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Abstract

In this thesis, I use the Bethe Ansatz (BA) to study various one-dimensional

models. I first go through some background on the BA (both the coordinate

and algebraic forms). I start the study by using the BA to compare bound

state occurrences between the 2-particle XXZ, Bose–Hubbard, and Fermi–

Hubbard models. In the next chapter, I introduce ‘quenches’ and use the

BA in order to calculate quench overlaps in the Lieb–Liniger model. In the

final chapter, I introduce the spatial von Neumann bipartite entanglement

entropy and use the BA in order to calculate this entropy in the Lieb–Liniger

model.

iii



Chapter 1

Introduction

1.1 Overview

One-dimensional systems have long proven to be an important tool in physics,

by providing a manageable environment (computationally and conceptually)

to study complex physical phenomena. The Heisenberg spin chain is a conve-

nient environment in which to study quantum magnetism, and has even been

realised in experimental environments [1, 2]. The Bose and Fermi Hubbard

models are the simplest models for studying bosons and fermions respec-

tively on a lattice [3, 4, 5]. The Lieb–Liniger model offers a simple picture

of interacting bosons in the continuum, with the interaction being only on

contact. An example of a system well described by the Lieb–Liniger model

is the well–known Bose–Einstein condensate whose existence was first pre-

dicted theoretically by Einstein in the 1920s [6] and has been the centre of a

lot of study since.

All of these models have something in common: they are all integrable

systems. In this context, an integrable system is one that is solvable by

a mathematical technique [7] known as the Bethe ansatz. In other words,

the energy eigenstates of these models can all be exactly and analytically

calculated via this technique. Systems that are not integrable are known as

chaotic systems, and an exact form of the eigenstates of these systems does

not in general exist. There isn’t an easy way of seeing a priori whether or not
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a model is integrable, but a good indicator of this solvability is if the model

has many integrals of motion (referred to as conserved charges in this case)

that preserve locality [8]. We will see more of a discussion of these charges

in section (1.3.3) and section (3.2).

With the lattice models (XXZ, Bose–Hubbard, Fermi–Hubbard), I am in-

terested in the bound state occurrence probabilities in eigenstates. I analyse

the two-particle systems for each model by plotting the ‘bound state proba-

bilities’ for systems of varying size, and I use the Bethe ansatz to explain the

most obvious patterns in this data. I find that most of the interesting results

are easy to analytically verify in the momentum language of the system, but

the Bethe ansatz offers a more natural setting to study the systems in with

rapidities, and I explore this language to obtain more results. I find that there

are subtle differences between the bound state dependence on the anisotropy

of the XXZ chain, and the bound state dependence on the interaction en-

ergy of the BH model. I also show that the bound state dependency in the

2-particle Fermi–Hubbard on the interaction energy is essentially the same

as that in the 2-particle Bose–Hubbard, despite the corresponding Hilbert

spaces for the two models being different.

With the Lieb–Liniger model, I investigate what is called ‘quench over-

laps’. I motivate these calculations by introducing the idea of a ’quench’

[9]. In order to come up with a way to study how a random state evolves

under the Lieb–Liniger Hamiltonian, we need a way of simulating a ‘random’

state. This is done by picking a value of the interaction parameter of the

system (usually 0), and then watching how eigenstates of that system evolve

when you suddenly change the interaction parameter. This instantaneous

change is known as a ‘quench’. Expanding these eigenstates in terms of the

eigen-basis of the new system gives us these ‘quench overlaps’. In particular,

I focus on the overlaps with parity symmetric states. These are states that

are symmetric under parity reflection. They are of interest as they have an

important interplay with what are known as the conserved charges [10] of

the system.

Lastly, I look at the spatial von Neumann bipartite entanglement entropy

[11, 12] of the Lieb Liniger model with periodic boundary conditions. I first
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elaborate on what I am actually calculating, and then I offer a simple expres-

sion that allows this entropy to be calculated analytically for every particle

sector (although the computation of this expression is still of exponential

computational complexity). The method used does not use any special fea-

tures of the Lieb–Linger model and so it should follow easily for any integrable

model on S1. Numerical methods to calculate this entropy exist [12] (also,

it is known that entanglement entropy can easily be extracted from DMRG

simulations, and such simulations are possible for the Lieb–Liniger model,

see [13]) but to the best of my knowledge this is the first time a method for

an analytic calculation is presented.

1.2 The Coordinate Bethe Ansatz

The Bethe ansatz as a technique for solving one-dimensional quantum Hamil-

tonians, originated from the work of Hans Bethe in 1931[14], in the form of

a method to find exact expressions for the eigenfunctions of the periodic

isotropic spin-1/2 Heisenberg chain:

H = −J
L∑
n=1

Sn · Sn+1, (1.1)

where J is the constant spin coupling at each site, Sn is the spin operator

at site n, and the periodic boundary conditions are equivalent to identifying

site L+ 1 with site 1. This technique was later generalized in order to solve

certain one-dimensional systems (known as integrable systems), in what is

now known as the coordinate Bethe ansatz. This technique consists of using

what is known as a Bethe substitution [15] in order to determine the spectrum

of the system. I will use the XXZ model - a slight alteration on Bethe’s

original target for his ansatz - in order to demonstrate this technique.
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Figure 1.1: Schematic representing the Heisenberg chain. The rotating ar-
rows indicate possible pairs of particles that will flip spin at the shown instant.

1.2.1 Solving the XXZ model with the Coordinate Bethe

Ansatz

The XXZ model is similar to that in equation (1.1), except we introduce

spin-anisotropy via the spin along the z-axis:

H∆ = −J
L∑
n=1

[
SxnS

x
n+1 + SynS

y
n+1 + ∆SznS

z
n+1

]
. (1.2)

Even after introducing a new parameter ∆ to the Hamiltonian, the system

turns out to still be integrable (ie, solvable by the Bethe ansatz), and we

retrieve the isotropic Heisenberg chain by setting ∆ = 1. Noting that the

total z-spin projection Sz =
∑

n S
z
n commutes with the Hamiltonian, the

energy eigenstates can be analysed in separate total Sz sectors. With this in
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mind, we can rewrite the Hamiltonian using spin flip operators S±n = Sxn±iSyn:

H∆ = −J
L∑
n=1

[
1

2

(
S+
n S
−
n+1 + S−n S

+
n+1

)
+ ∆SznS

z
n+1

]
. (1.3)

We can then arrange the eigenstates into sectors with a given number d of

downspins with respect to the ferromagnetic state |F 〉 with Sz = L/2.

The d = 0 sector consists only of the ferromagnetic state |F 〉, and has

energy density E0/L = −J∆/4.

The d = 1 subspace is spanned by the L vectors |n〉 = S−n |F 〉, n = 1, ..., L.

The main idea surrounding the Bethe ansatz is to use the translational in-

variance of this model to make the ‘ansatz’ that if |ψ〉 is an eigenstate of H∆,

then it can be written as a translationally invariant superposition of plane

waves:

|ψk〉 =
1√
L

L∑
n=1

eikn |n〉 . (1.4)

It turns out that this is indeed an eigenstate of H∆, with energy density

(E − E0)/L = J(∆ − cos(k)). Implementing boundary conditions allows us

to find allowed values for k. Continuing with periodic boundary conditions,

we get that k = 2πI
L

, I = 0, 1, ..., L− 1. We call I a Bethe quantum number.

These numbers help characterise the Bethe states of our system.

We can continue this analysis in the d = 2 sector, except we have to be

wary of symmetry requirements involved in swapping downspins. We look

for eigenstates of the form:

|ψk1,k2〉 =
∑

1≤n1<n2≤L

|n1, n2〉
(
A12e

i(k1n1+k2n2) + A21e
i(k2n1+k1n2)

)
. (1.5)

Plugging this state into the Hamiltonian and requiring that it is an eigenstate

gives us an expression for the relative amplitude A12/A21. It is easily checked

that this ratio has unit magnitude, so we introduce a scattering phase θ12:

A12/A21 = eiθ12 = −e
i(k1+k2) + 1− 2∆eik1

ei(k1+k2) + 1− 2∆eik2
. (1.6)
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We can then write a general unnormalized eigenstate in this sector as:

|ψk1,k2〉 =
∑

1≤n1<n2≤L

|n1, n2〉
(
ei(k1n1+k2n2+ 1

2
θ12) + ei(k2n1+k1n2+ 1

2
θ21)
)
, (1.7)

where θ21 = −θ12.

We use periodic conditions again to find allowed values of the parameters

k1, k2, which we will refer to as the momenta of the state from now on:

Lk1,2 = 2πI1,2 ± θ12, (1.8)

where I1, I2 = 0, 1, ..., L − 1 are the Bethe quantum numbers characterising

the state.

We then move onto the d > 2 downspin sector. This sector is where the

Bethe ansatz becomes non-trivial, and we must work to break all interactions

up into a sum of two-particle interactions in order to be able to use the Bethe

ansatz. Thankfully, in the case of the XXZ model, this sector is handled

similarly to the d = 2 sector, except the permutation sum in equation (1.5)

is carried out over the entirety of the symmetric group Sd. IfQ is the standard

ordering of the particles (1, 2, ..., d), then:

∣∣ψ~k〉 =
∑

1≤n1<...<nd≤L

|n1, ..., nd〉
∑
σ∈Sd

AσQ exp

(
i

d∑
j=1

kσjnj

)
. (1.9)

For ease of notation, I will drop the Q in the subscripts of the amplitudes.

Given two permutations σ and τ such that we get σQ by swapping indices i

and j in τQ where σi < σj, we have:

Aσ
Aτ

= eiθσi,σj . (1.10)

Then we can build any Aσ, up from Aid:

Aσ
Aid

=
∏
i<j

eiθσi,σj = (−1)σ
∏
i<j

ei(kσi+kσj ) + 1− 2∆eikσi

ei(kσi+kσj ) + 1− 2∆eikσj
, (1.11)
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and so we can write:

∣∣ψ~k〉 =
∑

1≤n1<...<nd≤L

|n1, ..., nd〉
∑
σ∈Sd

exp

(
i

d∑
i=1

kσjnj +
i

2

∑
i<j

θσiσj

)
. (1.12)

As before, we use periodic conditions to find the allowed values for kj:

Lkj = 2πIj +
∑
i<j

θij, (1.13)

where again, Ij = 0, 1, ..., L− 1 are the Bethe quantum numbers. The equa-

tions (1.13) are known as the Bethe equations for this system. They are

generally nonlinear equations and thus quite hard to solve, but nevertheless

allow us to write down exact expressions for the eigenstates and eigenenergies

of our system.

1.2.2 Solving the 2-Particle Hubbard Models with the

Coordinate Bethe Ansatz

Further discussions and details about calculations for the Hubbard models

can be found at [16] and [4]. Let us start by introducing the Hamiltonian for

the Bose–Hubbard model:

HBH =
∑

0≤i≤L

(
b†ibi+1 + bib

†
i+1

)
+
U

2

L∑
i=1

ni(ni − 1), (1.14)

where the b†i and bi are the boson creation and annihilation operators at the i-

th lattice site, and ni = b†ibi is the number operator at site i. The interaction

energy U introduces an ‘energy cost’ for having two or more bosons on the

same site. We again use periodic boundary conditions, by associating site

L+ 1 with site 1.

The Hamiltonian for the Fermi–Hubbard model is given by:

HFH =
∑
σ∈{↑↓}

∑
0≤i≤L

(
c†i,σci+1,σ + ci,σc

†
i+1,σ

)
+
U

2

L∑
i=1

ni↑ni↓, (1.15)
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Figure 1.2: Schematic representing the periodic Bose–Hubbard chain. The
arrows indicate where the particles are allowed to jump to next.

where the c†i,σ and ci,σ are the fermion creation and annihilation operators of

spin σ at the i-th lattice site, and the ni,σ = c†i,σci,σ is the relevant number

operator. An extra factor of 1/2 is introduced on the interaction term in

order to make the comparison to the Bose–Hubbard system equation 1.14)

easier in section (2.3). It will be shown in section (2.4) that the features of

the Fermi–Hubbard model (with periodic boundary conditions) that I am

interested in can be explained by my analysis of the Bose–Hubbard model.

