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Abstract—We consider a decentralized multisensor estimation
problem where L sensor nodes observe noisy versions of a possibly
correlated random source. The sensors amplify and forward their
observations over a fading coherent multiple access channel (MAC)
to a fusion center (FC). The FC is equipped with a large array of
N antennas, and adopts a minimum mean square error (MMSE)
approach for estimating the source. We optimize the amplification
factor (or equivalently transmission power) at each sensor node
in two different scenarios: 1) with the objective of total power
minimization subject to mean square error (MSE) of source
estimation constraint, and 2) with the objective of minimizing
MSE subject to total power constraint. For this purpose, we
apply an asymptotic approximation based on the massive multiple-
input-multiple-output (MIMO) favorable propagation condition
(when L ≪ N ). We use convex optimization techniques to solve for
the optimal sensor power allocation in 1) and 2). In 1), we show
that the total power consumption at the sensors decays as 1/N ,
replicating the power savings obtained in Massive MIMO mobile
communications literature. Through numerical studies, we also
illustrate the superiority of the proposed optimal power allocation
methods over uniform power allocation.

Index Terms—Decentralized estimation, Massive MIMO, Coher-
ent MAC, Convex optimization, Power allocation.

I. INTRODUCTION

Wireless sensor networks have recently attracted much re-

search interest due to their practical popularity in accomplishing

autonomous tasks, such as monitoring, sensing, computation and

communication. In this field, different variety of schemes for

decentralized estimation of sources using multiple sensors have

been proposed, e.g. [1]–[3]. One popular technique is analog

amplify and forward [4], where sensors transmit over fading

channels a scaled version of their analog measurements to a

fusion center (FC), and it has been shown to be optimal in some

situations [5]. Analog forwarding has been investigated under

different multiple access schemes such as coherent multiple

access [4], [6], which is the focus of the current work, and

orthogonal multiple access [7], [8].

In the aforementioned works for analog forwarding of sensor

measurements over coherent multiple access channels (MACs),

the FC is typically equipped with a single antenna. It is, however,

well-known that using multiple antennas can increase spectral

efficiency of a wireless system through spatial multiplexing.

Decentralized estimation over fading MAC where the FC is

equipped with multiple antennas has been studied in [9]. Re-

cently, there has been a vast interest to equip the FC (or the base

station in cellular communication framework) with large arrays

of antennas, also known as the massive multiple-input multiple

output (MIMO) framework [10]–[12]. The use of arrays with

massive number of antennas in wireless communication does

not only increase spectral efficiency, but it can also improve

energy efficiency of MIMO system. With the assumption of

employing massively many number of antenna arrays, known

results in MIMO communication systems can be considerably

simplified [12], [13]. As a result, it provides analytical so-

lutions to problems that would otherwise be mathematically

intractable. In wireless sensor networks, the massive MIMO

framework has also been recently employed for decentralized

detection and estimation [14]–[16]. While in [15], the authors

have studied decentralized detection problem, they show similar

results for decentralized estimation of a scalar deterministic

unknown source. In the current paper, within the massive MIMO

framework, we focus on the decentralized estimation problem

in a more general case where the source is modeled as a

vector comprised of random and correlated components. Our

main objective is to optimally design the sensors’ amplification

factors with respect to minimizing sensor power consumptions or

maximizing estimation accuracy subject to relevant constraints.

In our setting, L sensor nodes observe noisy versions of a possi-

bly correlated random source vector. The sensor nodes amplify

the observations according to their power budget, and forward

them over coherent fading MACs to an FC equipped with a

large number of antennas, denoted by N . The FC estimates

the source by adopting a minimum mean square error (MMSE)

estimator. We optimize the amplification factor (or equivalently

the transmission power allocation) at each sensor node 1) with

the objective of total power minimization subject to a maximum

MSE constraint (incurred by using the MMSE estimator), and

2) with the objective of minimizing MSE of source estimation

subject to a total power constraint. For this purpose, we apply

an asymptotic approximation based on the favorable propagation

conditions in the massive MIMO literature in order to simplify

the MSE expression when N is sufficiently large. Using the

resulting asymptotic approximation, our contributions are as

follows:

• We show that the optimization problems are convex, which,

in general, can be solved numerically using well-known

convex optimization techniques in polynomial time.

