 2K

√
2 · lnn

nj
(1)

Simulation 1

1/1 Tree Policy

Default Policy

Simulation 2

2/2 Tree Policy

Default Policy

1/1

Simulation 3

3/3 Tree Policy

Default Policy

1/1 1/1

Simulation 4

3/4 Tree Policy

Default Policy

1/2 1/1

0

0/1

Notation:

New child/node

Child/node stored

State visited during simulation

Outcome

Fig. 1. Four simulations. In Simulation 1, a new node is added to the tree
search and its statistics are updated (e.g., outcome and number of visits).
Simulation 2, stores the first node and adds a new one. Simulation 3 adds
a new node according to the other action (in this case there are only two
actions, as indicated by the number of children). Simulation 4 selects (in this
case it is a tie, so a random selection is used) and beneath the selected node,
a new one is added. Figure adopted from [11].

where n is the number of times the parent node has been
visited, nj the number of times child j has been visited and
K > 0 is a constant. In case of a tie for selecting a child node,
a random selection is normally used.This selection mechanism
works due to its emphasis in balancing both exploitation (first
part of Eq. 1) and exploration (second part of Eq. 1).

We now proceed to present the multi-agent problem used in
this research that will help us to explain, in Section II-C, how
we have extended the MCTS algorithm to tackle this type of
problems (e.g., multi-agent).

As mentioned before, MCTS has had a profound positive
impact in a variety of challenging problems, predominantly in
two-player board games. We are interested in exploring the
possibility of extending its use in a multi-agent approach for
the scenario of charging six electric vehicles with two goals:
(a) to guarantee that each EV can complete a journey (e.g.,
each EV should be charged as much as possible at the time
of departure), and (b) to intelligently use energy consumption
so that the energy load at the transformer level is reduced.

In our considered benchmark problem there are six users,
each with an EV. Each EV can only be charged at home.
Moreover, all EVs can only be charged in the same period of
time (i.e., ti = 18:00, tf = 7:00).

In each time slot a decision has to be made (i.e., every 30

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 31,2022 at 12:43:46 UTC from IEEE Xplore. Restrictions apply.

minutes) for each EV to start charging or not. If a decision for
an EV is to start charging it, the amount of power consumption
can be 1/3, 2/3 or 100% of the allowed power consumption.
Thus, we have that for each EV, we have four options (actions)
at each time slot, including not charging it.

With the problem defined, we now proceed to explain our
proposed Heuristic-Based Multi-Agent MCTS.

C. Heuristic-Based Multi-Agent MCTS

With the problem defined in the previous section, we are
now in position of explaining how we have extended the
MCTS algorithm to support a multi-agent scenario (e.g.,
charge of six EVs). To do so, we used two main elements
in our approach:

1) a vector of desired values (i.e., amount of electricity
consumption for each of the EVs), and

2) an heuristic approach to get some “ideal” values for each
of the EVs at each time slot.

More specifically, we know that each of the six EVs has four
different options (i.e., 0, 1/3, 2/3, 100% of the allowed power
consumption) at each time step. We use this information to
build a vector of values for each node (vector of values) of the
tree (Figure 2 depicts this idea). We use a simple heuristic that
generates a set of values for the vector such that the summation
of these is within a range that could lead to accomplish the
(full) charge of each EV at the time of departure, fulfilling the
first goal of the problem. Thus, the heuristic aims at generating
values given by the following function:

C ∗ Td/Ts <

n=6∑
n=1

dEVn < Td/Ts (2)

where C is a constant used to set the lower limit (k = 0.9) of
what was considered an “ideal value”, Td is the total demand
of all the EVs that can be calculated based on the current time
slot ti and the final time slot (tf), Ts is the total number of
slots given by the absolute difference of ti and tf .

