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Abstract—In this paper we consider state estimation of an
unstable scalar system using multiple sensors, where the sensors
quantize their individual innovations, which are then combined
at the fusion center to form a global state estimate. We obtain an
asymptotic expression for the error covariance (or mean squared
error) that relates the system parameters and bit rates used by
the different sensors. Numerical results show close agreement
with the true mean squared error for quantization at high rates.
An optimal rate allocation problem amongst the different sensors
is also considered.

I. INTRODUCTION

Linear state estimation using multiple sensors is a com-
monly performed task in areas such as radar tracking and
industrial monitoring. Nowadays, much of the communication
systems used in practice are digital in nature. For instance, ana-
log measurements made by sensors will need to be quantized
before transmission to a central processor or fusion center.
Characterizing the performance loss due to quantization, for a
linear state estimation problem, is the focus of this paper. This
can be seen as a first step towards achieving a quantization
rate versus state estimation error trade-off (for both single
and multi-sensor cases) for linear dynamical systems, which
is largely unavailable in the current literature.

We consider an unstable scalar linear system. A number
of sensors take measurements, perform some local processing
before transmitting a processed signal to a fusion center, that
then combines these signals to form a global state estimate. At
the sensor level, each sensor will quantize their innovations1.
This is motivated by the fact that for unstable systems,
while the state will become unbounded (leading to possible
saturation of the quantizer), the innovations process remains
of bounded variance [1]. These quantized innovations are then
sent to a fusion center to form a global state estimate, using a
modification of the exact decentralized scheme for unquantized
Kalman filtering in [2].

The work of [3] gave structural results on optimal coding for
state estimation with measurements obtained over a finite rate
digital link, though the focus is more on determining minimum
bit rates required for stability. For a linear quadratic control

This work was supported by the Australian Research Council
1To be more specific, we quantize an approximation to the true innovations

due to the nonlinear effect of quantization

problem with quantized state feedback, the performance with
high rate quantization has been studied in [4]. The idea of
quantizing innovations has also been considered in [5]–[7]
with slightly different filtering equations from ours. However
[7] only considers the case of a single sensor, while the multi-
sensor setup in [6] does not involve a fusion center but instead
requires sensors to broadcast their quantized innovations to all
other sensors. In [8] quantization of measurements is carried
out after performing an optimization of the quantization levels,
but their scheme requires feedback of the state estimates from
the fusion center back to the sensors. In [9] a filter which
involves quantizing the true innovations at the sensor (rather
than the approximation to the true innovations considered here
and in [5]–[7]) is given, but it is shown that for unstable sys-
tems the mean squared error always becomes unbounded with
this scheme. Particle filtering schemes are also considered in
[9], though such schemes are difficult to analyze theoretically.

The paper is organized as follows. We first briefly consider
the single sensor case to motivate our choice of quanti-
zation method, filtering equations, and asymptotic analysis
techniques for high rate quantization. We then consider the
multi-sensor case. We obtain an asymptotic approximation for
the error covariance in terms of the bit rates used by the
different sensors in quantizing their innovations, as well as the
system parameters. Numerical comparisons are made between
the asymptotic expression and Monte Carlo simulations of the
true mean squared error. While our asymptotic expressions
are derived assuming high rate quantization, numerical results
suggest that they are quite accurate even for bit rates as
low as 3, in agreement with the conventional wisdom [10].
We also solve a rate allocation problem in the multi-sensor
case for minimizing the steady-state error covariance at the
fusion centre when the total rate across the sensors is limited.
Performance of this optimal rate allocation scheme is analyzed
both qualitatively and numerically.

II. SINGLE SENSOR

A. System model

The system is a scalar linear system

!!+1 = "!! + #!
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with a single scalar sensor measurement

!! = "#! + $!

where %! ∼ &(0, (2
") and $! ∼ &(0, (2

#) are i.i.d. in time.
We consider unstable systems, i.e. ∣)∣ > 1, and we assume
that {%!} and {$!} are mutually independent. Define the state
estimates and error covariances2

#̂!$
!∣!−1 = ![#!∣!0, . . . , !!−1]

#̂!$
!∣! = ![#!∣!0, . . . , !!]

