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ABSTRACT

The aim of this study was to describe metabolism of 
early-lactation dairy cows by clustering cows based on 
glucose, insulin-like growth factor I (IGF-I), free fatty 
acid, and β-hydroxybutyrate (BHB) using the k-means 
method. Predictive models for metabolic clusters were 
created and validated using 3 sets of milk biomarkers 
(milk metabolites and enzymes, glycans on the immuno-
gamma globulin fraction of milk, and Fourier-transform 
mid-infrared spectra of milk). Metabolic clusters are 
used to identify dairy cows with a balanced or imbal-
anced metabolic profile. Around 14 and 35 d in milk, 
serum or plasma concentrations of BHB, free fatty 
acids, glucose, and IGF-I were determined. Cows with 
a favorable metabolic profile were grouped together in 
what was referred to as the “balanced” group (n = 43) 
and were compared with cows in what was referred to 

as the “other balanced” group (n = 64). Cows with 
an unfavorable metabolic profile were grouped in what 
was referred to as the “imbalanced” group (n = 19) 
and compared with cows in what was referred to as the 
“other imbalanced” group (n = 88). Glucose and IGF-I 
were higher in balanced compared with other balanced 
cows. Free fatty acids and BHB were lower in balanced 
compared with other balanced cows. Glucose and IGF-I 
were lower in imbalanced compared with other imbal-
anced cows. Free fatty acids and BHB were higher in 
imbalanced cows. Metabolic clusters were related to 
production parameters. There was a trend for a higher 
daily increase in fat- and protein-corrected milk yield 
in balanced cows, whereas that of imbalanced cows was 
higher. Dry matter intake and the daily increase in dry 
matter intake were higher in balanced cows and lower 
in imbalanced cows. Energy balance was continuously 
higher in balanced cows and lower in imbalanced cows. 
Weekly or twice-weekly milk samples were taken and 
milk metabolites and enzymes (milk glucose, glucose-
6-phosphate, BHB, lactate dehydrogenase, N-acetyl-β-
d-glucosaminidase, isocitrate), immunogamma globulin 
glycans (19 peaks), and Fourier-transform mid-infrared 
spectra (1,060 wavelengths reduced to 15 principal 
components) were determined. Milk biomarkers with or 
without additional cow information (days in milk, par-
ity, milk yield features) were used to create predictive 
models for the metabolic clusters. Accuracy for predic-
tion of balanced (80%) and imbalanced (88%) cows was 
highest using milk metabolites and enzymes combined 
with days in milk and parity. The results and models 
of the present study are part of the GplusE project and 
identify novel milk-based phenotypes that may be used 
as predictors for metabolic and performance traits in 
early-lactation dairy cows.
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INTRODUCTION

Physiological adaptations of dairy cows in the tran-
sition period are well described (Bell and Bauman, 
1997; Drackley et al., 2005). As parturition approaches, 
growth hormone (GH) concentrations start to increase 
and insulin and IGF-I concentrations decrease (Lucy et 
al., 2009). Growth hormone enhances milk production 
through partitioning of nutrients toward the mammary 
gland (Lucy, 2008), lipolysis increases, lipogenesis is 
almost completely downregulated, and hepatic gluco-
neogenesis is stimulated (Bauman, 1999; Lucy, 2008). 
Growth hormone induces the production of IGF-I by 
the liver, which inhibits GH secretion by hypophysis 
(Lucy, 2008). Homeorhetic adaptation mechanisms in 
the periparturient period decrease the expression of GH 
receptors by the liver, which downregulate hepatic IGF-
I production, known as uncoupling of the GH–IGF-I 
axis (Lucy, 2008). Decreased IGF-I concentrations in 
the periparturient period relieve negative feedback on 
pituitary GH production (Lucy, 2008). As lactation 
progresses, recoupling of the GH–IGF-I axis is char-
acterized by repleted IGF-I levels and effectuated by 
slightly elevated insulin levels (Lucy, 2008).

Homeorhetic mechanisms commonly observed during 
the transition period support the metabolic prioriti-
zation of the lactating mammary gland, leading to a 
sharp increase in milk production (Bauman and Currie, 
1980). The increase in DMI in postpartum cows lags 
behind the increased milk production, which results in 
a period of negative energy balance (EB; Grummer et 
al., 2004). Severe negative EB is a risk factor for meta-
bolic, infectious, and reproductive disorders (Moyes et 
al., 2013). Metabolic indicators for the severity of the 
negative EB are used to detect individual cows that are 
unable to cope with the altered metabolic challenge of 
lactation. Elevated free fatty acids (FFA) and BHB 
and decreased glucose and IGF-I are reported as bio-
markers of metabolically imbalanced cows, which are 
more at risk for an unsuccessful transition from the 
dry period to lactation (Ingvartsen et al., 2003; Pup-
pel and Kuczynska, 2016). Cut-off values for FFA and 
BHB have been determined to predict negative health 
consequences in the periparturient period (McArt et 
al., 2013; Ospina et al., 2013). However, the metabolic 
profile of individual cows within a herd shows a high 
level of variability (Ingvartsen et al., 2003). The cor-
relation between FFA and BHB is especially difficult 
to explain. Although some cows with normal BHB 
levels have high FFA levels, other cows with normal 
FFA levels have high BHB levels, demonstrating un-
explained interindividual variability within a group 
of cows (Ospina et al., 2013; McCarthy et al., 2015). 
This interindividual variability represents the interindi-

vidual ability of cows to adapt to the altered metabolic 
challenge of lactation and demonstrates the limitations 
of monitoring metabolism based on a single metabolic 
indicator (Ingvartsen et al., 2003; Bjerre-Harpøth et 
al., 2012; Moyes et al., 2013). Moreover, monitoring 
early-lactation metabolism requires early identifiable 
biomarkers. Due to better accessibility and the ease 
of automated repeat sampling owing to recently devel-
oped in-line sampling and analytical technologies, milk 
is the preferred medium in which biomarkers can be 
measured (Ingvartsen and Friggens, 2005; Nielsen et 
al., 2005a; Egger-Danner et al., 2015). It is highly prob-
able that certain glycan structures (Zhao and Keating, 
2007), milk metabolites and enzymes (Weekes et al., 
1983; Wallace and Matthews, 2002; Bjerre-Harpøth et 
al., 2012), or mid-infrared spectra (Voelker and Allen, 
2003; Maury et al., 2007; Soyeurt et al., 2011) of bovine 
milk can serve as biomarkers to monitor early-lactation 
metabolism and performance, but comparable predic-
tion methodologies are lacking.

