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Abstract— In this paper we study a clustered wireless sensor
network observing a Gaussian random field. Within a cluster,
multiple sensors amplify and forward their measurements using
uncoded analog transmission to the clusterhead (CH). In turn the
clusterheads transmit also amplify and forward their received
signals to a Fusion Centre (FC) located at some distance
using an orthogonal multiple access scheme such as frequency
division multiple access (FDMA). The distortion of the signal
reconstructed at the FC is required to be within a certain
threshold Dmax. Due to random fading suffered by the channels
from the CH’s to the FC, the distortion achieved at the FC
can exceed Dmax in which case a distortion outage occurs. We
propose a novel optimal power allocation scheme at the CH
transmitters that minimizes this distortion outage probability
subject to an average total power constraints across the CH’s.
While this optimal scheme performs very well, it requires full
(instantaneous) channel state information (CSI) at the receiver
(FC) as well as the CH transmitters. We also study some sub-
optimal power allocation methods based on the knowledge of the
statistics of the fading channels between the CH’s and the FC at
the transmitters (and full CSI at the FC). Simulation studies
show that the statistical power allocation methods perform
poorly compared to the full CSI based algorithm, which points
to the need for designing efficient power allocation algorithms
based on quantized channel feedback from the FC to the CH’s.

Index Terms— wireless sensor networks, optimal power allo-
cation, fading channels, distortion outage probability

I. INTRODUCTION

W IRELESS sensor networks have many potential and
useful applications that have already been implemented

and those yet to emerge as newer technologies are made
available. They can be used in environmental and wildlife
habitat monitoring, in tracking targets for defense applica-
tions, in aged healthcare and many other areas of human life.
They usually involve large numbers of sensor nodes that are
distributed geographically to collect some data of interest. The
sensor nodes send their data to some central processing unit
such as a fusion centre where the data are combined to obtain
an estimate of the physical phenomenon observed. Sensors are
usually cheap, mass-manufactured, battery-operated devices
that have limited energy and communication capabilities.
Replacement of batteries are usually costly if not impos-
sible or unnecessary. Hence how to efficiently manage the
energy/power consumption of sensors is a problem that is
particularly important for wireless sensor networks.

Many recent studies have been dedicated to cross-layer
optimisation to deal with energy concerns in wireless sensor
networks [1], [2]. [2] shows that cooperative MIMO and
rate adaptation coupled with cross-layer optimisation can
significantly improve the energy-delay trade off in wireless
networks. Recent results in [3] demonstrating the asymptotic
optimality of uncoded analog forwarding of measurements
by multiple sensors as opposed to separate source channel
coding have motivated a lot of researchers to investigate
multi-sensor estimation problems and related energy/power
efficiency issues within this uncoded transmission framework.
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In [4] an optimal power allocation scheme is obtained for
analog forwarding based transmission in an inhomogeneous
Gaussian sensor network. [5] looks at estimation diversity
and energy efficiency in distributed sensing. It shows that the
estimation diversity gain increases as order of the number
of sensors and derive optimal power allocation schemes for
minimum distortion under power constraint and minimum
power under distortion constraints. However optimal power
allocation strategies found [4] and [5] are based on static chan-
nels and do not explicitly take into account fading channels,
for which meeting a strict distortion constraint may not be
always possible.

In this paper we study a wireless sensor network where
sensors are organised into clusters. Each cluster has an elected
clusterhead. Sensors within a cluster observe a Gaussian
random field and send their observed (noisy) information
to the clusterhead (CH) by uncoded analog transmission
using distributed beamforming, and the cluster heads amplify-
and-forward the combined signal to the fusion centre (FC)
using orthogonal FDMA. The FC is required to compute the
minimum mean square error (MMSE) estimate of the source
within a certain distortion threshold. However, the channels
between the CH’s and the FC are subject to random fading
which make meeting the distortion constraint with probability
one impossible. The main purpose of this paper is therefore
to design an optimal power allocation scheme at the CH’s
(based on full channel state information (CSI) at the FC
and the CH’s) to minimise the probability that the distortion
exceeds the required maximum threshold under a long term
sum power constraint. Simulation studies demonstrate the
performance of this algorithm for varying average sum power
constraints at the CH’s, varying sensor powers and numbers
of sensors within clusters etc. Since obtaining full CSI at the
CH’s can be costly, we also study some sub-optimal power
allocation algorithms based on the statistics of the fading
channels, by minimising some upper bounds of the outage
probability as obtaining an explicit expression for the outage
probability proves to be difficult. It is seen that these statistical
power allocation schemes do not fare well compared to the
performance of the full CSI base algorithm, thus mandating
the need for power allocation algorithms based on finite rate
channel feedback.