, !$
!∣!−1 = ![(#! − #̂!$

!∣!−1)
2∣!0, . . . , !!−1]

, !$
!∣! = ![(#! − #̂!$

!∣!)
2∣!0, . . . , !!]

The innovations process is

!̃! = !! − ![!!∣!0, . . . , !!−1] = !! − "#̂!$
!∣!−1

It is well-known (see e.g. [1]) that

!̃! ∼ &(0, "2, !$
!∣!−1 + (2

#)

The Kalman filtering equations (without quantization) are:

#̂!$
!∣!−1 = )#̂!$

!−1∣!−1

#̂!$
!∣! = #̂!$

!∣!−1 +-!$
! (!! − "#̂!$

!∣!−1) = #̂!$
!∣!−1 +-!$

! !̃!

-!$
! =

, !$
!∣!−1"

"2, !$
!∣!−1 + (2

#

, !$
!∣!−1 = )2, !$

!−1∣!−1 + (2
"

, !$
!∣! = , !$

!∣!−1 −-!$
! ", !$

!∣!−1 =
, !$
!∣!−1(

2
#

"2, !$
!∣!−1 + (2

#

(1)

For " ∕= 0, as . → ∞, , !$
!∣!−1 converges to a steady state

value:

, !$
∞ =

−((2
# − "2(2

" − )2(2
#) +

√
((2

# − "2(2
" − )2(2

#)
2 + 4"2(2

#(
2
"

2"2

=
−(1− (2

"/− )2) +
√
(1− (2

"/− )2)2 + 4(2
"/

2/
(2)

where / ≜ %2

&2
!

can be regarded as a sensor signal to noise
ratio.

B. Quantized filtering scheme

Here we consider a suboptimal scheme, where we run a
slightly modified version of the unquantized filtering equations

2As in [9], we use the superscript “kf ” to denote the true Kalman filtering
quantities.

given in (1):

#̂!∣!−1 = )#̂!−1∣!−1

#̂!∣! = #̂!∣!−1 +-!0(!! − "#̂!∣!−1)

-! =
,!∣!−1"

"2,!∣!−1 + (2
# + (2

'

,!∣!−1 = )2,!−1∣!−1 + (2
"

,!∣! = ,!∣!−1 −-!",!∣!−1 =
,!∣!−1((

2
# + (2

')

"2,!∣!−1 + (2
# + (2

'

(3)

where 0(!!−"#̂!∣!−1) is the quantization of !!−"#̂!∣!−1, and
(2
' is a term to account for “quantization noise”, similar to e.g.

[11]. Note that due to quantization #̂!, ,!, and !!−"#̂!∣!−1 are
not the true conditional mean, error covariance and innovations
respectively, but for high rate quantization the approximations
are quite accurate.

We will use a uniform quantizer, motivated by the result
that for uniform quantization of certain random variables such
as Gaussian random variables, the quantization error at high
rates is approximately uncorrelated with the quantizer input
[12], so that one can write

0(!! − "#̂!∣!−1) ≈ !! − "#̂!∣!−1 + 1!

where 1! is the quantization noise. Under high rate quantiza-
tion, the distortion is approximated by (see e.g. [10]):

2 ≈ 1

12&2

∫
3(#)

42(#)
5# ≜ (2

'

where & is the number of quantization levels, 3(#) is the p.d.f.
of the random variable to be quantized, and 4(#) is the point
density. At high rates, we will also assume that the quantity
!! − "#̂!∣!−1 is approximately &(0, "2,∞ + (2

#), where ,∞
is the limit of ,!∣!−1 in (3) as . → ∞. We use a uniform
quantizer with & quantization levels, truncating the range to
[−3
√

"2,∞ + (2
# , 3
√

"2,∞ + (2
# ], which is motivated by the

rule of thumb in statistics that 99.7% of samples lie within 3
standard deviations of the mean. The point density will then
be 4(#) = 1

6
√

%2(∞+&2
!

, and hence

(2
' =

1

12&2

∫
36("2,∞ + (2

#)3(#)5# =
3("2,∞ + (2

#)

&2
.