• We analyze the optimization problems, and under some

conditions derive closed-form solutions to them. Our analy-

sis reveals that, in the present framework, as the number of

antennas at the FC, N , increases, the sensors can decrease

their total power consumption with a factor proportional to

1/N in order to satisfy a targeted MSE.

• It is also seen that using the massive MIMO approximation,

the optimal sensor power allocation only depends on the

distance based attenuation components and not on the

randomly varying fading gains.

Notations: We denote vectors and matrices by bold lower-

case and upper-case letters, respectively. The matrix trace is
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denoted by Tr(·), and matrix/vector conjugate-transpose (and

transpose) by (·)H (and (·)⊤). The notation diag(a1, a2, . . . , an)
is used for a diagonal matrix whose diagonal elements are

a1, . . . , an. We use E[·] to denote the expectation operator. [A]ij
means the element of the matrix A at ith row and jth column.

The notation X ≽ 0 means that the matrix X is a positive

semi-definite matrix. [·]+ denotes max{0, ·}. The circularly-

symmetric Gaussian distribution is denoted by CN . We denote

equality in an asymptotic sense by
a
=. Due to space restrictions,

all proofs are excluded but can be found in [17].

II. SYSTEM DESCRIPTION

We study the system with coherent MACs shown in Figure 1.

Based on the studied system model in Figure 1, the received

signal at the FC can be written as

y = HDθ +HDn+ v� �� �
�w

. (1)
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Fig. 1: System model for decentralized estimation over coherent MAC with
analog forwarding.

In (1), the source is characterized by the vector θ =
[θ1, . . . , θL]

⊤ ∈ CL, where θ ∼ CN (0,Cθ) and Cθ ∈ CL×L is

the positive definite source covariance matrix which is not nec-

essarily diagonal. The lth source-to-sensor noise component is

denoted by nl. Stacking up all the noise components, we denote

the source-to-sensor noise vector by n = [n1, . . . , nL]
⊤, where

n ∼ CN (0,Cn) and Cn � diag(σ2
n1
, . . . ,σ2

nL
) is the source-to-

sensor noise covariance matrix. αl is the complex amplification

gain at the lth sensor node, and D � diag(α1, . . . ,αL). We

denote the channel matrix by H ∈ CN×L, where [H]il corre-

sponds to the channel gain between the ith antenna at the FC

and the lth sensor. The channel matrix H models independent

fast fading, geometric attenuation and log-normal shadow fading.

The generic coefficient [H]il is then expressed as

[H]il =
1�
d2βl

[G]il, i = 1, . . . , N, l = 1, . . . , L, (2)

where dl is the distance between the lth sensor to the FC,

and 2β is the pathloss exponent. Furthermore, [G]il are in-

dependent and identically distributed (i.i.d.) random variables

drawn from CN (0, 1). Based on the above assumptions, we

have H = GΓ1/2, where Γ ∈ RL×L is a diagonal matrix

containing the attenuation coefficients d−2β
l , l = 1, . . . , L, on

its main diagonal.

The additive Gaussian noise at the FC is denoted by v =
[v1, . . . , vN ]⊤ with distribution CN (0,σ2

vIN ). Using N anten-

nas, the FC provides an estimate of the source vector from the

received signal vector y in (1). We assume that the FC has

the perfect knowledge of the source and noise statistics as well

as the channel gains. Hence, the minimum mean-square error

(MMSE) estimator can be applied in order the give the lowest

possible MSE. In the next section, we show the resulting MSE

and discuss our design method for allocating optimal power to

sensors.

