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1 Introduction 
There is significant motivation to develop reduced 

complexity filtering algorithms (with explicit perfor- 
mance bounds) for tracking maneuvering targets. Ma- 
neuvering target estimation is an important problem in 
target tracking due to the uncertainty in maneuvers of 
the target. In a hostile environment a target will try to 
avoid being tracked by maneuvering in such a way so 
that its motion is difficult to follow. The idea behind 
image-based and image enhanced tracking [l, 2, 31 is 
to use two-dimensional imagery to obtain information 
about the mode of the target (e.g. orientation informa- 
tion) apart from conventional measurements. Simula- 
tion studies in [l, 2, 31 demonstrate that this modal 
information can lead to marked improvements in the 
target tracking performance. 

As is widely done [l, 2, 31, we assume the mode 
of the target with time is modelled as a finite state 
Markov chain and the target’s trajectory is modelled 
as a jump Markov linear system. The image sensor 
processor response to the modal information is blurred 
to due the range of the target, weather conditions, etc. 
Finally, the blurred images are processed by an imager 
which generates a marked Poisson process according 
to the noisy state of the Markov chain. In summary 
the image-based target tracking model is a multivari- 
ate Poisson process modulated by a single finite state 
Markov chain, i.e., a Markov Modulated Poisson Pro- 
cess (MMPP). 

Estimating the target’s mode and coordinates then 
involves two filtering algorithms: (i) The optimal 
(MMSE) estimate of the orientation is computed by 
a MMPP filter (which is essentially a continuous- 
time Hidden Markov Model filter). (ii) The trajec- 
tory of the target (modelled as a jump Markov linear 
system) given the noisy modal measurements is esti- 
mated using an image-based filter. This is a finite 
dimensional filter (i.e. given by an ordinary. differen- 

tial equation driven by a Poisson observation process) 
which requires estimates from the MMPP filter [l]. 

The main contributions of this paper are to present 
robust reduced complexity temporal and spatial ap- 
proximations to the above MMPP and image-based 
filters. 

1. Robust Temporal Discretization; We present a 
robust time discretization of MMPP filter and the op- 
timal image-based filter. In particular, we use a gauge 
transformation to convert the filtering equations to de- 
terministic differential equations with random coeffi- 
cients. Such robust transformations have been widely 
used in stochastic calculus and continuous-time HMM 
filtering [4]. A major advantage of our approach is that 
the discretization interval of the resulting robust filters 
can be much larger than that required by a standard 
Euler first order discretization of the filter. This leads 
to substantial computational savings in the numerical 
implementation of the MMPP and image-based filters. 
We present explicit upper bounds on the discretization 
interval for the two filters. 

2. Spatial Aggregation: The computation complex- 
ity of the robust time discretized MMPP and image 
based filters is a major issue when the state space is 
large. This happens for example when there are sev- 
eral modes or a large number of targets each with a 
finite number of maneuver types. We present a novel 
algebraic methodology (similarity transformation) for 
reducing the complexity of both filters. Under the nat- 
ural assumption that the target’s dynamics are simi- 
lar when the target’s modes are similar the underly- 
ing Markov chain has a nearly completely decomposable 
structure [5]. With E > 0 denoting a perturbation pa- 
rameter signifying the weak interactions between dis- 
similar target modes, our novel similarity transforma- 
tion decouples the components of the MMPP filter and 
image-based filters resulting in low complexity filter- 
ing algorithms with provable O(E)  accuracy. In order 
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to prove the existence of the similarity transformation 
we demonstrate the existence of solutions to certain 
asymmetric algebraic Riccati equations. The decou- 
pling transformations are a generalization of the results 
in [6]. 

