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Abstract—CRC codes have long since been adopted in a
vast range of applications. The established notion that they are
suitable primarily for error detection can be set aside through
use of the recently proposed Guessing Random Additive Noise
Decoding (GRAND). Hard-detection (GRAND-SOS) and soft-
detection (ORBGRAND) variants can decode any short, high-rate
block code, making them suitable for error correction of CRC-
coded data. When decoded with GRAND, short CRC codes have
error correction capability that is at least as good as popular
codes such as BCH codes, but with no restriction on either code
length or rate.

The state-of-the-art CA-Polar codes are concatenated CRC
and Polar codes. For error correction, we find that the CRC is a
better short code than either Polar or CA-Polar codes. Moreover,
the standard CA-SCL decoder only uses the CRC for error
detection and therefore suffers severe performance degradation
in short, high rate settings when compared with the performance
GRAND provides, which uses all of the CA-Polar bits for error
correction.

Using GRAND, existing systems can be upgraded from error
detection to low-latency error correction without re-engineering
the encoder, and additional applications of CRCs can be found
in IoT, Ultra-Reliable Low Latency Communication (URLLC),
and beyond. The universality of GRAND, its ready parallelized
implementation in hardware, and the good performance of CRC
as codes make their combination a viable solution for low-latency
applications.

Index Terms—CRC; Polar; Error Correction; GRAND;
URLLC.

I. INTRODUCTION

Owing to the simplicity of their implementation and
their powerful error detection capability, Cyclic Redundancy
Checks (CRCs) [1] are widely adopted in applications in
storage, networking, and communications. CRCs are some-
times used not only to error detect, but also to assist in
error correction. For example, to assist in early stopping of
Turbo decoding iterations [2], or joint decoding of CRCs and
convolutional codes [3]. In list decoding architectures, a CRC
is commonly used for selection from a list of candidates. This
technique has been applied to Turbo codes [4] and Polar codes
(CA-Polar) [5]–[7]. The latter leads to the success of CRC-
aided successive cancellation list (CA-SCL or SCL for brief)
decoding algorithms. The better performance at shorter code
lengths of CA-Polar codes, as compared to other common
Shannon limit approaching codes, such as Turbo codes and
LDPC codes [8], has led to their inclusion in 5G-NR control
communications where latency is of particular concern [9].

With the error correction capability enabled by CRC, sig-
nificant benefits can be brought to existing systems, but have
heretofore seen only limited use. For example, the Automatic
Repeat Request (ARQ) scheme of networking can be upgraded
to Hybrid ARQ through the use of CRC’s error correction.
Similar benefits can be found in IoT or personal area network
(PAN). Previous research on the use of CRCs for error cor-
rection focused only on fixing one or two erroneous bits [10],
[11]. Soft detection techniques such as Belief Propagation (BP)
and Linear Programming (LP) [12] have also been considered
for decoding CRCs, but their performance is severely limited
when used for short and high rate codes. No previous approach
leads to a broadly applicable decoding method capable of
extracting the maximum error correction performance from
CRCs.

Many emerging applications require low latency commu-
nication of small packets of data. Examples include machine
communications in IoT systems [13]–[15], telemetry, track-
ing, and command in satellite communications [16], [17],
all control channels in mobile communication systems, and
Ultra-Reliable Low Latency Communications (URLLC) as
proposed in 5G-NR [18]–[20]. Most codes and decoders were
designed to function well for large blocks of data, but provide
underwhelming performance for short codes. As a result, some
conventional codes have received renewed attention [21]–[23],
including Reed-Solomon Codes [24], BCH codes [25] and
Random Linear Codes (RLC). In this paper, we show that
CRCs stand out as a viable class of error correcting codes.

The error correction capability of CRCs is enabled by
the recently introduced Guessing Random Additive Noise
Decoding (GRAND) algorithm [26], [27], which can decode
any short, high-rate block codes. GRAND’s universality stems
from its effort to identify the effect of the noise, from which
the code-word is deduced. Originally introduced as a hard
detection decoder [26]–[28], a series of soft detection variants,
SRGRAND [29], [30], ORBGRAND [31] and SGRAND [32],
have since been proposed that make distinct quantization
assumptions. Both hard and soft detection versions of GRAND
are ML decoders. The simplicity of GRAND’s operation has
resulted in the proposal of efficient circuit implementations
[33].