The value of ,∞ can then be found by solving for

,∞ =
)2,∞((2

# + (2
')

"2,∞ + (2
# + (2

'

+ (2
"

with (2
' = 3(%2(∞+&2

!)
)2 . This can be rearranged into a quadratic

equation
[
"2(1 +

3

&2
)− 3)2"2

&2

]
, 2
∞ − (2

"(
2
#(1 +

3

&2
)

+

[
(2
#(1 +

3

&2
)− (2

""
2(1 +

3

&2
)− )2(2

#(1 +
3

&2
)

]
,∞=0
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so that

,∞ =
−(1 + 3

)2 )(1− )2 − (2
"/)

2/(1 + 3
)2 − 3*2

)2 )
+

√
(1+ 3

)2 )2(1−)2−(2
"/)

2+4(2
"/(1+

3
)2 − 3*2

)2 )(1+
3

)2 )

2/(1+ 3
)2 − 3*2

)2 )
(4)

with / = "2/(2
# .

C. Asymptotic analysis

Here we determine the asymptotic behaviour of (4) for large
& . We have
√
(1+ 3

)2 )2(1−)2−(2
"/)

2+4(2
"/(1+

3
)2 − 3*2

)2 )(1+
3

)2 )

=

[
21 +

22

&2
+7(

1

&4
)

]1/2

=
√

21 +
22

2
√
21

1

&2
+7(

1

&4
)

where 21 ≜ (1− )2 − (2
"/)

2 + 4(2
"/ and 22 ≜ 6(1− )2 −

(2
"/)

2 + 4(2
"/(6− 3)2) = 621 − 12(2

"/)
2. Then

,∞ =
(−(1− )2 − (2

"/)−
3(1−*2−&2

",)
)2

2/

+

√
21 +

-2

2
√
-1

1
)2 +7( 1

)4 )

2/

)(
1− 3− 3)2

&2
+7(

1

&4
)

)

= , !$
∞ +

-2

2
√
-1

+3()2−1)
√
21−3)2(1−)2−(2

"/)

2/

1

&2

+7(
1

&4
)

where , !$
∞ as given by (2) is the steady state error covariance

when there is no quantization. Alternatively, we can express
this in terms of the bit rate 8 = log2(&), so that

,∞ = , !$
∞ +

-2

2
√
-1

+3()2−1)
√
21−3)2(1−)2−(2

"/)

2/

1

22.

+7(
1

24.
)

We thus see that ,∞ asymptotically behaves like the unquan-
tized error covariance , !$

∞ plus a term that decays to zero at
the rate 1/22..

III. MULTIPLE SENSORS

The system is again a scalar linear system

#!+1 = )#! + %!,

but now with 9 different sensors taking scalar sensor mea-
surements (using : to denote the sensor index and . the time
index):

!/,! = "/#! + $/,!, : = 1, . . . ,9

where %! ∼ &(0, (2
") and $/,! ∼ &(0, (2

/,#) are i.i.d. in time.
We assume that {%!} and {$/,!},∀: are mutually independent.
It is assumed that the individual sensors can perform some

local processing, with a fusion center then using an appropriate
fusion rule to compute a global estimate of the state #!. See
Fig. 1 for a diagram of the system model.

Fig. 1. System model: Multi-sensor

A. Decentralized Kalman filter

In [2], it is shown that in the case where there is no quanti-
zation, each sensor can run its own individual Kalman filter to
obtain local state estimates, which can then be combined at the
fusion center to obtain a global state estimate, with this global
estimate being the same as if the fusion center had access to the
individual measurements. We summarize the equations below.

Define the local estimates and error covariances:

#̂!$
/,!∣!−1 = ![#!∣!/,0, . . . , !/,!−1]

#̂!$
/,!∣! = ![#!∣!/,0, . . . , !/,!]

, !$
/,!∣!−1 = ![(#! − #̂!$

/,!∣!−1)
2∣!/,0, . . . , !/,!−1]

, !$
/,!∣! = ![(#! − #̂!$

/,!∣!)
2∣!/,0, . . . , !/,!]

and the global estimates and error covariances:

#̂!$
!∣!−1 = ![#!∣y0, . . . , y!−1]

#̂!$
!∣! = ![#!∣y0, . . . , y!]

