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Abstract: We study stochastic stability for Kalman filtering over fading wireless channels where
variable channel gains are counteracted by the use of power control to alleviate the effects of
packet drops. The Kalman filter and the controller are located at a single gateway which acquires
data from the wireless sensors. We establish sufficient conditions which ensure that the Kalman
filter covariance matrix is exponentially bounded in norm. The conditions obtained are then used
to formulate stabilizing optimal power allocation laws which minimize the total sensor power
budget. In deriving the optimal power allocation laws, both statistical channel information and
full channel information are considered. The effect of system instability on the power budget is
also investigated for both these cases.
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1. INTRODUCTION

The interest in estimation and control over communication
channels subject to packet loss has increased tremendously
in recent years; see, e.g., Hespanha et al. (2007); Nair
et al. (2007); Schenato et al. (2007). First, the rapid
evolution of Wireless Sensor Networks, see e.g., Ilyas et al.
(2004); Shen et al. (2007); Havinga et al. (2004); Gharavi
and Kumar (2003) has made wireless sensors cheap and
reliable enough to be brought into commercial use. Second,
wireless sensors offer several advantages for industrial
control systems, such as, flexibility, low cost, and fast
deployment. Third, with wireless sensors electrical contact
problems are no longer an issue. Furthermore, wireless
sensors and actuators can be placed where wires cannot
go, or where power sockets are unavailable.

Wireless communication channels on the other hand are
frequently subject to fading and interference, which may
lead to packet errors. A key aspect is that fading channels
can, at least partially, be compensated for by adjusting
the transmission power levels. The use of suitable power
control algorithms, thus, becomes an important issue for
reliably acquiring measurements from wireless sensors.

Depending on the situation at hand, wireless channels can
either be static (the environment is static and receiver and
transmitter are not moving), or it can be time varying.
The time variations can either be slow, which is frequently
? This research was supported under Australian Research Council’s
Discovery Projects funding scheme (project number DP0988601).

the case when large objects obstruct the propagation
channel, or they can be rapid, which is often the case when
transmitters or receivers are mounted on moving objects,
or when objects are moving between them. The degree of
variability will also depend on the wireless systems radio
interface and its bandwidth, see, e.g., Goldsmith (2005).

Apart from fading channels, which may cause packet
drops, another important issue, which arises when wireless
sensors are used, is that in the absence of power sockets,
there is a need for energy conservation. Even though
energy harvesting is frequently considered a remedy for
battery powered sensor nodes, today’s technology does
not suffice in many industrial applications. Thus, saving
energy is of utmost importance to avoid unnecessary
maintenance and replacement of batteries. We conclude
that packet loss will unavoidably occur at the receivers.
Depending on how severe the fading is and how much
power is available to counteract it, packets will be dropped
more or less frequently.

Recently, energy issues have attracted significant atten-
tion in the wireless sensor networks literature; see, e.g.,
Björnemo (2009); Wen et al. (2008); Xiao et al. (2008);
Björnemo et al. (2007); Johansson et al. (2007). For ex-
ample, in Xiao et al. (2008) convex optimization is used to
derive optimal power scheduling for a time-invariant de-
centralized case. Power control will be a highly useful tool
to counteract time variations in wireless links. Since energy
is severely limited in most wireless sensor applications,
power control design involves trading energy consumption
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Fig. 1. State estimation with M = 4 wireless sensors and L = 3 wireless channels. The radio at the top is transmitting
values from Sensor 1 only, whereas the middle and bottom radios combine into one packet the values from Sensor 2
and 3, and Sensor 2 and 4, respectively.

for accuracy. This was considered in the context of state
estimation with power controlled sensor data transmitted
over fading channels, e.g., in Quevedo et al. (2010).

In the present work we study state estimation with a
time-varying Kalman filter performing optimal state es-
timation at a gateway. Sensor data are transmitted over
fading channels generating random packet loss. The packet
loss probabilities depend, in a nonlinear fashion, upon
the time-varying channel gains and power levels used by
the sensors. Here we focus on centralized control of the
transmission power levels to be used by each sensor. We es-
tablish sufficient conditions which ensure that the Kalman
filter covariance matrix is exponentially bounded in norm.
The conditions obtained are then used to formulate sta-
bilizing optimal power allocation laws which minimize the
total power used by the sensors.

