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The functional relations between the coordinates of points on a manifold make the
study of Diophantine approximation on manifolds much harder than the classical
theory in which the variables are independent. Nevertheless there has been consid-
erable progress in the metric theory of Diophantine approximation on smooth mani-
folds. To describe this, some notation and terminology are needed. Given x ∈ Rn,
let |x| = max{|x1|, . . . , |xn|} be the height of x, let M be an m-dimensional manifold
embedded in Rn and let ψ : N→ R+ converge to 0 at infinity. For each t ∈ R, let

‖t‖ = min{|t− r| : r ∈ Z} = dist (t,Z),

the distance of t from Z, and for each x = (x1, . . . , xn) ∈ Rn, let

‖x‖ = max{‖x1‖, . . . , ‖xn‖}.
Points in the set

S(M ;ψ) = {x ∈M : ‖qx‖ < ψ(q) for infinitely many q ∈ N}
are called simultaneously ψ-approximable. When ψ(q) = q−v, we denote the set
S(M ;ψ) by Sv(M ), so that

Sv(M ) = {x ∈M : ‖qx‖ < q−v for infinitely many q ∈ N}.
The manifold M ⊂ Rn is termed extremal if the Lebesgue measure of Sv(M ) induced
on M is 0 for each v > 1/n. There is an equivalent ‘dual’ definition of extremality,
arising from Khintchine’s Transference Principle. Let

L(M ;ψ) = {x ∈M : ‖q · x‖ < ψ(|q|) for infinitely many q ∈ Zn} (1)

and

Lv(M ) = {x ∈M : ‖q · x‖ < |q|−v for infinitely many q ∈ Zn}.
Then M is extremal if the induced measure of Lv(M ) is 0 for v > n. Kleinbock
and Margulis have shown in [12] that manifolds M embedded in Rn which are ‘non-
degenerate’ almost everywhere on M (i.e. everywhere except for a set of induced
Lebesgue measure zero on M ) and which are smooth (i.e. with Ck local parametri-
sation functions for certain k ∈ N) are extremal (in fact they showed that such
manifolds are strongly extremal). Non-degeneracy can be regarded as a local ‘non-
flatness’ condition; further details are in [12]. Note that by Dirichlet’s theorem,
Sv(M ) = M when v 6 1/n and Lv(M ) = M when v 6 n.

Hausdorff dimension provides a way of distinguishing between sets of measure 0
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(see [10, 13] for further information). It is known that when M is a C3 planar curve
with non-zero curvature everywhere except on a set of Hausdorff dimension zero,
the Hausdorff dimension dim Lv(M ) of Lv(M ) is given by

dim Lv(M ) =
3

v + 1
(2)

for v > 2 [3]. It is also known that for m-dimensional C3 manifolds M where m > 2
and for which two principal curvatures do not vanish (this condition reduces to Gaus-
sian curvature for surfaces in 3 dimensions) except on a set of Hausdorff dimension
m − 1, the Hausdorff dimension of L(M ;ψ) is m − 1 + (n + 1)/(λ + 1) when ψ is
monotonically decreasing and λ > n, where λ = lim infN→∞(log(1/ψ(N ))/(logN )),
the lower order of 1/ψ at infinity [6]. This dimension is a lower bound when M is
extremal and C1 [5].

Not much, however, is known about the Hausdorff dimension of the set S(M ;ψ),
although a Khintchine-type theorem holds for 2-convex C3 manifolds [8] and an
asymptotic formula (which is a stronger version of the Khintchine-type theorem)
holds under fairly restrictive curvature conditions [9]. Only estimates for the Haus-
dorff dimension of the set Sv(M ) are known (see [4] for further details and refer-
ences). Melnichuk [14] studied Diophantine approximation on the unit circle S1 =
{(x, y) ∈ R2 : x2 + y2 = 1} and obtained estimates for the Hausdorff dimension of the
set

Sv(S1) = {x ∈ S1 : ‖qx‖ < q−v for infinitely many q ∈ N}
= {(x, y) ∈ S1 : max{‖qx‖, ‖qy‖} < q−v for infinitely many q ∈ N}.