The aim of this study was to combine concentrations 
of blood metabolites to describe metabolism of dairy 
cows in early and peak lactation by clustering cows 
based on concentrations of glucose, IGF-I, FFA, and 
BHB. Metabolic clusters are used to identify dairy 
cows with a balanced or imbalanced metabolic pro-
file. Furthermore, the relationship between metabolic 
clusters and production parameters [DMI, fat- and 
protein-corrected milk (FPCM) production, BW, 
EB, and BCS] are determined. Finally, 3 sets of milk 
biomarkers—milk metabolites and enzymes [milk bio-
marker (MBM) 1], glycans on the IgG fraction of milk 
(MBM2), and Fourier-transform mid-infrared spectra 
(FT-MIR) of milk (MBM3)—are used to create and 
validate predictive models for the different metabolic 
clusters.

MATERIALS AND METHODS

The experiments were carried out in accordance with 
the standards recommended by EU Directive 2010/63/
EU for animal experiments. Detailed description of the 
experiments, laboratory analysis of blood and milk, 
production data, and so on are given in Foldager et al. 
(2019) and described in brief below.

Animals and Sampling

Samples and data between calving and 50 d post-
calving (1–50 DIM) were obtained from 130 Holstein 
Friesian cows (parity 2: n = 42; parity 3: n = 51; parity 
≥4: n = 37) in 4 research herds: Aarhus University, 
Denmark; UCD Lyons Research Farm, University Col-
lege Dublin, Ireland; Agri-Food and Biosciences Insti-
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tute, Northern Ireland, UK; and Leibniz Institute for 
Farm Animal Biology, Dummerstorf, Germany. Cows 
were milked twice daily.

Analyses of Glucose, IGF-I, FFA, and BHB

Blood samples were taken around 14 DIM (15 ± 
0.1 DIM; D14) and 35 DIM (37 ± 0.1 DIM; D35) 
in serum and heparin tubes by jugular or coccygeal 
venipuncture. Blood plasma glucose concentrations 
were determined using an enzymatic method (Advia 
1800 Clinical Chemistry System, Siemens Diagnostics, 
Erlangen, Germany). Plasma FFA concentrations were 
determined using an enzymatic method (NEFA C ACS-
ACOD assay method, Wako Diagnostics, Mountain 
View, CA). Plasma BHB concentrations were deter-
mined by measuring absorbance at 340 nm due to the 
production of NADH at alkaline pH in the presence 
of BHB dehydrogenase. Serum concentrations of IGF-I 
were determined using an RIA following acid–ethanol 
extraction using the method previously described by 
Beltman et al. (2010).

Analyses of Milk Metabolites and Enzymes,  
Milk Glycans, and FT-MIR

Metabolites and Enzymes. Weekly, 0200 h milk 
samples were collected starting from the first week in 
milk until 50 DIM. At each day of sampling, 2 separate 
samples of approximately 8 mL were obtained and stored 
at −18°C. Fluorometric assays were used to determine 
milk glucose and glucose-6-phosphate (Larsen, 2015), 
BHB (Larsen and Nielsen, 2005), lactate dehydrogenase 
(Larsen, 2005), N-acetyl-β-d-glucosaminidase (Larsen 
et al., 2010), and isocitrate (Larsen, 2014). Urea was 
determined by spectrophotometry (Nielsen et al., 
2005b). Finally, 6 milk metabolites and enzymes were 
available as the first set of milk biomarker (MBM1).

IgG Glycans. Weekly, 0200 h milk samples were 
collected starting from the first week in milk until 50 
DIM. Milk samples were centrifuged at 4,000 × g for 
30 min at 4°C. Five milliliters of whole milk internatant 
was recovered and frozen at −20°C. In duplicate, 300 
µL of thawed sample was filtered through a 1-µm glass 
fiber filter plate (Acroprep, VWR International Ltd., 
Radnor, PA) at 3,000 × g for 10 min at room tempera-
ture and collected in a 96-well Greiner plate (Cruinn 
Diagnostics, Dublin, Ireland). All processes relating to 
IgG purification and IgG-glycan release were carried 
out on a Hamilton Robotics StarLet liquid-handling 
platform (Hamilton Robotics, Reno, NV) using a 
protocol adapted from Stöckmann et al. (2013). The 
N-glycans were separated on a Waters Acquity UPLC 

instrument (Waters, Milford, MA) and analyzed using 
Empower V3 (Waters).

The IgG was captured by passing 290 µL of filtered 
sample through a Protein G matrix (Phytip G; 200-µL 
column, 200-µL resin bed; Phynexus, San Jose, CA). 
The column tips were washed 5 times with a 0.1 M 
sodium phosphate binding buffer (pH 7.4), eluted with 
a 0.2 M glycine-hydrochloride buffer (pH 2.5), and neu-
tralized with 1 M Tris-hydrochloride buffer (pH 9.0). 
The purified protein was enriched by pooling from 2 
identical plates.