, !$
!∣!−1 = ![(#! − #̂!$

!∣!−1)
2∣y0, . . . , y!−1]

, !$
!∣! = ![(#! − #̂!$

!∣!)
2∣y0, . . . , y!]

where y! ≜ (!1,!, . . . , !1,!).
The sensors run their individual Kalman filtering equations,

for : = 1, . . . ,9 , whose equations take the form (1) but
replacing !! with !/,!, " with "/, (2

# with (2
/,# etc. The fusion

center makes use of the local estimates #̂!$
/,!∣!−1 and #̂!$

/,!∣! and

local error covariances , !$
/,!∣!−1 and , !$

/,!∣! to compute global
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state estimates as follows:

#̂!$
!∣!−1 = )#̂!$

!−1∣!−1

#̂!$
!∣! = , !$

!∣!

(
#̂!$
!∣!−1

, !$
!∣!−1

+
1∑

/=1

{
#̂!$
/,!∣!

, !$
/,!∣!

−
#̂!$
/,!∣!−1

, !$
/,!∣!−1

})

, !$
!∣!−1 = )2, !$

!−1∣!−1 + (2
"

, !$
!∣! =

, !$
!∣!−1

1 + , !$
!∣!−1

∑1
/=1

%2#
&2
#,!

(5)

Note that instead of the sensors sending their local estimates
and error covariances, the local innovations !̃/,! = !/,! −
"/#̂

!$
/,!∣!−1 can be sent to the fusion center instead, since the

fusion center can reconstruct #̂!$
/,!∣!−1, #̂!$

/,!∣!, , !$
/,!∣!−1 and

, !$
/,!∣! from !̃/,! provided it has knowledge of all the sensor

parameters "/ and (2
/,# , : = 1, . . . ,9 .

For later reference, the local error covariances , !$
/,!∣!−1 have

steady state values

, !$
/,∞ =

−(1− (2
"// − )2)

2//

+

√
(1− (2

"// − )2)2 + 4(2
"//

2//

while the error covariance , !$
!∣!−1 has steady state value

, !$
∞ =

−(1− (2
"

∑1
/=1 // − )2)

2
∑1

/=1 //

+

√
(1− (2

"

∑1
/=1 // − )2)2 + 4(2

"

∑1
/=1 //

2
∑1

/=1 //

where // ≜ %2#
&2
#,!

can be regarded as the individual sensor signal
to noise ratios.

B. Quantized filtering scheme

As in the single sensor case, we can consider a suboptimal
scheme which is a slightly modified version of the unquantized
Kalman filtering equations. The individual sensors run the
following equations, for : = 1, . . . ,9 :

#̂/,!∣!−1 = )#̂/,!−1∣!−1

#̂/,!∣! = #̂/,!∣!−1 +-/,!0/(!/,! − "/#̂/,!∣!−1)

-/,! =
,/,!∣!−1"/

"2/,/,!∣!−1 + (2
/,# + (2

/,'

,/,!∣!−1 = )2,/,!−1∣!−1 + (2
"

,/,!∣! =
,/,!∣!−1((

2
/,# + (2

/,')

"2/,/,!∣!−1 + (2
/,# + (2

/,'

(6)

while the fusion center runs the following equations:

#̂!∣!−1 = )#̂!−1∣!−1

#̂!∣! = ,!∣!

(
#̂!∣!−1

,!∣!−1
+

1∑

/=1

{
#̂/,!∣!

,/,!∣!
−

#̂/,!∣!−1

,/,!∣!−1

})

,!∣!−1 = )2,!−1∣!−1 + (2
"

,!∣! =
,!∣!−1

1 + ,!∣!−1
∑1

/=1
%2#

&2
#,!+&2

#,%

(7)

where 0/(!/,! − "/#̂/,!∣!−1) is the quantization of !/,! −
"/#̂/,!∣!−1, with corresponding term (2

/,' to account for the
quantization noise. The values 0/(!/,! − "/#̂/,!∣!−1) are the
quantities that are sent to the fusion center. Similar to the
remark in the previous subsection, the fusion center can
reconstruct #̂/,!∣!−1, #̂/,!∣!, ,/,!∣!−1 and ,/,!∣! from 0/(!/,!−
"/#̂/,!∣!−1) and knowledge of the sensor parameters.