He used exponential sums to obtain estimates for the case 1
2 < v 6 1. By applying

Khintchine’s Transference Principle to Baker’s general result (2), one can show that

3(1− v)
1 + v

6 dim Sv(M ) 6 3
2(1 + v)

, (3)

when M is a planar curve satisfying the conditions specified above. Thus these esti-
mates hold for M = S1.

In the case when v > 1, Melnichuk used Pythagorean triples to show that

1
2(1 + v)

6 dim Sv(S1) 6 1
1 + v

. (4)

(Non-zero integers p, r, q satisfying p2 + r2 = q2 are called a Pythagorean triple [1].)
The usual covering argument gives the upper bound and he used regular systems [2]
and Dirichlet’s theorem for the lower bound. In this paper we use ubiquity together
with Lemma 2 below to establish the lower bound 1/(v + 1) in (4), thus obtaining
the exact Hausdorff dimension for v > 1. Ubiquity and regular systems are essen-
tially equivalent on R but the former gives the Hausdorff dimension more directly.
However, the latter can also be used with Lemma 2 to obtain the same lower bound.

Theorem 1. For v > 1

dim Sv(S1) =
1

v + 1
.

As far as we know, this is the first reasonably complete non-trivial result for the
Hausdorff dimension of the set Sv(M ) for a smooth manifold M in Rn when v is
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larger than the extremal value of 1/n. Melnichuk’s paper [14] is in Russian and is not
readily available so his proof for the upper bound will be included for completeness.

1. Proof of Theorem 1

The key to the theorem is that rational points (p/q, r/q) which approximate a
point (x, y) on the unit circle sufficiently closely must be on the circle.

Lemma 1. Suppose the point (x, y) ∈ S1 satisfies the inequalities

|qx− p|, |qy − r| = o(1/q)

for p, q, r ∈ Z, q > 1. Then for q sufficiently large, the point (p/q, r/q) ∈ S1.

Proof. Let (x, y) ∈ S1 so that x2 + y2 = 1. Assume that there exist p, r ∈ Z, q ∈ N
such that qx − p = ε and qy − r = ε′ for some ε, ε′ ∈ R with |ε|, |ε′| = o(1/q). Then
q2(1 − x2) = (r + ε′)2, q2x2 = (p + ε)2 and |p| = O(q), |r| = O(q). On rearranging it is
readily verifed that

q2 = p2 + r2 + 2pε + 2rε′ + ε2 + ε′2.

But

|q2 − p2 − r2| = |2pε + 2rε′ + ε2 + ε′2| = O(q)o(1/q) = o(1) < 1

for q large enough. As p, q, r ∈ Z, this implies that q2 = r2 + p2, whence the point
(p/q, r/q) lies on the circle.

When p, r are coprime and p is even the Pythagorean triples (p, r, q) are generated
by positive coprime integers a, b of the following form:

p = 2ab, r = a2 − b2, q = a2 + b2 (5)

(see [1] or [11]). Let V (θ;Q) be a sector in the disc of radius Q
1
2 subtending an angle

θ at the origin. The number of lattice points (a, b) of opposite parity (i.e. a, b are not
both even or both odd) in V (θ;Q) is comparable to θ Q (the number is θQ(1+o(1))/4).
By using the Möbius function, it can be seen that the number N(V (θ;Q)) of such
lattice points (a, b) for which a and b are also coprime is comparable to θQ. Indeed

N(V (θ;Q)) = 3θQ(1 + o(1))/2π2 � θ Q, (6)

where for positive a, b, a � b indicates a = O(b) and b = O(a) i.e., that a and b
are comparable. The points (p/q, r/q), (r/q, p/q), where p and r are coprime to q, in
S1 w [0, 1]2 and satisfying (5) are in one-to-one correspondence with lattice points
(a, b) where a, b are coprime positive integers of opposite parity with a > b.