Therefore in the rest of this section, I will only focus on the Bose–Hubbard

model.

In order to find the energy eigenstates of this system, I proceed similarly

to the previous section, skipping right to the ansatz for the general N particle

sector.

I begin by making the same ansatz for the form of the Bethe wavefunction
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as in equation (1.9) except now I will allow multiple occupancy of sites:

∣∣ψ~k〉 =
∑

1≤n1≤...≤nN≤L

|n1, ..., nN〉
∑
σ∈SN

Aσ exp

(
i
N∑
j=1

kσjnj

)
. (1.16)

It turns out that this ansatz is only valid for N ≤ 2 as the Bose–Hubbard

model with arbitrary interaction energy U is not solvable by the Bethe Ansatz

for N ≥ 3 [17]. In short, this has to do with the fact that the Bethe ansatz

works by turning every interaction into a collection of two particle inter-

actions. This cannot be done when three or more bosons are on a single

site.

Checking the consistency of this wavefunction with the eigenstate re-

quirement of the Hamiltonian given by equation (1.14) for N = 2, we get

a similar expression as in the XXZ case (1.6) for the amplitudes Aσ. The

relevant phase factor between two permutations of the particles is given by

[18]:

eiθ =
sin(k1)− sin(k2)− iU/2
sin(k1)− sin(k2) + iU/2

. (1.17)

An interesting note is that the Fermi–Hubbard model is in fact solvable by

the Bethe Ansatz for N ≥ 3, but requires some extra technology known as

the ‘Nested Bethe Ansatz’ [19].

1.2.3 Lieb–Liniger: The Coordinate Bethe Ansatz in

the Continuum Limit

In this section, I will demonstrate how the coordinate Bethe ansatz can be

used not only to determine the spectrum for spins and particles on a lattice,

but also for particles in the continuum. For this, I will look at N bosons

on the real line interacting via a δ-potential (The Lieb–Liniger model). The

Hamiltonian takes the form:

Hc = −
N∑
j=1

∂2

∂x2
j

+ 2c
∑
j<l

δ(xj − xl). (1.18)
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We are interested in the case when the system is of a finite length L, with

periodic boundary conditions.

For c = 0 we have a system of free bosons, c > 0 we have bosons that

repel each other, and c < 0 we have bosons that attract each other.

To get an idea of how Bethe substitution [20] can be used to solve this

system, we begin by looking at the 2-particle case:

Hc = − ∂

∂x2
1

− ∂

∂x2
2

+ 2cδ(x1 − x2). (1.19)

We take advantage of bosonic symmetry to write a candidate eigenfunction

ψ(x1, x2):

ψ(x1, x2) = f(x1, x2)θ(x1 − x2) + f(x2, x1)θ(x2 − x1), (1.20)

where θ(x) is the Heaviside step function. Similar to the case on a lattice,

we look for solutions in the form of a superposition of plane waves:

f(x1, x2) = A12e
i(k1x1+k2x2) + A21e

i(k2x1+k1x2). (1.21)

Solving the eigenvalue equation [20], we get:

A12

A21

= eiθ(k1−k2) , θ(k) = π − 2 arctan

(
k

c

)
. (1.22)

We make the jump to the N particle case similarly to before; with full sym-

metrization of the wavefunction of the plane waves over x and k:

ψ(~x;Q) =
∑
σ∈SN

AσQ exp

(
i

N∑
j=1

kσjxj

)
, (1.23)

where Q is the particle ordering, corresponding to some simplex in R. For

this model, it is useful to introduce the domain 1 = {~x ∈ R|0 ≤ x1 < x2 <

... < xN ≤ L}. Note that if we know the wavefunction in one simplex, by

symmetry we know it everywhere. We will thus drop the Q dependence when

discussing a chosen ‘standard’ simplex, say, 1.

10



Following along similar lines to the last section, if two permutations σ and

τ differ by one transposition of indices, we have the two particle scattering

phase:
Aσ
Aτ

= eiθ(k−k
′) =

k − k′ + ic

k − k′ − ic
= −2 arctan

k

c
+ π, (1.24)

where k and k′ are the relevant momenta being interchanged. Like before, we

can then build up an arbitrary amplitude Aσ from Aid up to normalization

of ψ(~x):

Aσ = (−1)σ
∏
j<l

(kσj − kσl + ic). (1.25)

To find the allowed values for ~k, we must solve the Bethe equations. These

again come from the boundary conditions for the system. As before, we are

interested in periodic boundary conditions. We require that:

ψ(x1, x2, ..., xj + L, ..., xN) = ψ(x1, x2, ..., xj, ..., xN). (1.26)

To get the left hand side above, we must scatter particle j through every

other particle to get back to its starting position, and so it picks up a phase

equal to the sum of the phases associated to each scattering event. We also

pick up a dynamic phase of eikjL from travelling around a circle of length L.

This gives us the following equation:

Aσ = AσRe
ikσjL, (1.27)

where R{j, j + 1, ..., N, 1, 2, ..., j − 1} = {j + 1, ..., N, 1, 2, ..., j − 1, j}. This

in combination with equation (1.25) gives us the Bethe equations for this

system:

eikjL =
∏
l 6=j

(
kj − kl + ic

kj − kl − ic

)
. (1.28)

1.3 The Algebraic Bethe Ansatz

In this section I will introduce a more modern adaptation of the Bethe

Ansatz; The Algebraic Bethe Ansatz (ABA) [8, 20, 21]. The main use of
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the ABA is that systems that are solvable by the Bethe ansatz have a com-

monality; they possess many local integrals of motion. These integrals of

motion correspond to many symmetries within the system, which are then

exploited by the Bethe ansatz in order to exactly diagonalize the system.

The ABA gives us a way to generate an infinite set of commuting oper-

ators from the Yang-Baxter algebra of an object called a transfer matrix. If

these operators satisfy some further properties (local, self-adjoint), and one

of these operators is the Hamiltonian of some system, then we have along

with this Hamiltonian, an infinite set of local integrals of motion, hencefor-

ward referred to as ‘conserved charges’. The self-adjoint requirement is to

ensure that these operators are indeed observables, and the locality require-

ment comes from the nature of the Bethe ansatz; all interactions should be

decomposable into local 2-particle interactions.

Now, the existence of these commuting local observables doesn’t imply

that they are linearly independent, so integrability isn’t always implied; some

further analysis needs to be done.

Our main motivation for introducing the ABA in this thesis is because it

lends itself to the discussion of the conserved charges and ‘integrable states’

of the Lieb–Liniger model, which will be discussed in Chapter (3).

1.3.1 The Yang-Baxter Equation

We begin our description of the ABA with the introduction of what is known

as the ‘Yang-Baxter’ equation (YBE). Given 2 copies of the same Hilbert

space V1, V2, we want to look at operators R(u, v) on the tensor space V1⊗V2,

where u and v are complex parameters. We introduce a third copy of the

Hilbert space, V3, and use Ra,b to mean the operator on the tensor space

V1⊗ V2⊗ V3 that acts like R(u, v) on Va⊗ Vb, and trivially on the remaining

copy Vc. We say that R satisfies the Yang-Baxter equation (YBE) if:

R12(u, v)R13(u,w)R23(v, w) = R23(v, w)R13(u,w)R12(u, v). (1.29)

12



For our purposes we are interested in the case when R(u, v) = R(u−v). The

YBE then reads

R12(u− v)R13(u−w)R23(v−w) = R23(v−w)R13(u−w)R12(u− v). (1.30)

What kind of operators satisfy equation (1.30)? Certainly the identity op-

erator satisfies the YBE. The permutation operators between two Hilbert

spaces also offers a trivial example, ie, it is easy to check that;

P12P13P23 = P23P13P12. (1.31)

There are more examples offered in [8]. Why do we care about these R-

matrices? Well to find out why, we have to first introduce the RTT or ‘twist’

equation.

1.3.2 The Twist Equation

Consider some operators A(u), B(u), C(u), and D(u) that act on the Hilbert

space H of our system. We introduce a 2-dimensional auxiliary space V and

construct the ‘monodromy’ matrix T (u):

T (u) =

(
A(u) B(u)

C(u) D(u)

)
(1.32)

that acts on the space V ⊗H. We say that T (u) satisfies the RTT-relation,

or the ‘twist’ equation if;

R12(u− v)(T (u)⊗ I)(I⊗ T (v)) = (I⊗ T (v))(T (u)⊗ I)R12(u− v), (1.33)

where the space being acted on is V1 ⊗ V2 ⊗H, and R12(u− v) acts trivially

on H.

We now tie this all back to our aim: finding an infinite set of commut-

ing operators to describe some physical, integrable system. We define the

13



‘transfer matrix’ to be:

τ(u) = tr(T (u)) = A(u) +D(u). (1.34)

We can then expand τ(u) around some point u0 in the following way:

τ(u) =
∞∑
i=1

(u− u0)kQk. (1.35)

For reasons that will become apparent shortly, as with the choice of the R

and T operators, we want to tactically choose u0. We want to choose u0 so

that the Hamiltonian of some system we are interested in is equal to one of

the Qk. It turns out that if R is chosen to satisfy the YBE equation (1.30)

and T satisfies the resulting RTT-relation, then we get that [8]:

[Qn, Qm] = 0 ∀n,m ≥ 1, (1.36)

and so we have an infinite set of commuting operators. As mentioned previ-

ously, there are some more properties that these Qk need to satisfy to be of

any use to us: they need to be local, self-adjoint, and linearly independent

over C (or at least have an infinite linearly independent subset). If all of this

is fulfilled and we set one of the Qk to be the Hamiltonian of some quan-

tum system, then we have found a model with an infinite set of independent

conserved charges for our system, and should expect the system to thus be

integrable.

1.3.3 Conserved Charges in the Lieb–Liniger Model

The construction of the monodromy and transfer matrices for the Lieb Liniger

model is quite a tedious process full of calculations, and can be found in

superb detail in [21]. The result is that the conserved charges are given by

the following action on the Bethe states:

Qk |λ〉 =

(∑
i

λki

)
|λ〉 , (1.37)
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where the λi are the momenta describing the state |λ〉. We will see later

that the conserved charges of a system (specifically those invariant under

spatial reflection) are important when defining the ‘integrable states’ of an

integrable system [10]. These states only have non-zero overlaps with the

parity-symmetric eigenstates of the system (the eigenstates that are invariant

under spatial reflection).
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Chapter 2

Bound States in Lattice Models

Figure 2.1: Top: Periodic XXZ (interaction parameter is ∆), Bottom: Peri-
odic BH (interaction parameter is U) / Left: L=10, Right: L=20

In this chapter I will look at bound state occurrence in the eigenstates
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of two-particle lattice models. In the Hubbard models, this means that I

will be looking at double occupancy (DO) occurrence. To understand what

this means for the XXZ model, we first recall the Hamiltonian of the system

equation (1.3):

H∆ = −J
L∑
n=1

[
1

2

(
S+
n S
−
n+1 + S−n S

+
n+1

)
+ ∆SznS

z
n+1

]
.

By considering a Jordan-Wigner transformation of this system [22], we can

think of the Heisenberg chain as a lattice, with upspins corresponding to

empty sites on the lattice, and downspins corresponding to sites occupied by

fermions. The interaction parameter in this picture is now ∆.