One hundred microliters of the enriched IgG was 
transferred to a 96-well ultrafiltration plate (Acroprep, 
Omega membrane, 10 kDa; VWR International Ltd.) 
and centrifuged at 3,000 × g for 30 min at room tem-
perature. Fifty microliters of a dithiothreitol denaturat-
ing buffer was added to each well, mixed, and left at 
room temperature for 10 min. The sample was then 
transferred to a 96-well thermobalanced denaturation 
plate (Armadillo High Performance 96-well PCR Plate; 
Thermo Fisher Scientific, Waltham, MA), incubated at 
95°C for 10 min, and cooled at room temperature for 
20 min. The denatured sample was transferred back 
onto the ultrafiltration plate and incubated in 20 µL of 
1 M iodoacetamide buffer for 10 min. The sample was 
washed with 20 µL of 25 mM sodium bicarbonate and 
filtered. Then, 0.4 µL of PNGase F (2.5 U/mL; New 
England Biolabs, Ipswich, UK) was added to each well 
and incubated for 30 min at 38°C with agitation. The 
released N-glycans were recovered by centrifugation at 
3,000 × g through a 10-kDa filter for 10 min at room 
temperature.

Eight microliters of the N-glycan sample was incubat-
ed with 12 µL of the fluorescent tag 6-aminoquinolyl-N-
hydroxysuccinimidyl carbamate (3 mg/mL MeCN) at 
room temperature. Sixteen microliters of each sample 
was separated using hydrophilic separation chromatog-
raphy (Glycan BEH Amide 130Å Column; Waters), and 
19 peaks were manually identified and integrated. Each 
peak’s percentage of the total area under the 19 peaks 
was used as the IgG glycan measure for the statistical 
analyses. This set of 19 peaks was used as a second set 
of milk biomarker (MBM2).

FT-MIR Spectra. Twice weekly, a.m. and p.m. 
milk samples were collected starting from the first week 
in milk until 50 DIM, preserved with bronopol 0.02%, 
and stored at 4°C. Analyses were done locally on FT2 
and FT6000 spectrometers (Foss, Hillerød, Denmark) 
or at Centre Wallon de Recherches Agronomiques (Bel-
gium) by a Standard Lactoscope FT-MIR Automatic 
(Delta Instruments, Drachten, the Netherlands). The 
a.m. and p.m. FT-MIR spectra were combined into 
a daily spectrum by a weighted average taking into 
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account the a.m. and p.m. milk yields. The FT-MIR 
spectra of the different instruments were standardized 
and merged into a common data set following the pro-
cedure described in Grelet et al. (2015). Finally, absor-
bance values at 1,060 wavenumbers were available as 
a third set of milk biomarkers (MBM3). Samples were 
analyzed locally for fat, protein, and lactose content by 
Fourier-transform infrared spectroscopy with FT2 and 
FT6000 spectrometers (Foss) or a Standard Lactoscope 
FT-MIR Automatic (Delta Instruments) and using the 
predictive models provided by the manufacturers.

FPCM, DMI, EB, and BW Measurements

All cows were milked twice daily and daily yields were 
recorded. Milk samples were collected twice weekly un-
til 50 DIM and analyzed for composition of protein, fat, 
and lactose by mid-infrared analysis and for SCC by 
flow cytometry. Bronopol (0.02%; Sigma-Aldrich, St. 
Louis, MO) was added as a preservative to all samples. 
Milk weighted average for milk components was used 
in the subsequent analysis. Fat- and protein-corrected 
milk production was calculated as (0.337 + 0.116 × 
milk fat % + 0.06 × milk protein %) × kg of milk 
(CVB, 2007).

Body condition score was recorded at the moment 
of blood sampling using a 1-to-5 scale with 0.25-point 
increments (Edmonson et al., 1989). Live weights were 
recorded twice weekly using weight scales until 50 DIM. 
Daily individual DMI was recorded using an electronic 
feeding system (Insentec, Markneesse, the Nether-
lands). Over the course of the sampling period, weekly 
ration samples were collected, dried, and shipped for 
NEL analysis in a single run (Cumberland Valley Ag-
ricultural Services, Franklin County, PA). The EB was 
calculated by calculating the daily difference between 
energy input and output. The energy input was cal-
culated by multiplying the weekly NEL density of the 
ration with the daily DMI of the animal. The energy 
output was calculated according to the NRC (2001) 
calculation correcting for NEM using the last recorded 
BW of the animal and most recent fat, protein, and 
lactose content together with the daily milk yield for 
the NEL.

Statistical Analyses

Metabolic Clustering. Due to missing observations 
and technical and logistical limitations, only 107 cows 
were included in the final statistical analyses. The k-
means clustering method was used to group cows based 
on the log-transformed and standardized concentra-
tions (mean = 0; SD = 1) of glucose, IGF-I, FFA, and 
BHB on D14 and D35. Sum of squares plots were used 

to determine the optimal number of clusters. Three 
clusters were created in both periods: A (n = 51), B 
(n = 51), and C (n = 5) on D14 and D (n = 58), E (n 
= 25), and F (n = 24) on D35. Pairwise comparisons 
of glucose, IGF-I, FFA, and BHB between A, B, and 
C on D14 and D, E, and F on D35 were done using 
an ANOVA. The clustering of the individual cows on 
D14 and D35 was compared. Cows in cluster A on D14 
and cluster D on D35 were considered to be metaboli-
cally balanced (n = 43; referred to as “balanced” cows). 
Cows not in cluster A on D14 and cluster D on D35 
were grouped together (n = 64; referred to as “other 
balanced” cows). Likewise, cows in cluster B on D14 
and cluster F on D35 (n = 14) together with cows in 
cluster C on D14 and cluster F on D35 (n = 5) were 
considered to be metabolically imbalanced (n = 19; 
referred to as “imbalanced” cows). Cows not in these 
clusters on D14 or D35 were grouped together (n = 88; 
referred to as “other imbalanced” cows).