Before proceeding, we note that stability of time-varying
Kalman filters in the face of random packet loss has
recently been studied extensively. Representative works
include Sinopoli et al. (2004); Xie and Xie (2008); Schenato
(2008); Kluge et al. (2010); Gupta et al. (2009); Shi et al.
(2010); Dey et al. (2009). However, to the best of the
authors’ knowledge, such kind of stability analysis has not
been performed previously for the case of state estimation
with power controlled digital wireless links.

The remainder of this paper is organized as follows:
In Section 2, we present the process model and the
structure of the wireless links used. Section 3 describes
the state estimator with packet drops and power control,
and presents a sufficient condition for stochastic stability
of the estimator. In Section 4, the stability result is used
to perform optimum power allocation. An example is
included to compare optimum static and dynamic power
allocations. Finally, in Section 5 conclusions are drawn.

Notation: We write N0 for {0, 1, 2, 3, . . .}, {ν}N0 for
{ν(0), ν(1), . . . }, and {ν}k

0 for {ν(0), ν(1), . . . , ν(k)}. A
random variable ν(k), which is Gaussian with mean value
m and covariance matrix Γ is denoted ν(k) ∼ N (m,Γ).
Absolute value is denoted by | · |. Furthermore, min eigsA
and max eigsA denote the minimum and maximum of the
set of eigenvalues of a matrix A, respectively. The trace
of a matrix A is denoted by trA, and the norm of the
same matrix by ||A|| ,

√
max eigs(AT A). If a matrix A

is positive definite (semi definite), then we write A � 0

(A � 0). To denote the conditional probability of an event
Ω given ∆, we write P{Ω |∆}; the unconditional prob-
ability is denoted P{Ω}. The probability density (mass)
function of a (discrete) random variable ν is denoted as
p(ν), its expected value is denoted via E{ν}, whereas for
the conditional expectation given ∆, we write E{ν |∆}.
We use the same notation for random variables and their
realizations. What is meant will depend on the context.

2. ESTIMATION ARCHITECTURE

Consider an uncontrolled LTI n-dimensional system:
x(k + 1) = Ax(k) + w(k), k ∈ N0, (1)

where the initial system state x(0) ∼ N (x0, P0). The
driving noise process {w}N0 is independent and identically
distributed (i.i.d.), where each w(k) ∼ N (0, Q), Q � 0.
To remotely estimate the system state sequence {x}N0 , M
wireless sensors are used. Each sensor provides a scalar
noisy measurement sequence {ym}N0 , where

ym(k) = Cmx(k) + vm(k), m ∈ {1, 2, . . . ,M}. (2)
In (2), {vm}N0 is an i.i.d. scalar measurement noise process
with each vm(k) ∼ N (0, σ2

m), with σ2
m > 0

The M measurements in (2) are to be transmitted to
a single gateway via L wireless links. Upon receipt, the
signals are used to remotely estimate the state of the
system (1). The sensor measurements can be transmitted
to the gateway in several ways. To be more specific, the
collected values from the M sensors, namely, Y(k) ,
{y1(k), y2(k), . . . , yM (k)} are combined into L packets
{ȳ1(k), ȳ2(k), . . . , ȳL(k)} where each packet contains mea-
surements of one or more sensors, i.e., ȳ`(k) ⊆ Y(k). The
values transmitted over each wireless link, thus amount to
a vector valued measurement sequence, say {ȳ`}N0 , where

ȳ`(k) = C̄`x(k) + v̄`(k), ` ∈ {1, 2, . . . , L}. (3)
The associated observation noise {v̄`}N0 is an i.i.d. process
with v̄`(k) ∼ N (0, R`), where R` is a diagonal matrix con-
taining the corresponding individual covariances σ2

m. The
rows of the observation matrices C̄` are the corresponding
row vectors Cm, see (2).
Example 1. Fig. 1 depicts a particular estimation archi-
tecture with M = 4 sensors and L = 3 links and where

ȳ1(k) = y1(k), ȳ2(k) =
[
y2(k)
y3(k)

]
, ȳ3(k) =

[
y2(k)
y4(k)

]
C̄1(k) = C1(k), C̄2(k) =

[
C2(k)
C3(k)

]
, C̄3(k) =

[
C2(k)
C4(k)

]
.
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3. STATE ESTIMATION WITH WIRELESS SENSORS

In this section, we formulate the state estimation archi-
tecture in the face of packet drop-outs caused by fading
channels. We then present sufficient conditions for stochas-
tic boundedness of the covariance of the estimation error.