In figure (2.1), I plot the nearest neighbour (PNN) and double occu-

pancy (PDO) probabilities for the eigenstates of the 2-particle XXZ and Bose–

Hubbard models, with varying numbers of sites. These probabilities are the

contributions to the overall wavefunction from the position eigenstates that

are nearest neighbours {|j, j + 1〉 |1 ≤ j ≤ L} for the XXZ model, and dou-

bly occupied {|j, j〉 |1 ≤ j ≤ L} for the Bose–Hubbard model. We see that

there are two types of eigenstates in both cases in figure (2.1): those in which

the probabilities rise to 1 at large values of the interaction parameter, and

those whose probabilities drop to 0. We refer to these states in the first

case as ‘bound states’ for obvious reasons, and those in the second case as

‘unbound states’. In the first part of this chapter, I will investigate these

features for the XXZ model using just momentum language. In section (2.2),

I review some unpublished work done by M. Brockmann [23] on describing

these features using the rapidity language of the system. In the third part,

I investigate these features for the Bose–Hubbard model, and in the final

part I explain why our investigation of the Bose–Hubbard model carries over

explaining the features of the Fermi–Hubbard model.
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2.1 XXZ Features from Momentum Language

In some situations, in order to make features of Bethe-solvable models eas-

ier to understand and explain, one re-paramaterizes the momenta of the

system in a way that makes the Bethe equations more manageable. These

re-paramaterized momenta are called rapidities. I will first derive a few re-

sults in canonical momentum language, and then later switch to rapidity

language to see if I can obtain more results, or if the algebraic structure

behind previous results becomes more clear.

Firstly, I will look at the maximum PNN(∆) a Bethe state with real

momenta can have. The square norm of a Bethe wavefunction |ψ〉 with real

momenta k1 and k2 is:

〈ψ|ψ〉 =
∑

1≤n1<n2≤L

∣∣ei(k1n1+k2n2+ 1
2
θ) + ei(k1n2+k2n1− 1

2
θ)
∣∣2, (2.1)

where θ = θ12 as defined in equation (1.6). Rearranging and simplifying, we

get:

L(L− 1)− 2
L−1∑
j=1

[
(L− j) cos (jk + θ)

]
, (2.2)

where k = k2 − k1. Since the periodic chain is translationally symmetric,

we only need to find L|〈1, 2|ψ〉|2 and divide it by the square norm to find

PNN(∆). Firstly;

|〈1, 2|ψ〉|2 = 2(1 + cos (k + θ)). (2.3)

Thus we can write PNN(∆) as:

2L(1 + cos (k + θ)

L(L− 1)− 2
∑L−1

j=1

[
(L− j) cos (jk + θ)

] . (2.4)

Using a large L approximation and simplifying, we get:

PNN(L,∆) =
2(1 + cos

(
k + θ

)
)

L
. (2.5)

Let’s examine the function cos
(
k + θ

)
. We have θ in terms of ∆, k and k
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from the Bethe equations:

cot(θ/2) =
−∆ sin

(
k/2
)

cos(k/2)−∆ cos
(
k/2
) . (2.6)

Using this, and some trig identities, we find that cos k + θ is equal to:

2∆(2 cos
(
k/2
)

cos(k/2)−∆)− cos
(
k
)
(1 + cos(k))

2∆(∆− 2 cos
(
k/2
)

cos(k/2)) + 1 + cos(k)
. (2.7)

For |∆| ≥ 1, define the function Υ∆(k, k) to be equal to the above expression

in (2.7).

If we define new variables u := cos(k/2) and u := cos
(
k/2
)
, our function

becomes:

Υ∆(u, u) =
∆(2uu−∆)− 2u2u2 + u2

∆(∆− 2uu) + u2
. (2.8)

where u and u are restricted to be between -1 and 1.

To maximize this function, we first analyse its gradient on its domain,

namely, [−1, 1]× [−1, 1]. We first solve the simultaneous equations:

1. ∂uΥ∆ = 0,

2. ∂uΥ∆ = 0.

First off;

∂uΥ∆ =
4u2(∆u+ u2∆u− u(∆2 + u2))

(∆2 − 2u∆u+ u2)2
. (2.9)

So we are looking for u such that 4u2(∆u+ u2∆u− u(∆2 + u2)) = 0. There

are three solutions: u = 0, u = ∆/u and u = ∆u

First, if u = 0 then Υ∆(0, u) = −1. This is clearly not the global max-

imum we are looking for as it is easy to show that our function takes on

positive values on its domain. Next, if u is on the interval [−1, 1] and u is

equal to ∆/u, then since we are only considering cases where |∆| ≥ 1, we

have no solution for u ∈ [−1, 1]. This leaves us with u = ∆u. To proceed,
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we must now take a look at the other partial derivative;

∂uΥ∆ =
4u∆(u2 − 1)(uu−∆)

(∆2 − 2∆uu+ u2)2
. (2.10)

Since we are considering the case u = ∆u, we are looking to solve the equation

4u(u2 − 1)2 = 0

There are three solutions: u = 0 and u = ±1. If u = 0, then u=0, and

we have already investigated this case. The last two solutions fall on the

boundary of the domain so we will come across them when we look at the

function on the boundary of its domain.

We then move onto four one-dimensional maximization problems, ie, max-

imizing the following one-dimensional functions:

A. f1(u) := Υ∆(1, u)

B. f2(u) := Υ∆(−1, u)

C. f1(u) := Υ∆(u, 1)

D. f2(u) := Υ∆(u,−1).

Figure 2.2: L=10 (left) and L=20 (right) nearest neighbour occupancy data
(blue) plotted with max curve for real momenta (red)
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The first function has one critical point in its domain at u = 1/∆ and achieves

the value 2/∆2 − 1.

The second function has one critical point in its domain at u = −1/∆

and achieves the value 1−2/∆2. Note that for values of |∆| ≥ 1, we get that

1− 2/∆2 ≤ 2/∆2 − 1.

The last two functions do not have critical points in their domain.

Lastly, we must check the edge points of the domain. All of Υ∆(1, 1),

Υ∆(1,−1), Υ∆(−1, 1), Υ∆(−1,−1) evaluate to -1. Note that −1 ≤ 2/∆2− 1

for all values of |∆| ≥ 1.

So overall we get that for |∆| ≤ 1, the maximum value of Υ∆ is 2/∆2−1.

Since Υ∆ is a real cosine function (cos
(
k + θ

)
, namely), it is always bounded

above by by 1. We will use this as an upper bound for Υ∆ when |∆| ≤ 1

Therefore we get that:

cos
(
k + θ

)
= Υ∆(k, k) ≤

1 if 0 < ∆ < 1

2/∆2 − 1 if |∆| ≥ 1.
(2.11)

This in turn gives us an upper bound on PNN(L,∆):

PNN(L,∆) ≤

4/L if 0 < ∆ < 1

4/(L∆2) if |∆| ≥ 1.
(2.12)

Graphing this curve onto our plot for the L=20 data, we see in figure (2.2)

that the curve of maximum probability for states with real Bethe momenta

matches up with the numerical data.

2.2 XXZ Features from Rapidity Language

We consider the same system as before, but now we will use rapidity (a

re-parameterization of the momenta) language to derive some results about

PNN(∆). We distinguish three different cases: planar (|∆| < 1), isotropic
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(∆ = 1), and axial (∆ > 1). We focus on the planar case which is, in

our context, the most difficult one. All presented calculations can be easily

transferred to the isotropic and axial cases.

Like before, the Bethe ansatz [14] yields the eigenstates of the Hamilto-

nian equation (1.3), which are called Bethe states. We will use the rapidities

{λj}dj=1 to label the states. The rapidities in terms of the momenta of state

are given below in equation (2.16).

|{λj}dj=1〉 =
∑

1≤n1<...<nd≤L

|n1, ..., nd〉
∑
σ∈Sd

Aσ

d∏
j=1

eikσjnj . (2.13)

The amplitudes Aσ and the momenta ki as well as the energy E of a Bethe

state depend on the parameters λi, i = 1, . . . , d, and can be written as follows:

Aσ = sgn(σ)
d∏

i,j=1
i>j

exp

(
i θ(λσi − λσj)

2

)
, (2.14)

θ(λ) = 2 arctan

[
tanh(λ)

tan(γ)

]
, (2.15)

kj = k(λj) , k(λ) = −i ln

[
sinh

(
λ+ iγ

2

)
sinh

(
λ− iγ

2

)] , (2.16)

E = −
d∑
j=1

2 sin2(γ)

sinh
(
λj + iγ

2

)
sinh

(
λj − iγ

2

) , (2.17)

where the parameter γ is related to the anisotropy via ∆ = cos(γ). The

rapidities λj, j = 1, . . . , d, satisfy the so-called Bethe equations(
sinh

(
λj + iγ

2

)
sinh

(
λj − iγ

2

))L

= −
d∏

k=1

sinh(λj − λk + iγ)

sinh(λj − λk − iγ)
. (2.18)

There are different types of solutions of these equations [14, 24, 25], which

are called strings. To find solutions to these equations in the large L limit,

we note that we have two main cases:

1. The LHS of equation (2.18) has unit magnitude for either (and as a sim-
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ple result, both) of the rapidities. This corresponds to both rapidities

being real.

2. The LHS of equation (2.18) does not have unit magnitude for one of

(and again, as an easy result, both of) the rapidities. In the large L

limit, the LHS of equation (2.18) either vanishes, or diverges to infinity.

If we look at the Bethe equations in this case, we get that the RHS in

both cases yields either 0 or ∞, giving us two solutions;

λ1,2 = λ± inπ

2
∓ iγ

2
∓ iδ (2.19)

where n ∈ Z, but we need only consider n = 0, 1 for the domain of our

solutions. Also, δ ∈ C are small deviations at finite L.

We proceed first by finding the ‘PNN ’ of a general eigenstate. We do this

by calculating L 〈L− 1, L|ψ〉 (since our system is translationally symmet-

ric) and then dividing by the norm of |ψ〉. Suppose our state |ψ〉 is given

by the rapidities λ1, λ2. We will use |{λ1, λ2}〉 to denote this state. The

‘unnormalised;’ probability is given by:

P̃NN(λ1, λ2,∆) := L|〈L− 1, L|{λ1, λ2}〉|2. (2.20)

We will then investigate the above expression for different string-type solu-

tions. As an intermediate step we obtain

P̃NN(λ1, λ2,∆) = L(Aide−ik1 + A(12)e
−ik2) , (2.21)

where we used that eiLk1eiLk2 = 1, which can be seen by multiplying the two

Bethe equations (2.18) for λ1 and λ2. The two amplitudes can be written as

(up to a trivial global phase)

A id = (1 + ei(k1+k2) − 2∆eik1)/A , (2.22)

A(12) = −(1 + ei(k1+k2) − 2∆eik2)/A , (2.23)

where A = |sin(2γ)K1K2/K12|1/2 with Kj = Kγ/2(λj), Kjk = Kγ(λj − λk),
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where Kα(λ) = sin(2α)/[sinh(λ+ iα) sinh(λ− iα)]. Using relation (2.16) for

the momenta p1,2, P̃NN(λ1, λ2,∆) can be further simplified to

P̃NN(λ1, λ2,∆) = L|e−ik1 + eik2 − e−ik2 − eik1|2/A2

= L| sinh(2λ1)K1 − sinh(2λ2)K2|2/A2 . (2.24)

Note that the state in equation (2.13) is not normalized. To switch from

P̃NN to PNN we have to divide by the square of the norm of a Bethe state.

It is given by (up to a trivial, unimportant phase) [26, 27]

N 2 = detM

[
δjk

(
L−

M∑
l=1

Kjl/Kj

)
+Kjk/Kj

]
. (2.25)

For M = 2 this simplifies to

|N |2 = |L2 − LK12(K−1
1 +K−1

2 )| . (2.26)

We finally obtain

PNN(λ1, λ2,∆) = L
|K12| | sinh(2λ1)K1 − sinh(2λ2)K2|2

| sin(2γ)| |L2K1K2 − LK12(K1 +K2)|
. (2.27)

This expression is explicit in λ1 and λ2 and is the main result of this section.

It gives the probability of finding two adjacent downspins in a Bethe state

|{λ1, λ2}〉. It can be easily generalized to the axial case by replacing λ→ iλ

and γ → iη (also in the Bethe equations). To summarize, for a fixed value

of ∆, i.e. ∆ = cos(γ) for the planar or ∆ = cosh(η) for the axial case, we

solve Bethe equations (2.18) in order to obtain values for λ1 and λ2 and

subsequently plug them in into equation (2.27) to compute the probability

PNN .