2 Signal Model 

(0, F, PI. 
All processes are defined on the probability space 

Target Model: Let { X t , t  2 0) be a continuous- 
time S state Markov chain defined on the state space 
{el ,  e2,. . . , es}  where ei E Rs is the unit vector with 
1 in the i-th position. (This choice of state space 
simplifies our subsequent notation). Let the infinites- 
imal generator or transition rate matrix be denoted 
by A where E,”=, aij = 0, Vi E {1,2,. . . ,S}. Define 
P(Xt = i) = pi ,  i E {1 ,2 , .  . . , S}. The probability 
distribution pt = (pip; . . .p,”)’ satisfies the forward 
equation % = A’pt where I denotes the transpose op- 
eration. The process { X t }  denotes the mode or regime 
of operation of the target and drives the jump linear 
system for the target dynamics as: 

dst = c(Xt )s td t  + Rdzot. (1) 

Here st E RL denotes the coordinates of the target and 
the matrices c(ei), i = 1, .  . . , S are each L x L matri- 
ces. R denotes an arbitrary known matrix. E{so} is 
assumed known and {wt} denotes a Wiener process 
which is independent of { X t } .  (If E{so} is not known, 
it can be estimated via an associated stochastic opti- 
mization problem - see [2]). 
Image Sensor: The image sensor uses t w e  
dimensional imagery to obtain orientation information 
of the target. (For example, [3] considers the profile 
of a T-62 tank with three different orientations). The 
output of the image sensor is a S-variate Markov mod- 
ulated Poisson process as outlined below (see [3, 71 
for excellent expositions): The image sensor is mod- 
elled in two steps. First, the appearance of an im- 
age frame depends on the mode dependent rates A(i), 
i = 1,.  . . , S. Second, the image sensor processor gen- 
erates an output statement pt E {el, .  . . , es}. Because 
of the blurring of the image due to range of the tar- 
get, weather conditions, etc, the output statement pt 
is not necessarily the same as the true target mode 
X t .  This error is modelled probabilistically in terms 
of the S x S discernability matrix D = (d i j ) ,  where 
dij  = P(pt = = ej), 1 5 i, j 5 S. 

As a result the output of the imager is a S-variate 
Markov modulated Poisson process (MMPP) Nt = 
( N y  Nj2) . . . N p ) ’  as follows: 

dN,(i) = (Xt,g(’))dt  + d m f ) ,  i = 1,2, .  . . , S. (2) 

Here Nii) denotes the number of events with mark 
i that occur during the interval [ O , t ] ,  and g(a) = 
(gp’ gt)  . . . gk’)’ = A(i) [dil dis]’, i = 1 , .  . . , S 
is the vector of intensities of the i-th component of the 
process Nt. In (2), ( e , . )  denotes the scalar product in 
Rs and mii) is a Ft Poisson martingale where 3 t  de- 
notes o ( X s ,  Ns; s < t). Denote the observation history 

The following somewhat technical assumption which 
essentially states that the jumps of the Markov chain 
and Poisson process cannot occur at eactly the same 
time instant is widely assumed [3] and is necessary for 
deriving the filters presented here. The assumption can 
be relaxed as in [l], however, the resulting filters then 
need careful accounting of the co-quadratic variation 
of X t  and the individual processes 

Assumption 2.1 W e  assume that 
Xt ,  Nil ) ,  Ni2) ,  . . . , NiS)  do not have simultane- 
o w  jumps, i.e, [x, Ni)]t = 0, vi E {I, 2 , .  . . , S} 
where [y, 21, denotes the optional co-quadratic 
variation of the process Y, 2. Also, a s u m e  that 
[N( i ) ,N( j ) ] t  = O , V i , j E  {1,2 ,..., S } , i # j .  

Example: Switching Turn Rate Model 
Consider tracking an agile maneuvering target 

in two-dimensions. Denote the state vector s = 
[z 2 y ~ ] ’  with 2 and y denoting the z,y Carte- 
sian coordinates of the horizontal plane. 

A target moving with constant speed can be de- 
scribed by the continuous-time stochastic differential 
equation (1) with 

. . . 

as x(i) = c~(N,(i) : s 5 t )  and h/t = Vi=lx(i). S 

There are two accelerations modeled above, an omni- 
directional (white) acceleration described by the vector 
Wiener process wt, and the structured maneuver accel- 
eration represented by the turn rate processes w ( X t )  
which switches between a finite number of possible turn 
rates. 

3 Robust time discretization of 

3.1 Preliminaries 
Results regarding the estimation of the state & 

given the observation history Nt were derived in [8] 
and later generalized in [l]. Here, we brief3y state the 
Zakai form (un-normalized filtered density) for com- 
puting the optimal mode estimate E{Xt IN t }  and o p  
timal target trajectory E{s t IN t } ,  see [l] for details. 

