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ABSTRACT

This paper proposes to perform colour transfer by minimis-
ing a divergence (the L2 distance) between two colour dis-
tributions. We propose to model each dataset by a compact
Gaussian mixture which is designed for the specific purpose
of colour transfer between images which have different scene
content. A non rigid transformation is estimated by minimis-
ing the Euclidean distance (L2) between these two distribu-
tions, and the estimated transformation is used for transfer-
ring colour statistics from one image to another. Experimental
results show that this is a very promising approach for trans-
ferring colour and it performs very well against an alternative
reference approach.

Index Terms— Colour transfer, registration, L2, Gaus-
sian Mixtures

1. INTRODUCTION

Adjusting colour statistics from one image to another is a
common task in image processing. Applications range from
image and video restoration, artistic and aesthetic after ef-
fects, and image corrections to facilitate further processing
amongst others. Inspired by recent advances in non-rigid
shape registration, we propose a new technique for perform-
ing colour transfer. The problem is formulated explicitly
as estimating a transformation to register two colour distri-
butions from two images (the target image and the palette
image). The estimated transformation is non rigid and this
transfer function is then applied to the colour values of each
pixel in the target image to recolor it. Section 2 reviews
both the topics of colour transfer and shape registration. Our
method is presented in detail in section 3 and it is shown
to compare very well against a leading method for colour
transfer (section 4). Possible future directions of research to
extend this approach are discussed in section 5.
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IAPP GRAISearch grant (612334).

2. STATE OF THE ART

We first start with a review on both the topics of colour trans-
fer (section 2.1) and shape registration (section 2.2) to high-
light the connections between the two fields. We point out in
section 2.3 the differences between our method and the cur-
rent state of the art.

2.1. Colour transfer

To change the colour of a target image by mapping the colour
palette of another image, Reinhart [3] proposes to first convert
RGB values into another uncorrelated colour space, allowing
the three axes to be treated independently. Then the means
and variances along each of the three axes are registered such
that the target image colour values are transformed to have the
same mean and standard deviation as the source image.

Pitié et al. [1, 2, 4] proposed to perform non-rigid trans-
formation of the target colour cumulative distribution onto
the palette. Their algorithm computes successive solutions
in one-dimensional spaces computed as a projection of the
3 dimensional colour space. This iterative process is shown
to decrease the Kullbach-Leiber divergence between the two
colour density functions [1]. To avoid potential artifacts
arising from the colour transfer process, constraints are then
added to the colour transfer process to maintain the gradient
field of the coloured image [1,4].

In [5], the problem considered is to correct the color
between two images which have the same content. Corre-
spondences between pixels in the two images are assumed to
be known and each colour channel is treated independently.
While Oliveira et al. use pixel based correspondences be-
tween images which have the same content, Wu et al. [6]
consider images with different content and compute high
level semantic scene content correspondences in both images
to constraint colour transfer.

2.2. Shape Registration

Jian et al. [7] propose to register two point sets (i.e. sets of

vertices in 2D or 3D spaces), denoted {xﬁ”}z:l n
{3

, and

}i=1,- n, by first fitting a kernel density estimate to

AuthoriZepgiceE28e36leNEYd SISBHRT @R WIEvEEEEy Library. Downloa@@82mh January 18,2022 at 12:19:04 UTC from IEEE Xplore. Restrictions apply.



2015 23rd European Signal Processing Conference (EUSIPCO)

each point set using the Gaussian kernel. The target distribu-
tion is formulated as [8]:

ng

pi(xlf) = ZN w; (), 0), h?1) 1)

with notation NV (z; i, ) indicating a Normal distribution for
random Vector x, with mean p and covariance ¥. The func-
tion i (mt ), 0) moves vertex zi " and this displacement is
controlled by a latent vector # to be estimated. The trans-
fer functions p; considered in this paper are two non-rigid
transformations: affine and Thin Plate Splines (TPS) [7, 8].
The affine transformation has a small number of parameters
to be estimated. The TPS model is more complex and can be
decomposed into a linear part which is modelled by an affine
motion, and a nonlinear part which is controlled by TPS warp-
ing coefficients [7, 8].