Notice how this heuristic, in combination with the MCTS
algorithm, could eventually lead to a combination of values
where the load of the transformer can be minimised while
fulfilling the second goal of the problem. We limit our heuristic
to generate 100 different combinations of values every time a
new node is added to the decision tree. By narrowing this, we
can run more simulations and, potentially, find better results.
The downside of limiting the number of combinations is that
good values for each agent might not be generated. We further
discuss this in Section V.

The reward function for all the agents is defined as the
difference of the total demand needed by all the EVs and the
current demand given by the current time slot, normalised in
the region of [0, 1].

III. EXPERIMENTAL SETUP

A. Demand-Side Management System Scenario

As mentioned previously, the goals of our Heuristic-Based
Multi-Agent MCTS in the Demand-Side Management System

Notation:

New child/node

Child/node stored

State visited during simulation

Outcome

Simulation 2

Tree Policy

EV1 EV6

1/3 1/30 1 2/3 1

EV5EV4EV2 EV3

Default Policy

2/2

Simulation 3

Tree Policy

EV1 EV6

1/3 1/30 1 2/3 1

EV5EV4EV2 EV3

Default Policy

3/3

EV1 EV6

1/3 01 0 1/2 1

EV5EV4EV2 EV3

Simulation 1

Tree Policy1/1

EV1 EV6 One action is created for each

agent (EV) = { 0, 1/3, 2/3, 1}
1/3 1/30 1 2/3 1

EV5EV4EV2 EV3

Default Policy

Reward is determined by the actions

of all agents.

Demand

Action

Reward

Visits

Fig. 2. A schematic view of our proposed Heuristic-Based Multi-Agent Tree
Search. Each node contains a set of values that represent the actions that
should be executed at the end of the simulations. These values are generated
via an heuristic as described in Section II-C.

scenario used in this research are: (a) to guarantee that each EV
can complete a journey (e.g., each EV to be charged as much
as possible at the time of departure), and (b) that the energy
usage is intelligently distributed so that the energy load at the
transformer level is reduced. In the next section, we show how
both are met by our proposed approach by showing that (a) the
state of charge (SoC) at the time of departure is high, and (b)
by showing that the averaged transformer load for the period of

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 31,2022 at 12:43:46 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SUMMARY OF PARAMETERS USED FOR OUR SMART GRID SYSTEM

Parameter Value
Number of EVs (N) 6
Initial and latest time to charge ti =18:00, tf =7:00
Frequency of making a decision 30 minutes
Number of times slots T 27
State of Charge (SoC) at ti Variable (read text)
Type of Charging 0, 1/3, 2/3, 100%
Number of Simulated Days 28

TABLE II
SUMMARY OF PARAMETERS USED FOR OUR APPROACH

Parameter Value/Description
Number of Simulations 10,000
Number of Combinations 100
Number of Actions N = 6 (see Table I)
Constant Value Used in Eq. 1 K=1.0
Constant Value Used in Eq. 2 C=0.9
Reward Value Variable (see Section II-C)
Selection of Winning Action Max Child

time where the EVs can be charged and that the peak-of-ratio
(PAR)2 in load demand are reduced, for the goals discussed
previously.

In our considered benchmark Demand-Side Management
system there are six EVs. Each EV can only be charged at
home. Furthermore, all EVs can be charged in the same period
of time (i.e., ti = 18:00, tf = 7:00).

We simulated a dynamic scenario, where every day, the
SoC of each EV at time of arrival (ti) at home varies as
a consequence of having some variations during their driving
time (recall that EVs can only be charged once they are at
home). Table I summarises the parameters used to simulate
our scenario. The MCTS makes a decision for all the EVs,
via the use of the heuristic-based approach, every 30 minutes
of simuated time. We ran our simulations for 28 days, using
GridLab-D (version 2.3) [5]. This is an electrical, open source,
grid simulator developed by the US Department of Energy.

B. Heuristic-Based Multi-Agent MCTS

The generation of automatic decisions (actions) were ob-
tained using the proposed approach, as introduced and ex-
plained in Section II-C, with 10,000 maximum simulations.
Monte Carlo simulations were stopped when the maximum
number of simulations was reached. The rest of the parameters
used for our proposed Heuristic-Based Multi-Agent MCTS are
shown in Table II.

