Proceedings of the 33rd Conference on Decision and *Control* **FA-8 911 0 Lake Buena Vista, FL** - **December ¹⁹⁹⁴**

Maximum Likelihood Estimation of Time-series with Markov Regime

Subhrakanti Dey, *student member, IEEE,* Vikram Krishnamurthy, *member, IEEE*

Department **of** Systems Engineering,

Research School of Information Sciences and Engineering,

Australian National University, Canberra ACT 0200, Australia

Tel: +61 6 **249 3259 Fax:** +61 **6 279** 8088 E-mail: **subhraOsyseng.anu.edu.au**

Thierry Salmon-Legagneur

DSTO, Australia

Abstract

In this paper, we consider the estimation of various Markov-modulated time-series. We obtain maximum likelihood estimates of the time-series parameters including the Markov **chain** transition probabilities and the timeseries coefficients using the EM (Expectation Maximization) algorithm. Also the recursive EM algorithm is used to obtain on-line parameter estimates. Simulation studies show that both algorithms yield satisfactory results.

1 Introduction

Signal Model: Let s_k denote a N_s -state irreducible Markov chain with states $\{1, 2, \ldots, N_s\}$ with transition probability matrix $\Pi = (\pi_{mn})$, $\pi_{mn} = P(s_{k+1} = n|s_k =$ *m*) and initial state probability $\pi = (\pi_m)$, $\pi_m = P(s_1 =$ m). Define the Markov-modulated polynomials **as** follows:

$$
A(z^{-1}, s_k) = 1 + \sum_{i=1}^{p} a_i(s_k) z^{-i}
$$

\n
$$
B(z^{-1}, s_k) = 1 + \sum_{i=1}^{q} b_i(s_k) z^{-i}
$$

\n
$$
C(z^{-1}, s_k) = 1 + \sum_{i=1}^{r} c_i(s_k) z^{-i}
$$
 (1)

where z^{-1} denotes the delay operator and k denotes discrete-time. Let $A(m) \triangleq (a_1(m) \ldots a_p(m))', B(m) \triangleq$ $(b_1(m) ... b_q(m))', C(m) \triangleq (c_1(m) ... c_r(m))'.$ In this paper, we consider estimation of any one of the following second-order stationary Markov-modulated timeseries models:

$$
ARX: A(z^{-1}, s_k)y_k = B(z^{-1}, s_k)u_k + w_k \qquad (2)
$$

$$
MAX: y_k = B(z^{-1}, s_k)u_k + C(z^{-1}, s_k)w_k \qquad (3)
$$

$$
ARMA: \tA(z^{-1})y_k = C(z^{-1}, s_k)w_k \t(4)
$$

where u_k , y_k are the measured input and output at time $k, w_k \sim \text{white } N(0, \sigma^2)$ is independent of s_k and ϕ is the parameter vector consisting of polynomial coefficients **and** Markov chain parameters (e.g., $\phi = (A(m), B(m), \Pi, \sigma^2)$) for (2)). We assume u_k to be persistently exciting [4]. We also assume that $A(z^{-1}, s_k)$, $B(z^{-1}, s_k)$ and $C(z^{-1}, s_k)$ are coprime to each other for each $m, m \in \{1, 2, ..., N_s\}.$

0-7803-1 968-0/94\$4.0001994 IEEE

Notations: $Y_k = (y_1, \ldots, y_k)^T$, $U_k = (u_1 \ldots u_k)^T$, $Z_k =$ (Y_k, U_k) denotes the observed "incomplete" data. $S_k =$ $(s_1 \ldots s_k)^T$, $Y_t^k = (y_t \ldots y_k)^T$ and $U_t^k = (u_t)$ where superscript T denotes transpose.

Estimation Objectives: We use the Expectation Maximization (EM) algorithm [7] to obtain maximum likelihood (ML) estimates of ϕ , given Y_T , U_T (when appropriate) in Sec. 2. Also based on the recursive EM algorithm **121, an** on-line estimation scheme is presented in Sec. 3.

In *[5],* the EM algorithm and a recursive EM algorithm are used to estimate Markov-modulated AR processes which is a special case of our model (2) with $B = 0$. The three models we consider in this paper can be regarded **as** an extension **of** the work in *[5].* Applications of such estimation algorithms can be found in [6], [5] and in the references therein.

Remark 1: Models **(2),** (3) or (4) are special cases of the Markov-modulated ARMAX model

$$
A(z^{-1}, s_k)y_k = B(z^{-1}, s_k)u_k + C(z^{-1}, s_k)w_k \quad (5)
$$

However, unlike **(2),** (3) and **(4),** ML estimation of (5) is computationally prohibitive since it requires computing probability density functions over all *NT* realisations of a *N.* state T point Markov chain. For similar reasons, we forbid $A(z^{-1})$ in (4) to be Markov-modulated.

Remark 2: Deriving stationarity criteria for Markovmodulated time-series is a difficult problem. For example, two switching, separately second order AR stationary processes can result in an unstable system - whereas two individually unstable AR processes can be stabilized when allowed to switch according to a Markov regime. For sufficient conditions on the second-order stationarity of Markov-modulated time- series, see [5].