With GRAND and standard decoders if available, we eval-
uate CRCs as short, high-rate error correction codes when
compared with BCH, RLCs and CA-Polar codes. Using the
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best published CRC generator polynomials [34] we find that
CRCs perform as well as BCH codes at their available settings,
but CRCs can operate for a wider range of code lengths and
rates. Featuring even more flexible code-book settings, RLCs
possess security potentials by code-book re-randomisation,
but at very high code-rates RLC performance degrades in
comparison to select CRCs. Using GRAND to compare the
performance of Polar, CA-Polar and CRC codes, we find that
that the CRC is not aiding so much as dominating the decoding
performance potential. Furthermore, the celebrated CA-SCL
algorithm underperforms for short packets because the CRC
bits are only used for error detection.

The rest of the paper is organized as follows. Section II
introduces GRAND hard and soft detection variants. Section
III review CRC and other comparison candidates. Section
IV provides simulated performance evaluation of involved
channel codes. Section V summarizes the paper’s findings.

II. GUESSING RANDOM ADDITIVE NOISE DECODING

A. GRAND-SOS for hard detection

Consider a transmitted binary code-word Xn ∈ C drawn
from an arbitrary rate R code-book C, i.e. a set of 2nR = 2K

strings in {0, 1}n, where (n,K) is a core pair of parameters of
a codebook. Assume independent post-hard-detection channel
noise, Nn, which also takes values from {0, 1}n, additively
alters Xn between transmission and reception. The resulting
sequence is Y n = Xn ⊕ Nn, where ⊕ represents addition
modulo 2.

From Y n GRAND attempts to determine Xn indirectly
by identifying Nn through sequentially taking putative noise
sequences, zn, which we sometimes term patterns, subtracting
them from the received signal and querying if what remains,
Y n⊕zn, is in the code-book C. If transmitted code-words are
all equally likely and zn are queried in order from most likely
to least likely based on the true channel statistics, the first
instance where a code-book element is found is an optimally
accurate maximum likelihood decoding in the hard detection
setting [27]. For the hard detection binary symmetric channels
(BSC) channels considered in this paper the order of testing
noise patterns zn,i, i = 1, 2, ..., n follows their Hamming
weight from low to high. For patterns with identical Hamming
weights, we choose a sweeping order of generation, in which
a grouped pattern sweeps from one end of sequence to the
other end. A new grouped pattern is obtained by permuting the
bits in the group. When permutation exhausts, an extra non-
flipped bit is included and the permutation process restarts.
This pattern generator gives the decoder some advantages
with burst errors (specifically treated in [28]) and the resulted
algorithm is named as GRAND with simple order sweeping
(GRAND-SOS).

It is established in [27] that one need not query all possible
noise patterns for the decoder to be capacity-achieving, and
instead one can determine a threshold for the number of code-
book queries, termed the abandonment threshold, at which a
failure to decode can be reported without unduly impacting
error correction performance. Standard decoders of linear

block codes can decode up to t = bd/2c errors where d is
the minimum distance of the code-book [35]. Using this limit
as abandonment threshold, GRAND is guaranteed to achieve at
least equivalent performance to existing code-book dedicated
decoders.

B. ORBGRAND for soft detection

Ordered reliability bits GRAND (ORBGRAND) is a soft de-
tection approximate ML decoder that features significant com-
plexity advantage over the full ML soft GRAND (SGRAND)
decoder [32], and still provides better BLER performance than
state-of-the-art soft decoders [31] for short, high-rate codes.

Soft detection versions of GRAND require reliability infor-
mation of each received code-word bit. With binary phase-shift
key (BPSK) modulation and additive white Gaussian noise
(AWGN) channels, the reliability is simply the absolute value
of the received signal, from which the probability of a test
pattern can be computed and used for its testing order. Facing
the fact that efficient implementation of this simple idea is
not computational straight-forward, ORBGRAND develops an
efficient method to generate a approximate optimal order that
is universal.