To compare the results achieved by our proposed approach,
we used a deterministic approach, denominated in this work
as “greedy”, where all the EVs start charging as soon as they
reach home. To make a fair comparison of both approaches,
each EV in these two methods, used exactly the same initial
SoC at time of arrival ti =18:00 at home.

2The PAR in load demand is calculated as the highest load across all users
for a period of time (e.g., time available to charge EVs) over the average load
for the same period of time. Details of this calculation can be found in [19].
Thus, a reduction of PAR is generally preferred.

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

Electric vehicles

F
in

a
l
b

a
tt

e
ry

 s
ta

te
 o

f
c
h

a
rg

e
 (

a
v
e

ra
g

e
d

 p
e

rc
e

n
ta

g
e

)

Inital Charge

Final Charge

Fig. 3. State of charge (SoC), averaged over a period of 28 days, at the time
of arrival for each EV (indicated in black bars) and their corresponding SoC
at the time of departure (indicated in white bars) achieved by our proposed
Heuristic-Based Multi-Agent Monte Carlo Tree Search.

It is worth notice that the search space is rather large. More
precisely, it extends 427 = 254 possible states per day for one
EV, and 4(27∗6) for 6 EVs. Therefore, a brute force approach
cannot be considered a viable solution.

IV. RESULTS

A. Final Battery State of Charge

Let us start by analysing the results on the first objective:
trying to maximise the SoC of all the EVs at the time of
departure. Figure 3 shows the average SoC over a period
of 28 days, at the time of arrival at home (initial charge is
indicated with black bars) and their corresponding SoC at the
time of departure (final charge is indicated with white bars).
As indicated in Section III, the initial SoC for each EV every
day is different as a consequence of different driving patterns.
This is clearly visible in Figure 3, where the initial SoC for
each EV varies from as little as 29% of the initial SoC (i.e.,
EV6) to 85% initial SoC (i.e., EV2, EV5).

Our proposed approach behaves fairly well finding, almost,
an optimal solution for all the EVs (i.e., SoC > 98%). It
should be noticed that the final SoC achieved by the greedy
approach (i.e., EVs charging as soon as they reach home) is not
reported because all the EVs are able to being fully charged
at the time of departure.

We now take a more fine-grained view by analysing how the
charge happens for an EV for the 28 days used in this study
and using the proposed approach, explained in Section II.
Due to space limitations, we only report the results on EV1

shown in Figure 4. This shows that regardless the initial
state of charge, our proposed approach is able to significantly
charge the EV. For example, see how for days 13 and 23
the initial SoC is considerable low (less than 55%) and our
proposed approach was able to fully charge the battery of
EV1. There are, however, other cases where the results are
not that impressive. For instance, see how for day 12, where
the initial SoC is around 70% the final SoC is around 82%

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 31,2022 at 12:43:46 UTC from IEEE Xplore. Restrictions apply.

5 10 15 20 25
30

40

50

60

70

80

90

100

Days

B
a
tt
e
ry

 s
ta

te
 o

f
c
h
a
rg

e
 (

p
e
rc

e
n
ta

g
e
)

Inital charge

Final charge

Fig. 4. Battery state of charge (SoC) represented in terms of percentage for
EV1. The initial SoC, indicated in green diamond marks, for each of the 28
days, starts within the range [50, 70] (see Table I for details). The proposed
approach is able to find the optimal solution, for the first objective (i.e., final
SoC, indicated in red square marks, SoC = 100) most of time.