3.1 Effects of Fading Channels

Since the L links used to convey measurements between
sensors and the gateway are wireless, transmission errors
are likely to occur. Thus, faulty packets will frequently
be received. Such packets are discarded when estimating
the system state sequence {x}N0 . We model transmission
effects on a wireless link basis by introducing the L binary
stochastic arrival processes {γ`}N0 , ` ∈ {1, . . . , L}, where:

γ`(k) =
{

1 if ȳ`(k) arrives error-free at time k,
0 if ȳ`(k) does not arrive error-free at time k.

For future reference, we also define the overall arrival
process of all L links, say {γ}N0 , via:

γ(k) , [γ1(k) γ2(k) . . . γL(k)] , k ∈ N0. (4)

The success probabilities of the processes {γ`}N0 are, in
general, time-varying and depend upon the propagation
environment and on the transmission power used by the
sensor radio power amplifiers. Indeed, by adopting a block-
fading model, the conditional transmission success proba-
bilities satisfy:

P
{
γ`(k) = 1

∣∣h`(k), u`(k)
}

= f`

(
h`(k)u`(k)

)
, (5)

where u`(k) denotes the power used by the `-th radio
power amplifier, whereas h`(k) is the corresponding chan-
nel power gain. The functions f`(·) : [0,∞) → [0, 1] are
monotonically increasing and differentiable, and depend
upon the modulation scheme employed; see, e.g., Proakis
(1995). In Section 4.2, we will investigate a specific case.

3.2 State Estimation with Packet Drop-outs

We will assume that the packets transmitted from the
sensors to the gateway incorporate error detection cod-
ing; see, e.g., Proakis (1995). Hence, the gateway knows,
whether received packets, containing collections of sensor
measurements, are correct or not. Thus, at any time k, past
and present realizations of the process {γ}N0 are available
at the gateway. For state estimation purposes, the system
amounts to sampling (1), (3) with the stochastic output
matrix:

C(k) ,


γ1(k)C̄1

γ2(k)C̄2

...
γL(k)C̄L

 . (6)

The conditional probability distribution of x(k), given
{γ}k

0 and correctly received packets with sensor measure-
ments up to time k, i.e., {ȳ}k

0 , is Gaussian.

Consequently, the conditional means of x(k) and the
(prior) covariance of the state estimation error, i.e.,

x̂(k) , E
{
x(k)

∣∣ {y}k
0 , {γ}k

0

}
x̌(k) , E

{
x(k)

∣∣ {y}k−1
0 , {γ}k−1

0

}
P (k) , E

{(
x(k)− x̌(k)

)(
x(k)− x̌(k)

)T ∣∣ {y}k−1
0 , {γ}k−1

0

}
,

satisfy the Kalman filter recursions (see, e.g., Anderson
and Moore (1979)):
x̌(k + 1) = Ax̂(k)
x̂(k + 1) = Ax̂(k) + K(k + 1)

(
y(k + 1)− C(k + 1)Ax̂(k)

)
P (k + 1) = AP (k)AT + Q−AK(k)C(k)P (k)AT

(7)
with initial values P (0) = P0 and x̂(−1) = x0, and where

K(k) , P (k)C(k)T
(
C(k)P (k)C(k)T + R

)−1

R , diag
(
R1, R2, . . . , RL

)
� 0.

Note that, since {C}N0 is a random process, so is {P}N0 .
An important question arises as to whether the above state
estimator is stable, i.e., whether {P}N0 is bounded. This
issue will be studied below.

3.3 Stochastic Stability

Due to fading channels, the sequence of error covariances
of the state estimator (7) becomes a stochastic process.
Properties of {P}N0 are closely related to those of {C}N0

defined in (6). Since the arrival processes {γ`}N0 are binary,
the process {C}N0 is discrete, where each C(k) takes one
of 2L possible values. The distribution of C(k) depends
upon the current channel gains h`(k) and the control law
adopted; see (5) and (6). In general, P (k) will not converge
to a fixed value. Theorem 1, stated below, characterizes
stability properties of {P}N0 . To state our result, we
introduce the random process {s}N0 , where:

s(k) =
{

1 if C(k) has full column-rank,
0 otherwise.