2.2.1 Real Rapidities

Let us look at the first case of solutions for (2.18). We first investigate

the subset of solutions for which λ1 = −λ2 = λ. The first term of the
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sum in the denominator of equation (2.27), which is proportional to L2,

dominates in the limit of large L the second term proportional, which is

only proportional to L. This is even more pronounced for large rapidities λ.

Defining P1(λ,∆) = PNN(λ,−λ,∆) we easily find

P1(λ,∆) =
4 sinh2(2λ)

L(sinh2(2λ) + sin2(γ))
+O(L−2) . (2.28)

which has a γ-independent upper bound, P1(λ,∆) ≤ 4/L. A numerical

analysis for different system sizes L (not too small) shows that states with

λ1 6= −λ2 always have smaller values PNN(λ1, λ2,∆) ≤ P1(λmax,∆). A

generalization to ∆ = cosh(η) > 1 is straightforward and yields

P1(λ,∆) ≈ 4 sin2(2λ)

L(sin2(2λ) + sinh2(η))
. (2.29)

However, the argument leading to an upper bound of P1 has to be modified

since the real rapidities λ1, λ2 are from the interval (−π/2, π/2] and hence

bounded for ∆ > 1. The expression for P1 is maximal if λ = π/4. Therefore,

P1(λ,∆) ≤ 4

L(1 + sinh2(η))
=

4

L∆2
. (2.30)

Together,

P1(λ,∆) ≤ Pmax =
4

L

{
1 for |∆| ≤ 1

∆−2 for ∆ > 1 .
(2.31)

Which is the same upper bound we got when looking at these states in the

momentum picture.

2.2.2 Complex Rapidities

Let us now consider the second case of solutions for (2.18). For any even

L there is one special solution of (2.19) with n = 0, for which λ and the

deviation δ are exactly zero. The corresponding Bethe equations are singular.
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Figure 2.3: Numerical results (blue) plotted with P
(n)
2 (red) from ∆ = ∆n to

∆ = 5. L = 6 on the left and L = 10 on the right

However, the state can be computed as [14, 28, 29]

|{iγ/2,−iγ/2}〉 =
1√
L

L∑
j=1

(−1)j |j, j + 1〉 . (2.32)

It easily follows that PNN(iγ/2,−iγ/2,∆) = 1, which is independent of

anisotropy ∆. The other solutions can be treated as follows. For large L the

deviation δ is exponentially small and hence K12 ≈ −1/ sin(2δ). Therefore,

the second term of the sum in the denominator of equation (2.27) dominates.

The sum K1 +K2 can be computed in the limit δ → 0 as

K1 +K2 = K γ
2
(λ+ iγ

2
) +K γ

2
(λ− iγ

2
) = Kγ(λ) , (2.33)

and the difference in the numerator yields

sinh(2λ+ iγ)K1 − sinh(2λ− iγ)K2 = sin(γ)Kγ(λ) . (2.34)
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Together, defining P2(λ,∆) = PNN(λ + iγ
2
, λ − iγ

2
,∆) for 2-string states, we

obtain

P2(λ,∆) =
sin2(γ)Kγ(λ)

sin(2γ)
=

sin2(γ)

sinh2(λ) + sin2(γ)
. (2.35)

Using ∆ = cos(γ) and some trigonometric relations, this result can be also

expressed in terms of the energy E and the total momentum k = k1 + k2 of

the 2-string state [7],

P2(∆) = − E

4∆
= − 1

4∆

sin(γ)

sin(2γ)
(cos(k)− cos(2γ))

= 1− cos2(k/2)

∆2
. (2.36)

From the condition P2 ≥ 0 the end points of the different branches P
(n)
2 =

P2(λ(kn),∆), kn = π − 2πn/L, n = −L/2 + 1, . . . , L/2, as function of

anisotropy can be derived: ∆ ≥ ∆n = | sin(πn/L)|. The generalization to

∆ ≥ 1 is straightforward and yields exactly the same expression (2.36). The

branches P
(n)
2 with their endpoints ∆n are shown in figure (2.3) for L = 6, 10.

Note that the branch P
(n)
2 is degenerate with P

(L−n)
2 for all n = 1, . . . , L/2.

The branch P
(0)
2 = 1, i.e. k = π or λ = 0, corresponds to the aforementioned

special solution λ1 = −λ2 = iγ/2 and gives an upper bound for P2(∆),

whereas n = L/2, i.e. a 2-string with center at π/2 corresponding to total

momentum k = 0, gives a lower bound, P2(∆) ≥ 1− 1/∆2 for all ∆ ≥ 1.

2.3 Bose–Hubbard Features from Momentum

Language

Here we move on to look at the Bose Hubbard model with two bosons in L

sites. Recall the Hamiltonian from equation (1.14):

HBH =
∑

0≤i≤L

(
b†ibi+1 + bib

†
i+1

)
+
U

2

L∑
i=1

ni(ni − 1).
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In section (2.3) we found that the eigenstates of this Hamiltonian are of the

form:

|Ψ〉 =
∑

1≤n1≤n2≤L

(
ei(k1n1+k2n2) + ei(k1n2+k2n1+θ)

)
|n1, n2〉 , (2.37)

where the Bethe equations for the model are:

eiθ =
sin(k1)− sin(k2)− iU/2
sin(k1)− sin(k2) + iU/2

. (2.38)

We can rewrite this using k = k1 + k2 and k = k2 − k1:

eiθ =
2 cos(k/2) sin

(
k/2
)

+ iU/2

2 cos(k/2) sin
(
k/2
)
− iU/2

. (2.39)

We now turn our attention to finding the maximum of the ‘Double Occu-

pancy’ probability for eigenstates where both bosons have real momenta.

This comes down to calculating:∑L
i=1 〈i, i|Ψ〉

2

〈Ψ|Ψ〉
=
L 〈1, 1|Ψ〉2

〈Ψ|Ψ〉
. (2.40)

due to translational symmetry thanks to the periodic boundary conditions.

Now;

〈1, 1|Ψ〉2 = |ei(k1+k2) + eiθei(k2+k1)|2 = |eik|2|1 + eiθ|2 = |1 + eiθ|2

as k is real, and:

〈Ψ|Ψ〉 =
∑

1≤n1≤n2≤L

|ei(k1n1+k2n2+θ) + ei(k1n2+k2n1)|2

= 2
∑

1≤n1≤n2≤L

(
1 + cos

(
(n1 − n2)k − θ

))
. (2.41)

We get that for large L approximation;

〈Ψ|Ψ〉 ≈ 2L2 (2.42)
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and so:

PDO(L,U) ≈ 1 + cos(θ)

L
. (2.43)

Now we need to find the maximum of this function. It should be clear that

we need to maximize the cosine function in the above expression. We know

that cos(θ) = Re(eiθ) and so;

cos(θ) = Re

(
2 cos(k/2) sin

(
k/2
)

+ iU/2

2 cos(k/2) sin
(
k/2
)
− iU/2

)

=
4 cos2(k/2) sin2(k/2)− U2/4

4 cos2(k/2) sin2(k/2) + U2/4
(2.44)

as k and k are both real.

We are looking to maximize the function;

ΥU : [0, 1] × [0, 1] −→ R : (x, y) 7−→ 4xy − U2/4

4xy + u2/4
. (2.45)

This function has no critical points on its interior, and obtains a global max

at x = y = 1;

ΥU ,max =
4− U2/4

4 + U2/4
=

16− U2

16 + U2
, (2.46)

which gives us the following result;

PDO(L,U) ≤ 32

L(16 + U2)
. (2.47)

We plot this maximum curve against the L=20 data in figure (2.4).

2.4 Brief Discussion of the Fermi–Hubbard

model

Recall the Hamiltonian from equation (1.15):

HFH =
∑
σ∈{↑↓}

∑
0≤i≤L

(
c†i,σci+1,σ + ci,σc

†
i+1,σ

)
+
U

2

L∑
i=1

ni↑ni↓.
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Figure 2.4: L=10 (left) and L=20 (right) double occupancy data (blue) plot-
ted with max curve for real momenta (red)

HFH can be block diagonalized over our Hilbert space H = H1

⊕
H2 where

H1 has basis:

B1 = {|nσ,mσ〉 |1 ≤ n < m ≤ L, σ ∈ {↑, ↓}}, (2.48)

and H2 has basis:

B2 = {|nσ,mσ〉 |1 ≤ n ≤ m ≤ L, σ ∈ {↑, ↓}} (2.49)

(where ↑ =↓ and ↓ =↑).
This block diagonal action comes from the fact that HFH contains no spin

flips.

If we put HFH into block diagonal form HFH = H1

⊕
H2 where H1 acts

on H1 and H2 acts on H2, then it should be clear that the double occupancy

probability of any state in H1 is always zero. So we are only interested in

the space H2.

If we take a look at H2, we notice it has dimension L2. We define a new
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basis B′2 for H2:

B′2 = B+
2 t B−2 t B0

2, (2.50)

where

B+
2 =

{ 1√
2

(|n↑,m↓〉+ |n↓,m↑〉)
∣∣∣1 ≤ n < m ≤ L

}
, (2.51)

B−2 =
{
φnm =

1√
2

(|n↑,m↓〉 − |n↓,m↑〉)
∣∣∣1 ≤ n < m ≤ L

}
, (2.52)

and

B0
2 =

{
φnn = |n↑, n↓〉

∣∣∣1 ≤ n ≤ L
}
. (2.53)

It can easily be shown that H2 can be block–diagonalized via actions on the

subspaces Sp(B+
2 ) and Sp(B0

2 ∪B−2 ). We can thus write H2 as the block diag-

onal sum H+
2

⊕
H−,02 which act respectively on the two subspaces mentioned

above. Looking at B+
2 , it should be clear that all states in Sp(B+

2 ) always

have zero double occupancy probability. We thus turn our attention purely

to Sp(B0
2 ∪ B−2 ).

We first notice that the dimension of the Hilbert space Span(B− ∪ B0)

is L(L + 1)/2, which is the same as the dimension of the Hilbert space for

the Bose Hubbard model with ‘L’ sites. Furthermore, if we define ψnm =

b†nb
†
m |vac〉 where n ≤ m for basis states of our Bose–Hubbard model in

equation (1.14), then it is easily verified that:

〈ψn′m′ |HBH |ψnm〉 = 〈φn′m′ |H−,02 |φnm〉 , (2.54)

where the φ’s are defined above.

As a result, it follows that the Double-Occupancy probabilities for the

Fermi–Hubbard model follow those of the Bose–Hubbard model, with the

extra L(L− 1) extra states that we disregarded earlier having constant zero
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probability. I verified directly that this indeed the case.

2.5 Conclusion

In this chapter, I showed that the Bethe ansatz can be used to describe

bound state occurrence in the 2-particle sector of various integrable 1D lat-

tice models. I found contrasting expressions for the maximum ‘bound state

probability’ curve for real momenta in the XXZ and Bose Hubbard models,

namely:

PNN(L,∆) ≤

4/L if 0 < ∆ < 1

4/(L∆2) if |∆| ≥ 1

for the XXZ, and

PDO(L,U) ≤ 32

L(16 + U2)

for the Bose–Hubbard.

Also, rapidity language was used to re-derive the above expression for the

XXZ model, as well as fully characterise the ‘bound state probability’ curves

that rise to 1 as |∆| → ∞ in equation (2.36).

Finally, I showed that my analysis of the bound state probabilities in

the Bose–Hubbard model was sufficient to fully describe those in the Fermi–

Hubbard model. Although the Hilbert space of the Fermi–Hubbard model is

larger than that of the Bose–Hubbard model, we are able to split the Fermi–

Hubbard Hilbert space into two. The bound state probabilities of the first

subspace is constantly zero for all states (due to the Pauli exclusion principle),

and the bound state probabilities of the second subspace are identical to those

of the Bose–Hubbard model.