18 19 20 21 22 23 0 1 2 3 4 5 6 7
0

2000

4000

6000

8000

10000

12000

Time of day (30 mins. granularity)

T
ra

n
s
fo

rm
e
r

lo
a
d
 (

W
a
tt
s
)

Greedy
MA MCTS

Fig. 5. Transformer load, averaged for 28 days, for 6 EVs with different
initial state of charge SoC. All 6 EVs could be charged from 18:00 until 7:00,
as indicated in the ’x-axis’ of the figure. Blue circles show the transformer
load for the greedy approach (i.e., EVs start charging as soon as the reach
home) whereas the red squares show the transformer load using our proposed
approach.

and a similar trend can be observed for day 22 with 70% and
83% for initial and final SoC, respectively. Overall, the final
SoC of EV1 is quite high, where in the majority of the days,
the proposed approach is able to fully charge the battery (e.g.,
SoC =100%).

B. Transformer Load and Peak-To-Average Ratio

To fully appreciate the results achieved by our approach, we
need to analyse its impact at the transformer load. Figure 5
shows the transformer load when the EVs are being charged.
Due to the nature of the greedy approach, indicated with blue
circles, in Figure 5 (i.e., EVs starting charging as soon as they
arrive at home), it is natural to imagine how this approach will
achieve the highest peak in electricity load at the initial time
of charging (ti =18:00) and decreases linearly thereafter.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
0

0.5

1

1.5

2

2.5

3

3.5

4

Day

P
e
a
k
−

to
−

a
v
e
ra

g
e
 r

a
ti
o

MA MCTS

Greedy

Fig. 6. Peak-to-average ratio (PAR) load demand achieved by both our
proposed approach (black bars) vs. the greedy approach (white bars). Our
approach is able to reduce the PAR for every day of the simulated defined
period of time (i.e., 28 days). A lower PAR is preferred.

In contrast, our proposed approach indicated with red square
in Figure 5, is able to balance energy usage during the period
of time where the EVs can be charged (ti =18:00, tf = 7:00),
as expressed in the ‘x-axis’ of Figure 5) while at the same
time all the EVs are being charged as much as possible as
discussed in the previous paragraphs. An interesting trend that
can be observed by our Heuristic-Based Multi-Agent Monte
Carlo Tree Search approach is how the energy consumption
starts relatively low and increases slightly after some time to
remain fairly constant after 23:00. This indicates that even
when the heuristic produces high values for each of the EVs to
be charged as much as possible, the MCTS algorithm prefers
to pick those combinations with low values (hence the low
consumption at the beginning of the charging period) and
as time progresses those values generated by the heuristic
are slightly higher to complete the first goal (each EV being
charged as much as possible, as discussed previously - Figure 3
summaries the final state of charge for each of the EVs).

Finally, let us analyse the impact of our proposed approach
vs. the greedy approach in the PAR load demand, shown in
Figure 6. As indicated in Section III, the PAR is calculated
by the maximum load demand for a period of time over the
average load demand. Thus, a reduction in PAR is preferred.
We can see how our proposed Heuristic-Based Multi-Agent
MCTS approach (indicated in white bars in Figure 6) is able to
reduce the PAR load demand compared to the greedy approach
(indicated with white bars in Figure 6) all the time. This is
to be expected. That is, we know that the PAR load demand
is calculated by considering the maximum load demand of a
period of time. We know, from Figure 5, that the maximum
load is considerable reduced by our proposed approach hence
we should expect to see a reduction of PAR, in general.

V. CONCLUSIONS AND FUTURE WORK

MCTS has attracted the attention of researchers thanks to
its impressive performance in the challenging computer two-

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 31,2022 at 12:43:46 UTC from IEEE Xplore. Restrictions apply.

player based game Go.
Perhaps, as a consequence of this, the MCTS algorithm

has been used primarily in two-player based board games,
although it has been used in other applications such as combi-
natorial optimisation, constraint satisfaction, to mention a few.
This intuitively means that different variants of the MCTS
algorithm have been proposed (e.g., single-based, parallel-
based approaches). Multi-agent based approaches have been
also proposed in MCTS based on the notion of the maxn

algorithm [16], where the idea is to use a vector of reward
values for each agent and let the algorithm to find an optimal
equilibrium strategy.