III. PROBLEM FORMULATION

Using the MMSE estimator at the FC, the estimated vector
�θ � [�θ1, . . . , �θL]⊤ is obtained as [18, Chap. 15]

�θ = E[θ|H,y] =
�
C−1

θ +DHHHC−1
w HD

�−1
DHHHC−1

w y,
(3)

which gives the following MSE � E

�
∥θ − θ̂∥22

��H
�

MSE = Tr
��

C−1
θ +DHHHC−1

w HD
�−1

�
, (4)

where Cw = E[wwH ] = HDCnD
HHH + Cv. By using the

matrix inversion lemma on C−1
w , (4) can be rewritten as

MSE = Tr

��
C−1

θ + σ−2
v DHHHHD− σ−4

v DHHHHD

�
C−1

n + σ−2
v DHHHHD

�−1
DHHHHD

�−1
�
.

(5)

Now, since [G]il
i.i.d.
∼ CN (0, 1), (l = 1, . . . , L, i = 1, . . . , N ),

then using massive MIMO framework, as N → ∞ while L
remains fixed (L ≪ N ) the so-called favorable propagation

conditions hold [11], and it can be shown that

HHH = Γ1/2GHGΓ1/2 a
= NΓ. (6)

Now, we define Λ � DHΓD = diag (λ1, . . . ,λL) and

λl �
|αl|

2

d2β
l

, ∀l. Hence, the MSE in (5) can be asymptotically

approximated as

MSE
a
= Tr

��
C−1

θ +Nσ−2
v Λ

−N2σ−4
v Λ

�
C−1

n +Nσ−2
v Λ

�−1
Λ
�−1

�
.

(7)

We note that from now on whenever we use the term MSE, we

mean the asymptotic MSE expressed by (7).

Remark 1. Using the massive MIMO approximation (6), the

MSE formulation is simplified (cf. (7)). Hence, power alloca-

tion optimization problems, i.e., optimal design of the sensors’

amplification factor αl, (as we will see later in the subsequent

sections) becomes mathematically more tractable and easier to

solve.

The total power consumed by L sensors can be written as

Ptot = E[||D(θ + n)||22] =
L�

l=1

λld
2β
l [Cθ +Cn]ll. (8)

Now, we pose the following two optimization problems

dealing with sensor power allocation. The first problem min-

imizes the total power consumption by the sensors subject

to reconstruction MSE constraint. Therefore, this optimization

problem is desirable when power is limited, and there is not

a tight restriction on MSE. In the second problem, the MSE

is minimized subject to total power constraint. Hence, this

problem formulation is posed when the estimation accuracy, in
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terms of MSE, is more demanding. More specifically, the first

optimization problem is stated as follows

minimize
{λl≥0}L

l=1

Ptot, subject to MSE ≤ d̄. (P1)

where Ptot and MSE are specified by (8) and (7), respectively.

Further, d̄ is a user-defined distortion threshold, and has to be

chosen such that d̄ ≤ Tr{Cθ}.

The second optimization problem is stated as follows

minimize
{λl≥0}L

l=1

MSE, subject to Ptot ≤ P̄ , (P2)

We note that after solving the optimization problems (P1)

and (P2) for λl, one can recover the complex gain αl with

amplitude |αl| and an arbitrary phase. It can be easily shown

that the optimization problems (P1) and (P2) are convex in the

variables λl, l = 1, . . . , L.

IV. ANALYSIS OF POWER MINIMIZATION PROBLEM

WITH MSE CONSTRAINT

A. Correlated Source

1) Exact Analysis

First, we consider the general case where the elements of the
source vector are correlated, i.e., Cθ is not diagonal. In order to
solve for λl in (P1), we write the Karush-Kuhn-Tucker (KKT)
conditions [19] by introducing the Lagrange multiplier µ ≥ 0.
We first write the Lagrangian as

L(Λ, µ) =
L
∑

l=1

λld
2β

l [Cθ +Cn]ll+

µ

(

Tr

{

(

C
−1

θ +Nσ−2

v Λ−N2σ−4

v Λ
(

C
−1

n +Nσ−2

v Λ
)

−1

Λ

)

−1
}

− d̄

)

(9)

Taking the partial derivative of (9) with respect to λl (l =
1, . . . , L), we obtain

∂L(Λ, µ)

∂λl

= −µTr

{

(

C
−1

θ + diag

(

. . . ,
Nλl

σ2
v +Nσ2

nl
λl

, . . .