1·1. The upper bound

In determining the Hausdorff dimension of Sv(S1), it is more convenient to work
with an auxiliary subset of the line. Let A = {(x, y) ∈ S1 : |x| 6 y} be the arc of S1

subtending an angle of π/2 and symmetric about the vertical axis. Then Sv(S1) is
the union of Sv(S1) w A and its intersection with the three rotations of A by π/2.
Since the Hausdorff dimension is not affected by rotation, the Hausdorff dimension
of each of the four sets is the same and so

dim Sv(S1) = dim(Sv(S1) wA) = dim Sv(S1 wA).
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Let Av be the projection of Sv(S1) wA to the real line, so that

Sv =
{
u ∈

[−1√
2
,

1√
2

]
: ‖q(u, (1− u2)

1
2 )‖ < q−v for infinitely many q ∈ N

}
.

Any cover of Sv(S1) w A consisting of squares ∆i of side length `(∆) and with sides
parallel to the axes can be converted by projection to a cover of Sv by intervals Ii
with s-length

∑
i `(Ii)

s =
∑

i `(∆i)
s. Moreover any cover of Sv by intervals Ii can be

lifted to a cover of Sv(S1) wA by squares ∆i of sidelength `(Ii). It follows that

dimSv = dim Sv(S1) wA = dim Sv(S1). (7)

It is more convenient to work with Sv which can be expressed as

Sv =
{
u ∈

[−1√
2
,

1√
2

]
: u ∈ B(q) for infinitely many q ∈ N

}
,

where

B(q) =
{
u ∈

[−1√
2
,

1√
2

]
: ‖q(u,

√
1− u2)‖ < q−v

}
⊂

q⋃
p=−q

{
u ∈

(
p

q
− 1
qv+1

,
p

q
+

1
qv+1

)
:

∣∣∣∣√1− u2 − r

q

∣∣∣∣ < 1
qv+1

for some r ∈ Z
}
.

The number of positive rationals p/q with q 6 Q such that p, r (=
√
q2 − p2), q

is a Pythagorean triple is � Q (� is the usual Vinogradov notation used instead
of O(Q)). Taking symmetries into account, the number of distinct rational points
(p/q, r/q) in their lowest terms, with 2t < q 6 2t+1, lying on the circle S1 is

N(2t+1)−N(2t)� 2t,

where N(N ) is the number of distinct rational points (p/q, r/q) in their lowest terms
lying on S1 with q 6 N .

Since the length of the interval (p/q − 1/qv+1, p/q + 1/qv+1) is 2/qv+1 � (2t)−v−1

and since p, q can be taken to be coprime without loss of generality, Sv has a cover
of intervals with s-length

�
∞∑
t=0

2−t(v+1)s
(
N(2t+1)−N(2t)

)
�

∞∑
t=0

2−t(v+1)s+t <∞

when s > 1/(v + 1). Hence by (7),

dim Sv(S1) = dimSv 6 1/(v + 1) (8)

for v > 1.
Using the results of Wiles or Faltings, it can be shown that when k > 3 and Γk is

the curve {(x, y) : xk + yk = 1}, the set Sv(Γk) is finite for v > k − 1 and is Γk when
v 6 1

2 . The range 1
2 < v < k− 1 is covered by the estimate (3) applied with M = Γk.

Hence

dim Sv(Γk)


= 1, v 6 1

2 ,

6 3
2(v+1) ,

1
2 < v < k − 1,

= 0, v > k − 1.
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1·2. The lower bound

This will be proved using the modification [15] of ubiquity introduced in [7]. The
definition we now give is simpler than the general one in [7] but is equivalent for
affine spaces and in particular for intervals with resonant sets consisting of points.

Let Ω be a non-empty open set in Euclidean space, let R be a measurable subset
of Ω and let |R| be the Lebesgue measure of R. For each δ > 0, let

B(R; δ) = {x ∈ Ω: dist(x, R) < δ},
where dist(x, R) = inf{|x − y| : y ∈ R}. Let R = {Rj : j ∈ J} be a family of affine
subsets of Ω, where J is an index set with each j ∈ J having a weight bjc > 0 and each
Rj having the same dimension dim R and codimension codim R = dim Ω − dim R.
The family R is said to be ubiquitous with respect to a function ρ : N → R+ if there
exists a constant c > 0 such that for any open subset A ⊂ Ω and all sufficiently large
N ∈ N, ∣∣∣∣∣∣A w

 N⋃
bjc=1

B(Rj , ρ(N ))

∣∣∣∣∣∣ > c|A|. (9)

Given a function Ψ: N → R+, denote by Λ(R; Ψ) the lim-sup set of points in Ω
which lie in infinitely many B(Rj ; Ψ(bjc)), i.e.