II. SENSOR NETWORK MODEL AND PROBLEM
FORMULATION

A schematic diagram of the wireless sensor network studied
in this paper is shown in figure 1. N clusters of sensors
are distributed around a source θ[k] that is to be measured.
Here k = 0, 1, 2 . . . denotes discrete time instants. We assume
that θ[k] is an independent and identically distributed (i.i.d.)
Gaussian (band-limited) random process of mean zero and
variance σ2

θ . Each cluster contains Mn sensors which observe
the source and send their measurements to a pre-selected
cluster head. The observed sample xn

m[k] of the mth sensor
in the nth cluster at time k is given as

xn
m[k] = θ[k] + Nn

m[k] (1)

where Nn
m[k] is the measurement noise which is i.i.d.,

Gaussian distributed of zero mean and variance (σn
m)2. We
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Fig. 1. Schematic diagram of wireless sensor network.

assume that θ[k] is independent of Nn
m[k], ∀k, n,m. (σn

m)2
is assumed to be proportional to the square of the distance
from the source to the sensor (although the noise model at
the sensors can be appropriately adjusted depending on the
sensing model of the sensors). A more realistic model may
include spatial correlation of the observed signal amongst
sensors. For simplicity, this paper treats the observed signal as
being spatially independent of each other. We also assume that
CHs are selected by some chosen protocol, and that CHs are
capable of transmitting with greater power than the sensors
since the transmission distance between a CH and the fusion
centre is larger in general.

Motivated by recent results showing asymptotic optimality
of uncoded analog transmission from multiple sensors observ-
ing a Gaussian source [3], we assume that the sensors within
a cluster simply amplify-and-forward (using equal power)
their observations to the CH via a multi-access channel using
distributed beamforming so that the received signals at the
CH add up coherently. This is referred to as the first stage of
transmission. Although distributed beamforming may not be
easy to implement (see [6] for details of implementing dis-
tributed beamforming), specially in the case of large number
of sensors within each cluster, it has been shown that even
under the presence of random phase errors, the average loss
in performance is not significant unless the variance of the
phase errors is severely large. The signal received at the nth
CH is given as

yn[k] =
Mn∑

m=1

[
αn

m

√
gn

m(θ[k] + Nn
m[k])

]
+ Nn

C1[k] (2)

where αn
m is the power gain factor,

√
gn

m is the first stage
channel gain and Nn

C1 is the zero-mean AWGN (additive
white Gaussian noise) channel noise of variance (σn

C1)
2. We

also assume that the channels between sensors and CHs are
static, where the channel gains are assumed to be proportional
to the inverse of the square of the transmission distance.
We also assume that the signal received at each CH is not
interfered by any signals from other clusters (which can
be achieved by a time-division access protocol where each
cluster operates in a different time slot). For simplicity, we
let the CHs also use the amplify and forward scheme to
transmit yn[k] to the FC using an orthogonal multiple access
protocol such as FDMA, referred to here as the second stage
of transmission. We assume that full (instantaneous) CSI is
available at both the CH transmitters and the receiver (FC)
(which can be obtained by delayless and error-free feedback

from the FC once FC has estimated the channels using pilot
tones). We do not consider the effects of channel estimation
errors or power consumptions due to channel estimation in
this paper. The signal received at the FC from the nth CH is
given as

zn[k] = βn

√
hnyn[k] + Nn

C2[k] (3)

where βn is the power gain factor,
√

hn is the second stage
channel gain and Nn

C2 is the zero mean AWGN channel noise
of variance (σn

C2)
2.The received signal vector is given as z =

sθ + v where

z = [z1[k], . . . , zN [k]]T

s =

[
β1

√
h1

M1∑
m=1

α1
m

√
g1

m, . . . , βN

√
hN

MN∑
m=1

αN
m

√
gN

m

]T

v =

[
β1

√
h1

(
M1∑

m=1

α1
m

√
g1

mN1
m[k] + N1

C1[k]