Apart from the unsolvability of the Bose–Hubbard model by the Bethe

ansatz for more than two particles, it is not clear how to define analogous

bound states in these models with more than two particles. Do we look

for contributions from position eigenstates in which just two particles are

‘bound’ (nearest neighbour/double occupancy)? Or maybe we want all the
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particles on the lattice to be ‘bound’? This needs to be decided before these

results are studied in the fixed density thermodynamic limit.
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Chapter 3

Quench Overlaps in the

Lieb–Liniger Model

In this chapter I will present calculations of the overlaps of two different ‘ro-

tating’ Bose-Einstein condensates with parity-symmetric eigenstates of the

Lieb–Liniger model. I start the chapter with some background and moti-

vation for these calculations. The main motivation is for the use of these

overlaps in various ‘quenching’ scenarios (using the quench action [30] to

time-evolve local operators, for example). I then introduce the ‘conserved

charges’ of the Lieb–Liniger model (see section (1.3.3)), and how I use these

(along with the parity-symmetric eigenstates) to introduce the ‘integrable

states’ [10] of our system. I then begin the calculation with the 2-particle

case. I use this to then guide the method of calculation for the general N-

particle case. I finish the chapter with a short comparison of the overlaps for

the two different BECs.

3.1 The Quench Method

We will begin this chapter by introducing the notion of ‘quenches’ [30, 31] in

quantum systems. The main idea stems from seeing how a ‘generic’ initial
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state |ψ(t)〉 evolves under a given Hamiltonian:

|ψ(t)〉 = e−iHt |ψ(t = 0)〉 . (3.1)

How does one generate a ‘generic’ initial state? First of all, we obviously

don’t want to pick an eigenstate of H as this has trivial evolution under the

unitary operator e−iHt. Instead we want a state that is almost certainly not

an eigenstate of H. One way to do this is to vary the interaction parameter

in the Hamiltonian (if it has one).

To demonstrate this, let |ψ0〉 be an eigenstate of our free Hamiltonian

H0. We then choose a value of our interaction parameter |c| > 0 and expand

|ψ0〉 in the eigenbasis of this new Hamiltonian H with eigenbasis {φ}:

|ψ0〉 =
∑
φ

〈φ|ψ0〉 |φ〉 =
∑
φ

e−Sφ |φ〉 , (3.2)

where Sφ = − ln 〈φ|ψ0〉. We can now easily evolve |ψ0〉 under the Hamiltonian

with interaction:

e−iHt |ψ0〉 =
∑
φ

e−Sφ−iεφt |φ〉 , (3.3)

where εφ is the eigenenergy corresponding to the Bethe state |φ〉. So one can

see that these overlaps are key to calculating the time evolution of operators

acting on a generic state.

For example, recall the Lieb–Liniger Hamiltonian equation (1.18):

Hc = −
N∑
j=1

∂2

∂x2
j

+ 2c
∑
j<l

δ(xj − xl). (3.4)

We could look at the free Hamiltonian Hc=0 for t < 0 and choose an

eigenstate of this Hamiltonian. Then at t = 0, we instantaneously switch on

interaction to some value |c| > 0. This eigenstate of the free Hamiltonian

will clearly not be an eigenstate of our new Hamiltonian with interactions

turned on.
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3.2 Conserved Charges and Integrable States

Let {Ql}l∈N be the set of conserved charges of the Lieb–Liniger Hamiltonian

(recall conserved charges of a Bethe system from section (1.3.3)). The action

of the Ql’s on the Bethe states is simple:

Ql |λ1, ..., λN〉 =

(
N∑
j=1

λlj

)
|λ1, ..., λN〉 . (3.5)

Note: It’s easy enough to show that |λ〉 is parity symmetric ⇐⇒ Q2l+1 |λ〉 =

0 for all l.

We say a state |ψ〉 is integrable [10] if all conserved charges that are odd

under spatial reflection annihilate it:

Q2l+1 |ψ〉 = 0, l = (0, 1, 2, ...).

Say we have an integrable state |ψ〉 and define αl =
∑N

j=1 λ
2l+1
j . Then:

αl 〈ψ|λ〉 = 〈ψ|Q2l+1λ〉 = 〈λ|Q2l+1ψ〉∗ = 0.

We have two cases:

1. If |λ〉 is parity symmetric, αl = 0 for all l, and thus 〈ψ|λ〉 can be

non-zero.

2. If |λ〉 is non-parity symmetric, then there exists l such that αl is non

zero, and thus 〈ψ|λ〉 = 0.

If instead |ψ〉 is not an integrable state, then we no longer get the require-

ment that 〈ψ|λ〉 = 0 when |λ〉 is non-parity symmetric.

Let’s continue the discussion of conserved charges and integrable states.

For lattice models, typically Qj is a sum along the chain of local operators

spanning j sites, so Qj is only physically meaningful for j < N where N is

the total number of sites, and thus to check if a state is integrable, one only

needs to check the action of Q2l+1 on |ψ〉 for 2l + 1 ≤ N .
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In our case, in order to show that, we need only check Q2l+1 for 2l+1 < N

to determine whether a state is integrable, it is sufficient to show that if

we define pl(z) =
∑

j z
l as the l-th power sum of some complex variables

z1, ..., zN where N is even, then:

p2l+1(z) = 0 ∀ 2l + 1 < N =⇒ p2l′+1(z) = 0 ∀ 2l′ + 1 > N. (3.6)

The proof of this is given in appendix A.

3.3 Overlaps with Parity Symmetric States

We now look at the overlaps of 2 specific counter-rotating BECs [32, 33]

with parity-symmetric Bethe states, ie, Bethe States whose momenta come

in opposite-sign pairs: |λN〉 =
∣∣λN/2,−λN/2

〉
. I will be using methods

found in [33] and [34]. What I will hopefully illustrate, is that these two

initial states are actually the same - provided we project them onto the

space spanned by these parity symmetric Bethe states. A quick note: while

I was working on this problem, the (at the time, pre-print, but now fully

published paper) [33] was updated to include this very calculation for one of

the initial BEC states I was looking at. This new calculation for the other

initial state however, is to my knowledge new, as is the comparison between

the two BEC states.

3.3.1 The BEC Initial States

We first begin by writing the oppositely-rotating BEC in 2nd quantization.

In this form we can easily see how both BECs achieve bosonic symmetry in

different ways.

The counter-rotating BEC takes the form:

|ψ1〉 =
1

2N/2
(a†k + a†−k)

N |0〉 , (3.7)
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while the fragmented BEC in 2nd quantization looks like:

|ψ2〉 = (a†k)
N/2(a†−k)

N/2 |0〉 . (3.8)

Note that |ψ1〉 can be constructed for the Lieb–Liniger model for any number

of bosons, while |ψ2〉 requires that we have an even number of bosons.

For calculations in this manuscript, we’ll need to use first quantization:

〈x|ψ1〉 =
1√

(2L)N

N∏
i=1

(
eikxi + e−ikxi

)
, (3.9)

〈x|ψ2〉 =
1

(N/2)!
√
N !LN

∑
σ∈SN

eik·σx, (3.10)

where k = {+k,−k, ...,+k,−k}. I will use Cψ
N to mean the relevant normal-

ization factors for a state |ψ〉 above. For |ψ1〉 it will mean 1/
√

(2L)N and

for |ψ2〉 it will mean 1/[(N/2)!
√
N !LN ].

3.3.2 The Bethe States of Our System with Interaction

The calculations of the Bethe states for the Lieb–Liniger model can be found

in section (1.2.3). I will write the main results here:

〈xN |λN〉 =
cN/2√
N !

∑
σ∈SN

Aσ exp

(
i
∑
j

λσ(j)xσ(j)

)∏
j>l

, (3.11)

where:

Aσ =
∏
j>l

(
1− ic sgn(xj − xl)

λσ(j) − λσ(l)

)
. (3.12)

The norms of these states are given by the Gaudin formula [27]:

〈λN |λN〉 = cN
∏
j 6=l

f(λj, λl) detG, (3.13)
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where G is given by:

Gjk = δjk

(
L+

N∑
l=1

ϕ(λj − λl)

)
− ϕ(λj − λk), (3.14)

f(λ1, λ2) is given by:

f(λ1, λ2) =
λ1 − λ2 + ic

λ1 − λ2

, (3.15)

and ϕ(λ) is given by:

ϕ(λ) =
2c

λ2 + c2
. (3.16)

3.3.3 Parity Symmetric Bethe States

We can further simplify the expression for the norm of a Bethe state if we

assume that the state is parity symmetric [33]:

|λN〉 = |λ+
1 ,−λ+

1 , ..., λ
+
N/2,−λ

+
N/2〉 = |λ+

N/2,−λ
+
N/2〉 . (3.17)

The norm in this case || |λ+
N/2,−λ

+
N/2〉 ||2 can be written as:

cN
N/2∏
j=1

f(λ+
j ,−λ+

j )f(−λ+
j , λ

+
j )

∏
1≤j<k≤N/2

[f(λ+
j , λ

+
k )]2 detG+ detG−, (3.18)

where:

f(λ+
j , λ

+
k ) = f(λ+

j , λ
+
k )f(λ+

j ,−λ+
k )f(λ+

j ,−λ+
k )f(−λ+

j ,−λ+
k ), (3.19)

and G± are N/2×N/2 matrices given by:

G±jk = δjk

L+

N/2∑
l=1

ϕ+(λ+
j , λ

+
l )

− ϕ±(λ+
j , λ

+
k ). (3.20)
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3.3.4 Explicit Overlap calculation for N=2

Let |ψ〉 be one of |ψ1〉, |ψ2〉, and let 1 be the simplex given by 0 < x1 < x2 <

L. The overlap of the unnormalized Bethe state |λ1, λ2〉 with the BEC initial

state |ψ〉 takes the following form:

2c√
2Cψ

2

∑
σ∈S2

s∈Sgnψ2

f(λσ1 , λσ2)

∫
1

dx2dx1 exp

[
i
∑
j

(λσj + sjk)xj

]
, (3.21)

where Cψ
N is the normalisation factor associated to the BEC state |ψ〉 with

N particles, and SgnψN is a subset of {±}N that depends on the choice of

initial state |ψ〉. For example, using the definitions of |ψ1,2〉 from equations

(3.9), (3.10), we have that Sgn1
2 = {(+,−), (−,+)} and Sgn2

2 = {±} × {±}.
Next, it is useful to introduce the following integral:

BN(α1, ..., αN) =

∫
1

dxNdxN−1...dx1 exp

[
i
∑
j

αjxj

]
. (3.22)

We can easily calculate this for N = 2:

B2(α1, α2) =

∫ L

0

dx2

∫ x2

0

dx1 exp [i(α1x1 + α2x2)] (3.23)

=
1

iα1

∫ L

0

dx2 [exp [ix2(α1 + α2)]− exp [iα2x2]] (3.24)

=
1

iα1

[
eiL(α1+α2) − 1

i(α1 + α2)
− eiLα2 − 1

iα2

]
. (3.25)

Substituting λσj + sjk for αj we get the following expression for

B(λσ1 + s1k, λσ2 + s2k):

1

iλσ1 + s1k

[
eiL(λσ1+s1k+λσ2+s2k) − 1

i(λσ1 + s1k + λσ2 + s2k)
− eiL(λσ2+s2k) − 1

iλσ2 + s2k

]
. (3.26)

Since k is quantised via the periodic boundary condition eikL = 1 we can
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rewrite the above expression as:

1

i(λσ1 + s1k)

[
eiL(λσ1+λσ2 ) − 1

i(λσ1 + λσ2 + (s1 + s2)k)
− eiLλσ2 − 1

i(λσ2 + s2k)

]
. (3.27)

I claim (due to momentum conservation) that the only non-zero terms in the

s = ± sum after the parity limit λ2 → −λ1 = −λ is taken are those where

the number of λ+k match the number of λ−k. I will show this explicitly for

the N = 2 case. So we will consider a term where s1 = s = s2, and then take

the parity invariant Bethe state λ2 → −λ1. We must calculate the sum:∑
σ∈S2

f(λσ1 , λσ2)B(λσ1 + sk, λσ2 + sk). (3.28)

First note that we can simplify B(λσ1 + sk, λσ2 + sk) to get:

1

i(λσ1 + sk)

[
eiL(λσ1+λσ2 ) − 1

i(λσ1 + λσ2 + 2sk)
− eiLλσ2 − 1

i(λσ2 + sk)

]
. (3.29)