Theorem 1. Suppose that the process {γ}N0 defined in (4)
is white 1 and that there exists ρ ∈ [0, 1), such that:

P{s(k) = 1} ≥ 1− ρ

‖A‖2
, ∀k ∈ N. (8)

Then, {P}N0 is exponentially bounded in norm, i.e., there
exist finite constants α and β, such that:

E
{
‖P (k)‖} ≤ αρk + β, ∀k ∈ N0.

Proof. See Appendix A.

The above theorem establishes sufficient conditions for
stochastic stability of the covariance matrix {P}N0 , i.e., of
the time-varying Kalman filter used for state estimation
over wireless fading channels with power control. It is
worth noting that the condition on P{s(k) = 1}, or
bounds thereof, can at times be calculated by conditioning
upon, for example, channel state distribution, channel gain
distribution, power control policy, etc. In the following
section, we will take a closer look at how Theorem 1 can
be used in various power control settings.
Remark 2. Situations with fixed success probabilities

P{γ`(k) = 1} = λ` ∈ [0, 1], ∀k ∈ N0

have been extensively studied previously in the literature;
see, e.g, Schenato et al. (2007); Shi et al. (2010); Sinopoli
et al. (2004); Gupta et al. (2009); Rohr et al. (2010). For
example, for the one sensor-link case, Sinopoli et al. (2004)
1 That is, the random variables γ(`), ` ∈ N0 are independent in time
(but not necessarily identically distributed).
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established that there exists a critical transmission success
probability, which determines stability of the estimator.
Our result in Theorem 1 complements those works by
considering transmission over multiple wireless channels
with time-varying success probabilities, see (5). �

4. CONTROL OF TRANSMISSION POWERS

It follows from the discussion so far that one can im-
prove transmission reliability and, thus, state estimation
accuracy for a given wireless propagation environment,
by simply increasing the power used by the transmitters.
However, in wireless sensor networks, it is of fundamental
importance to save energy. Furthermore, the transmission
power available to the individual sensors will also be con-
strained in magnitude. Thus, power control design involves
a trade-off between transmission error probabilities (and,
thus, state estimation accuracy) and energy consumption,
see also Quevedo et al. (2010). Whilst it is indeed im-
portant to balance state estimation accuracy against the
power used, it is essential to allocate enough power to the
sensor nodes so that exponentially boundedness in norm
of the state estimation covariance matrix P (k) can be
guaranteed. We will consider this issue next.

4.1 Stabilizing Power Allocation Strategies

The stability result provided in Theorem 1 can be ap-
plied to settings of various degrees of complexity. In the
remainder of this work, we will focus on an estimation
architecture where the number of sensors is equal to the
state dimension. The vectors {C1, . . . , CM} are linearly
independent and each sensor transmits over a dedicated
channel. In this case, we have n = M = L and the output
matrix becomes

C(k) =


γ1(k)C1

γ2(k)C2

...
γM (k)CM

 ∈ RM×M .

Thus, C(k) has full rank, if and only if γ`(k) = 1, ∀` ∈
{1, 2, . . . ,M}. Accordingly, {s}N0 becomes:

s(k) =
∏

`∈{1,...,M}

γ`(k), ∀k ∈ N0 . (9)

We will assume that the L channel gains h`(k) are i.i.d. and
block fading with support Ω`, ` ∈ {1, . . . , L}. With L chan-
nels fading independently of each other, state estimation
accuracy can be improved by increasing the power on the
channels being in a fade. However, such a simple strategy
may often waste energy. A better idea is to allocate only
as much power to the sensors as is necessary to attain
desired performance. A lower bound would then be the
allocation of power to the sensors that is sufficient to
maintain stability.

We will investigate power control for two different cases: In
one situation, the powers are constant; in the other case,
the powers are allowed to vary with time, depending upon
the current channel gains. The associated power allocation
problems are presented below:

P1 While using the statistics of the channel power gains,
h`(k), allocate constant power levels, u`(k) = u`, to

the sensor nodes so that the sum power,
∑L

`=1 u`, is
minimized and and (8) is satisfied.

P2 Here we allow u`(k) to depend on the instantaneous
channel power gains, i.e., u`(k) = κ`(h(k)), where
h(k) , (h1(k), . . . , hL(k)), and the control policies κ`

are designed using the channel gain probability den-
sity functions p(h(k)). The design problem addressed
consists in allocating time varying power levels to the
sensor nodes so that the average sum power∫

Ω

L∑
`=1

κ`(h(k))p(h(k)) dh(k), Ω , Ω1 × · · · × ΩL

is minimized and (8) is satisfied.