)
+ N1

C2[k],

. . . , βN

√
hN

(
MN∑
m=1

αN
m

√
gN

mNN
m [k] + NN

C1[k]

)
+ NN

C2[k]

]T

where T denotes transposition.
In what follows, we suppress the time index k for simplic-

ity. The FC uses the MMSE estimator to reconstruct the source
θ, since we have the prior pdf (probability density function)
of θ. The MMSE estimator is given as θ̂ = sT C−1z

1
σ2

θ

+sT C−1s
where

C is a diagonal matrix with its nth diagonal element given as
Cnn = β2

nhn

(∑Mn

m=1(α
n
m)2gn

m(σn
m)2 + (σn

C1)
2
)

+ (σn
C2)

2.

The variance of θ̂ is given by var(θ̂) =
[

1
σ2

θ
+ sT C−1s

]−1

.

From figure 1 we can obtain Xn
m = αn

m(θ+Nn
m) and Yn =

βn

(∑Mn

m=1

√
gn

mXn
m + Nn

C1

)
. Define qn as the total power

of sensors in the nth cluster and Pn the power of the nth
CH. We then obtain qn =

∑Mn

m=1 (αn
m)2

(
σ2

θ + (σn
m)2
)

and

Pn = β2
n

(∑Mn

m=1 (αn
m)2

(
σ2

θ + (σn
m)2
)
gn

m + (σn
C1)

2
)

. Here
we are interested in obtaining the optimal power allocation
scheme that minimises the total power of sensors and CHs
subject to a distortion constraint at the FC, i.e.,

minimise
Pn,qn

N∑
n=1

(Pn + qn)

subject to var[θ̂] ≤ Dmax.

(4)
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The optimisation problem (4) can be easily shown to be non-
convex. In order to avoid this difficulty, we assume that the
sensors within clusters have fairly limited functionality and
have only a few adjustable transmission power levels (e.g. low,
medium and high transmission power). With this assumption
we drop the optimisation variable qn and assume that it is
fixed at a value within a finite set of a small number of
elements. We investigate the effect of qn later via simulations
in Section IV. Furthermore we assume all sensors within
a cluster transmit with equal power (qn/Mn). Hence the
expressions for sensor power gain, CH power and distortion
become

αn
m =

√
qn

Mn [σ2
θ + (σn

m)2]
, Pn = β2

nCn (5)

var[θ̂] = σ2
θ

(
1 +

N∑
n=1

β2
nhnUn

β2
nhnVn + (σn

C2)2

)−1

(6)

where Cn = (qn/Mn)
∑Mn

m=1 gn
m + (σn

C1)
2,

Un = (qn/Mn)
(∑Mn

m=1

√
gn

m/ (1 + (γn
m)−1)

)2

,

Vn = (qn/Mn)
∑Mn

m=1(g
n
m(γn

m)−1)/
(
1 + (γn

m)−1
)

+ (σn
C1)2

and γn
m = σ2

θ/(σn
m)2.

We now solve this optimisation problem for static (mod-
elling only distance based attenuation) and fading (modelling
random channel variations in addition to distance based
attenuations) channels in the second stage of transmission
(CH’s to the FC), and describe the corresponding problem
formulations in the following two subsections respectively.
Note that the fading channel gain,

√
hn is assumed to be i.i.d.

Rayleigh-distributed, and hence the signal power gain, i.i.d.
hn is exponentially distributed (although the analysis can be
extended to any other fading distribution). The fading channel
power gain is modelled as

hn = ζnfn (7)

where ζn is the mean channel gain and fn is i.i.d. exponen-
tially distributed with unity mean (any non-unity mean value
of fn can be absorbed into ζn). The mean channel gain is
assumed to be equal to the inverse of the transmission distance
squared.

A. Static Channel

In this section, we assume that the channel gains are static
and distance-based, and are given by ζn. The optimisation
problem becomes

min
β2

n

N∑
n=1

β2
nCn

s.t. σ2
θ

(
1 +

N∑
n=1

β2
nζnUn

β2
nζnVn + (σn

C2)2

)−1

≤ Dmax

β2
n ≥ 0, n = 1, . . . , N.