Λ(R; Ψ) =
∞⋂
N=1

∞⋃
k=N

⋃
bjc=k

B(Rj ; Ψ(bjc)).

The following lower bound for the Hausdorff dimension of Λ(R; Ψ) is proved in [7].

Theorem 2. Let Ψ: N → R+ be a monotonically decreasing function and suppose
that the family R is ubiquitous with respect to a function ρ : N→ R+, where ρ(N ) tends
to 0 monotonically as N tends to infinity. Then

dim Λ(R; Ψ) > dim R + γ codim R,

where

γ = max
{

1, lim sup
N→∞

log ρ(N )
log Ψ(N )

}
.

The relationship between the lattice points (a, b) and the corresponding points
(p/q, r/q) on the circle S1 has to be discussed further.

Lemma 2. Let A be an open subset of [
√

15/8,
√

3/2] and let Q be sufficiently large.
Then there exists a constant K > 0 independent of A,Q such that∣∣∣∣∣∣A w

⋃
p/q

(
p

q
− K

Q
,
p

q
+
K

Q

)∣∣∣∣∣∣ > K |A|,
where here and elsewhere the union is over rationals p/q with p,

√
q2 − p2, q a Pythag-

orean triple and |q| 6 Q.

Proof. Let W (θ;Q) = V (θ;Q)\V (θ;Q/2), so that W (θ;Q) is the set of points (x, y)
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in [0, Q

1
2 ]2 satisfying

Q/2 < x2 + y2 6 Q, θ′ 6 tan−1 y/x 6 θ′ + θ

for some θ′ ∈ [0, π/2−θ]. Thus W (θ;Q) is a sector of an annulus subtending an angle
θ with area

θ(Q−Q/4) � θQ.
Hence the number N(W (θ;Q)) of lattice points (a, b) ∈ Z2 wW (θ;Q), where a, b are
of opposite parity and coprime, is comparable to θ Q; in fact, by (6) above,

N(W (θ;Q)) =
3θQ
8π2

(1 + o(1)) >
θQ

32
. (10)

The set A is a countable union of disjoint open intervals (αr, βr). Choose, as we
may, r0 ∈ N so that |⋃r0

r=1(αr, βr)| > |A|/2. Consider one of these intervals (α, β) say.
The interval (α, β) is the projection of the arc in S1 with endpoints (α,

√
1− α2) and

(β,
√

1− β2). The angle θ subtended by the arc is comparable to β − α, i.e.

θ � β − α. (11)

As the lattice points (a, b) are co-prime, each lies on a unique line through the
origin of gradient b/a. The function f : [

√
3,
√

15]→ [
√

15/8,
√

3/2] given by

f (x) =
2x

1 + x2

takes b/a to 2ab/(a2 + b2) = p/q, where p,
√
q2 − p2, q is a Pythagorean triple. The

function f is one-to-one since its derivative

f ′(x) =
2(1− x2)
(1 + x2)2

< 0

for all x ∈ [
√

3,
√

15]. It follows that

N(W (θ;Q)) � ν(α, β),

the number of p/q ∈ (α, β) with Q/2 < q 6 Q and p,
√
q2 − p2, q a Pythagorean

triple. But by the above, (10) and (11),

ν(α, β) �N(W (θ;Q)) � θ Q � (β − α)Q > c1Q(β − α), (12)

where c1 > 0 is independent of α, β and Q.
Also the function f is bi-Lipschitz on the interval [

√
3,
√

15], so that

|f (x)− f (x′)| � |x− x′|
for x, x′ ∈ [

√
3,
√

15]. Thus when a/b� a′/b′,∣∣∣∣f ( ba
)
− f

(
b′

a′

)∣∣∣∣ =

∣∣∣∣ 2ab
a2 + b2

− 2a′b′

a′2 + b′2

∣∣∣∣ � ∣∣∣∣ ba − b′

a′

∣∣∣∣ > 1
aa′
> 1
Q

since a, a′ 6 Q 1
2 . Moreover if p/q� p′/q′, then a/b� a′/b′ and∣∣∣∣pq − p′

q′

∣∣∣∣ =

∣∣∣∣f ( ba
)
− f

(
b′

a′

)∣∣∣∣ > c2

Q
(13)