Filters 
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Define the measure P such that The proof of the above theorem appears in [l, 
S Sec.5.21. Note that the second equality in (6) fol- 

lows because E{AtstINt} = E{zc, Ats tXt ( i ) }  = 
diag{lk,. . . ,lk}rt (where the diagonal matrix is of di- 
mension L x LS) and E{&} = E{C~,AtXt(i)} = 

- d P  d p  I 3 t  = At = JJ n ( g ( i ) , X r ) ( A N 2 ) )  
i=l O l r s t  

x exp (- l [ ( g ( i ) ,  xr) - 11dr 

Then the following results hold: 
(i) At is a (P ,&)  martingale. and satisfies At = 1 + 
(ii) A straightforward invocation of Girsanov's theorem 
[8, Theorem T2, pp.1661 yields that under p ,  each of 
the S components of Nt are independent unit-intensity 
Poisson processes. 
(iii) Let E denotes the expectation operator under P .  
Define the unnormalized density qt = E{%($, Xt)INt) 
- note qt E IRN with non-negative elements. If dt is a 
Ft adapted process then an abstract version of Bayed 
theorem states [9, pp.2431 that 

X:=1 s,' At ( ( g ( i ) ,  X r )  - 1) drip) [8, pp.171]. 

3.2 Robust Filters and Discretization 
The aim of this section is to transform the stochastic 

differential equations (4), (5) into linear ordinary dif- 
ferential equations (ODEs) with random coefficients. 
This permits the use of standard time discretization 
techniques for ODEs and computationally efficient nu- 
merical implementation. 

For i = 1,. . . , S define 

(7) 

Notation: Define the S x S diagonal matrix B(i), i = 
1,. . . , S and (LS)  x (LS) matrix C, respectively as Theorem 2 qt and Ft satisfy the linear ODEs 

Gt (9) Cll 1 . .  ClL - = rtlA'rtqt, go = qo 
dt 
dPt dt = ( I ~  B rt)-l ( I ~  B A' + c) ( I ~  8 rt) Ft , 

B(i)  = ~liag[g(~)], C = [ i e . .  i ] 
Po = ro CLI ... CLL 

where Cij = diag[cij ( e l ) ,  . . . , cij (es)] (10) 

and cij(el) denotes the i , j  element of c(el) defined in 
(1). 

Also let nii) = Nii)  - t .  
Below we give the Zakai filtering equations for es- 

timating the target mode Xt and the target state st .  

As shown in [l] to estimate the target state st one first 
needs to construct the filtered estimate of st @xt  where 
63 denotes the tensor product. Accordingly, define the 
LS dimensional process 

T t  = E{At(st  @ Xt)lNt} 

Discretization Interval for Robust Filters 
We now consider time discretization of the above 

robust equations (9) and (10). Consider a regular time 
partition 0 = to < tl < . .. < t,-l < t ,  < . .. with 
constant time step A = t ,  - t , - 1 .  Define the discrete 
time observation probability diagonal matrix 

A 
Bt,+, = diag [bt,+,(l), . . . ,b t ,+,(S)]  = rt,+,r;'. 

(11) 
Note that is precomputable since 

Theorem 1 (Zakai equations for Mode and State) - n S [(B(i))(N~::,-N~~')e~p (-(B(i) - I ) A ) ]  
S 

dqt = A'qtdt + C(B(i) - I )q tdnf )  (4) 
i=l and for sufficiently fine discretization Nif!, - Nif) is 

either 0 or 1. 
A first order (Euler) explicit discretization of (9) 

drt = Crtdt + (IL @ A')rtdt 
S 

= C ( I L  @ (B(i) - I))rtdnZi) ( 5 )  yields: 

= E{AtIh/t} l'qt \-*-J time robust mode flter 

i= 1 qtn+, = qtn + ArL1Afrt,qtn 
E:(Atsd&} - 

diag {lk, . . . , l$}rt Multiplying both sides by rt,+, yields the discrete 

L times 

(6) Q,+l = Btn+1(I + AfA)qtn. (12) 

745 

Authorized licensed use limited to: Maynooth University Library. Downloaded on May 18,2021 at 15:49:12 UTC from IEEE Xplore.  Restrictions apply. 