Note that when we take λσ2 → −λσ1 the first term vanishes and we get:

B(λσ1 + sk, λσ2 + sk) =
e−iLλσ1 − 1

(λσ1 + sk)(−λσ1 + sk)
. (3.30)

So we can now calculate equation (3.28):

∑
σ∈S2

f(λσ1 , λσ2)B(λσ1 + sk, λσ2 + sk) =

1

(λ1 + sk)(−λ1 + sk)
[f(λ1, λ2)(a2 − 1) + f(λ2, λ1)(a1 − 1)] (3.31)

where we defined aj = eiλjL.
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Now, we know that the Bethe equations can be written as [20]:

aj =
∏
l 6=j

f(λj, λl)

f(λl, λj)
, (3.32)

so equation (3.31) can be written as

1

(λσ1 + sk)(−λσ1 + sk)

×
[
f(λ1, λ2)

(
f(λ2, λ1)

f(λ1, λ2)
− 1

)
+ f(λ2, λ1)

(
f(λ1, λ2)

f(λ2, λ1)
− 1

)]
, (3.33)

which vanishes as expected, so we need only calculate the (+,−), (−,+)

terms in the ‘s’ sum. More generally for larger N later, we need only care

about the subset {s ∈ Sgnψ|
∑

j sj = 0} when we sum over Sgnψ. Now onto

the case where s1 = s = −s2. We must find the sum:∑
σ∈S2

f(λσ1 , λσ2)B(λσ1 + sk, λσ2 − sk). (3.34)

We first calculate the B term:

B(λσ1 +sk, λσ2−sk) =
1

i(λσ1 + sk)

[
eiL(λσ1+λσ2 ) − 1

i(λσ1 + λσ2)
− eiLλσ2 − 1

i(λσ2 − sk)

]
. (3.35)

Taking λσ2 → −λσ1 we must be careful of the pole in the first term. We

expand the numerator to linear order in λσ1 + λσ2 and get a cancellation on

top and bottom. We can thus write equation (3.35) as:

1

i(λσ1 + sk)

[
L− eiLλσ2 − 1

i(λσ2 − sk)

]
=

1

i(λσ1 + sk)

[
L+

aσ2 − 1

i(λσ1 + sk)

]
. (3.36)

Now we can write the sum over S2 as:

L

[
f(λ1,−λ1)

i(λ1 + sk)
+

f(−λ1, λ1)

i(−λ1 + sk)

]
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− (a2 − 1)f(λ1,−λ1)

(λ1 + sk)2
− (a1 − 1)f(−λ1, λ1)

(λ1 − sk)2
. (3.37)

and using equation (3.32) this becomes:

L

[
f(λ1,−λ1)

i(λ1 + sk)
+

f(−λ1, λ1)

i(−λ1 + sk)

]
+
f(λ1,−λ1)− f(−λ1, λ1)

(λ1 + sk)2
+
f(−λ1, λ1)− f(λ1,−λ1)

(λ1 − sk)2
. (3.38)

Now we sum over s = ±1 to get:

L

[
f(λ1,−λ1)

i(λ1 + k)
+
f(−λ1, λ1)

i(−λ1 + k)
+
f(λ1,−λ1)

i(λ1 − k)
+
f(−λ1, λ1)

i(−λ1 − k)

]
(3.39)

(all other terms cancel out in the s sum).

= L

[
f(λ1,−λ1)− f(−λ1, λ1)

i(λ1 + k)
+
f(λ1,−λ1)− f(−λ1, λ1)

i(λ1 − k)

]
(3.40)

= −iL [f(λ1,−λ1)− f(−λ1, λ1)]

[
1

λ1 + k
+

1

λ1 − k

]
. (3.41)

Now;

f(λ1,−λ1)− f(−λ1, λ1) =
2λ1 + ic

2λ1

+
2λ1 − ic

2λ1

=
ic

λ1

,

and:
1

λ1 + k
+

1

λ1 − k
=
λ1 − k + λ1 + k

λ2
1 − k2

=
2λ1

λ2
1 − k2

.

So equation (3.41) becomes:
2cL

λ2
1 − k2

, (3.42)

and using equation (3.21) we get that the overlap of our initial state |ψ〉 with

the unnormalized Bethe state |λ1, λ2〉 is:

〈ψ|λ1,−λ1〉 =
2L

Cψ
N

√
2c2

λ2
1 − k2

. (3.43)
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3.4 General Overlap Method (N ≥ 2) for Counter-

Rotating BECs

We use a method outlined in [33, 34] in order to calculate the overlap. The

overlap of one of our rotating BECs |ψ〉 with an arbitrary Bethe state |λN〉
has the form:

√
cNN !

Cψ
N

∑
σ∈SN
s∈SgnψN

[∏
j<l

f(λσj , λσl)

]

×
∫
1

dxN ...dx1 exp

[
i
∑
j

sjkxj

]
exp

[
i

N∑
k=1

λσkxk

]
(3.44)

=

√
cNN !

Cψ
N

SψN({λN}, k), (3.45)

where 1 is now the simplex given by 0 < x1 < x2... < xN < L. We must

evaluate integrals of the following form:

∑
s∈SgnψN

∫
1

dxN ...dx1 exp

(
i
∑
j

sjkxj

)
exp

[
i
N∑
k=1

λkxk

]
. (3.46)

Recall the definition of BN(α1, ..., αN) from equation (3.22). We can then

write equation (3.46) as

BψN(λ, k) :=
∑

s∈SgnψN

BN(λ+ ks). (3.47)

While on the topic of the B function, I will quickly mention a result that can

be found in [33] and will be relevant very soon:

BN(α1, ..., αN) =
N∑
j=0

BN,j(α1, ..., αN), (3.48)
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where

BN,j(α1, ..., αN) = (−1)j
∏N

k=j+1 e
iαkL[∏N

k=j+1

∑k
m=j+1 iα

] [∏j
k=1

∑j
m=k iα

] . (3.49)

and we define BψN,j by just summing the BN,j terms over SgnψN
We know from the N = 2 case and [34] that we are looking only for

the singular parts of this expression from taking the parity limit, ie, we are

looking for the singular part of:

SψN({λN}, k) =
∑
σ∈SN

[∏
j<l

f(λσ(j), λσ(l))

]
BψN(σλ, k). (3.50)

Let’s start with finding the singular parts of BψN(λ, k). The singularity at

the pole λm=−λm+1 can be found easily as described in [33]:

Resλm+1→−λmB
ψ
N(λ, k) ∼ uψN/2

amam+1 − 1

i(λm + λm+1)

(
1

i(λm + k)
+

1

i(λm − k)

)
× BψN−2,m−1({λj|, j ∈ {1, ...��m,����m+ 1 , ..., N}}, k) (3.51)

= uψN/2
amam+1 − 1

i(λm + λm+1)

2λm
i(λ2

m − k2)

× Bψ,N−2,m−1({λj}, k}, j ∈ {1, ...��m,����m+ 1 , ..., N}), (3.52)

where the strike through the m and m + 1 indicates that we evaluate B for

N − 2 rapidities (excluding rapidities m and m + 1). Here, uψn is a factor

that counts the number of pairs of terms in Bψ2n that satisfy sp = −sp+1 when

there are n pairs of rapidities left and just before rapidities p and p + 1 are

‘removed’ (removed here means after calculating the corresponding residue).

The pair being removed gives us the 2λp/(i(λ
2
p−k2)) term. We then sum over

all permutations that have particles m and m+ 1 in neighbouring positions

[34] and find the residue of SψN at λm + λm+1 = 0 is:
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SN ∼ uψN/2
amam+1 − 1

i(λm + λm+1)
F (λm)

×
∏

j 6=m,m+1

f(λj, λ1)f(λj,−λ1)Sψ,mod(m)
N−2 (��m,����m+ 1), (3.53)

where Sψ,mod(m)
N−2 (��m,����m+ 1) is SψN evaluated for N − 2 rapidities (excluding

rapidities m and m + 1), and is evaluated with the modified a’s instead of

the normal a’s (the modification depends on m):

a
mod(m)
j =

f(λm, λj)

f(λj, λm)

f(λm, λj)

f(λj, λm)
aj (3.54)

and the function F (λ) is given by:

F (λ) =
f(λ,−λ)

i(λ+ k)
+
f(λ,−λ)

i(λ− k)
+

f(−λ, λ)

i(−λ+ k)
+

f(−λ, λ)

i(−λ− k)

=
2λ

i(λ2 − k2)
f(λ,−λ) +

−2λ

i(λ2 − k2)
f(−λ, λ)

=
2c

λ2 − k2
. (3.55)

3.4.1 Taking the Parity Limit

To calculate the exact on-shell overlap of the initial state with parity-symmetric

Bethe States, we must perform the following [34] limiting procedure:

λ2j−1 → λ+
j , λ2j → −λ+

j , j = 1, ..., N/2. (3.56)

We then define the following variables for j = 1, ..., N/2:

m+
j = m(λ+

j ) = −i d
dλ

log(a(λ))

∣∣∣∣
λ=λ+j

. (3.57)

It can be easily checked that after taking the parity limit, we get that:

a2j−1a2j − 1

i(λ2j−1 + λ2j)
−→ m+

j . (3.58)
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Next, define the function Dψ
N(λ+

N/2,m
+
N/2) to be the overlap SψN(λN ;aN)

after the full parity limit as described in equation (3.56) is taken. Then,

using equation (3.53), it is easy to show that Dψ
N(λ+

N/2,m
+
N/2) satisfies the

recursion relation:

∂Dψ
N(λ+

N/2,m
+
N/2)

∂m+
j

= uψN/2F (λ+
j )

N/2∏
k=1,k 6=j

f(λ+
k , λ

+
j )Dψ

N(λ+
N/2−1,m

+,mod(j)
N/2−1 ),

(3.59)

where the modified m variables are defined as one would expect:

mmod(j)(λ+
k ) = −i d

dλ
log
(
amod(j)(λ)

)∣∣∣∣
λ=λ+k

= m+
k + ϕ+(λ+

k , λ
+
j ), (3.60)

and Dψ
N(λ+

N/2−1,m
+
N/2−1) is understood to have its j’th variables removed

from its arguments. Using [34], the solution to the recursion relation equation

(3.59) is:

Dψ
N(λ+

N/2,m
+
N/2) = Uψ

N

N/2∏
j=1

F (λ+
j )

∏
1≤k<j≤N/2

f(λ+
k , λ

+
j ) detG+, (3.61)

where Uψ
N =

∏N/2
j=1 u

ψ
j . Using equation (3.18) I then calculate the exact

overlap of the given initial BEC state with the on-shell parity symmetric

normalized Bethe state as:

Uψ
N

√
N !

Cψ
N

N/2∏
j=1

F (λ+
j )√

f(λ+
j ,−λ+

j )f(−λ+
j , λ

+
j )

√
detG+

detG−

= Uψ
N

√
N !/(cNCψ

N)∏N/2
j=1

λ+
2

j −k2

2cλ+j

√
λ+

2

j

c2
+ 1

4

√
detG+

detG−
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= Uψ
N

√
N !2N/Cψ

N∏N/2
j=1

λ+
2

j −k2

λ+j

√
λ+

2

j

c2
+ 1

4

√
detG+

detG−
. (3.62)

Next, to find the overlaps for the specific initial states introduced at the start

of this write up, we now need to calculate Uψ
N for out different initial states.

Recall the first initial state introduced, the ‘Counter-Rotating BEC’:

〈x|ψ1〉 ∼
N∏
i=1

(
eikxi + e−ikxi

)
. (3.63)

To calculate UN for this state, we must calculate the individual uj’s.

Let’s go back to the recursion relation in equation (3.52) and let’s first

take there to be j pairs left. For ease of notation, we shall label the next pair

of momenta we are calculating the residue in the parity limit of as λ1 and

λ2.

We look to count the number of pairs of terms in (eikx1 + e−ikx1)(eikx2 +

e−ikx2), such that we have an equal number of +k and −k momenta in the

each term of the pair. Multiplying this expression out, we see that we have

one such pair, namely eikx1−ikx2 + e−ikx1+ikx2 . So we get that uj for this state

is 1 for all j.