We will again use uniform quantization, with &/ quantizer
levels for sensor :. At high rates, assuming that !/,! −
"/#̂/,!∣!−1 is approximately &(0, "2/,/,∞ + (2

/,#), and using

a quantization range [−3
√

"2/,/,∞ + (2
/,#, 3

√
"2/,/,∞ + (2

/,#],
we obtain similar to the single sensor case that

(2
/,' =

3("2/,/,∞ + (2
/,#)

&2
/

where ,/,∞ is the steady state value of ,/,!∣!−1 and satisfies

,/,∞ =
)2,/,∞((2

/,# + (2
/,')

"2/,/,∞ + (2
/,# + (2

/,'

+ (2
".

Then ,/,∞ has solution of the form (4), but replacing " with
"/, (2

# with (2
/,# , / with //, & with &/ etc.

The quantity ,!∣!−1 has steady state value

,∞ =
−(1− (2

"

∑1
/=1

%2#
&2
#,!+&2

#,%
− )2)

2
∑1

/=1
%2#

&2
#,!+&2

#,%

+

√
(1− (2

"

∑1
/=1

%2#
&2
#,!+&2

#,%
− )2)2 + 4(2

"

∑1
/=1

%2#
&2
#,!+&2

#,%

2
∑1

/=1
%2#

&2
#,!+&2

#,%

(8)

C. Asymptotic analysis

We now determine the asymptotic behaviour of (8) as &/ →
∞, ∀:. From the analysis of the single sensor case, we have

,/,∞ = , !$
/,∞ +7

(
1

&2
/

)

and hence

(2
/,' =

3("2/,
!$
/,∞ + (2

/,#)

&2
/

+7

(
1

&4
/

)

By similar methods, we can further obtain
1∑

/=1

"2/
(2
/,# + (2

/,'

=
1∑

/=1

(
// −

3//(//,
!$
/,∞ + 1)

&2
/

+7

(
1

&4
/

))

Authorized licensed use limited to: Maynooth University Library. Downloaded on June 01,2021 at 16:28:07 UTC from IEEE Xplore.  Restrictions apply. 



and
√√√⎷(1− (2

"

1∑

/=1

"2/
(2
/,# + (2

/,'

− )2)2 + 4(2
"

1∑

/=1

"2/
(2
/,# + (2

/,'

=
√

;1 +
1

2
√
;1

1∑

/=1

;2,/

&2
/

+
∑

/,2

7

(
1

&2
/ &

2
2

)

where

;1 ≜ (1− )2 − (2
"

1∑

2=1

/2)
2 + 4(2

"

1∑

2=1

/2

and

;2,/ ≜ −6(2
"

⎛

⎝1 + )2 + (2
"

1∑

2=1

/2

⎞

⎠ //(//,
!$
/,∞ + 1)

for : = 1, . . . ,9 . Finally, after some algebraic manipulation
we can obtain

,∞ = , !$
∞ +

1∑

/=1

</
&2

/

+
∑

/,2

7

(
1

&2
/ &

2
2

)

= , !$
∞ +

1∑

/=1

</
22.#

+
∑

/,2

7

(
1

22.#+2.&

) (9)

where 8/ = log2(&/) and

</ ≜
3//(//,

!$
/,∞ + 1)

2
(∑1

2=1 /2
)2

×
[
)2 − 1 +

√
;1 −

(2
"(1 + )2 + (2

"

∑1
2=1 /2)

∑1
2=1 /2√

;1

]

(10)

It is not too difficult to show that </ ≥ 0,∀:.
Thus in the multi-sensor case, ,∞ asymptotically behaves

like the unquantized error covariance , !$
∞ plus a sum of 9

terms, with each term decaying to zero at the rate 1/22.# .

