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1 An approximation result

This paper is a continuation of [P]. The main result of [P] is that there are
functions G defined in a neighborhood of the origin in the complex plane, which
behave in a sense as z2, such that G together with z? separates the points of (small)
disks D around the origin, and such that the function algebra [ z%, G; D] on D is not
the same as the algebra C(D) of all continuous functions on D. In this paper we
show that the other possibility also can occur: for a large class of functions
G defined in a neighborhood of the origin we show [z2, G; D] = C(D) for suffi-
ciently small disks D around 0. We will adopt notation from [P]. In the following it
will be convenient to write the function G in the form

G(z) = z2(1 + g(2))*.

We like to mention that Pascal Thomas, independently from us and at the
same time, worked out a special case of our main result, i.e. the case g(z) = z,

[T].

Theorem. Let g be defined in a neighborhood of the origin in the complex
plane, of class C!', with g(0)=0, and such that |g.(0)| > |gz(0)|. Then
[z% z2(1 + g(2))?; D] = C(D) for sufficiently small disks D centered at the origin.

Proof. Let a = g,(0) and b = g3(0). By the change of coordinate z = iw/a we may
and will assume without loss of generality that a =i and |b| < 1. Since the first
order partial derivatives of g are continuous near 0, Taylor’s formula can be
applied to Reg and Im g to obtain that if ¢ is a number with 0 < & < 1 — |b| the
function

r(z)=g¢(z) —iz — bz
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satisfies the inequality
[r(2)| < elz|

for all z in a sufficiently small disk D around 0. Note also that the generators of the
algebra separate the points of sufficiently small disks D.
We now follow the proof of Theorem 1 in [P].

Define X ={(z%2*(1 + g(2))*): ze D} .
Consider the map IT: €C* — C?2, defined by

(4, 8) = (042, 85%) .
Then 17'(X) = X, U X, U X3 U X, with
X, = {(z. 2(1 + g(2))): zeD}
X, ={(=2z — (1 +g(2))): zeD} = {(z 2(1 + g( — 2))): ze D}
X3 ={(—122z(1+g(2))): zeD}
Xa={(z, —2(1 + g(2))): zeD} = {(— z,2(1 + g( — 2))): ze D} .

By Wermer’s theorem it follows that the sets X; are polynomially convex. Now
Kallin’s theorem is also valid if the two angular sectors are replaced by
Si={ImAi>0}u{0}and S_ = {Im 4 < 0} U {0} (see reference [9] of [P]). With
p(¢1,(2)={1 + {, we notice that for z in D:

p(z, 2(1 4+ g(2))) = z + Z + zg(z) = 2Rez + i|z|* + bz? + zr(z)

where |zr(z)| < ¢|z|%

It follows that p(z, z(1 + g(z)))eS+ so p(X;) <= S,. In a similar way one
shows that p(X,) = S_. Since p~*(0) n (X U X,) contains only the origin in C?
we can apply Kallin’s theorem and conclude that X, U X, is polynomially convex.

Using the polynomial p({4, {,) = — {; + {, one shows similarly that X5 U X,
is polynomially convex.

We apply Kallin’s theorem for the third time, now with p(¢y, {,) = {;{,. Since
p(X1uUX,) is contained in an angular sector near the positive real axis and
p(X3uU X,) in an angular sector near the negative real axis, it follows that
IT7'(X) =X, UX,UX;uU X, is polynomially convex. By Sibony’s theorem and
the O’Farrell-Preskenis—Walsh result we conclude as in in the proof of Theorem 1
in [P] that P(X) = C(X). This is equivalent to

[2% 2%(1 + g(2))*; D] = C(D) .

2 Examples

Suppose g is of class C' and both g¢,(0) and g(0) are equal to 0. It can happen that
the algebra [z2, Z2(1 + g(z))*; D] is unequal to C(D) and it is also possible that
this algebra is equal to the algebra C(D).

(1) In [P] it is shown that [z% z2(1 + z3)~2/3; D] + C(D) for (sufficiently small)
dicke D
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(2) Let fbe a real-valued function of class C?, defined in a neighborhood of 0, such
that fis even, and such that f(0) =0, f(z) > 0if z & 0.

The functions z?> and z2(1 + izf(z))* separate the points of (small) disks
D around 0, and as in the proof of the theorem above we find
[2% 2*(1 + izf (2))*; D] = C(D).
(3) Also [22,z2(1 + iz*)?; D] = C(D) if D is a disk centered at the origin. Using
the same pull-back IT as in the proof of the theorem and with

X ={(z%,z*(1 + iz®)*: ze D}
one now finds
X, ={(z2(1 +iz*)): zeD}
X, ={(—z —2z(1 +iz®)):zeD} = {(z,2(1 — iz*)): ze D}
X3 ={(—22(1+iz’)):zeD}
Xy ={(z, —2(1 + iz®)):zeD} = {( —z 2(1 — iz*)): ze D}.

Use p({q,85) =13+ ¢,3 to show that X; U X, is polynomially convex and
p(1,85) = — {13 + {3 to show that X5 U X, is polynomially convex. It follows
as in the proof of the theorem that [z2, z2(1 + iz®)?; D] = C(D).

3 Remarks

(1) Isit true (if z2 and G separate the points of D) that [z2, G; D] % C(D) for every
antiholomorphic function G? In the light of the theorem and the examples above
one might even conjecture that [z%, z2(1 + g(z))?; D] % C(D) for every g with
19.(0)] < |g=(0)].
(2) It is not clear whether the theorem can be generalized to the situation where
F and G behave like z™ and z™ with m > 2. So there is nothing known about
[F, G; D] for this case (except for even values of m: in this situation we know that
there exist examples with [F, G; D] + C(D)).
(3) Consider once again the situation that F and G are of the form
F(z) =z"(1 +f(z)), G(z) = z"(1 + g(z)) where f and g are functions defined in
a neigborhood of the origin, with f(0) = 0, g(0) = 0. The functions f and g were
supposed to be of class C! but if one is willing to drop this differentiability
condition, just assuming continuity of f and g, then one can find a counterexample
for the case m = n in the following way.

Choose sequences (ay), (1), (Ry) of positive numbers converging to 0 and such
that 0 <r, < R, and ;. + Ry+; < a; — R, for each k.

Let Dk={|Z—ak|§rk} and Ekz{]Z—ak|§Rk},k=1,2,3,... Let
F(z) = z™ and define a modification G of the function z™ + z™*! on the complex
plane in the following manner:

G(z)=2z"+ z"*! outside E; UE, U ..., in particular g(0) = 0
G(Z) = akm -+ akm+1 on Dk'

For an appropriate choice of the sequences (r;) and (R;) and the values of G on the
sets E, — D, the function g is continuous and moreover the functions F and
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G separate the points. For any disk D centered at 0 the elements of [F, G; D] are
analytic on the interior of all sets D, which belong to D. So for any such disk
D:[F, G;D] # C(D).
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Note added in proof

The second author recently proved a generalization of the theorem for the situation where F and
G behave like z™ and z™ with m > 2.
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