(8)

The solution a variation to this problem (for a best linear
unbiased estimator (BLUE) instead of the MMSE estimator)
can be found in [5], and we just state it below as it will be
useful in later sections where we solve the problem for fading
channels. The optimal power gain for problem (8) is given as

β2
n
∗

=

⎧⎨
⎩

0, n > N1

Gn

Hn

(
1√

η−1
n ρ0

− 1
)

, n ≤ N1.
(9)

where Gn = Un/Vn, Hn = ζnUn/(σn
C2)

2, ηn = Hn/Cn and
ρ0 = D(N1)/C(N1). D(n) =

∑n
j=1 Gj − (σ2

θ/Dmax − 1)
and C(n) =

∑n
j=1 Gj/

√
ηj . N1 is given by ordering η1 ≥

. . . ≥ ηN and finding g(N1) > 0 and g(N1 + 1) ≤ 0, where
g(n) = 1 − D(n)/

(√
ηnC(n)

)
, n = 1, . . . , N .

Similarly, the solution for the dual problem given as

min
β2

n

σ2
θ

(
1 +

N∑
n=1

β2
nζnUn

β2
nζnVn + (σn

C2)2

)−1

s.t.
N∑

n=1

β2
nCn ≤ Ptot

β2
n ≥ 0, n = 1, . . . , N.

(10)

can also be found in [5]. The optimal power allocation is
given as

β2
n
∗

=

⎧⎨
⎩

0, n > N1

vn

(
1√

ξ−1
n c0

− 1
)

, n ≤ N1
(11)

where vn = (σn
C2)

2/ζnVn, ξn = ζnUn/Cn(σn
C2)

2 and
c0 = A(N1)/B(N1). A(n) =

∑n
j=1 vj

√
ξjCj and B(n) =∑n

j=1 vjCj + Ptot. N1 is given by ordering ξ1 ≥ . . . ≥ ξN

and finding f(N1) > 0 and f(N1 + 1) ≤ 0, where f(n) =√
ξnB(n)/A(n) − 1, n = 1, . . . , N .

B. Fading Channel

In this subsection we assume Rayleigh-faded channels
between the CH’s and the FC as given by (7) and define the
probability of distortion outage. The probability of distortion
outage is defined as the probability that the distortion exceeds
some predefined threshold, Dmax. We want to minimise this
distortion outage probability subject to a long term power
constraint, stated as

min Pr (D(P(h),h) > Dmax)
s.t. E[〈P(h)〉] ≤ Pav, P(h) ≥ 0.

(12)

where P(h) � (P1(h), . . . , PN (h)) and h � (h1, . . . , hN ).
Here Pr(x) denotes probability of the event x, and 〈x〉 denotes
the arithmetic mean of the vector x of length M defined by
〈x〉 � (1/M)

∑M
i=1 xi. h is a vector of length N of random

variables that model the channel gains from the CH’s to the
FC. D(P(h),h) is the distortion as a function of channel
gains and CH transmission power, which is also a function
of channel gains. Note that we assume instantaneous channel
knowledge at the FC (receiver) and at the transmitters (CH’s)
(where the transmitter CSI can be accurately obtained via
feedback channels which are error-free and have zero delay).

III. SOLUTION AND OPTIMAL POWER ALLOCATION
SCHEMES FOR FADING CHANNEL

The problem given in (12) can be solved in the same way as
in [7]. We first consider the following minimisation problem
given as

min 〈P(h)〉
s.t. D(P(h),h) ≤ Dmax

P(h) � 0
(13)

where � denotes componentwise inequality.
We have the following lemma:
Lemma 3.1: Without loss of generality, assume h1 ≥ h2 ≥

. . . ≥ hN . With the knowledge of h, the solution for (13) has
already been given in (9). Hence the nth optimal power is
given as

P ∗
n(h) =

CnGn

H̄n

[ √
η̄n

ρ̄0(h, N1)
− 1
]+

, for n = 1, . . . , N

(14)
where N1 is a unique integer in {1, . . . , N} required to eval-
uate ρ̄0(h, N1). H̄n, η̄n and ρ̄0(h, N1) are defined similarly
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to the static channel case except that ζn is now replaced by
hn and the explicit dependence on h is shown. Note also that
[x]+ denotes max(x, 0).
One can also obtain the following Lemma which is necessary
to find the final optimal solution to problem (12).