Similarly, a f is t  order explicit discretization of (10) 
followed by multiplying both sides by (I& 69 rt) yields 
the discrete-time robust image filter 

rt,,+l = (IL 8 

Note that for all n, qt,+] should be a S dimensional 
vector with non-negative elements. Similarly, consider 
rt in (10). If PO > 0 (element wise) then from (lo), 
Ft 2 0 for all t. This is easily seen since the RHS of (10) 
is 0 when rt = 0, meaning that 0 is an absorbing point 
and hence the components of rt can never go negative. 
Our aim is to determine an upper bound for the size 
of the time discretization step A in (12) and (13) to 
ensure non-negativity of the discretized processes (12) 
and (13). 

[IL @ (Is + AfA) + CA] rtn. 
(13) 

Theorem 3 To ensure non-negativity of the elements 
of the discretized processes qt, in (12) requires the sam- 
pling period A t o  satisfy 

Consider now the Zakai equation of the image filter 
(5). Using similar steps to above it follows that 

providing that zEl(gji) - 1) > (ajj + c") for j C! 
(1 ,..., S} and m E (1, ..., LS} .  

Comparison 

Consider the case when AN,'i) = 0, i.e., no event has 
occurred at time t. Then comparing (14) with (17) or 
(15) with (18) shows that A for the robust filters are 
independent of the Poisson rates. Thus the non-robust 
filters require substantially smaller sampling intervals 
if the Poisson rates gj') are large. As a result the robust 
filters are substantially more efficient from a computa- 
tional point of view. 

1 (14) 4 Reduced-complexity state and A 5  
muje{l,...,s} lajjl modal estimation 

To ensure non-negativity of the elements of the dis- 
cretized processes rt, in (13) requires A to  satisfy 

where i = m mod S 

Discretization Interval for Non-robust Filters 
Here we consider the Euler discretization of the Za- 

kai (non-robust) equations (4) and (5). In the interval 
t ,  < t 5 L+l ,  

(16) 
First order discretization and normalization with &, = 
a, /U'qt ,  1 yields 

Having demostrated the computational efficiency of 
the robust filters, in this section we describe spa- 
tial aggregation methods to further decrease the com- 
putational complexity of the mode and image fil- 
ters. Throughout we will work with the robust fil- 
ters (12) and (13). We will exploit a transformation 
method proposed in [lo] [SI followed by the decou- 
pling transformation used in [SI to obtain approximate 
reduced-complexity computations for the target trajec- 
tory (state) and modal (state of the underlying Markov 
chain) estimates. It is shown that for the case where 
the underlying Markov chain is nearly completely de- 
composable (with a sufficiently small weak coupling 
parameter E ) ,  one can obtain O(E)  approximations to 
the MMPP and image based filters when the Poisson 
arrival rates and the target dynamics are the same for 
all the constitutent states within a given mode but are 
different from one mode to another. Of course, one 
could prove similar results for a (polynomial in e2 ) 
perturbation in these arrival rates and target dynam- 
ics provided E is sufficiently small. 

For the purpose of this section, we then impose the 
following nearly decomposable structure on the under- 
lying Markov chain: A = A + E& where A has a block 
diagonal structure 

S 

dt,,+x ( j )  = 8, ( j )  + AaijQt,, (i) 
j=1 

S 
+ C(gy' - l)&,(j) (AN,(') - A) , t ,  < t < tn+l 

Again considering the case 8, = e j ,  it follows that 

i= 1 
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where Aii E IRsfxs' , V i ,  Cisi = S, e > 0 is 
a small perturbation parameter, and Q E IRsXs. 
&,Vi  are also infinitesimal generators and B has 
zero row-sums. Denote the state partitions as SI = 

on. We assume that A and the individual infinitesimal 
generators Aii, V i  represent irreducible Markov chains. 
We also make another crucial assumption (as in [6] ) :  

Assumption 4.1 The intensities of the Poisson ar- 
rival process and the target dynamics are only diferent 
from one mode to another but are identical f o r  all con- 
stituent states within a given mode. I n  other words, 
91 = Qm, VXt = el E Sm. SimiEarly, cij(el) = ~ i j  (e,) 
VXt =el E Sm, i , j  E {1,2 ,..., L } ,  m E { l , 2 , .  . . , M } .  