Metabolic and Production Performance of 
Metabolic Clusters. Pairwise comparisons between 
balanced and other balanced and between imbalanced 
and other imbalanced cows were done using a linear 
mixed effect model after log transformation of the me-
tabolite and hormone concentrations with period (D14 
and D35) as repeated observation within the random 
factor cow. Linear mixed effect models were construct-
ed for the FPCM, DMI, EB, and BW of the cows in 
the metabolic cluster (balanced vs. other balanced and 
imbalanced vs. other imbalanced), with day postcalv-
ing as a repeated observation within the random factor 
cow. All pairwise comparisons were done using Tukey’s 
post hoc test. Residuals of the models were checked 
and found to be normally distributed. Interaction ef-
fects were removed from the model if nonsignificant (P 
< 0.05). Significance and tendency were declared at P 
< 0.05 and 0.05 ≤ P < 0.10, respectively. Results are 
presented as least squares means ± standard error of 
the mean unless otherwise stated.

Prediction of Metabolic Clusters

Feature Preparation of FT-MIR. Due to the 
nature of the FT-MIR data, a dimension reduction step 
was needed to reduce the high number of variables (n 
= 1,060) in contrast with glycan (n = 19) or blood 
metabolites (n = 6). First, wavenumbers known to be 
noninformative due to the water component in milk 
(Grelet et al., 2016) were removed. Next, FT-MIR spec-
tra were reduced using a principal component analysis. 
Exploration of the variance plot revealed 15 principal 
components that contributed most to the entire varia-
tion in FT-MIR data. After the filter and reduction 
step, 1,060 wavenumbers were reduced to 15 principal 
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components, which were used in the remainder of the 
analysis.

Biomarker Preparation. Each set of biomarkers 
was subsequently split into 3 sets: 1 without additional 
cow information, 1 including the DIM at sampling 
and the parity of the animal, and 1 including the DIM 
at sampling, the parity of the animal, and milk yield 
features (number of milkings and the minimum, maxi-
mum, mean, standard deviation, and sum of milk yield 
in the period up to the sampling).

Random Sampler. Three sets of milk biomarkers 
(MBM1, MBM2, and MBM3) were available as predic-
tors to classify the animals according to their metabolic 
cluster. However, for each of the biomarkers and ac-
cording to the research protocol, multiple samples at 
varying DIM were available. A random sampler was 
created to select 1 sample per animal from 1 to 50 
DIM. As such, the sampler works as if an official milk 
recording organization entered each of the participating 
research herds and sampled all cows at random stages 
in lactation on a given day.

Random Forest. In the next step, 10 models were 
created using the aforementioned random milk record-
ing sampler as a data set and a random forest classifier 
to predict balanced and imbalanced cows in each run. 
Each random forest used 1,000 trees and a maximum 
depth of 5. One-third of the features were selected to 
be used as candidates for splitting at each tree node. A 
separate training and test data set was created for bal-
anced and imbalanced cows by randomly splitting the 
animals by a ratio of 75/25. All features were standard-
ized before entering the model to have a mean of 0 and 
a standard deviation of 1. Accuracy (% of cows with a 
correctly predicted metabolic cluster) was selected as 
the evaluation metric to rank the performance of each 
of the models. The final minimum, maximum, and aver-
age accuracy of the models were reported. A schematic 
overview of the different steps in the data preparation, 
model creation and validation, and statistical analysis 
is given in Figure 1.

RESULTS

Metabolic Clusters

Metabolic clustering based on concentrations of glu-
cose, IGF-I, FFA, and BHB using the k-means method 
resulted in 3 distinct metabolic clusters on D14 and 
D35. On D14, glucose concentrations were highest in 
A, intermediate in B, and lowest in C; IGF-I concentra-
tions were highest in A, intermediate in C, and lowest 
in B; and FFA and BHB concentrations were lowest in 
A, intermediate in B, and highest in C (Table 1). On 
D35, glucose and IGF-I concentrations were higher in 

D compared with E and F; FFA concentrations were 
higher in F compared with D and E; and BHB con-
centrations were lowest in D, intermediate in E, and 
highest in F (Table 1).

Production and Metabolic Performance in Balanced 
Versus Other Balanced Cows

By comparing the metabolic clusters of individual 
cows on D14 and D35, 43 cows were identified to have a 
balanced metabolic profile (cluster A on D14 and clus-
ter D on D35; Table 2) during the postpartum period 
and were grouped together in the balanced group. All 
other cows (n = 64) were grouped in the other balanced 
group. Glucose and IGF-I concentrations increased to-
ward D35 in both groups and were higher in balanced 
cows compared with other balanced cows (Table 3). 
The FFA concentrations decreased toward D35 in both 
groups and were lower in balanced cows compared with 
other balanced cows (Table 3). The BHB concentra-
tions were lower in balanced cows compared with other 
balanced cows but did not change between periods 
(Table 3). There was no difference in FPCM yield in 
balanced cows compared with other balanced cows 
(Figure 2; Table 4). The DMI and the daily increase 
in DMI were higher in balanced cows (Figure 2; Table 
4). The decrease in BW was more pronounced in other 
balanced cows. Energy balance was continuously higher 
in balanced cows compared with other balanced cows 
(Figure 2; Table 4). The BCS decreased from D14 to 
D35 in other balanced cows but not in balanced cows 
(Table 3).

Production and Metabolic Performance  
in Imbalanced Versus Other Imbalanced Cows

By comparing the metabolic clusters of individual 
cows on D14 and D35, 19 cows were identified as hav-
ing an imbalanced metabolic profile (5 cows in cluster 
C on D14 and cluster F on D35 and 14 cows in clus-
ter B on D14 and cluster F on D35; Table 2) during 
the postpartum period and were grouped together in 
the imbalanced group. All other cows (n = 88) were 
grouped in the other imbalanced group. Glucose con-
centrations were lower in imbalanced cows and were 
not different on D14 compared with D35 (Table 5). The 
IGF-I concentrations were lower in imbalanced cows 
compared with other imbalanced cows and increased 
in both groups on D35 (Table 5). The FFA and BHB 
concentrations were higher in imbalanced cows in both 
periods. The FFA concentrations decreased on D35 
compared with D14, whereas BHB concentrations were 
not different between periods (Table 5). The FPCM 
yield of imbalanced cows was higher compared with 
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Figure 1. Statistical prediction methodology for metabolic clustering in dairy cows. MRO = milk recording organization; MIN = minimum; 
AVG = average; MAX = maximum.