))

−2

×

diag

(

0, . . . , 0,
Nσ−2

v σ−4

nl

(σ−2
nl

+Nσ−2
v λl)2

, 0, . . . , 0

)}

+ d2βl [Cθ+Cn]ll

(10)

where we used the fact that for a positive-definite matrix A,

we have dA−1

dt = −A−1 dA
dt A

−1 in which t is an element of the

matrix A. Letting (10) equal zero, and observing that λl ≥ 0,

it yields the following set of implicit non-linear equations for

l = 1, 2, . . . , L

λl =

��
µσ2

vσ
−4
nl

Nd2βl [Cθ +Cn]ll
×

��
C−1

θ + diag

�
. . . ,

Nλl

σ2
v+Nσ2

nl
λl
, . . .

��−2
�

ll

�1/2

−
σ2
v

Nσ2
nl

⎤

⎦
+

.

(11)

Since Cθ is not diagonal, for an arbitrary Lagrange multiplier

µ, (11) can be solved using non-linear equation solvers (e.g.,

fsolve in MATLAB). The optimal µ is determined such that

the MSE constraint in (P1) is satisfied with equality.

2) Approximate Analysis

Here we propose an approach in order to asymptotically solve

{λl}Ll=1 when N is sufficiently large. For this purpose, we

first write the first-order Taylor series expansion of MSE in (7)

around 1/N → 01 which yields

MSE ≈ Tr
�
(C−1

θ +C−1
n )−1

�

+
1

N
Tr

�
(C−1

θ +C−1
n )−2diag

�
. . . ,

σ2
v

σ4
nl
λl

, . . .

��
,

(12)

where we have implicitly assumed that sensors always amplify

their observations with positive (non-zero) gains, i.e., λl > 0.

Here, Cn = diag
�
σ2
n1
, . . . ,σ2

nL

�
. For brevity, we define Q �

(C−1
θ +C−1

n )−1. Then, by plugging (12) back into the constraint

in (P1), we solve the following optimization problem for {λl}Ll=1

minimize
{λl>0}L

l=1

L�

l=1

λld
2β
l [Cθ +Cn]ll

subject to Tr{Q}+
1

N
Tr

�
Q2diag

�
. . . ,

σ2
v

σ4
nl
λl

, . . .

��
≤ d̄.

(P3)

Theorem 2. The optimal solution to Problem (P3) is given by

λ⋆
l =

1

N

⎡

⎢⎢⎣

[Q2]
1/2
ll σ2

v

σ2
nl

[Cθ+Cn]
1/2
ll dβ

l

�L
m=1

dβ
m[Cθ+Cn]

1/2
mm[Q2]1/2mm

σ2
nm

d̄−
�L

m=1[Q]mm

⎤

⎥⎥⎦ .

(13)

Remark 3. By studying (13) in Theorem 2, it can be observed

that the total power consumed by all sensors decays with a

factor proportional to 1/N , when N , the number of antennas

at the FC, is sufficiently large.

B. Uncorrelated Source

Here we assume that the elements of the source vector θ

are uncorrelated, such that the source covariance matrix Cθ �

diag(σ2
θ1
, . . . ,σ2

θL
). In this case, the optimal solution for λl, l =

1, 2, . . . , L can be obtained in closed-form analytically, and is

stated in the following theorem.

Theorem 4. Provided
σ2

θl

dβ
l (σ

2

θl
+σ2

nl
)1/2

is ordered decreasingly in

l ∈ {1, . . . , L}, ∃ a unique M⋆ such that

M⋆ = max

�

M ∈ {1, . . . , L} :
σ2
θl

dβl (σ
2
θl
+σ2

nl
)1/2

>

d̄−
�M

m=1
1

σ2

θm
+1/σ2

nm

−
�L

m=M+1 σ
2
θm

�M
m=1

σ2

θm
dβ
m

(σ2

θm
+σ2

nm
)1/2

⎫
⎪⎬

⎪⎭
.