The second kernel density estimate is defined using the
second point set as:

1 & ,
pp(z) = - ZN(m;ng), Rh1). 2)
p .

Isotropic covariance matrices controlled by a bandwidth A
(with I a 3 x 3 identity matrix) are used for both distribu-
tions. The latent parameters 6 for mapping the two Gaussian
mixtures are estimated by minimising their L2 distance [7,9]:

0= argm@in {L2(9) = |Ipe —Pp||2} 3

with notation ||p; — pp||? = [(pe(x|0) — pp())? dz. The ad-
vantage of computing L2 over the Kullbach Leiber divergence
between probability density functions is that it can be com-
puted explicitly with Gaussian mixtures and it is also more
robust to outliers [7,9]. Additive regularisation terms can be
added to L2 to constraint its estimation [7, 10].

2.3. Remarks

Like in Pitié et al. [2], we consider target and palette images
that have different content and no constraint is imposed in
our framework when minimising L2 to estimate the transfor-
mation parameters 6. For colour transfer, a transfer function
mapping the 3D colour space onto itself needs to be inferred.
Many methods have been proposed to consider dimensions of
the colour space separately, sometimes in an iterative man-
ner. We propose to infer this transformation directly in the
multidimensional colour space by formulating the problem as
finding the transformation minimising a divergence between
two probability density functions. The L2 distance computed
with Gaussian mixtures is chosen over Kullbach Leiber to
make the approach computationally tractable and more robust
to any mismatch that can occur when comparing colour distri-
butions from different images. A key novelty in our approach
is in the choice of weights in the Gaussian mixtures to repre-
sent the colour distribution (see step 3 section 3).

3. PROPOSED APPROACH

Our method consists of the following steps:

1. Downsampling. To reduce the computation time in-
volved in step 2, both images, target and palette, are
downsampled to a lower resolution of 300 x 350. This
creates two very large (300 x 350 = 105000) point clouds
of colour RGB values in the RGB space to represent both
the target and palette images.

2. Clustering. For each image, the low resolution image’s
RGB pixel values are clustered using the k-means algo-
rithm in the 3 dimensional RGB space. We denote the
computed centers as {c,E’)}i: 1,k for the target image
and {cz(f)}izl,... i, for the palette image. The number k of
clusters can be set by the user according to the quality re-
quired for the output of the colour transfer process. Note
also that k controls the computational complexity 2k? of
the cost function L2 (eq. (5)).

3. Gaussian Mixture Models for Colour Transfer. We
propose to use the following Gaussian mixture models
(GMMs):

pe(]0) = L35 N (@5 (el 0), h21)

Pp( kzz LN (z; cp),hQI)

Here # € R® is a 3 dimensional random vector in the
RGB space, I is the 3 x 3 identity matrix and A is scalar
value controlling the isotropic covariance. Note that in
both GMMs all cluster centers are given equal weights
%: the target and palette images have different content
and therefore it is not expected that the number of pixels
associated with any cluster has any correlation between

the two images.

“)

4. Non-Rigid Registration. The parameters 6 of the transfer
function y; (affine or TPS) are estimated by minimising
L2 between p; and p,, (eq. (4)) using the following results
[9]:

L2(0) = ||Pt\|2 + lIppI* = 2(pelpp) with
Il = 5 Ty N0, 0) = pu(es”,6), 2,
(o) = e 5y AT Ospelcs”.6) — 9, 2471,
)
Note that the term ||p, ||* does not depend on 6 and can be
ignored in the estimation [9].

I?

5. Re-colouring. The estimated transfer function ju;(x:, )
is then applied to the RGB values = of the pixels in the
original (full resolution) target image.