Table 1. Glucose, IGF-I, free fatty acid (FFA), and BHB concentrations in metabolic clusters1 around 14 DIM (D14; clusters A, B, and C) 
and 35 DIM (D35; clusters D, E, and F)2

Item

D14

 

D35

A B C D E F

Glucose (mM) 3.59 ± 0.04a 3.36 ± 0.04b 2.60 ± 0.10c  3.83 ± 0.04a 3.46 ± 0.06b 3.35 ± 0.06b

IGF-I* (ng/mL) 115.35 ± 6.66a 43.26 ± 2.52b 63.22 ± 10.95b  136.48 ± 6.77a 49.44 ± 3.77b 59.12 ± 4.60b

FFA** (mM) 0.46 ± 0.03a 0.87 ± 0.06b 1.47 ± 0.32b  0.33 ± 0.03a 0.26 ± 0.03a 0.77 ± 0.11b

BHB (mM) 0.46 ± 0.02a 0.65 ± 0.03b 2.19 ± 0.32c  0.43 ± 0.02a 0.52 ± 0.03b 1.14 ± 0.07c

a–cLeast squares means with different superscripts within the same time period differ (P < 0.05).
1Clusters were created using the k-means clustering method based on the log-transformed and standardized concentrations of glucose, IGF-I, 
FFA, and BHB.
2Data are presented as LSM ± SEM.
*,**Trend for a difference between B and C at *P = 0.10 or **P = 0.06.



Journal of Dairy Science Vol. 102 No. 3, 2019

METABOLIC CLUSTERING IN DAIRY COWS 2637

that of other imbalanced cows (Figure 3; Table 6). The 
DMI and the daily increase in DMI were lower in imbal-
anced cows (Figure 3; Table 6). The decrease in BW 
was more pronounced in imbalanced cows. Energy bal-
ance was continuously lower in imbalanced cows (Fig-
ure 3; Table 6). Imbalanced cows had a higher BCS and 
the decrease in BCS toward D35 was more pronounced 
compared with other imbalanced cows (Table 5).

Prediction of Metabolic Clusters

A total of 5,400 cross-validation models were sum-
marized in Figures 4 and 5. The average prediction 
accuracy of balanced cows was highest (76%) for FT-
MIR spectra. The average prediction of balanced cows 
outperformed the prediction of the separate metabolic 
clusters on D14 and D35. Overall, the highest accuracy 
was found at 80% accuracy using milk metabolites and 
enzymes combined with DIM and parity, followed by 
FT-MIR spectra combined with DIM, parity, and milk 
yield features (79% accuracy). The lowest coefficient of 
variation in accuracy between the different runs was 

found in FT-MIR spectra predictions with DIM and 
parity.

The average prediction accuracy of imbalanced cows 
was highest (81%) for metabolites and enzymes with 
DIM and parity. In contrast to the balanced cows, the 
prediction of imbalanced cows outperformed the pre-
diction of the separate metabolic clusters on D14 and 
D35 except for milk metabolites and enzymes combined 
with DIM, parity, and milk yield features; IgG glycans 
combined with DIM, parity, and milk yield features; 
and predictions using FT-MIR spectra. The highest 
accuracy was found at 88% accuracy using metabolites 
and enzymes in combination with DIM and parity or 
FT-MIR spectra (87% accuracy).

DISCUSSION

This research is part of an European Union–funded 
project “Genotype plus Environment” (GplusE) aiming 
to identify novel milk-based phenotypes that may be 
used as predictors for health traits in dairy cows (Crowe 
et al., 2018). The present study describes how milk-
based phenotypes are linked with clustering of cows in 
metabolic balance and imbalance and the relationship 
with production performance parameters.

Different metabolites and hormones can be used to 
characterize the metabolism of cows in early lacta-
tion. The altered metabolic environment in the peri-
parturient period increases the rate of adipose tissue 
lipolysis. A certain level of FFA is considered normal 
and necessary. However, FFA concentrations increase 
when lipolysis is excessive; this is associated with a 
detrimental effect on immunity, metabolism, and milk 
production (Roche et al., 2013; Contreras et al., 2018). 
Part of the circulating FFA are converted into ketone 

Table 2. Number of cows in metabolic clusters A, B, and C around 14 
DIM (D14) and metabolic clusters D, E, and F around 35 DIM (D35)1

D14  
cluster

D35 cluster

TotalD E F

A 43 3 5 51
B 15 22 14 51
C 0 0 5 5
Total 58 25 24 107
1Clusters were created using the k-means clustering method based 
on the log-transformed and standardized concentrations of glucose, 
IGF-I, FFA, and BHB.