Inspired by the latter, we proposed a rather different ap-
proach, named Heuristic-Based Multi-Agent Monte Carlo Tree
Search, where the idea is to use a vector of values that
indicates what the agents should do to complete a defined
task rather than using a vector of rewards. To this end, we
use a rather simple heuristic that builds this vector with some
“desired” values that can lead towards the completion of the
task. To test this idea, we decided to use, as a bechmark
problem, an scenario where the goal is to charge six electric
vehicles as much as possible at the time of departure while
at the same trying to balance the energy consumption at the
transformer level. The outstanding results obtained by our
proposed approach indicate the feasibility of using heuristics
to extend the basic MCTS algorithm to a multi-agent approach.

We are planning in extending the proposed approach by
considering different requirements (e.g., use of different ap-
pliances [8]). It would be also interesting to compare our
approach with a similar approach to get a better estimate of
how competitive this approach really is (e.g., use of the well-
known maxn approach [16]).

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers and
Leonardo Trujillo for their thoughtful comments on the pa-
per. This research was supported by Science Foundation
Ireland (SFI) under the Principal Investigator research program
10/IN.1/I2980 “Self-organizing Architectures for Autonomic
Management of Smart Cities” and by SFI grant 10/CE/I1855
to Lero.

REFERENCES

[1] S. Baba, Y. Joe, A. Iwasaki, and M. Yokoo. Real-time solving of
quantified csps based on monte-carlo game tree search. In IJCAI, pages
655–661, 2011.

[2] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A
survey of monte carlo tree search methods. Computational Intelligence
and AI in Games, IEEE Transactions on, 4(1):1 –43, March 2012.

[3] T. Cazenave. Nested monte-carlo expression discovery. In Proc. of the
2010 conference on ECAI 2010: 19th European Conference on Artificial
Intelligence, pages 1057–1058, The Netherlands, 2010. IOS Press.

[4] G.-B. Chaslot, M. Winands, and H. Herik. Parallel monte-carlo tree
search. In H. Herik, X. Xu, Z. Ma, and M. Winands, editors, Computers
and Games, volume 5131 of Lecture Notes in Computer Science, pages
60–71. Springer Berlin Heidelberg, 2008.

[5] D. Chassin, K. Schneider, and C. Gerkensmeyer. Gridlab-d: An open-
source power systems modeling and simulation environment. In Trans-
mission and Distribution Conference and Exposition, 2008. IEEE/PES,
pages 1–5, 2008.

[6] P.-A. Coquelin and R. Munos. Bandit algorithms for tree search. In
R. Parr and L. C. van der Gaag, editors, UAI, pages 67–74. AUAI Press,
2007.

[7] R. Coulom. Efficient selectivity and backup operators in monte-carlo tree
search. In Proceedings of the 5th international conference on Computers
and games, CG’06, pages 72–83, Berlin, Heidelberg, 2007. Springer-
Verlag.

[8] E. Galvan, C. Harris, I. Dusparic, S. Clarke, and V. Cahill. Reducing
electricity costs in a dynamic pricing environment. In Proc. Third IEEE
International Conference on Smart Grid Communications (SmartGrid-
Comm), pages 169 – 174, Tainan, Taiwan, november 2012. IEEE Press.

[9] E. Galván-López, C. Harris, L. Trujillo, K. Rodriguez-Vazquez,
S. Clarke, and V. Cahill. Autonomous Demand-Side Management
System Based on Monte Carlo Tree Search. In IEEE International
Energy Conference, Dubrovnik, Croatia, May 2014. IEEE.

[10] E. Galván-López, A. Taylor, S. Clarke, and V. Cahill. Design of an
Automatic Demand-Side Management System Based on Evolutionary
Algorithms. In Proceedings of the 29th Annual ACM Symposium on
Applied Computing, Gyeongju, Korea, March 2014. ACM.