Problem P2 is, in general, non-convex. To find (sub-
optimal) solutions, we will next use the generalized
Karush-Kuhn-Tucker conditions, which are necessary for
optimality. Expression (9) provides that

P
{
s(k) = 1

∣∣h(k), u(k)
}

=
L∏

`=1

P
{
γ`(k) = 1

∣∣h`(k), u`(k)
}

=
L∏

`=1

f`(h`(k)u`(k)),

so that the stability condition (8) can be expressed as∫
Ω

(
L∏

`=1

f`

(
h`(k)κ`(h(k))

))
p(h(k)) dh(k) ≥ 1− ρ

||A||2
.

Thus, the Lagrangian of P2 is given by

L(κ1,κ2, . . . , κL, ν) =
L∑

`=1

κ`(h)

− ν

(
L∏

`=1

f`(h`κ`(h))−
(

1− ρ

||A||2

))
,

giving the generalized Karush-Kuhn-Tucker conditions
∂L
∂κ`

= 1− νf ′`(h`κ`(h))h`

∏
j 6=`

fj(hjκj(h)) = 0, ν ≥ 0,

∫
Ω

(
L∏

`=1

f`

(
h`(k)κ`(h(k))

))
p(h(k)) dh(k) = 1− ρ

||A||2

where ` ∈ {1, . . . , L}. For given ν and h(k), we can solve
the system of L equations:

1− νf ′`(h`(k)κ`,ν(h(k)))h(k)
∏
j 6=`

fj(hj(k)κj,ν(h(k))) = 0,

numerically for {κ1,ν(h(k)), . . . , κL,ν(h(k))}. Amongst all
possible values of ν, we then find a value ν∗ that satisfies
the constraint with equality:∫

Ω

(
L∏

`=1

f`

(
h`(k)κ`,ν∗(h(k))

))
p(h(k)) dh(k) = 1− ρ

||A||2
.

A sub-optimal solution to the centralized control design
problem is then given by {κ1,ν∗(h), . . . , κL,ν∗(h)}.

4.2 Numerical Example

In order to illustrate properties of the power allocation
strategies discussed above, we next give a simple example
with Binary Phase Shift Keying (BPSK) transmission over
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M = L i.i.d. block fading Rayleigh additive white Gaus-
sian noise channels. Each sensor measurement consists of
a packet containing b bits. In this case, see Proakis (1995),
the success probabilities can be approximated via

f`(hu) =

(∫ √
hu

−∞

1√
2π

e−t2/2 dt

)b

,

with derivatives given by

f ′`(hu) =
b

2

(∫ √
hu

−∞

e−t2/2

√
2π

dt

)b−1
e−hu/2

√
2πhu

.

Since we assume that the channels are block Rayleigh-
fading, their power gains, h`(k), are exponentially dis-
tributed with probability density functions of the form

p(h`(k)) = λ` exp(−λ`h`(k)), h`(k) ≥ 0.

It can be shown that, with this transmission model, the
constant power allocation problem P1 is convex and the
optimal power levels can be found with standard optimiza-
tion software. The dynamic control law design problem,
however is, in general, non-convex. For our numerical
results, we use the sub-optimal policies provided by the
method outlined in Section 4.1.

Fig. 2 illustrates the results for a wireless sensor estimation
architecture with two channels (L = 2), and where λ1 = 1
and λ2 = 2. The figure shows a comparison of the average
sum power achieved for constant and gain dependent time
varying power levels as presented in Section 4.1. Clearly,
if the power levels are allowed to depend upon the actual
channel gains, then less sum power is needed to preserve
the stability condition given in Theorem 1. Furthermore,
as the number of bits per packet, b, and ‖A‖2/ρ increase,
the difference between the static and dynamic allocation
becomes more pronounced. For example, in the situation
examined it turns out that, if ‖A‖2/ρ = 4 and b = 8 bits,
then the constant power allocation requires almost 30%
more average sum power as compared to the allocation
strategy which depends upon the current channel power
gain. 2

5. CONCLUSIONS

In this work we have studied stability properties of a
Kalman filter receiving sensor data over block fading wire-
less channels governed by power control. By the use of
stochastic stability methods, we have established condi-
tions on system parameters which ensure that the Kalman
filter covariance matrix is exponentially bounded in norm.
The stability condition obtained was then used as a con-
straint to obtain the minimum averaged sum power for the
case when the powers are static and channel dependent.
A simple example shows that the optimum channel gain
dependent power allocation is significantly better than
the allocation of static powers depending on the channel
statistics only.