Table 3. Glucose, IGF-I, free fatty acid (FFA), and BHB concentrations in the balanced and other balanced metabolic clusters1 around 14 DIM 
(D14) and 35 DIM (D35)2

Item

D14

 

D35

 

P-value

Balanced
Other 

balanced Balanced
Other 

balanced Cluster Period
Cluster 

× period

Glucose3 (mM) 3.62 ± 0.05a 3.28 ± 0.04b 3.84 ± 0.05a 3.49 ± 0.04b <0.0001 <0.0001 NS
IGF-I3 (ng/mL) 121.66 ± 7.60a 49.63 ± 2.55b 152.93 ± 9.55a 62.39 ± 3.24b <0.0001 <0.0001 NS
FFA4 (mM) 0.52 ± 0.05a 0.81 ± 0.06b 0.29 ± 0.03a 0.45 ± 0.03b <0.001 <0.0001 NS
BHB (mM) 0.44 ± 0.03a 0.71 ± 0.04b 0.42 ± 0.03a 0.69 ± 0.04b <0.0001 0.42 NS
BCS5 2.75 ± 0.06 2.87 ± 0.05 2.71 ± 0.05 2.71 ± 0.05 0.43 <0.0001 <0.05
a,bLeast squares means with different superscripts within the same period differ (P < 0.05).
1Three clusters were created in both periods: A (n = 51), B (n = 51), and C (n = 5) on D14 and D (n = 58), E (n = 25), and F (n = 24) on 
D35. Cows in cluster A on D14 and cluster D on D35 were considered to be metabolically balanced (n = 43; “balanced” cluster). Cows not in 
cluster A on D14 and cluster D on D35 were grouped together (n = 64; “other balanced” cluster).
2Data are presented as LSM ± SEM.
3Period effect indicates an increase in glucose and IGF-I concentrations on D35 compared with D14 in both clusters.
4Period effect indicates a decrease in FFA concentrations on D35 compared with D14 in both clusters.
5Cluster × period interaction effect indicates a decrease in BCS on D35 compared with D14 in other balanced cows but not in balanced cows.
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bodies by the liver. Excessive production of ketone bod-
ies may lead to clinical or subclinical ketosis (Roche et 
al., 2013). Glucose concentrations are tightly controlled 
by homeostatic mechanisms (De Koster and Opsomer, 
2013). Cows suffering from severe negative EB have 
lower glucose concentrations (Wathes et al., 2011). The 
usefulness of glucose as a single indicator of metabolic 
imbalance has been questioned (Mulligan et al., 2006). 
However, studies by Bjerre-Harpøth et al. (2012) and 
Moyes et al. (2013) identified glucose as an important 
metabolite to be included in an index of metabolic im-
balance together with FFA and BHB. Late pregnancy 
and early lactation are marked by a decrease in the 
concentration of IGF-I. The nadir IGF-I concentration 
is reached in the first week after calving (Butler et al., 

2003; Radcliff et al., 2003); after the second week, IGF-
I concentrations are markedly influenced by the energy 
status of the cows (Fenwick et al., 2008; Wathes et al., 
2011). Animals with severe negative EB have lower 
IGF-I concentrations (Fenwick et al., 2008), and IGF-I 
has been suggested to be an indicator of nutritional 
status (Cohick, 1998; Zulu et al., 2002).

Metabolic imbalance is defined as “a condition where 
the regulating mechanisms are insufficient for the ani-
mals to function optimally leading to a high risk of a 
complex of digestive, metabolic, and infectious prob-
lems” (Ingvartsen, 2006). Metabolic clustering of dairy 
cows based on concomitant changes in the concentra-
tion of different metabolites improves the identification 
of metabolically balanced cows compared with the use 

Figure 2. Fat- and protein-corrected milk (FPCM) yield (A), DMI (B), BW (C), and energy balance (EB; D) in balanced (green, continuous 
line) and other balanced (orange, dashed line) metabolic clusters. Three clusters were created in both periods: A (n = 51), B (n = 51), and C (n 
= 5) on D14 (around 14 DIM) and D (n = 58), E (n = 25), and F (n = 24) on D35 (around 35 DIM). Cows in cluster A on D14 and cluster D on 
D35 were considered to be metabolically balanced (n = 43; “balanced” cluster). Cows not in cluster A on D14 and cluster D on D35 were grouped 
together (n = 64; “other balanced” cluster). Lines represent the LSM of the models, and the colored areas represent the 95% confidence limits.
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of a single indicator (Bjerre-Harpøth et al., 2012; Moyes 
et al., 2013; Grelet et al., 2018). Metabolic clustering 
using the k-means method in the present study resulted 
in 3 distinct metabolic groups in early and peak lacta-
tion. Based on the comparison of the glucose, IGF-I, 
FFA, and BHB concentrations between the metabolic 
groups, groups A and D showed a balanced metabolic 
profile on D14 and D35, respectively (high glucose, high 
IGF-I, low FFA, and low BHB), whereas groups B and 
C on D14 and group F on D35 showed an imbalanced 
metabolic profile (low glucose, low IGF-I, high FFA, or 
high BHB). Dairy cows in cluster A on D14 and cluster 
D on D35 were identified as metabolically balanced 

throughout the study and had higher glucose and IGF-
I and lower FFA and BHB compared with other cows 
in both early and peak lactation. Dairy cows in cluster 
C on D14 and cluster F on D35 together with cows in 
cluster B on D14 and cluster F on D35 were identified 
as metabolically imbalanced throughout the study and 
had lower glucose and IGF-I and higher FFA and BHB 
compared with other cows on D14 and D35.

The different metabolic clusters were characterized 
by differences in FPCM, DMI, BW, BCS, and EB 
in the postpartum period. The relationship between 
metabolic clusters and FPCM was weak. The FPCM 
yield was not different in balanced cows. Metabolically 

Table 4. Fat- and protein-corrected milk (FPCM) yield, DMI, BW, and energy balance (EB) in balanced and other balanced metabolic clusters1 
and the effect of day after calving (slope DIM) in the postpartum period

Item

Cluster

 