Simultaneous Diophantine approximation 521
for some constant c2 > 0. Now the length of the interval (p/q − c2/Q, p/q + c2/Q) is
2c2/Q and so by (13),∣∣∣∣∣∣(α, β) w

⋃
p/q

(
p

q
− c2

Q
,
p

q
+
c2

Q

)∣∣∣∣∣∣ > ν(α, β)
c2

Q
> c1c2(β − α)

by (12). Since A =
⋃∞

r=1
(αr, βr) and the (αr, βr) are disjoint,∣∣∣∣∣∣A w

⋃
p/q

(
p

q
− c2

Q
,
p

q
+
c2

Q

)∣∣∣∣∣∣ =

∣∣∣∣∣∣
∞⋃
r=1

(αr, βr) w
⋃
p/q

(
p

q
− c2

Q
,
p

q
+
c2

Q

)∣∣∣∣∣∣
=
∞∑
r=1

∣∣∣∣∣∣(αr, βr) w
⋃
p/q

(
p

q
− c2

Q
,
p

q
+
c2

Q

)∣∣∣∣∣∣
>

r0∑
r=1

∣∣∣∣∣∣(αr, βr) w
⋃
p/q

(
p

q
− c2

Q
,
p

q
+
c2

Q

)∣∣∣∣∣∣
>

r0∑
r=1

c1c2(βr − αr) > c1c2
|A|
2

= K|A|,

where K = c1c2/2 is independent of Q,A, as claimed.

Lemma 3. The set of rationals p/q ∈ [
√

15/8,
√

3/2], where p,
√
q2 − p2, q is a

Pythagorean triple, is ubiquitous with respect to the weight bp/qc = q and the function
ρ : N→ R+ given by ρ(N ) = c2/N , where c2 is given by (13).

Proof. Let A be an open subset of [
√

15/8,
√

3/2]. Take the resonant points Rj to
be p/q with bjc = q. Then dimRj = dim R = 0, codim R = 1,

B(Rj ; ρ(bjc)) =
(
p

q
− c2

q
,
p

q
+
c2

q

)
and ∣∣∣∣∣∣A w

Q⋃
bjc=1

B(Rj ; ρ(Q))

∣∣∣∣∣∣ =

∣∣∣∣∣∣A w
⋃
p/q

(
p

q
− c2

Q
,
p

q
+
c2

Q

)∣∣∣∣∣∣ > K|A|,
which satisfies the ubiquity condition (9), whence the family {p/q} is ubiquitous
with respect to ρ : N 7→ c2/N .

Let Ψ(q) = q−v−1. Then Λ(R; Ψ) is the set of points u ∈ [
√

15/8,
√

3/2] such that

max
{∣∣∣∣u− p

q

∣∣∣∣ , ∣∣∣∣√1− u2 − r

q

∣∣∣∣} < q−v−1

holds for infinitely many p, q ∈ N, r ∈ Z. It is readily verified that

Λ(R; Ψ) ⊂ Sv,
whence dimSv > dim Λ(R; Ψ). But by Theorem 2,

dim Λ(R,Ψ) > 0 + lim sup
N→∞

logN−1

logN−1−v =
1

v + 1
.
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It follows from (7) and (8) that the dimension of Sv(S1) is 1/(1 + v) and Theorem 2
is proved.

In [14], the function corresponding to ρ arises from Dirichlet’s theorem on simul-
taneous Diophantine approximation and its value at N is comparable to N

1
2 . This

gives rise to the factor 1
2 in the lower bound in (4).

Note added in proof. Using lemma 4·1·1 in M. Huxley’s book Area, lattice points and
exponential sums (OUP 1996), it can be shown that dim Sv(S1) 6 (2− v)/(1 + v) for
1/2 6 v 6 1. Sanju Velani has pointed out that this estimate can also be obtained
more directly using r(n) < 4d(n) < nε, where r(n) is the number of integer solutions
of the Diophantine equation x2 + y2 = n and d(n) is the divisor function.
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