D. A rate allocation problem

Suppose we are given 8343, where 8343 is large. We want
to determine how this total rate is to be allocated amongst
the sensors. Let 8/ = =/8343 where 0 ≤ =/ ≤ 1. One way
to allocate the rates is to minimize the asymptotic expression
given by (9), subject to the total rate being less than or equal
to 8343, i.e. the problem:

min
51,...,5'

, !$
∞ +

1∑

/=1

</
225#.()(

s.t.
1∑

/=1

=/ ≤ 1, =/ ≥ 0

(11)

with </ given by (10). Note that in problem (11), we are not
constraining the rates to be integer values, which allows this

problem to be solved analytically.3 We have the following
result:

Lemma 1: The optimization problem (11), where </ ≥ 0
are constants, has solution

=∗
/ =

1

9
+

1

28343
log2

</
(∏1

2=1 <2
)1/1 (12)

Proof: The optimal solution follows from analyzing the
Karush-Kuhn-Tucker conditions. The derivation is omitted.

From the solution (12) we see that larger values of </ should
be allocated higher rates. From (10) we see that larger values
of </ correspond to larger values of //(//,

!$
/,∞ + 1). It is not

difficult to show that

//,
!$
/,∞ =

−(1− (2
"// − )2) +

√
(1− (2

"// − )2)2 + 4(2
"//

2

is an increasing function of //, hence //(//,
!$
/,∞+1) is also an

increasing function of //. Thus larger values of </ correspond
to larger values of the sensor signal to noise ratios // =

%2#
&2
#,!

.
Another observation that can be made from (12) is that for

fixed 9 , as 8343 → ∞, =∗
/ → 1

1 , so for high 8343 each
sensor should be allocated approximately equal proportions of
the total rate.

E. Numerical studies

In Fig. 2 we plot ,∞ given by (8), the asymptotic expression
for ,∞ given by (9) and compare these expressions with
Monte Carlo simulations of the mean squared error ![(#! −
#̂!∣!−1)

2] using the estimator given by the equations (6)-
(7). We consider the case with two sensors, with parameters
) = 1.2, "1 = 1, "2 = 1, (2

" = 1, (2
1,# = 0.1, (2

2,# = 1.
We set &1 = &2 = & . As we can see, the asymptotic
approximation becomes more accurate for higher rates. Note
that in this example , !$

∞ = 1.1211.

2 2.5 3 3.5 4 4.5 5 5.5 6
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−
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−
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]
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Fig. 2. Mean squared error and asymptotic expression: Multi-sensor

3Otherwise we would have an integer programming problem that is difficult
to solve efficiently.
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TABLE I
MEAN SQUARED ERROR AND ASYMPTOTIC EXPRESSION

!1 = log2("1) !2 = log2("2) Mean squared error #∞ expression (8) Asymptotic expression (9)
1 7 2.0503 1.7129 2.0699
2 6 1.4507 1.3334 1.3585
3 5 1.1981 1.1790 1.1805
4 4 1.1368 1.1363 1.1363
5 3 1.1278 1.1262 1.1262
6 2 1.1290 1.1262 1.1277
7 1 1.1375 1.1302 1.1441

We will next consider the optimal rate allocation problem
(11). For the same parameters ) = 1.2, "1 = 1, "2 = 1, (2

" =
1, (2

1,# = 0.1, (2
2,# = 1, with 8343 = 8, we find that the

optimal solution is =∗
1 = 0.6682, =∗

2 = 0.3318, corresponding
to rates 8∗

1 = 5.3459, 8∗
2 = 2.6541. In Table I we tabulate

the results for some integer combinations of 81 = log2(&1)
and 82 = log2(&2), with 81 +82 = 8. We see that 81 = 5,
82 = 3 gives the best performance. Thus in this case, the
best integer valued rates are given by rounding the solution
obtained from (11) to the nearest integers.

IV. CONCLUSION

We have derived an asymptotic approximation to the error
covariance for linear state estimation of an unstable scalar
system with quantized innovations, valid when the sensors
use high rate quantization. Extensions of this work to vector
systems is currently under investigation.
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