(14)

Then, the optimal solution is given by

λ⋆
l =

1

N

⎡

⎢⎢⎣

σ2

θl
σ2

v

(σ2

θl
+σ2

nl
)3/2dβ

l

�M⋆

m=1

σ2

θm
dβ
m

(σ2

θm
+σ2

nm
)1/2

d̄−
�M⋆

m=1 1/[1/σ
2
θm

+ 1/σ2
nm

]−
�L

m=M⋆+1 σ
2
θm

−
σ2
v

σ2
θl
+ σ2

nl

�

,

(15)

for l = 1, . . . ,M⋆, and λ⋆
l = 0 for l = M⋆ +1, . . . , L. Further,

the amplitude of the optimal amplification gain for sensor l
becomes |α⋆

l | = dβl
�
λ⋆
l .

1The reason for expanding the Taylor series around 1/N → 0 is due to
massive MIMO framework with a large number of antennas N , and for a tight
approximation, we can neglect higher-order terms in the series.
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Remark 5. From (15) in Theorem 4, it can be realized that the

total power consumed by all sensors decreases exactly with a

factor proportional to 1/N .

V. ANALYSIS OF MSE MINIMIZATION PROBLEM

WITH POWER CONSTRAINT

A. Correlated Source

1) Exact Analysis

Similar to the analysis in Section IV-A1, by introducing the

Lagrange multiplier µ ≥ 0, we write the Lagrangian as

L(Λ, µ)=µ

�
L�

l=1

λld
2β
l [Cθ +Cn]ll − P̄

�

+Tr

��
C−1

θ +Nσ−2
v Λ−N2σ−4

v Λ
�
C−1

n +Nσ−2
v Λ

�−1
Λ
�−1

�
.

(16)
Taking the partial derivative of (16) with respect to λl (l =
1, . . . , L), we obtain

∂L(Λ, µ)

∂λl

= −Tr

{

(

C
−1

θ + diag

(

. . . ,
Nλl

σ2
v +Nσ2

nl
λl

, . . .

))

−2

×

diag

(

0, . . . , 0,
Nσ−2

v σ−4

nl

(σ−2
nl +Nσ−2

v λl)2
, 0, . . . , 0

)}

+ µd2βl [Cθ+Cn]ll

(17)

and letting (17) equal zero, it yields (since λl ≥ 0)

λl =

��
σ2
vσ

−4
nl

Nµd2βl [Cθ +Cn]ll
×

��
C−1

θ + diag

�
. . . ,

Nλl

σ2
v+Nσ2

nl
λl
, . . .

��−2
�

ll

�1/2

−
σ2
v

Nσ2
nl

⎤

⎦
+

.

(18)

Finally, µ is determined in order to satisfy the power constraint

in (P2) with equality.

2) Approximate Analysis

Similar to the analysis in Section IV-A2, we can derive

approximate closed-form solution for Problem (P2) when N is

sufficiently large. To do so, we follow the approximation of MSE

in (12). Hence, the problem can be shown to be simplified into

minimize
{λl>0}L

l=1

Tr

�
Q2diag

�
. . . ,

σ2
v

σ4
nl
λl

, . . .

��

subject to

L�

l=1

λld
2β
l [Cθ +Cn]ll ≤ P̄ ,

(P5)

where Q = (C−1
θ +C−1

n )−1, and Cn = diag(σ2
n1
, . . . ,σ2

nL
).

Note that unlike (P3), the optimal solution to (P5) does not

depend on the number of antennas N . We have the following

result.

Theorem 6. The optimal solution to (P5) is given by

λ⋆
l =

P̄ [Q2]
1/2
ll

σ2
nl
dβl [Cθ +Cn]

1/2
ll

�
m

[Q2]
1/2
mmdβ

m[Cθ+Cn]
1/2
mm

σ2
nm

. (19)

B. Uncorrelated Source

In the case the elements of the source vector θ are uncorre-

lated as in Section IVB, the optimal solution to the sensor power

allocation can be found in closed-form as follows.

Theorem 7. Provided
σ2

θl

dβ
l (σ

2

θl
+σ2

nl
)1/2

is ordered decreasingly in

l ∈ {1, . . . , L}, ∃ a unique M⋆ such that

M⋆ = max

�

M ∈ {1, . . . , L} :
dβl (σ

2
θl
+σ2

nl
)1/2

σ2
θl

<

NP̄/σ2
v +

�M
m=1 d

β
m

�M
m=1

σ2

θm
dβ
m

(σ2

θm
+σ2

nm
)1/2

⎫
⎪⎬

⎪⎭
.