Assume the reliability order index of the k− th received bit
is rnk ∈ (1, 2, ..., n). The vector rn records the reliability orders
of all received bits in Y n. A reliability weighted Hamming
weight called Logistic Weight for zn is defined as,

wL(z
n) =

n∑
k=1

rnk z
n
k (1)

This metric is used to determine the checking order of testing
noise sequences zn,i, i = 1, 2, ..., n, i.e. wL(z

n,i) < wL(z
n,j)

for i < j. Patterns with identical Logistic Weights can be
arbitrarily ordered.

The performance of soft decoders is no longer restricted by
minimum distance of code-books. In most cases ORBGRAND
with a moderate complexity can provide better performance
than state-of-the-art soft decoders.

III. OVERVIEW OF CHANNEL CODES

A. CRC codes

As a type of cyclic code [36], CRC operates in terms of
polynomial computation based on Galois field of two elements
GF(2). The CRC generator polynomial can be expressed as
g(x) =

∑n−K−1
k=0 gkx

k, where n−K is the number of CRC
bits to be appended to a message sequence, expressed as
polynomial m(x) =

∑K−1
i=0 mix

i, with n being the code-word
length. The CRC code-word is constructed as,

c(x) = xn−Km(x) + remainder
(
xn−Km(x)

g(x)

)
(2)

with the remainder of polynomial division appended to the
shifted message polynomial, the resulting code-word polyno-
mial c(x) is divisible by g(x). The property is used in parity
checks to detect errors, and provides an efficient implementa-
tion for checking code-book membership in GRAND. While
Equation (2) presents the systematic format of CRC codes,



they can also be constructed as other cyclic codes (such as
BCH) as,

c(x) = m(x)g(x) (3)

Equation (3) generates the same code-book as (2), but with
lower computation complexity.

To maximize the number of detectable errors, the CRC
maximizes the minimum Hamming distance of its code-book.
The topic has been studied extensively and optimal generator
polynomials have been published for a wide set of combi-
nations of CRC bit numbers and message lengths [34], [37],
[38]. Unlike channel codes for error correction function, the
design of CRC codes need not consider decoder implementa-
tion, indicating potentially better decoding performance than
normal Forward Error Correction (FEC) codes, provided that
a decoder is available, i.e. GRAND.

B. Other short code candidates

Also as a type of cyclic codes, BCH codes can be con-
structed with Equation (3). In this sense, BCH codes can be
viewed as a special case of CRC codes. For any positive
integers m > 3 and t < 2m−1, there exists a binary BCH
code with code-word length of n = 2m−1, parity bit number
of n−K ≤ mt and minimum distance of d ≥ 2t+ 1. A list
of available parameters n, K and t can be found in [35]. The
standard decoder for BCH codes is Berlekamp-Massey (B-
M) decoder [25], which is also used for the widely adopted
Reed-Solomon (RS) codes, a special type of BCH codes with
operations extended to higher order Galois fields. It should be
noted that the original proposal of GRAND has no limitation
on the Galois field order [27], Here we focus on binary codes,
but the methodology can be easily extended to RS codes in
higher order Galois fields.

RLCs are linear block codes that have long been used
for theoretical investigation, but have heretofore not been
considered practical in terms of decodability. With GRAND,
RLCs are no more challenging to decode than any other linear
codes. Their generator matrices are obtained by appending
a randomly generated parity component to the identity ma-
trix, from which the parity check matrix can be computed
accordingly. In addition to its flexibility, the ease of code-
book construction grants RLC security features by real-time
code-book updates.