P-values

Balanced Other balanced DIM Cluster DIM × cluster

FPCM (kg/d)
 LSM ± SEM 38.42 ± 0.99 37.76 ± 0.80 <0.05 0.60 NS
 Slope DIM ± SEM 0.043 ± 0.018 0.043 ± 0.018    
DMI (kg/d)
 LSM ± SEM 22.12 ± 0.48a 18.72 ± 0.39b <0.0001 <0.01 <0.01
 Slope DIM ± SEM 0.11 ± 0.01a 0.06 ± 0.01b    
BW (kg)
 LSM ± SEM 647.97 ± 9.56 650.51 ± 7.66 <0.0001 <0.05 <0.0001
 Slope DIM ± SEM −0.34 ± 0.14a −1.41 ± 0.11b    
EB (Mcal/d)
 LSM ± SEM −2.40 ± 0.71a −7.59 ± 0.61b <0.0001 <0.0001 NS
 Slope DIM ± SEM 0.11 ± 0.01 0.11 ± 0.01    
a,bLeast squares means and slopes with different superscripts differ (P < 0.05).
1Three clusters were created in both periods: A (n = 51), B (n = 51), and C (n = 5) on D14 and D (n = 58), E (n = 25), and F (n = 24) on 
D35. Cows in cluster A on D14 and cluster D on D35 were considered to be metabolically balanced (n = 43; “balanced” cluster). Cows not in 
cluster A on D14 and cluster D on D35 were grouped together (n = 64; “other balanced” cluster).

Table 5. Glucose, IGF-I, free fatty acid (FFA), and BHB concentrations in imbalanced and other imbalanced metabolic clusters1 around 14 
DIM (D14) and 35 DIM (D35)2

Item

D14

 

D35

 

P-value

Imbalanced
Other 

imbalanced Imbalanced
Other 

imbalanced Cluster Period
Cluster 

× period

Glucose3 (mM) 3.19 ± 0.06a 3.49 ± 0.04b 3.38 ± 0.07a 3.69 ± 0.04b <0.0001 <0.0001 NS
IGF-I4 (ng/mL) 43.61 ± 5.53a 78.56 ± 4.73b 55.07 ± 6.98a 99.21 ± 6.01b <0.0001 <0.0001 NS
FFA5 (mM) 1.32 ± 0.17a 0.56 ± 0.04b 0.76 ± 0.10a 0.32 ± 0.02b <0.0001 <0.0001 NS
BHB (mM) 1.15 ± 0.09a 0.50 ± 0.02b 1.11 ± 0.09a 0.49 ± 0.02b <0.0001 0.39 NS
BCS6 3.16 ± 0.09a 2.75 ± 0.04b 2.89 ± 0.09a 2.66 ± 0.04b <0.0001 <0.0001 <0.001
a,bLeast squares means with different superscripts within the same period differ (P < 0.05).
1Three clusters were created in both periods: A (n = 51), B (n = 51), and C (n = 5) on D14 and D (n = 58), E (n = 25), and F (n = 24) on 
D35. Cows in cluster B on D14 and cluster F on D35 (n = 14) together with cows in cluster C on D14 and cluster F on D35 (n = 5) were con-
sidered to be metabolically imbalanced (n = 19; “imbalanced” cluster). Cows not in these clusters on D14 or D35 were grouped together (n = 
88; “other imbalanced” cluster).
2Data are presented as LSM ± SEM.
3Glucose concentrations were not different between periods for imbalanced cows and increased on D35 for other imbalanced cows.
4Period effect indicates an increase in IGF concentrations on D35 compared with D14 in both clusters.
5Period effect indicates a decrease in FFA concentrations on D35 compared with D14 in both clusters.
6Period effect indicates a decrease in BCS on D35 compared with D14 in both clusters. There was a more pronounced decrease in BCS from D14 
to D35 in imbalanced cows compared with other imbalanced cows.
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imbalanced cows had higher FPCM yield. The weak 
relationship between milk yield, metabolic balance, and 
disorders has been described by Ingvartsen et al. (2003), 
Ingvartsen (2006), and Bjerre-Harpøth et al. (2012). In-
gvartsen (2006) stated that it is not milk yield as such 
that is the cause of metabolic imbalance or disorders 
but rather the individual cow’s inability to cope with 
the metabolic challenges of early lactation. Dry matter 
intake was consistently higher in metabolically balanced 
cows and lower in imbalanced cows. Daily increase in 
DMI was higher in cows with a favorable metabolic 
profile (balanced and other imbalanced). The relation-
ship between DMI and metabolism may be explained 
by the fact that certain metabolites (FFA) may regu-

late feed intake in ruminants by the hepatic oxidation 
of these metabolites, thereby causing a satiety signal 
and depressing feed intake (Ingvartsen and Andersen, 
2000; Allen et al., 2009). Energy balance is influenced 
mainly by energy intake and less by milk production 
(Santos et al., 2010). The improved nutritional status 
in balanced and other imbalanced cows had a positive 
effect on the EB of the animals, whereas imbalanced 
cows were in severe negative EB throughout the study. 
Body weight is affected by different factors in post-
partum cows: frame size, DMI, stage of lactation, and 
EB. As such, BW is not a good predictor for the sever-
ity of the negative EB or the mobilization of energy 
(Schröder and Staufenbiel, 2006). However, automated 

Figure 3. Fat- and protein-corrected milk (FPCM) yield (A), DMI (B), BW (C), and energy balance (EB; D) in imbalanced (red, continuous 
line) and other imbalanced (blue, dashed line) metabolic clusters. Three clusters were created in both periods: A (n = 51), B (n = 51), and C 
(n = 5) on D14 (around 14 DIM) and D (n = 58), E (n = 25), and F (n = 24) on D35 (around 35 DIM). Cows in cluster B on D14 and cluster 
F on D35 (n = 14) together with cows in cluster C on D14 and cluster F on D35 (n = 5) were considered to be metabolically imbalanced (n = 
19; “imbalanced” cluster). Cows not in these clusters on D14 or D35 were grouped together (n = 88; “other imbalanced” cluster). Lines represent 
the LSM of the models, and the colored areas represent the 95% confidence limits.
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daily measurement of BW has been used to assess the 
energy status of dairy cows (van Straten et al., 2008; 
Thorup et al., 2012). The more pronounced decrease in 
BW in other balanced and imbalanced cows compared 
with balanced and other imbalanced cows, respectively, 
can be explained by a higher degree of mobilization of 
energy reserves due to the severe negative EB, a lower 
gut fill due to the decreased DMI, or a combination 
of both factors. Body condition score is a subjective 
indicator for the mobilization of subcutaneous adipose 
tissue. In particular, the postpartum decrease in BCS 
is associated with metabolic and infectious disorders 
(Roche et al., 2013). Cows with an unfavorable meta-
bolic profile (other balanced and imbalanced) had a 
more pronounced decrease in BCS from D14 to D35, 
indicative of a higher degree of body fat mobilization.