Future work could include studying robustness to channel
estimation errors, considering more general wireless sen-
sor network architectures, coding aspects, and correlated
wireless channel models.
2 In practical situations, such a strategy will of course require
estimating the channel gains; see, e.g., Ekman et al. (2002).

1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

30

35

40

45

50

||A||2/

av
er

ag
e 

su
m

 p
ow

er

constant power levels
channel gain dependent power levels

b=8

b=4

b=2

Fig. 2. Average sum power required to meet the stability
condition (8) for BPSK transmission with packets of
length b = 2, 4, and 8 bits.

Appendix A. PROOF OF THEOREM 1

Equation (7) provides:

E
{
P (k+1)

}
= AE

{
P (k)−K(k)C(k)P (k)

}
AT +Q, (A.1)

where expectation is taken with respect to {γ}k
0 . Since, by

assumption, {γ} is white, it holds that:

E
{
K(k)C(k)P (k)

}
=

∑
{γ}k

0∈Γk+1

K(k)C(k)P (k)p({γ}k
0)

=
∑

γ(k)∈Γ

∑
{γ}k−1

0 ∈Γk

K(k)C(k)P (k)p({γ}k−1
0 )p(γ(k)),

where Γ = {0, 1}L and Γk = Γ×· · ·×Γ. If we now condition
upon s(k), which depends upon γ(k) but is independent
of {γ}k−1

0 , then we obtain
E
{
K(k)C(k)P (k)

}
= E

{
K(k)C(k)P (k) | s(k) = 1

}
P{s(k) = 1}

+ E
{
K(k)C(k)P (k) | s(k) = 0

}(
1− P{s(k) = 1}

)
,

(A.2)
where the (conditional) expectations are taken with re-
spect to the random variables {γ}k−1

0 .

For s(k) = 1, we can proceed as in the proof of the
corollary in Katayama (1976) and bound:

K(k)C(k)P (k)
= P (k)C(k)T (C(k)P (k)C(k)T + R)−1C(k)P (k)

= P (k)−
(
P (k)−1 + C(k)T R−1C(k)

)−1 � P (k)− δI,
(A.3)

where δ−1 = min eigs
(
C(k)T R−1C(k)

)
> 0, since in this

case it holds that C(k)T R−1C(k) � 0.

On the other hand, for the events where s(k) = 0, we have:

K(k)C(k)P (k)
= P (k)C(k)T (C(k)P (k)C(k)T + R)−1C(k)P (k) � 0.

(A.4)
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Substitution of (A.3) and (A.4) into (A.2) provides that:
E
{
K(k)C(k)P (k)

}
�
(
E{P (k)} − δI

)
P{s(k) = 1}

so that, by (A.1), we obtain:
E
{
P (k + 1)

}
� (1− P{s(k) = 1})AE{P (k)}AT

+ Q + P{s(k) = 1}δAAT

� (1− P{s(k) = 1})AE{P (k)}AT

+ Q + δAAT .

(A.5)

If we now introduce Vk , trP (k), which is non-negative
since P (k) � 0, then (A.5) gives:

E
{
Vk+1

}
≤ (1− P{s(k) = 1})tr

(
AE{P (k)}AT

)
+ β′

≤ (1− P{s(k) = 1})‖A‖2trE{P (k)}+ β′

≤ ρE{Vk}+ β′,

where we have used Corollary 8.4.10 and Fact 8.12.29 in
Bernstein (2009), the condition (8), and where

β′ , tr
(
Q + δAAT

)
∈ [0,∞).

This gives:

E
{
Vk

}
≤ ρktrP0 + β′

k−1∑
i=0

ρi. (A.6)

Since P (k) is a covariance matrix and, hence, P (k) � 0,
we have

Vk = trP (k) ≥ ‖P (k)‖
and (A.6) gives:

E
{
‖P (k)‖

}
≤ ρktrP0 + β′

1− ρk

1− ρ
.

The result follows from the bound 0 < 1− ρk ≤ 1. �
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