We now carry out the same calculation for the second initial state, the

‘Fragmented BEC’. We carry out the same calculation as before except

now we are looking at the sum
∑

σ∈S2j
exp [ikσ1x1 + ikσ2x2], where k =

{+k,−k, ...,+k,−k} (vector of size 2j). There are j choices to make kσ1

positive, and j choices to make kσ2 negative, so we have a factor of j2. We

then have another j2 choices for the signs being flipped, but we are counting

the pairs of such terms with the signs flipped between them, so we get that

uj = j2 for this state. To then calculate UN for this state, we just note that;

UN =

N/2∏
j=1

uj =

N/2∏
j=1

j2 = [(N/2)!]2. (3.64)

We then conclude this calculation by explicitly writing out the full overlaps
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for our two initial states:

〈ψ1|λN〉 =
(N !/LN)1/2

∏N/2
j=1

λ+
2

j −k2

λ+j

√
λ+

2

j

c2
+ 1

4

√
detG+

detG−
, (3.65)

〈ψ2|λN〉 =
(N/2)!(2/L)N/2∏N/2

j=1

λ+
2

j −k2

λ+j

√
λ+

2

j

c2
+ 1

4

√
detG+

detG−
. (3.66)

3.4.2 Difference in Overlaps of the Two Initial States

The results we just found tell us something interesting: Looking at the above

overlaps, it should be easy to see that if we project our initial states onto the

subspace generated by parity symmetric Bethe states and re-normalise them,

then the overlaps are the exact same across both initial states. Where the

overlaps differ is only outside of this subspace. We can explicitly show that

these two initial states have different overlaps outside of the parity symmetric

subspace. I do this by looking how the conserved charges Qj (j = 1, 2, ...)

of the Lieb–Liniger Hamiltonian act on our initial states. Writing down Qj’s

action on states in position representation is difficult for general j, but I need

only use Q1 to illustrate my point, and its position representation is quite

simple:

Q1 = P = −i
N∑
j=1

∂

∂xj
. (3.67)

Let’s first look at the action of Q1 on ψ1(x) = 〈x|ψ1〉:

Q1ψ1(x) = −i

(
N∑
j=1

∂

∂xj

)
N∏
k=1

(eikxk + e−ikxk)

= k
N∑
j=1

[
(eikx1 + e−ikxk)...(eikxj − e−ikxk)...(eikxN + e−ikxN )

]
= ik2N

[
N∏
j=1

cos(kxj)

][
N∑
l=1

tan(kxl)

]
, (3.68)
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which is clearly not identically zero. Now let’s have a look at the action of

Q1 on ψ2(x) = 〈x|ψ2〉:

Q1ψ2(x) = −i

(
N∑
j=1

∂

∂xj

) ∑
σ∈SN

eiσk·x

=
N∑
j=1

∑
σ∈SN

kσje
iσk·x

=
∑
σ∈SN

(
eiσk·x

N∑
j=1

kσj

)
, (3.69)

which is identically zero since
∑N

j=1 kσj = 0 for all σ ∈ SN , where k =

{+k,−k, ...,+k,−k}. Specifically, if N = 2, then as we can see from the

discussion above, ψ2(x) is an integrable state as all the odd conserved charges

up to N = 2 annihilate it. This turns out to be the only (even) value for

N in which ψ2(x) is integrable, as Q3 does not annihilate it when N = 4.

Moreover, as seen above, Q1 does not annihilate ψ1(x) even when N = 2, so

this state is not integrable for any (even) N .

3.5 Conclusion

In this chapter, I have presented a method to calculate the overlaps of parity

symmetric Bethe states in the Lieb–Liniger model with a ‘generic’ initial state

(provided you have the plane wave expansion of the initial state). I demon-

strated this concretely using a counter-rotating BEC, and a fragmented BEC.

The actual choice of the initial state was delayed until the very end of the

calculation, showing the method’s potential for generalisation to more initial

states. Overlaps for quench-based calculations are generally quite hard to

come across, so the more general a calculation is with respect to ‘generic’ ini-

tial states, the better. In the end, the main idea came down to just counting

specific parity-symmetric pairs of plane waves in the initial state.

Following on from this, I then showed that the two initial states only differ

in the non-parity symmetric region of the Hilbert space. In other words, if
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we project both states onto the subspace spanned by the parity symmetric

initial states and re-normalize them, we get the same state. As a result, I

would expect |ψ1〉 and |ψ2〉 to have significant long time correlations [35],

although maybe this is not overly clear.
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Chapter 4

Entanglement Entropy in the

Lieb–Liniger Model

In this chapter, I will present a method (of exponential computational com-

plexity) for the analytic calculation of the spatial von Neumann bipartite en-

tanglement entropy of energy eigenstates of the periodic Lieb–Liniger model.

Numerical methods to calculate this object exist [12, 13] but to the best of

my knowledge, this is the first analytic method. The only entropic object

I will be interested in throughout this chapter is the von Neumann bipar-

tite entanglement entropy, so it suffices to refer to this object as just the

‘entanglement entropy’ going forward.

I first introduce more clearly what I am calculating and give some moti-

vations. Like the previous chapter, I then proceed with the calculation for

the 2-particle case. This is then used to guide the calculation for the gen-

eral N-particle case. Some numerical results for the 2-particle case are also

provided in order to see if my results match up with what is expected.

4.1 Introduction to Entanglement Entropy

The von Neumann entropy of a state defined by the density matrix ρ is given

by−Tr(ρ log ρ) [36]. If we spatially partition our periodic Lieb–Liniger model

into two parts A and B, we can then discuss the ‘bipartite entanglement

52



entropy’ between A and B. We partition the model by splitting our circle

[0, L) into two arcs A = [0, l) and B = [l, L).

If we are given the density matrix of some Bethe state ρAB = |ψ〉 〈ψ|, we

can construct the reduced density matrix ρA = TrB ρ
AB by tracing only over

the B ‘part’. The entanglement entropy is then given by −Tr
(
ρA log ρA

)
[11].

Using the Bethe Ansatz, we can write a generalised Bethe state as

|ψ(k)〉 =

∫
1

F (x,k)
∏
j

dxjb
†(xj) |0〉 , (4.1)

where the domain 1 is given by {0 ≤ x1 < x2 ≤ L}. We need only integrate

over 1 instead of the full S1 × S1 due to symmetry of the system. The

only thing that needs to be adjusted as a result is a factor of N ! in the

normalisation of |ψ〉. The Bethe wavefunction F (x,k) is given by

F (x,k) = eik1x1+ik2x2 + S12e
ik2x1+ik1x2 , (4.2)

where

S12 =
k1 − k2 + ic

k1 − k2 − ic
. (4.3)

All of the details for these calculations can be found in section (1.2.3).

4.2 Calculating an Expression for the Entanglement–

Entropy in the 2 Particle Case

Let 1A and 1B represent the intersections of 1 with A2 and B2 respectively.

The entanglement entropy of |ψ〉 is given by

−Tr
(
ρA log ρA

)
, (4.4)

where

ρA = TrB ρ
AB, (4.5)
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and

ρAB = |ψ(k)〉 〈ψ(k)| =
∫
1

∫
1

dxdx′F (x,k)F (x′,k) |x〉 〈x′| . (4.6)

Here I use |x〉 to mean b†(x2)b†(x1) |0〉.
From now on, since I am looking at the entanglement entropy of a specific

eigenstate, I will suppress the k–dependence in F.

Noting that TrB |x〉 〈x′| = 〈x′|x〉 iff x ∈ B, we can write the reduced

density matrix ρA for the system as:

ρA = ρ0 + ρ1 + ρ2, (4.7)

where:

ρ0 =

∫
x∈1B

dx|F (x)|2 |0〉 〈0| , (4.8)

ρ1 =

∫
x1,x′1∈A

dx1dx′1

∫
x2∈B

dx2F (x1, x2)F ∗(x′1, x2) |x1〉 〈x′1| , (4.9)

and

ρ2 =

∫
x,x′∈1A

dxdx′F (x)F ∗(x′) |x〉 〈x′| . (4.10)

Since each ρi acts on and into subspaces with different particle numbers, we

can write:

−Tr
(
ρA log ρA

)
= −

∑
i

Tr(ρi log ρi). (4.11)

In the coming calculations, I will drop the integration measures as the no-

tation becomes cumbersome and difficult to read through. In places where

the measures are dropped, everything should be obvious from the domain of

integration.

We start by calculating Tr(ρ0 log ρ0):

ρ0 =

∫
1B

|F (x)|2 |0〉 〈0| (4.12)
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=⇒ log(ρ0) = log

(∫
1B

|F (x)|2
)
|0〉 〈0| (4.13)

=⇒ ρ0 log(ρ0) = β log(β) |0〉 〈0| , (4.14)

where β =
∫
1B
|F (x)|2.

=⇒ Tr(ρ0 log ρ0) = β log(β). (4.15)

Moving on, we next calculate Tr(ρ2 log ρ2):

ρ2 =

∫
12
A

F (x)F ∗(x′) |x〉 〈x′| (4.16)

=⇒ ρ2
2 =

∫
14
A

F (x)F ∗(x′)F (y)F ∗(y′) |x〉 〈x′|y〉 〈y′|

=

∫
13
A

F (x)F ∗(x′)F (x′)F ∗(y′) |x〉 〈y′|

=

∫
13
A

|F (x′)|2F (x)F ∗(y′) |x〉 〈y′|

=

[∫
1A

|F (x′)|2
]
ρ2. (4.17)

By induction, it is easy to see that:

ρn2 = αn−1ρ2, (4.18)

where α =
∫
x∈1A

|F (x)|2. We can use this to calculate ρ2 log ρ2:

log(ρ2) =
∞∑
n=1

(−1)n+1

k
(ρ2 − 11)n. (4.19)

We expand the bracket above:

(−11 + ρ2)n

= (−1)n11 +

[
n(−1)n−1 +

(
n

2

)
(−1)n−2α +

(
n

3

)
(−1)n−3α2 + ...

]
ρ2
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= (−1)n11 +
(−1)n[(1− α)n − 1]

α
ρ2 = (−1)n

[
11 +

(1− α)n−1

α
ρ2

]
, (4.20)

and so log ρ2 becomes:

log(ρ2) = −
∞∑
n=1

1

n

[
11 +

(1− α)n−1

α
ρ2

]
(4.21)

=⇒ ρ2 log ρ2 = −
∞∑
n=1

1

n

[
ρ2 +

(1− α)n−1

α
ρ2

2

]
= −

∞∑
n=1

1

n

[
ρ2 + (1− α)n−1ρ2

]
= −ρ2

∞∑
n=1

(1− α)n

n
= ρ2 log(α) (4.22)

=⇒ Tr(ρ2 log ρ2) = (logα) Tr ρ2 = α logα. (4.23)

Lastly, we must calculate Tr(ρ1 log ρ1) which is by far the most involved

part of this calculation.

ρ1 =

∫
A2

dx1dx′1

∫
B

dx2F (x1, x2)F ∗(x′1, x2) |x1〉 〈x′1| . (4.24)

If we define the function

G(x, y) :=

∫
B

F (x, z)F ∗(y, z)dz, (4.25)

we can then write ρ1 as:

ρ1 =

∫
A2

G(x, y) |x〉 〈y| . (4.26)

Note that:

ρ2
1 =

∫
A4

G(x, y)G(z, w) |x〉 〈y|z〉 〈w|

=

∫
A3

G(x, y)G(y, w) |x〉 〈w|
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=

∫
A2

[L(G)](x,w) |x〉 〈w| , (4.27)

where L is the integral operator with kernel G given by:

[L(f)](x,w) =

∫
A

f(x, y)G(y, w)dy. (4.28)

Note that G(x, y)∗ = G(y, x) and so L is a self-adjoint operator. Also

from the defintion of G in terms of the Bethe wavefunction F , it is easy to

see that L is also a compact operator.