The current study furthermore focused on comparing 
multiple biomarkers to predict the metabolic clusters as 
a novel phenotypic trait in early-lactating dairy cows. 
To our knowledge, this is the first study to position the 
different sets of milk biomarkers relatively across one 
another according to their predictive accuracy. The cur-
rent scope of the study focused on comparing different 
milk biomarkers rather than the individual fine-tuning 
of the individual biomarkers to increase the predictive 
accuracy as described by Grelet et al. (2018) for FT-
MIR and metabolic clustering. From our results, it can 
be noted that within each set of biomarkers, adding 
DIM, parity, and milk yield features did not improve 
the predictive accuracy much. Hence, it is debatable 
whether collecting such information is worth the effort 

compared with the relatively small gain in predictive 
accuracy. Overall, we were able to predict balanced and 
imbalanced animals in early lactation with varying pre-
diction accuracy across the 3 sets of biomarkers. Pre-
diction of imbalanced cows was more accurate across all 
milk biomarkers compared with balanced cows, where 
FT-MIR outperformed the other milk biomarkers. Fur-
ther efforts are made within the GplusE project for 
industry-wide application of the metabolic clustering 
technique. External validation of the balanced cows can 
lead to establishment of a novel phenotypic trait for 
genetic selection as suggested by Egger-Danner et al. 
(2015) and Crowe et al. (2018). External validation of 
the imbalanced cows can help identify cows for specific 
management strategies, such as elective propylenic gly-
col treatment versus group treatment, as proposed by 
others (Lomander et al., 2012; Jenkins et al., 2015).

CONCLUSIONS

The k-means clustering of blood metabolites was 
found to effectively identify balanced and imbalanced 
cows across the participating countries within the 
GplusE project. Furthermore, production parameters 
revealed marked differences in DMI and energy bal-
ance, underlining the phenotypic validity of metabolic 
clusters. Finally, prediction using both FT-MIR or 
milk metabolites and enzymes allows implementation 
of metabolic clusters across larger cow numbers as a 
novel trait for genetic selection or identification of im-
balanced early-lactating dairy cows.

Table 6. Fat- and protein-corrected milk (FPCM) yield, DMI, BW, and energy balance (EB) in imbalanced and other imbalanced metabolic 
clusters1 and the effect of day after calving (slope DIM) in the postpartum period

Item

Cluster

 

P-value

Imbalanced Other imbalanced DIM Cluster DIM × cluster

FPCM (kg/d)
 LSM ± SEM 41.14 ± 1.47a 37.29 ± 0.66b <0.01 <0.05 NS
 Slope DIM ± SEM 0.049 ± 0.018 0.049 ± 0.018    
DMI (kg/d)
 LSM ± SEM 18.56 ± 0.77a 20.51 ± 0.35b <0.0001 0.37 0.05
 Slope DIM ± SEM 0.05 ± 0.02a 0.10 ± 0.01b    
BW (kg)
 LSM ± SEM* 672.29 ± 14.12 642.73 ± 6.42 <0.0001 <0.01 <0.001
 Slope DIM ± SEM −1.69 ± 0.22a −0.80 ± 0.10b    
EB (Mcal/d)
 LSM ± SEM −11.14 ± 1.25a −4.32 ± 0.50b <0.0001 <0.0001 NS
 Slope DIM ± SEM 0.11 ± 0.01 0.11 ± 0.01    
a,bLeast squares means and slope with different superscripts differ (P < 0.05).
1Three clusters were created in both periods: A (n = 51), B (n = 51), and C (n = 5) on D14 and D (n = 58), E (n = 25), and F (n = 24) on 
D35. Cows in cluster B on D14 and cluster F on D35 (n = 14) together with cows in cluster C on D14 and cluster F on D35 (n = 5) were con-
sidered to be metabolically imbalanced (n = 19; “imbalanced” cluster). Cows not in these clusters on D14 or D35 were grouped together (n = 
88; “other imbalanced” cluster).
*Trend for a difference between imbalanced and other imbalanced cows (P = 0.06).
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Figure 4. Prediction accuracy within each run and summary for different classification models to predict balanced cows in the early (14 
DIM) and peak (35 DIM), early, or peak periods. Three clusters were created in both periods: A (n = 51), B (n = 51), and C (n = 5) on D14 and 
D (n = 58), E (n = 25), and F (n = 24) on D35 (around 35 DIM). Cows in cluster A on D14 (around 14 DIM) and cluster D on D35 were consid-
ered to be metabolically balanced (n = 43; “balanced” cluster). FT-MIR = Fourier-transform mid-infrared; Min = minimum; Max = maximum.

Figure 5. Prediction accuracy within each run and summary for different classification models to predict imbalanced cows in the early (14 
DIM) and peak (35 DIM), early, or peak periods. Three clusters were created in both periods: A (n = 51), B (n = 51), and C (n = 5) on D14 
(around 14 DIM) and D (n = 58), E (n = 25), and F (n = 24) on D35 (around 35 DIM). Cows in cluster B on D14 and cluster F on D35 (n = 
14) together with cows in cluster C on D14 and cluster F on D35 (n = 5) were considered to be metabolically imbalanced (n = 19; “imbalanced” 
cluster). FT-MIR = Fourier-transform mid-infrared; Min = minimum; Max = maximum.
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