Lemma 3.2: The optimal power function, P∗(h) �
(P ∗

1 (h), ..., P ∗
N (h)) , is a continuous function of h. Fur-

thermore, 〈P∗(h)〉 is a non-increasing function of hn, for
n = 1, . . . , N .

Proof: The first statement can be proved in a similar way
to the one given in [7] and is omitted. The second statement
can be proved by differentiating 〈P∗(h)〉 with respect to hn,
which yields

∂〈P∗(h)〉
∂hn

= − 2Gn

Nhn
√

η̄n

[
1

ρ̄0(h, N1)
− 1√

η̄n

]+
≤ 0. (15)

The gradient of 〈P∗(h)〉 with respect to hn is non-positive
for n = 1, . . . , N , which proves the second statement.

We define two regions, R(s) and R(s) and the boundary
surface B(s) for some non-negative s as in [7]:

R(s) = {h ∈ R
N
+ : 〈P(h)〉 < s}

R(s) = {h ∈ R
N
+ : 〈P(h)〉 ≤ s}

B(s) = {h ∈ R
N
+ : 〈P(h)〉 = s}

(16)

We then define two average power sums as

P (s) =
∫
R(s)

〈P(h)〉dF (h)

P (s) =
∫
R(s)

〈P(h)〉dF (h)
(17)

where F (h) denotes the cdf (cumulative density function) of
h. Finally, the power sum threshold s∗ and the weight w∗ are
given as

s∗ = sup{s : P (s) < Pav}
w∗ =

Pav − P (s∗)
P (s∗) − P (s∗)

(18)

With the above lemma and definitions we can now present the
solution to (12). The proof follows using similar techniques
as in [7] and is excluded due to space reasons.

Theorem 1: The solution to problem (12) is given as

P̂(h) =
{

P∗(h), if h ∈ R(s∗)
0, if h 
∈ R(s∗) (19)

while if h ∈ B(s∗), P̂(h) = P∗(h) with probability s∗ and
P̂(h) = 0 with probability 1 − w∗.
The optimal power allocation scheme states that if the channel
condition is above some threshold then the CHs transmit with
power allocation given by (9), or else none should transmit
to save power.

Remark 1: Note that the solution given in (19) is of a
general form, which can be applied to both continuous and
discontinuous fading distributions. If the fading distribution
is continuous (which is true for this problem), then the
probability that h ∈ B(s∗) is zero, hence discarding the need
for randomisation at the boundary.

Remark 2: Note also that while the computations necessary
to implement the above solutions are carried out at the FC
(such as those of s∗ (based on Pav) and ρ̄0(h, N1)) and the
decision whether the CH’s should transmit or not transmit
can be broadcast by the FC, the optimal power allocation
for individual CH can be easily implemented in a distributed
fashion (in the case where the CH’s transmit). The FC has
to just broadcast the quantity ρ̄0(h, N1) to all CH’s and the
CH’s can then update their transmission power according to
(14) which only involves local variables at the CH’s (apart
from ρ̄0(h, N1)).

IV. SIMULATION RESULTS

Two sensor network topologies are simulated in MATLAB.
Topology A has six clusters deployed equally spaced around
the source and Topology B deploys six clusters on one side
of the source only as shown in figure 2. Topology B models
environments where it is difficult or impossible to deploy
sensors in certain parts of the landscape, for example, when
the source is located at the edge of a cliff. The sensors in
each cluster are organised in four equally spaced concentric
circles and the number of sensors in each circle are 6,12,18
and 24 from the smallest to the biggest circle respectively.
All clusters have a radius of 40m. All sensors transmit with
qn/Mn = 1mW in topology A. In topology B sensors
transmit with 1.33mW, 1mW and 0.67mW in the two clusters
closest to the source, two clusters second closest and two
clusters farthest away from the source respectively. The CHs
are located at the center of each cluster for simplicity. CHs
are 100m and 60m apart from the next closest CH in topology
A and B respectively. The FC is located 500m away from the
source in both topologies. The channel noise variances are
set to (σn

C1)
2 = 10−12 Watts and (σn

C2)
2 = 10−10 Watts for

n = 1, . . . , 6 in the first and second stage of transmission
respectively in both topologies. Source variance is set to
σ2

θ = 1 Watt.