( e l ,  e2,. . ., e,, 1, S 2  = (e,,+1, es,+2,. . . ,e,,+,,) and so 

Notice that Assumption 4.1 also guarantees that the el- 
ements of Bt,+, are identical within each mode. Now, 
rewrite (12), (13) by using at,+, = q:,+,, Pt,+, = 

I -  
'tn+l, as 

at,+, = at, ( Is  + AA)Btn+, (19) 

(20) 
Pt,+, = Pt, [IL @ ( I s  + AA) + CIA] (IL @ Bt,,,) 

In the following discussion, we denote the corre- 
sponding normailized measures for at,+,, Pt,+, as 
&t,+,, Pt,+,. In the next two subsections, we describe 
how one can optain reduced-complexity computations 
for &t,+, and Pt,+,. These computations are of O ( M 2 )  
instead of O(S2)  as required by the exact computa- 
tions. Since typically, M << S, this implies a large 
savings in computations. These computations result 
in an O(E) approximation to &t, and O ( E ~ )  approxi- 
mation to Pt , .  

Reduced-complexity modal estimation 
for the MMPP filter 

Denote [c,~,] = atn[WIWz] where Wl E RSxM is 
given by 

r 1 3 ,  o o 0 1  
w l = [  0 : l,, 0 . . 0 . J 

0 * * l,, 

Similarly, W2 E RSX(S-M) is a block diagonal matrix 
with the i-th diagonal block Wii) E Rs' is given 
hv 

Note that for these choices [UT1 W'z] is nonsingular and 

has an inverse [ ] where I.$, & are also simple ma- 
trices independent of the system parameters. Notice 

an obvious fact that <, E IRM is the aggregate ver- 
sion of the unnormalized measure at,. Also, similar 
relationships can be established between the normal- 
ized measures &, f i n  with &, . It is easy to show that 
tit, = &Vi + qnvz. 

Also, defme 

A;1 = Vi(I + AA)Bt,+,Wi, Q;1 vi(QA)Btn+lWz 
A; = Vi(I + AA)Bt,+,Wz, Q; = vi(QA)Bt,+,wz 
C," 1 V2(I+ AA)&,+, W'1, D;1 = V2(QA)Btn+, W1 

CF = Vz(I+ AA)&,+, W2, DF = V2(QA)Btn+, W2 

In fact, under Assumption 4.1, one can show that 
Cr = 0, Vn. Using these definitions and notations, 
one can then write the recursion (19) in terms of [c, r],] 
and then decouple qn from c, by using the following 
decoupling transformation: 

where (see [6] for more details) 

[AY + E(QY - J,D?)] J,+l = J ,  (6; + E @ )  - (A; + €0;) 
(22) 

where for a sufficiently small E, one can show that {J,} 
is a sequence of uniformly bounded matrices (see [6] 
for a proof). Thus one can expand J ,  in terms of a 
power series of E ,  i.e, J ,  = J,(O) + EJ,(I) + . . .. One 
can also show that J,(O) + J ( 0 )  as n + 00 where 
J ( 0 )  = %AWz(V2AW2)-'. Finally, one can write 
0(e2) approximations for <,, I j ,  (hence &,) as a result 
of this decoupling. 

Note that the approximations are written with a -  
sign, that i s ,  an approximation for normalized mea- 
sures like c, is written as <,, whereas the correspond- 
ing approximation for an unnormalized measure like 
<, is written as c," where the superscript U stands for 
"unnormalized". We now present our main result re- 
garding the reduced-complexity o ( ~ )  computations for 
the robust discretized Zakai filter at,+, : 

Theorem 4 Consider the Markov modulated Poisson 
process described b y  [2) where the modulating Markov 
chain has a nearly completely decomposable structure 
A = A + eQ and the transition probability matri- 
ces A,& are irreducible V i .  Suppose Assumption 4.1 
holds. Then, for a suficiently small E ,  there exists a 
large enough but finite no such that for n 2 no, an 
O ( E )  approximation for the robust discretized approxi- 
mate Zakai filter [19), denoted b y  &, can be described 
b y  the following recursions: 

t:+1 = L[A: + 4Q: - J(O)D3], L 0 - 1  = & z o - l  
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Proof See [6]. 0 