4. EXPERIMENTAL RESULTS

We compare our technique with Pitié et al. [2]. Figure 2
shows the target and palette images used in our experiments.
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Figure 3 and 4 show the results of our implementation in com-
parison to Pitié et al. [2]. We present the results of our method
with both the affine and TPS transfer mapping functions. We
have set the number of clusters to £ = 150 in our implemen-
tation to capture the variety in colour content of the images
well, while keeping the registration computationally efficient.
In some cases, the final transfer results are very stable for dif-
ferent values of k as can be seen in Figure 1. For all results

(d) k=50 (e) k=100

(f) k=150

Fig. 1: Colour transfer results with our approach (TPS) for images
2(d) (palette) and 2(c) (target) with varying number of clusters k.

shown, there has been no constraint imposed to restrict trans-
formed pixel values to lie in the interval [0, 255]. If a pixel
has an R,G or B colour channel value greater than 255 we set
it to 255. Similarly, if a pixel has an R,G or B value less than
0, we set it to 0. We do this for both our and Pitié et al.’s result
images.

From Figure 3 and 4 we can see that the results generated
using the TPS transformation model outperform those gen-
erated using the affine transformation. In general, our TPS
colour transfer function provides smoother results with richer
contrasts. In Figure 4, rows 2,4 and 6 show that our affine
model fails to correctly transfer the colours from the palette
image to the target. This occurs when some of the cluster cen-
tres chosen by the k means algorithm have RGB values very
close to 0 or 255 (near the limits of the RGB cube in R?). All
pixels that have a value close to the original cluster centre will
be transformed in a similar way and may also be transformed
to values lying outside of the interval [0, 255]. If this hap-
pens to a lot of pixels in the target image, the artifact seen in
Figure 4 (second column, rows 2, 4 and 6) will arise. Having
more flexibility in its modelling, our TPS transfer model per-
forms better in these cases. In Figure 3 and 4 we can also see
that in most cases the affine transformation model performs
better than Pitié et al. However the artifacts seen in Figure 4
(rows 2 and 4) arise in some cases. These artifacts do not oc-
cur when the TPS model is used and this model outperforms
Pitié et al in all cases. In Figure 3, rows 1 and 2, we can
see that Pitié et al’s algorithm suffers from grainy artifacts in
some areas of the image such as the sky regions. The authors
proposed a grain artifact reducer step to help overcome this

problem [1,4]. In comparison, our approach gives a smoother
colour transfer result without needing any further processing.

5. CONCLUSIONS

We have shown that colour transfer between images with
different content can be formulated as finding the non-rigid
transformation minimising the Euclidean distance between
two tailor made Gaussian mixtures in the Colour space.
Future efforts will consider adding spatial constraint to si-
multaneously register images of the same scene, and simulta-
neously correct unwanted colour differences.
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Fig. 2: These images were used as the target and palette images in our experiments. (Images sourced from: hqwallbase.com; wallpaper-
scraft.com; afremov.com; restorationpath.org; helene-brennan.com; pl.forwallpaper.com)

Pitié et al. Affine Transformation TPS

Fig. 3: The first column shows Piti¢ et al’s results, the second column shows our results with the affine transformation model and the third
column shows our results with the TPS model. From top to bottom, target images used are 2(a)(b)(d) and palette images used are 2(b)(a)(c).
(More results can be found at www.scss.tcd.ie/Rozenn.Dahyot/ColourTransfer/).
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Pitié et al. Affine Transformation TPS

Fig. 4: The first column shows Pitié et al’s results, the second column shows our results with the affine transformation model and the third
column shows our results with the TPS model. From top to bottom, target images used are 2(c)(f)(e)(c)(d)(h) and palette images used are
2(d)(e)(H)(®)(g)(1). (More results can be found at www.scss.tcd.ie/Rozenn.Dahyot/ColourTransfer/).
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