Fig. 2. Wireless sensor network topologies. Left: topology A. Right:
topology B.

A. Static Channel

Figure 3 shows total power consumption,
∑N

n=1(Pn + qn),
versus total sensor power within clusters,

∑
qn, in topology

A. In this simulation only the total sensor power of one of
the six clusters is varied. As

∑
qn increases, more power is

allocated to the sensors, and hence signals received at the CH
have a lower distortion. Therefore, CHs can transmit with less
power to achieve the same distortion. However total power
starts to increase after some point of

∑
qn since allocating

extra qn cannot bring down the distortion anymore and this
power is wasted. Asymptotic analysis shows that as qn goes
to infinity for all n distortion is given as

lim
qn→∞D = σ2

θ

⎛
⎜⎜⎜⎝1 +

N∑
n=1

(
Mn∑

m=1

√
gn

m

1+(γn
m)−1

)2

Mn∑
m=1

gn
m(σn

m)2

1+(σn
m)−1

⎞
⎟⎟⎟⎠

−1

. (20)

This is in fact the same expression as the minimum distortion
achievable at the FC if β2

n → ∞, and characterizes the feasible
set of the distortion constraint for the optimisation problem
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Fig. 3. Total cluster head power versus distortion (Topology A).

in (8). It is also seen (but not included here due to space
limitations) that as the number of sensors per cluster increases
(while keeping qn fixed), more observations are transmitted
to the CH. This lowers the distortion at the CH and hence
CHs need less power to meet the distortion requirement at
the fusion center. Numerical analysis shows that distortion
decreases like 1/Mn which conforms with the asymptotic
analysis given in [3].

B. Fading Channel

In this section, the channels between the CH’s and the FC
are modelled as Rayleigh-faded channels. The following re-
sults are obtained over 1,000,000 realisations of exponentially-
distributed channel power gains of mean equal to the inverse
of the distance squared for each average power given. The
distortion requirement is set to 0.0043, which is a hundred
times the minimum achievable distortion.

Figure 4 shows Pav versus s∗ (the sum power threshold
that determines whether the CH’s should transmit or not). This
graph allows us to obtain the value of s∗ that corresponds to
a given Pav . This is used for calculating the probability of
distortion outage.
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Fig. 4. Pav against s.

Figure 5 shows the distortion outage probability against
average power for optimal power allocation (OPT) and equal
power allocation (EPA). EPA allocates all the CHs with equal
transmitting power, which equals Pav . As shown in this figure,
optimal power allocation scheme performs significantly better
than EPA scheme for both network topologies.

In the (simplified) problem formulation we assumed that the
sensors can only transmit with a finite number of power levels
and hence qn is no longer a variable of optimisation. Here we
investigate the effect of qn on the outage performance via sim-
ulation. Figure 6 shows how the outage probability varies with
qn using optimal power allocation in topology A (essentially
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total power consumed by sensor transmissions in all clusters
are kept at the same value qn). Dmax is set to a hundred
times the minimal achievable distortion. As qn increases, the
outage probability obviously decreases. However,the effect
of lowering the outage probability by increasing qn quickly
saturates when qn reaches around −70dB; any qn higher
than this power level does not lower the outage probability
significantly. This is because adjusting qn only affects the first
stage of transmission and the resulting distortion achieved at
the CHs. The saturation level outage probability then depends
on the channel conditions in the second stage of transmission
(cluster heads to the fusion centre). One can similarly plot
the outage probability versus Pav for various values of qn.
While increasing average transmit power for the clusterheads
decreases the outage probability, increasing qn beyond a
certain level does not result in any significant reduction in
the outage probability.
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Fig. 6. Poutage against qn with different long-term average power using
optimal power allocation in topology A (Dmax = 0.0043).