-0.7 0.46 0.26 0 0 0 0 0 
0.2 -0.45 0.25 0 0 0 0 0 

0.24 0.36 -0.69 0 0 0 0 (1 
0 0  0 
0 0 0 0.6 -0.6 0 0 (1 
0 0 0 0 0 -0.9 0.76 0.16 
0 0  0 0 0 0.2 -0.46 0.26 

0 -0.8 0.8 0 0 

- 0  0 0 0 0 0.66 0.16 -0.70 

0.1 0.1 -1.0 0.6 0.06 0.06 0.06 0.01 
0.06 0.06 -0.9 0.6 0.06 0.06 0.1 0.1 
0.01 0.01 -0.4 0.2 0.06 0.06 0.04 0.04 
0.02 0.42 0.01 0.01 -0.61 0.026 0.1 0.026 I 0.46 0.01 0.4 -1.0 0.01 0.1 0.01 0.011 ( CJ) 
0.01 0.06 0.01 0.01 0.06 0.01 -0.16 0.0'1 

0.01 0.06 0.01 0.01 0.06 -0.16 0.01 0.01 
0.03 0.01 0.03 0.04 0.01 0.01 0.01 -0.14 

Remark 1 Notice that in the above approximations, 
one can actually obtain an O(e2) approximation to Cn 
(or ln) but an O ( E )  approximation to ijn and hence an 
O(e) approximation to &t,. One can obtain an O(e2) 
approximation to 6, and hence tit, at a slightly higher 
computational cost. For the above recursions, notice 
that the computational cost is O ( M 2 )  per time instant 
(as opposed to O ( S 2 )  per time instant for exact com- 
putations). 

Reduced-complexity estimation for the 
target trajectory 

For the purpose of this section define 

[tp) x:) . . tiL) xiL'] = A, ( IL  8 [Vi w2]) (26) 

One can then use a generalized decoupling transmfor- 
mation to define (for i = 1,2, .  . . , L )  

Rewriting the recursion (20) in terms of the de- 
coupled variables, and after denoting G:+l = 

satisfy certain collection of nonlinear recursive and 
simultaneous (pairwise) linear equations (under As- 
sumption 4.1). 

Under Assumption 4.1, one can show that the first 
order approximations to j:, i = 1,2 , .  . . , L (i.e, when 
E = 0 )  (that satisfy these equations) denoted by 
Jk(0) + J(O), V i  as n 4 00 (this result is similar 
to that in the previous subsection and the case pre- 
sented in [6]). Hence, for a sufficiently small E ,  using 
analyticity arguments, {J;},  V i  can be shown to be 
sequences of uniformly bounded sequences of matrices 
which can be approximated by J ( 0 )  for a sufficiently 
large n. Note that in [6], we provide explicit inequal- 
ities to obtain ranges for e to prove a similar uniform 
boundedness result. In this paper, we refrain from 
obtaining such results for two reasons: (1) these in- 
equalities are quite complicated and (2) solving them 
to obtain the desired range of e can be quite cumber- 
some as well. Some simulation results are presented 
to illustrate that one can indeed use this approxima- 
tion in practice to obtain reduced-complexity compu- 
tations for the image-based filter recursions (20). In 
fact, one can obtain O(e2) recursions to the normalized 
measures it), (:I,. . , , (AL' and hence the normalized 

-. 
ACiiBt,,,,, GY+l = ACjiBt,+17 J,',, i = 1 7 2 , . . . ,  L 

measure 8, for a sufficiently large n.  his result is 
summarized in the following theorem. The proof is 
analogous to that of Theorem 4 and is omitted. 