CA-Polar codes are concatenated CRC and Polar codes.
Although they approach the Shannon reliable rate limit [5],
Polar codes do not give satisfactory decoding performance
for practical code-word lengths, even with the ML successive
cancellation (SC) algorithm. A CRC is introduced as an outer
code to assist decoding and the CA-SCL decoding algorithm
was invented as the key to the success of the resulted CA-Polar
codes [6], [7]. In the decoding process, a list of candidate code-
words are produced and CRC checks are performed to make
the selection with confidence. There is to our knowledge no
standard hard detection decoder for Polar or CA-Polar codes
apart from GRAND decoders. For code-book membership
checking in GRAND, parity check matrices can be easily

derived for generator matrices, which, for linear block codes,
can be obtained with a simple method that injects each vector
of the K-by-K identity matrix to the encoder and collects the
output vectors.

IV. SIMULATED PERFORMANCE EVALUATION

For our simulations, we map the stationary bit flip prob-
ability of the channel energy per transmitted information bit
via the usual AWGN BPSK formula: p = Q

(√
2REb/N0

)
,

where R is the code rate. Table I lists the code-book settings
considered for CRC evaluation, along with published preferred
generator polynomials. Note that the zero order 1 is omitted
in the least significant bit [34].

N K BCH t CRC poly. d

127 120 1 0x65 3
127 113 2 0x212d 5
127 106 3 0x12faa5 7
128 99 N/A 0x13a46755 8
63 57 1 0x33 3
63 51 2 0xbae 5
63 45 3 0x25f6a 7
64 51 N/A 0x12e6 4

TABLE I
LIST OF CODE-BOOK SETTINGS ALONG WITH CORRECTABLE ERROR
NUMBER t FOR BCH CODES AND MINIMUM DISTANCES d FOR CRC

CODES.

A. CRC Codes vs BCH Codes

For code-book settings in Table I available for BCH codes,
we measure the performance of the following code/decoder
combinations:

• BCH codes with Berlekamp-Massey (B-M) decoders
• BCH codes with GRAND-SOS decoder and AB > t
• CRC codes with GRAND-SOS decoder and AB > t
• CRC codes with GRAND-SOS decoder and AB > 4

AB > t indicates abandonment when the error number in
testing patterns is larger than the code-book decoding capabil-
ity, t. And AB > 4 is a loose condition for all available BCH
codes listed in Table I, with which we show the influence of the
minimum distance of a code-book to its decoding performance.
Simulation results for code-word length of 127 are presented
in Fig. 1.

For each code rate, all four code/decoder combinations have
performance curves that are close to each other, leading to
the following conclusions. For BCH codes, the GRAND-SOS
algorithm has the same decoding capability as the standard
Berlekamp-Massey decoder. With identical code-book set-
tings, CRC codes have matching performances to BCH codes.
Loosening abandonment condition grants little improvement to
decoding performance of GRAND, so the use of abandonment
to curtail complexity remains attractive. These observations are
further confirmed with simulations of code-word length of 63,
as shown in Fig. 2

Combined evaluation of curves in Fig. 1 and Fig. 2 indicates
that performance of short codes is sensitive to code-word
lengths and rates, therefore the flexibility of CRC renders it
attractive vis-à-vis BCH codes in low-latency scenarios.
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BCH(127, 120), GRAND AB>1
CRC(127, 120), GRAND AB>1
CRC(127, 120), GRAND AB>4
BCH(127, 113), B-M Decoder
BCH(127, 113), GRAND AB>2
CRC(127, 113), GRAND AB>2
CRC(127, 113), GRAND AB>4
BCH(127, 106), B-M Decoder
BCH(127, 106), GRAND AB>3
CRC(127, 106), GRAND AB>3
CRC(127, 106), GRAND AB>4

Fig. 1. Performance evaluation of code/decoder combinations with code-word
length of 127 for BCH and CRC codes.
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BCH(63, 57), GRAND AB>1
CRC(63, 57), GRAND AB>1
CRC(63, 57), GRAND AB>4
BCH(63, 51), B-M Decoder
BCH(63, 51), GRAND AB>2
CRC(63, 51), GRAND AB>2
CRC(63, 51), GRAND AB>4
BCH(63, 45), B-M Decoder
BCH(63, 45), GRAND AB>3
CRC(63, 45), GRAND AB>3
CRC(63, 45), GRAND AB>4

Fig. 2. Performance evaluation of code/decoder combinations with code-word
length of 63 for BCH and CRC codes.