2 ML estimation via EM algorithm

Markov-modulated ARX estimation The EM algorithm is an iterative procedure; each iteration involves two steps, E-step and M-step. E Step: Following **131,** the expectation of the log-likelihood function of a T-point "complete" data sequence $M_T =$ (Y_T, U_T, S_T) defined as

$$
\mathcal{Q}(\phi^{(l)},\phi)\stackrel{\triangle}{=}E\{\ln f(M_T|\phi)|Z_T,\phi^{(l)}\}
$$

2856

$$
= -\frac{T}{2}\ln\sigma^{2} - \frac{1}{2\sigma^{2}}\sum_{k=1}^{T-1}\sum_{m=1}^{N_{s}}\gamma_{k}(m)\left(A(z^{-1},m)y_{k}-\right)
$$

$$
B(z^{-1},m)u_{k}\right)^{2} + \sum_{k=1}^{T-1}\sum_{m=1}^{N_{s}}\sum_{n=1}^{N_{s}}\xi_{k}(m,n)\ln\pi_{mn}
$$

$$
+ \sum_{m=1}^{N_{s}}\gamma_{1}(m)\ln\pi_{m}
$$
(6)

where $\xi_k(m,n) \stackrel{\triangle}{=} f(s_k = m, s_{k+1} = n | Z_T, \phi^{(l)})$ and $\gamma_k(m) \stackrel{\triangle}{=} f(s_k = m | Z_T, \phi^{(1)})$. $\gamma_k(m)$ is computed via the "forward backward" procedure described in [1]. $\phi^{(l)}$ is the estimate of the parameter vector at the I-th iteration assuming the iteration procedure starts with an initial estimate $\bar{\phi}^{(0)}$.

M Step: This step involves computing $\argmax_{\phi} Q(\phi^{(1)}, \phi)$ to yield the estimates of π_{mn} , σ^2 , $A(m)$, $B(m)$. For all the relevant details, **see** [6].

Markov-modulated MAX estimation

The MAX model (3) **can** be written in equivalent ARX form **as**

$$
A'(z^{-1}, s_k)y_k = B'(z^{-1}, s_k)u_k + e_k \qquad (7)
$$

where the polynomial $A'(z^{-1}, s_k)$ is "sufficiently" long enough to ensure that e_k is almost white (see [4], pg 291 for details) and $B'(z^{-1}, s_k) = A'(z^{-1}, s_k)B(z^{-1}, s_k)$. The EM algorithm described in the previous section yields the estimates of $A'(m)$ and $B'(m)$ and hence of $B(m)$. $C(m)$ in (3) can be estimated by solving a set of *inverse Yule-Walker equations* (see pg 291, [4]). Details can be found in [SI.

Markov-modulated ARMA estimation

Since A in (4) is **no** longer Markov-modulated, it can be estimated via a set of *Yule- Walker* equations (see pp 289, [4]). Rewriting (4) **as**

$$
A(z^{-1})A'(z^{-1},s_k)y_k=e_k
$$
 (8)

(where e_k and $A'(z^{-1}, s_k)$ are as defined in the previous section), estimate of $A(z^{-1})A'(z^{-1}, s_k)$ and hence $C(m)$ can be obtained via EM.

3 On-line Estimation via Recursive EM algorithm

An on-line estimation scheme can be implemented based **on** the recursive EM algorithm proposed in [2].

4 Simulation studies

We present simulation examples, with $N_A = 2$, $\pi_{11} =$ $\pi_{22} = 0.9$ for on-line recursive EM algorithm. Simulation results for the off-line EM algorithm can be found in [6]. On-line estimation via recursive EM algorithm Consider a jump time-varying 100000 point

Markov-modulated MAX model with $\sigma^2 = 1$ and

 $B(1) = (0.8 \ 0.3)'$, $B(2) = (0.5 \ 0.1)'$, $C(1) = (0.5 \ 0.3)'$, $C(2) = (-0.4 \ 0.2)'$ $t \le 20000$ $B(1) = (0.5\ 0.9)'$, $B(2) = (-0.6\ 0.4)'$, $C(1) = (0.7\ 0.5)'$, $C(2) = (-0.2 \ 0.5)'$ $t > 20000$

Figure 1 shows the time evolution of the estimates when the estimation procedure starts with arbitrary initial estimates. Results for a Markov-modulated ARMA model can be found in [6].

Figure **1:** Time evolution **of** MAX parameters

References

- L.R. Rabiner, "A tutorial **on** Hidden Markov Models and selected applications in speech recognition," *P~c. ZEEE,* V01.77, **No.2,** pp 257-285, 1989.
- V. Krishnamurthy, J.B. Moore, "On-line Estimation of Hidden Ma rkov Model Parameters based on the Kullback-Leibler Information Measure," *ZEEE %ns. on Signal Processing,* Vol. 41, **No.** 8, pp. 2557- 2573, August, 1993.
- [3] D.M. Titterington, A.F.M. Smith and U.E. Makov, *Statistical Analysis of Finite Mizture Distributions,* New York, Wiley, 1985.
- [4] T. Söderström, P. Stoica, System Identification, Prentice Hall, 1989.
- [5] U. Holst, G. Lindgren, J. Holst and M. Thuvesholmen, "Recursive Estimation in Switching Autoregressions with Markov Regime," to appear in *Journal of Time Series Analysis,* 1994.
- **S.** Dey, V. Krishnamurthy and T. Salmon-Legagneur, "Estimation of Markov-modulated Time-series via EM algorithm," to appear in *ZEEE Signal Processing Letters,* October 1994.
- A.P. Dempster, N.M Laird, D.B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," *J. Royal Stat. Soc.,* ser 39, vol. 6, pp 1-38, 1977.

2857