Theorem 5 Consider the target model given by (i!) 
and the Markov modulated Poisson process given by 
(2) with an underlying Markov chain that i s  nearly 
completely decomposable with A = A + eQ where A, 
&, V i  = 1,2,. . . , M satisfy the irreducibility condi- 
tions. Suppose also that Assumption 4.1 holds. Then 
there exists a suficiently large integer n1 > 0 such 
that for n 2 n1, one can obtain O(e2) approxima- 
tions to the normalized measures and & ,  (and 
hence to the robust discretized target trajectory estima- 
tor it,) using the following approximate computations 
denoted b y  ti), f i n  which are given by (for n 2 nl) 
(with the unnormalized estimates denoted with a " ) 
( i ,  j = 1 , 2 , .  . . , L )  

tn+l '(i) = (2' (VI[(~S + + G;+JWi 

Remark 2 Note that the order of approximation for 
Pn is O(e2) as opposed to an O(e) approximation t80 
the MMPP filter as described in Theorem 4. 

5 Numerical Examples 
In this section, we present numerical examples to 

illustrate the performance of our reduced-complexit,y 
mode estimation and image enhanced target trajectory 
estimation schemes. 

These simulations are carried out with the following 
choice of parameters for the signal model described 
in Section 2. The continuous-time system equations 
(refer to the actual equation) are approximated by 
their Euler discretizations. We adopted an underlying 
nearly completely decomposable Markov chain with a 
generator matrix A = A + eQ where 

4 =  

Clearly, for this example, S = 8, M = 3. The Markov 

g = (10 10 10 50 50 110 110 110)' 

modulated Poisson arrival rates are given by 
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where we have chosen g(1) = g(2) = 9(3), g(4) = 
g(5) and g(6) = g(7) = g(8). Similarly, the target 
trajectory is approximated by an Euler discretization 
of (refer to the equation) by 

0.05 
0.1 

S ( k )  = S(k - 1) + Ac(xk)S(k - 1) 4- RWk 

A where ~ ( k )  = (z x y G) E R4 which is also known as 
the switching turn rate model of a maneuvering target 
in two dimensions z,y. The sampling time interval A 
is taken to be 0.001 second, ‘wk is a zero mean white 
Gaussian sequence with covariance Q = 0 ~ 1 2 .  The 
matrix R is given by 

4.387 x lov7 
2.8 x 

0.5A2 0 

R =  

Here Wk models an omni-directional acceleration pro- 

cess whereas C(1) = C(2) = C(3) = 

describe a constant velocity process for the modes 
1,2,3. Similarly C(4) = C(5) and C(6) = C(7) = C(8) 
describe two different turn rate processes with 

0 1 0 0  

0 0 0 0  

and 

with w1 = x / 3  radians/second and w2 = - x / 3  ra- 
dians/second. The simulations are carried out with 
a 10000 point Markov chain (i.e, over a period of 10 
seconds). The results are averaged over 10 simulation 
trials. 

Table 1 shows the average approximation error be- 
tween the exact aggregate modal filter & and the 
reduced-order approximate aggregate modal filter & 
measured as ET=’=, d G -  against various val- 
ues of E between 0.001 and 0.15. Similarly, Table 2 
shows the average relative approximation error in im- 
age enhanced trajectory estimation between the exact 
filter and the reduced-order filter. 

Figures 1, 2 show snapshots of the true trajec- 
tory (solid line), the estimated trajectory (the “dash- 
dotted” line) according to the exact image-enhanced 
filter and the estimated trajectory (the “dashed” line) 

Average error in aggregate modal filtering 
1.0594 x 10- 
1.042 x 10- 
4.204 x 10- 
1.554 x 10- 

6.6468 x 10- 
I 

0.15 1 1.3 x 10-3 1 
Table 1: Average approximation error in low- 
complexity aggregate modal filtering 

I 0.15 I 3.2872 x 

Table 2: Average relative error in low-complexity im- 
age enhanced filtering 

according to the reduced-order image enhanced filter, 
for a2 = 0.01 and n2 = 0.1, respectively (with E = 0.1). 
It is clear that the filters perform quite well with the 
exact filter and the reduced-order filter being almost 
indistinguishable. Note that although here we assume 
the “block”-structured measurement dynamics (9 and 
C matrices being dependent only on the super-states of 
the Markov chain), small perturbations of such dynam- 
ics will result in similar performances of the reduced- 
order filters. 
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Figure 2: Low-complexity image enhanced target trajectory estimation, u2 = 0.1 
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