B. CRC Codes vs RLCs

To explore fully the decoding capability of RLC codes, we
update the generator matrix for every code-word transmission
to achieve random selection of code-words. For a fair compar-
ison, we apply the same abandonment threshold for CRC and
RLC codes. In Fig. 3, the RLC(128, 99) curve overlaps the
CRC(128, 99) curve. As the code rate increases, however, the
RLC performance degrades in comparison to the CRC code,
owing to the shrinking of code-word space that makes it more
probable for RLC to pick up code-words close to each other.
The generator polynomial of CRC, however, is the product of a
selection procedure [37], [38] that thus results in a code-book
with stable minimum distance. This suggests that to extract
near-CRC code performance for very high rate RLCs, extra
structure might be needed.
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RLC(127, 113), GRAND AB>2
CRC(127, 113), GRAND AB>2
RLC(127, 106), GRAND AB>3
CRC(127, 106), GRAND AB>3
RLC(128, 99), GRAND AB>4
CRC(128, 99), GRAND AB>4

Fig. 3. Hard detection performance of RLC and CRC codes with selected
code-word lengths and rates.

C. Comparison with Polar and CA-Polar Codes

In 5G mobile systems, an 11-bit CRC (CRC11) is specified
for uplink CA-Polar codes, and a 24-bit CRC (CRC24) for
downlink. We evaluate performance of Polar codes with or
without aid from CRC11 and CRC24, and compare them to
CRC codes from in Table I, for code-book with (n,K) set
to (128, 99). Hard detection ML performance when decoded
with GRAND-SOS are presented in Fig. 4. A generous aban-
donment threshold AB > 5 is chosen to avoid influence from
computation complexity on code performance.

Let us first assess code performance under a hard detection
scenario. The Polar(128, 99) code without the CRC shows
significantly worse performance than the three other codes.
This is reasonable considering that Polar codes are closely
related to Reed-Muller codes [39], which are known to be
inferior to cyclic codes (such as BCH). The introduction of
CRC codes, either CRC11 or CRC24, sufficiently breaks the
undesirable structure in Polar code, bringing its performance
close to that achieved by CRC29. In this sense, the “aid”
from CRC is so effective that it may be preferable just to
use the CRC as an error-correcting code, considering that
significant encoding complexity can be saved thanks to the
simple implementation of CRC encoders.

Having considered performance under hard detection, let
us envisage soft detection performance, which is of particular
importance given that prevailing decoders for Polar codes are
soft decoders, especially when a non-trivial decoding gain is
expected [35]. The extra gain comes from decoding errors
beyond the hard detection decoding capability t. Therefore
we use the number of code-book checks as the abandonment
condition in this case, with AB > 5e6 being a generous
threshold that ensures optimal decoding performance. A gain
of about 1.5 dB from soft decoding at BLER= 10−3 can be
observed by comparing Fig. 4 and Fig. 5. Of more interest
is that under the same ORBGRAND decoding power four
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CRC11-Polar, AB>5
CRC24-Polar, AB>5
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Fig. 4. Hard detection performance of Polar(128,99), CA-Polar(128,99) with
CRC11, CA-Polar(128,99) with CRC24 and CRC(128,99) (i.e. CRC29). All
decoded with GRAND-SOS and AB > 5.

candidate codes follow identical performance ranking as their
hard detection behaviors, i.e. CRC assists Polar codes to
approach the best performance achieved by the CRC code
itself.
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Polar-only, ORB, AB>5e6
CRC11-Polar, SCL, L=16
CRC11-Polar, ORB, AB>5e6
CRC24-Polar, SCL, L=16
CRC24-Polar, ORB, AB>5e6
CRC29, ORB, AB>5e6

Fig. 5. Soft detection performance of code-book setting of (128, 99) for Polar,
CRC11 aided Polar, CRC24 aided Polar, and CRC29 codes; SC for Polar, CA-
SCL with list size of 16 for CA-Polar and ORBGRAND with AB > 5×106

for all codes; SC and CA-SCL are performed with [40].