It can be shown by induction that:

ρn1 =

∫
A2

Ln−1(G) |x〉 〈w| . (4.29)

We can then use this fact to calculate ρ1 log ρ1:

log(ρ1) =
∞∑
n=1

(−1)n+1

n
(ρ1 − 11)n

=
∞∑
n=1

(−1)n+1

n

n∑
j=0

(
n

j

)
(−ρ1)j (4.30)

=⇒ ρ1 log ρ1 =
∞∑
n=1

(−1)n+1

n

n∑
j=0

(
n

j

)
(−1)j(ρ1)j+1

=
∞∑
n=1

(−1)n+1

n

n∑
j=0

(
n

j

)
(−1)j

∫
A2

Lj(G) |x〉 〈w|

=
∞∑
n=1

(−1)n+1

n

∫
A2

[
n∑
j=0

(
n

j

)
(−1)jLj

]
(G) |x〉 〈w|

=
∞∑
n=1

(−1)n+1

n

∫
A2

[(L − 11)n](G) |x〉 〈w|

=

∫
A2

[
∞∑
n=1

(−1)n+1

n
(L − 11)n

]
(G) |x〉 〈w|

=

∫
A2

[log(L)](G) |x〉 〈w| (4.31)
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=⇒ −Tr ρ1 log ρ1 = −
∫
A2

[log(L)](G)δ(x− w). (4.32)

Now we just need to investigate the operator log(L). In short, we notice

that we can write G(x, y) =
∑2

j=1 φj(x)χj(y) where each φj and χj j =

1, 2 are continuous complex functions. Explicitly, we write the component

functions in table(4.1).

Component Functions
i φi(x) χi(y)
1 eik1x φ∗1(y)

[∫
B
|φ2|2

]
+ S∗12φ

∗
2(y)

[∫
B
φ2φ

∗
1

]
2 eik2x S12φ

∗
1(y)

[∫
B
φ1φ

∗
2

]
+ |S12|2φ∗2(y)

[∫
B
|φ1|2

]
Table 4.1: A table of component functions in the single variable decomposi-
tion of G(x, y).

Note that L acts on G(x, y) in the following way:

[L(G)](x,w) =
∑
j,k

φj(x)χk(w)

∫
A

χj(y)φk(y). (4.33)

Back to the calculation at hand, using our ability to separate variables in G,

we can write equation (4.32) as:

−
∑
j

∫
A2

δ(x− w)φj(x)[log(L)](χj)(w)

=−
∑
j

∫
A

φj(x)[log(L)](χj)(x), (4.34)

where

L(χj)(x) =
∑
k

χk(x)

∫
A

χj(y)φk(y), (4.35)

so we only need to consider how L acts on functions of one variable. In

this respect, L is a self-adjoint Hilbert-Schmidt integral operator. We thus

proceed as follows in order to diagonalize L.
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1. f(x) is an eigenfunction of L with eigenvalue 0 iff 〈f, φj〉 = 0 for all φj.

2. λl 6= 0 is an eigenvalue of L iff detjk(ajk − λlδjk) = 0 where ajk =∫
A
φj(y)χk(y)dy.

3. The corresponding eigenfunction f l(x) is given by f l(x) =
∑

j c
l
jχj(x)

where the clj’s are given by the following system of linear equations:

∑
k

(ajk − λlδjk)clk = 0 for all j. (4.36)

4. Using the fact that f l(x) =
∑

j c
l
jχj(x), we get that χj(x) =

∑
l(c

l
j)
−1f l(x)

where the (clj)
−1 are the coefficients of the inverse of the matrix (clj).

Above I have used the fact that {χj} is a set of linearly independent

functions. Note that they are only linearly dependant when k1 = k2, in

which case χ1 = χ2 and so we are left with solving a one-dimensional system

above.

Also, from point 1 above, we see that there are no eigenfunctions with

eigenvalue 0 present in the decomposition of χj – which is what our operator

is acting on. We can now calculate the action of log(L) on χj:

[log(L)](χj) = [log(L)]
∑
l

(clj)
−1f l (4.37)

=
∑
l

(clj)
−1 log λlf l. (4.38)

Therefore, using equation (4.34) we get:

−Tr ρ1 log ρ1 = −
∑
j,l

(clj)
−1 log λl

∫
A

φj(x)f l(x)

= −
∑
j,k,l

(clj)
−1 log λl

∫
A

φj(x)clkχk(x)

= −
∑
j,k,l

ajkc
l
k log λl(clj)

−1

= −Tr
(
CATC−1[log Λ]

)
, (4.39)
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Figure 4.1: The von Neumann bipartite entanglement entropy of the ground
state of our system, as a function of our subsystem fraction l/L with different
values of c

where we define the matrices A = (ajk), C = (cjk), Λ = diag(λl). We can

then write the full expression for the entanglement entropy as:

−Tr ρA log ρA = −α logα− β log β − Tr
(
CATC−1[log Λ]

)
. (4.40)

In figure (4.2) I plot the above expression for various values of the interaction

parameter c for the ground state as a function of the subsystem fraction l/L.
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4.3 Generalization to the N-Particle Case

We proceed similarly to the 2-particle case. First we split the entanglement

entropy into its different particle sectors as before:

ρA =
∑
j

ρj, (4.41)

where ρm represents the integral with m particles in subsystem A. Let x =

(x1, ..., xm) be the coordinates for the particles in subsystem A, and y =

(y1, ..., yn−m) the coordinates for the particles in subsystem B. Similar to

the 2-particle case, we define the simplex 1 = {z ∈ Rm|0 ≤ z1 < z2 < ... <

zm ≤ L} where the dimension of the simplex m is implied by the context of

the relevant integral. We also define 1A,B to be the restrictions of the simplex

1 to Am and Bm respectively. Now we can write:

ρm =

∫
12
A

Gm(x,x′) |x〉 〈x′| , (4.42)

where

Gm(x,x′) =

∫
1B

F (x,y)F ∗(x′,y)dy. (4.43)

Then:

ρ2
m =

∫
13
A

Gm(x,x′)Gm(x′,x′′) |x〉 〈x′′| =

∫
12
A

[Lm(Gm)](x,x′′) |x〉 〈x′′| ,

(4.44)

where

[Lm(f)](x,x′′) =

∫
1A

f(x,x′)Gm(x′,x′′)dx′. (4.45)

It should be clear that we can always separate variables in Gm(x, y), ie,

there exist continuous complex functions φmj , χmj , j = 1, ...,
(
n
m

)
such that

Gm(x, y) =
∑

j φmj(x)χmj(y). Proceeding like before, we arrive at:

−Tr(ρm log ρm) = −
∑
j

∫
1A

φj(x)[log(Lm)](χmj(x)). (4.46)
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We also again define the integrals:

amjk =

∫
1A

φmj(x)χmk(x). (4.47)

We gather the eigenvalues λl like before, and define the matrices Am, Cm

and Λm similarly also, with subscripts to indicate which particle sector they

belong to. We end up with the same expression as before:

−Tr(ρm log ρm) = −Tr
(
CmA

T
mC

−1
m [log Λm]

)
. (4.48)

Using equation (4.41), we get our entanglement entropy:

−Tr
(
ρA log ρA

)
= −

N∑
m=0

−Tr
(
CmA

T
mC

−1
m [log Λm]

)
. (4.49)

It is worth noting that just because we found the expression above, this

does not mean that it is easy to calculate. Namely, if we have n bosons on

our circle, we must calculate Am, Λm, and Cm for each 0 ≤ m ≤ n (although

the m = 0 and m = n contributions can always be calculated using an easier

method as in the N = 2 case in section (4.2)). We get Am by calculating

the
[(

n
m

)]2
integrals amjk , we get Λm by diagonalizing the Lm operator, and

we get Cm by solving the resulting systems of linear equations (see equation

(4.36)).

Finally, we have a sum of N + 1 similar looking terms in equation (4.49).

This might lead one to believe that the result is somewhat proportional to

N . Although we expect the entanglement entropy to indeed be O(N), this

is not because of the above reason. Each of the individual terms should be

expected to vary wildly in size. For example, if we have N large, we should

expect large contributions from the terms around m = N/2, and then the

rest to make negligible contributions.
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4.4 Conclusion

In this chapter, I have presented a method for analytically calculating the

spatial bipartite entanglement entropy of the Lieb–Liniger model. Although

this method offers no speed up over numerical methods, the goal of find-

ing an analytic expression for this object was to perhaps shed light on its

mathematical structure. The existence of the method depends on being able

to smoothly separate the variables in the function Gm(x,x′) from equation

(4.43). This ability to smoothly separate variables in G comes from the nice

plane wave packaging in which the Bethe wavefunction F (x) comes to us

in, and so this calculation method being a phenomenon of Bethe-solvable

systems seems clear.

Furthermore, apart from this nice packaging I just mentioned, one might

notice that the exact expression for F (x) is not actually important in the

outlined method for calculation. We should thus be able to generalise this

method of calculating the bipartite entanglement entropy to any one-dimensional

Bethe-solvable system in the continuum.

The next step from here would be to use the method above (with the help

of some computer algebra/numerics) in order to calculate this entanglement

entropy for various systems with larger numbers of particles. This would

help confirm exactly how the spatial entanglement entropy of the eigenstates

scale with system size.
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Appendix A

Power Sum Proof

The purpose of this appendix is the prove the assertion equation (3.6) in

section (3.2).

We set out to prove that given N even;

pm(z) = 0 ∀ m < N, m odd =⇒ pm′(z) = 0 ∀ m′ > N, m′ odd,

where z = (z1, z2, ..., zN) and pl(z) =
∑

j z
l.

Firstly, let’s consider one of the Girard-Newton formulae [37]:

mem +
m∑
j=1

(−1)jem−jpj = 0 (A.1)

for 1 ≤ m ≤ N , and where el and pl are the l-th elementary polynomial

and power sum for z respectively. I will show by induction that pm(z) =

0 ∀ m < N, m odd =⇒ em = 0 for all m odd, m < N .

m = 1:

For m = 1, equation (A.1) gives us:

e1 = p1,

and since p1 is zero by assumption, e1 is zero.

We now assume that em is zero for all odd m up to and including some
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s− 2 where s < N odd.

Show for m = s:

Using equation (A.1) again, we get that:

ses +
s∑
j=1

(−1)jes−jpj = 0. (A.2)

Looking at the terms in the j sum, if j is odd, then we know from the

starting assumption that pj = 0. If instead j is even and j ≥ 2, our induction

hypothesis asserts that em−j = 0. This means we can write equation (A.2)

as:

ses = 0 =⇒ es = 0

proving our induction hypothesis.

Recall that we are here to show that pm = 0 for all m odd, m > N . I

now use another one of the Girard-Newton formulae [37]:

m∑
j=m−N

(−1)jem−jpj = 0 (A.3)

for m > N .

We now show that pm = 0 for all m odd, m > N via induction.

m = N + 1:

equation (A.3) becomes:

N+1∑
j=1

(−1)jeN+1−jpj = 0. (A.4)

We focus on the individual terms in the j sum. If j < N is odd, then

pj = 0 from our starting assumption. Note that given the limits of the sum,

1 ≤ N + 1− j ≤ N , so if j is instead even, then since N + 1− j is odd, from

the previous inductive exercise we get that eN+1−j = 0.
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Using these results, we can rewrite equation (A.4) as:

pN+1 = 0,

proving our statement for m = N + 1.

We then assume the statement to be true for all m odd from m = N + 1

to m = s− 2 where s odd.

Show for m = s:

equation (A.3) becomes:

s∑
j=s−N

(−1)jes−jpj = 0. (A.5)

We focus on the individual terms of the j sum yet again. If N + 1 < j < s

odd, then from our inductive hypothesis, we get that pj = 0. Note that given

the limits of the sum, 0 ≤ s−j ≤ N , so if j is instead even, then since s−j is

odd, from the previous inductive exercise we get that es−j = 0. Using these

results, we can rewrite equation (A.5) as:

ps = 0,

proving our inductive hypothesis.

Overall, this shows that given

pm(z) = 0 ∀ m < N, m odd,

we get that:

pm′(z) = 0 ∀ m′ > N, m′ odd,

proving our claim.
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