[11] S. Gelly and D. Silver. Monte-carlo tree search and rapid action value
estimation in computer go. Artif. Intell., 175(11):1856–1875, July 2011.

[12] S. Gelly, Y. Wang, R. Munos, and O. Teytaud. Modification of UCT with
patterns in Monte-Carlo Go. Technical Report 6062, INRIA, France,
Nov. 2006.

[13] C. Harris, I. Dusparic, E. Galván-López, A. Marinescu, V. Cahill, and
S. Clarke. Set Point Control for Charging of Electric Vehicles on the
Distribution Network. In IEEE Power & Energy Society Innovative
Smart Grid Technologies Conference (ISGT), Washington, D.C., USA,
Feb 2014. IEEE.

[14] L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. In
Proceedings of the 17th European conference on Machine Learning,
ECML’06, pages 282–293, Berlin, Heidelberg, 2006. Springer-Verlag.

[15] L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. In
ECML, pages 282–293, 2006.

[16] C. Luckhart and K. B. Irani. An algorithmic solution of n-person games.
In T. Kehler, editor, AAAI, pages 158–162. Morgan Kaufmann, 1986.

[17] L. S. Marcolino and H. Matsubara. Multi-agent monte carlo go. In
The 10th International Conference on Autonomous Agents and Multi-
agent Systems - Volume 1, AAMAS ’11, pages 21–28, Richland, SC,
2011. International Foundation for Autonomous Agents and Multiagent
Systems.

[18] G. M. Masters. Renewable and Efficient Electric Power Systems. Wiley-
Interscience, 2004.

[19] A. Mohsenian-Rad, V. Wong, J. Jatskevich, R. Schober, and A. Leon-
Garcia. Autonomous demand-side management based on game-theoretic
energy consumption scheduling for the future smart grid. Smart Grid,
IEEE Transactions on, 1(3):320 –331, dec. 2010.

[20] D. Perez, P. Rohlfshagen, and S. M. Lucas. The physical travelling
salesman problem: Wcci 2012 competition. In IEEE Congress on
Evolutionary Computation, pages 1–8. IEEE, 2012.

[21] A. Rimmel, F. Teytaud, and T. Cazenave. Optimization of the nested
monte-carlo algorithm on the traveling salesman problem with time
windows. In Proceedings of the 2011 international conference on
Applications of evolutionary computation - Volume Part II, EvoAppli-
cations’11, pages 501–510, Berlin, Heidelberg, 2011. Springer-Verlag.

[22] S. Samothrakis, D. Robles, and S. Lucas. Fast approximate max-n
monte-carlo tree search for ms pac-man. Computational Intelligence
and AI in Games, IEEE Transactions on, PP(99):1, 2011.

[23] M. Schadd, M. Winands, H. Herik, G.-B. Chaslot, and J. Uiterwijk.
Single-player monte-carlo tree search. In H. Herik, X. Xu, Z. Ma, and
M. Winands, editors, Computers and Games, volume 5131 of Lecture
Notes in Computer Science, pages 1–12. Springer Berlin Heidelberg,
2008.

[24] A. Taylor, I. Dusparic, E. Galván-López, S. Clarke, and V. Cahill.
Transfer Learning in Multi-Agent Systems Through Parallel Transfer.
In Workshop on Theoretically Grounded Transfer Learning at the 30th
International Conference on Machine Learning (Poster), volume 28,
Atlanta, USA, 2013.

[25] A. Taylor, E. Galván-López, S. Clarke, and V. Cahill. Accelerating
Learning in Multi-Objective Systems through Transfer Learning. In In
a Special Session on Learning and Optimization in Multi-Criteria Dy-
namic and Uncertain Environments at the International Joint Conference
on Neural Network 2014 (IEEE IJCNN), Beijing, China, 2014. IEEE.

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 31,2022 at 12:43:46 UTC from IEEE Xplore. Restrictions apply.