Evaluating the performance of the SC and CA-SCL soft
decoding algorithms in Fig. 5, a surprising phenomenon can
be observed. While SC decoding of the Polar code and CA-
SCL of the CRC11 aided Polar code provide comparable
performance to ORBGRAND, the performance of CA-SCL
with the CRC24 aided Polar code dramatically degrades to a
level even worse than the hard detection performance of the
same code in Fig. 4. This reveals a previously unnoticed issue
with the CA-SCL algorithm. As a list decoding algorithm, CA-

SCL produces a set of candidate code-words in its decoding
procedure and use CRC checks to make candidate selection.
More CRC bits provide better error detection capability and
consequently higher confidence in candidate checks. However,
the redundancy introduced by CRC bits to the code-book is
ignored for error correction, leaving the remaining Polar bits
to produce the redundancy required for the error correcting
list decoding. With a given code-book (n,K) set of param-
eters, if the number of CRC bits is excessive relative to the
limited number of Polar redundant bits, then the decoder may
experience limited space of list candidates and, consequently,
performance loss, in spite of the enhanced selection confidence
from the extra CRC bits. As the key contributor to the error
correcting quality of CA-Polar codes, the CA-SCL algorithm
has been applied mostly to long codes, in which this short-
coming, which has been unnoticed so far to our knowledge,
is far from negligible on these short codes.
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Polar-only, SC
Polar-only, ORB, AB>5e6
CRC11-Polar, SCL, L=16
CRC11-Polar, ORB, AB>5e6
CRC13, ORB, AB>5e6

Fig. 6. Soft detection performance of code-book setting of (64, 51) for Polar,
CRC11 aided Polar, and CRC13 codes; SC for Polar, CA-SCL with list size
of 16 for CA-Polar and ORBGRAND with AB > 5× 106 for all codes; SC
and CA-SCL are performed with [40].

In Fig. 5, the CA-Polar (128, 99) with CRC11 does not
experience this performance loss, owing to the 18 Polar bits,
which are still sufficient to provide enough list candidate
space. Unfortunately this success is not guaranteed with
shorter code-word lengths or with higher coding rates. Fig.
6 displays the same short-coming of the CA-SCL algorithm
with the CRC11 but in CA-Polar(64,51), while ORBGRAND
is stably successful.

The superior performance of CRC codes when compared
to Polar codes, CRC aided or not, with their ultra low
encoding complexity, and the robust decoding performance of
ORBGRAND as compared to CA-SCL algorithm, all suggest
that a CRC code with ORBGRAND as its decoder provides a
better short code solution than Polar or CA-Polar codes.



V. SUMMARY

Despite being the most widely used error detection solution
in storage and communication, CRC codes have not been
considered seriously as error correcting codes owing to the
absence of an appropriate decoder. Instead, their main contri-
bution has been in assisting state-of-the-art list decoders, with
CA-Polar codes as the most successful recent example. With
the invention of GRAND, the possibility of considering CRCs
as error correction codes can be realized.

Here we consider hard and soft detection variants, GRAND-
SOS and ORBGRAND, to evaluate the performance of CRC
codes in comparison with other candidate short, high-rate
codes, including BCH codes, RLCs and CA-Polar codes.
As short codes, CRCs not only provide at least equivalent
decoding performance to existing solutions, but are superior in
various aspects. Compared to to BCH codes, CRC codes have
no restriction on code lengths and rates. For very high rate
codes, RLCs are outperformed by CRC codes. Polar codes are
surpassed by CRC codes in both hard and soft detection BLER
performance. Aided by CRC, CA-Polar code can provide a
matching performance, but the CRC alone still wins with its
ultra low encoding complexity. In addition, CA-SCL decoder,
as the key to practical adoption of CA-Polar code, suffers
significant performance loss when CRC bits dominate the
code’s redundancy. The reason is that CA-SCL uses CRC
checks for candidate selection in list decoding, but does not
avail of the CRC bits for error correction. ORBGRAND, on
the other hand, is robust in all scenarios. Therefore, CRC
with GRAND as its decoder is a good solution to low latency
applications requiring short codes.
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