Power allocation based on statistics of the fading channels:
As acquiring full instantaneous channel knowledge at the
cluster head transmitters can be costly, here we look at some
optimal power allocation methods based on statistical knowl-
edge of the fading channels between the cluster-heads and the
fusion centre. Since the fading statistics do not necessarily
vary rapidly with time, this requires very little overhead
communication between the cluster heads and the fusion
centre. It is however difficult to obtain an explicit expression
of the outage probability for N > 1 (an observation which
was also made in [5]). Hence we choose to minimise an upper
bound on the outage probability by minimising the expected
distortion, which is motivated by Markov’s inequality Pr(D >

Dmax) = Pr(D ≥ Dmax) ≤ E[D]
Dmax

. To simplify the analysis
even further, we obtain an approximation to the expected
distortion by obtaining a lower bound on it, which is given
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by

min E

[
1
σ2

θ

+
1
σ2

θ

N∑
i=1

Uiβ
2
i hi

Viβ2
i hi + δi

]−1

≥ min

(
1
σ2

θ

+
1
σ2

θ

N∑
i=1

Uiβ
2
i E[hi]

Viβ2
i E[hi] + δi

)−1

≡ σ2
θ(1 + max

N∑
i=1

Uiβ
2
i E[hi]

Viβ2
i hiE[hi] + δi

)

≥ σ2
θ(1 + max E

[
N∑

i=1

Uiβ
2
i hi

Viβ2
i hihi + δi

]
)

(21)

where δi = (σi
C2)

2. The inequalities in the above analysis
follow from Jensen’s inequality due to convexity of the
distortion function with respect to the channel gains. Although
the distortion outage probability may not be strictly upper
bounded by this lower bound on the expected distortion, it
provides a heuristic for obtaining a statistical power allocation
scheme.

We can now solve an optimisation problem by minimizing
the lower bound of expected distortion given by the last line
of (21) as

max E

[
N∑

i=1

Uiβ
2
i hi

Viβ2
i hi + δi

]

s.t.
N∑

i=1

β2
i Ci ≤ Ptot, β2

i ≥ 0.

(22)

For Rayleigh-faded channels, the objective function can be
expressed as

E

[
N∑

i=1

Uiβ
2
i hi

Viβ2
i hi + δi

]
=

Ui

Vi
− Uiδi

Vi
E

[
1

Viβ2
i hi + δi

]

= K1i − Uiδi

Vi

∫ ∞

0

λie
−λihi

Viβ2
i hi + δi

dhi

= K1i − K2i

β2
i

e
K3i
β2

i E1

(
K3i

β2
i

)

where K1i = Ui/Vi, K2i = Uiλiδi/V 2
i , K3i = λiδi/Vi and

E1(z) =
∫∞

z
e−t/t dt. Hence the optimisation problem is

given as

min
N∑

i=1

(
K2i

β2
i

e
K3i
β2

i E1

(
K3i

β2
i

)
− K1i

)

s.t.
N∑

i=1

β2
i Ci ≤ Ptot, β2

i ≥ 0.

(23)

It can be easily shown that this problem is a standard convex
optimization problem and by solving the KKT conditions and
letting zi = K3i/βi

2, we get the following set of nonlinear
equations⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ > 0,
N∑

i=1

K3iCi

zi
− Ptot = 0,

z2
i [eziE1(zi)(1 + zi) − 1] = CiK

2
3i

K2i
μ, 0 ≤ zi < ∞

z2
i [eziE1(zi)(1 + zi) − 1] ≤ CiK

2
3i

K2i
μ, zi = ∞

(24)
The optimal power values can be obtained by solving the
above set of nonlinear equations numerically by using prov-
ably convergent fixed point iterative methods.

We can also look at minimising the lower bound on
expected distortion given by the third line of (21), which

is equivalent to problem (10). Figure 7 shows the outage
probability achieved by problem (22) (heuristic method 1) and
problem (10) (heuristic method 2) for Topology A. Clearly,
the sub-optimal statistical power allocation methods based on
minimizing the upper bounds on the outage probability do
not fare well compared to the performance of the optimal
power allocation method based on full CSI at the clusterhead
transmitters. A similar observation was also made in [8] in the
context of outage probability performance of beamforming
in multiple antenna systems. This motivates the need for
optimal power allocation for distortion outage minimization
based on quantized or finite rate channel feedback from the
fusion centre to the clusterheads, a topic that is currently under
investigation.
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