(20)

Then, the optimal λl is given by

λ⋆
l =

1

N

⎡

⎢⎣
σ2
vσ

2
θl

�M⋆

m=1 d
2β
m

(σ2
θl
+ σ2

nl
)3/2dβl

�M⋆

m=1

σ2

θm
dβ
m

(σ2

θm
+σ2

nm
)1/2

−
σ2
v

σ2
θl
+ σ2

nl

⎤

⎥⎦

+
P̄σ2

θl

(σ2
θl
+ σ2

nl
)3/2dβl

�M⋆

m=1

σ2

θm
dβ
m

(σ2

θm
+σ2

nm
)1/2

(21)

for l = 1, . . . ,M⋆, and λ⋆
l = 0 for l = M⋆ +1, . . . , L. Further,

the amplitude of the optimal amplification gain for sensor l
becomes |α⋆

l | = dβl
�
λ⋆
l .

Corollary 8. As N → ∞, the asymptotic MSE incurred by using

the optimal power allocation derived in (21) becomes

lim
N→∞

MSE =

L�

l=1

1

1/σ2
θl
+ 1/σ2

nl

. (22)

VI. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the proposed

optimization methods. In all simulation studies, we assume

L = 15 number of sensors. We also assume a homogenous

scenario, where ∀l ∈ {1, . . . , L}, the source-to-sensor noise

variances σ2
nl

= 10−4. Further, σ2
v = 10−4. In the uncorrelated

source case, the variance of source entries is chosen the same

and equal to σ2
θl

= 1 for each node. We also set the pathloss

exponent to 2β = 2, and sensor-to-FC distances dl are uniformly

distributed ranging from 2 to 7.

In the correlated source case, we consider the exponential

covariance matrix model [20] for the source, where each entry

at row i and column j of the source covariance matrix Cθ is

chosen as ρ|i−j| in which 0 < ρ < 1 is known as correlation

coefficient.

We first consider the uncorrelated case. In Figure 2, we plot

total power consumed by sensors as a function of number of

antennas N (varying from 50 to 200 at a step size of 10)

using the optimized power allocation (15) and uniform power

allocation, for varying distortion threshold d̄. For the uniform

power allocation, we assume that all sensor nodes consumes

equal power. It can be observed that the total power in log-log

scale decays linearly in N for both methods. However, in all

setups, the optimal power allocation outperforms the uniform

power allocation by almost 2 dB.

Next, in Figure 3, we plot the MSE as a function of number

of antennas N using the optimized power allocation (21) and

uniform power allocation. As can be observed, the optimal

power allocation provides a lower MSE compared to the uniform

power allocation.

In our last experiment, we study the correlated case, and plot,

in Figure 4, MSE as function of number of antennas N for

different values of the correlation coefficient ρ and for fixed
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Fig. 2: Total power consumed by sensors as a function of number of antennas N
for different values of distortion threshold d̄ using optimized design and uniform
power allocation.
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Fig. 3: MSE as a function of number of antennas N at the FC for different values
of power threshold P̄ using optimized design and uniform power allocation.

P̄ = 0.1. The curves in Figure 4 are associated with the exact

analysis (by solving (P2) using CVX solver or equivalently by

solving the KKT conditions in (18)) shown in solid line, and the

approximate analysis (by solving (19))) shown in dashed line,

respectively. We observe that the approximate solution is tight in

all numerical setups. As can be also expected, higher correlation

leads to lower MSE.
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Fig. 4: MSE as a function of number of antennas N at the FC for different
values of correlation parameter ρ.

VII. EXTENSIONS

The optimal power allocation algorithms studied here can also

be extended to cases where the MIMO channels are correlated,

or the sensor-to-FC additive noise elements are correlated.

Extension to the case of imperfect channel estimates at the FC

can also be readily addressed. These extensions will be reported

in a longer version of this paper.
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